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Abstract

This paper examines a declining duopoly, where the firms must choose
when to exit from the market. The uncertainty is modeled by letting the rev-
enue stream follow a geometric Brownian motion. We consider the Markov-
perfect equilibrium in firms’ exit strategies. With a low degree of uncertainty
there is a unique equilibrium, where one of the firms always exits before the
other. However, when uncertainty is increased, another equilibrium with the
reversed order of exit may appear ruining the uniqueness. Whether this hap-
pens or not depends on the degree of asymmetry in the firm specific parame-
ters.

1 Introduction
While entry in growing markets has received more attention in the literature, declin-
ing markets and abandonment of existing businesses are also important phenomena
in many industries. When considering a firm in isolation from competitors, the
decision to exit is conceptually similar to entry. Just as the decision to enter, or
more generally to trigger an investment project, the decision to exit is typically
characterized by (partial) irreversibility, flexibility with respect to the timing, and
continuously unfolding uncertainty over the profitability. Optimal timing of exit in
such a setting is most naturally approached using the theory of irreversible invest-
ment under uncertainty, or in other words the theory of real options, as done by
Dixit (1989) and Alvarez (1998, 1999).
However, in many cases industries are characterized by competitive interaction

between the firms. Such strategic considerations induce a profound difference be-
tween the decisions of entry and exit. Assuming that the firms affect negatively each
other’s profitability, the strategic interaction in entry takes the form of preemption,
while in exit it resembles war of attrition.
In this paper, we extend the methodology of irreversible investment under un-

certainty to consider exit in an oligopolistic market structure. More particularly,
we examine a declining duopoly with the following characteristics. The profitability
evolves according to a geometric Brownian motion at such a low drift rate that it
eventually becomes optimal for the firms to exit. The decision to exit is irreversible.
The firms affect negatively each other’s profitability, and thus both firms would like
to see their competitor exit as early as possible. The questions to be analyzed are
which of the firms exits first and when this happens.
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The main methodological feature of the model is that it incorporates in the real
options framework the perfect Nash equilibrium concept similar to many determin-
istic timing games. We show that in equilibrium the firms always exit sequentially.
With a given (arbitrarily small) asymmetry in the firm specific parameters, there
always exists a unique equilibrium if the degree of uncertainty is sufficiently low.
However, as the degree of uncertainty is increased, the uniqueness may break down.
More specifically, in addition to the “normal” equilibrium, an equilibrium where
the exit strategy of one of the firms is a disconnected stopping set in the state space
may appear. Whether this happens or not depends on the degree of asymmetry
between the firms.
The model builds on several existing streams of literature. In the following we

review the most relevant literature, and discuss our contribution in relation to those
papers.
The theory of irreversible investment under uncertainty considers problems,

where a firm should choose the optimal timing of investment when the decision
can not be reversed and the value of the project evolves stochastically. Important
contributions to the theory include, e.g., McDonald and Siegel (1986) and Pindyck
(1988), while a thorough review is given in Dixit and Pindyck (1994). A main
conclusion is that due to an option value inherent in an investment opportunity,
it is optimal to postpone the investment compared to the traditional investment
theory.1 Due to the similarity of the techniques and concepts to financial options
pricing settings, this new view of investment is often referred to as the real options
approach. The approach is also applicable in valuing other options associated with
managing real assets, such as the abandonment of an existing business (option to
exit), which has been studied by Dixit (1989) and Alvarez (1998, 1999). If the
decision to exit is irreversible, then the theory suggests that the firm should stay in
a declining market longer than if the exit decision is reversible.
Because in reality competitive aspects characterize many investment situations,

one of the main shortcomings in basic real options models is that they do not ac-
count for the strategic interaction between the firms.2 There is, however, a new
stream of literature that incorporates game theoretic concepts in the real options
framework to fix this deficit. Examples of models in discrete time are Smit and
Ankum (1993), and Kulatilaka and Perotti (1998). Papers that model uncertainty
using diffusion processes include Grenadier (1996), Joaquin and Butler (1999), Lam-
brecht (1999, 2001), Mason and Weeds (2001), Moretto (1996), Weeds (2002), and
Williams (1993). Typical for these papers is that concepts from the industrial or-
ganization literature, particularly preemption models (e.g. Fudenberg et al., 1983,
Fudenberg and Tirole, 1985), are used in the real options framework.
Our paper belongs naturally to this literature stream. We model uncertainty

using the geometric Brownian motion, which is standard in the continuous time real
options models. However, as we consider exit, the strategic interaction is opposite to
most of the above mentioned references.3 A crucial difference concerns the assign-
ment of roles to the firms. In preemption models one of the firms typically acts as a
leader, but the threat of preemption implies that in equilibrium firms are indifferent

1The traditional investment theory is based on the rule that an investment project should be
undertaken whenever its net present value is positive. This reasoning, however, neglects the fact
that the correct decision involves comparing the value of investing today with the value of being
able to undertake the project at any possible time in the future.

2A related literature considers the rational expectations competitive equilibrium in the case with
divisible investments (Leahy, 1993; Baldursson and Karatzas, 1996). There is a close relationship
between these models and the basic real option models due to the result that the timing of
equilibrium capacity investments is the same as the optimal timing of a myopic investor that
ignores other firms.

3An exception is Lambrecht (2001), who considers the impact of debt financing on entry and
exit.
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with respect to the role assignment. In our model, however, the follower is always
better off. This means that asymmetries in the firm specific parameters get special
importance, because even a slight difference between the firms may determine which
of the firms is the follower in equilibrium.
Whereas many papers mentioned above are influenced by deterministic models

of preemption, we adopt concepts from the deterministic models of exit, e.g., Ghe-
mawat and Nalebuff (1985, 1990), and Fudenberg and Tirole (1986). Ghemawat
and Nalebuff (1985) is particularly related to our work. They model the exit in a
duopoly, where the firms differ from each other with respect to the scale of oper-
ations. In that model the equilibrium is derived by backward induction. As the
decline of the market is deterministic, the game is truncated at some finite time
when it is evident that both of the firms must have exited irrespective of each oth-
ers’ strategies. The model has a unique equilibrium, where the larger firm exits
before the smaller firm. In our stochastic framework we can not work backward
from a fixed time moment, thus the formulation of the strategies is crucial. We
adopt state-dependent Markov strategies, which are expressed as stopping sets in
the state space such that the firm under consideration exits when the state variable
hits the corresponding stopping set for the first time. The equilibrium resulting
with such strategies is Markov-perfect.4

The contribution of our paper can thus be seen from two angles. First, the paper
extends the real options literature by studying the strategic interaction associated
with abandonment options in oligopoly. Second, the paper gives new insight on
how adding uncertainty modifies some results in the deterministic literature on
exit. This is important, because in reality industry conditions are always more or
less uncertain. In particular, it is shown that the main properties of Ghemawat and
Nalebuff (1985) remain unchanged if uncertainty is small. However, if the level of
uncertainty is increased, the uniqueness of the equilibrium may break down at some
point, depending on the degree of asymmetry in the firm specific parameters. Then
it is no longer possible to predict which of the two firms should exit first.
Another recent paper that considers strategic interaction in exit from the real

options perspective is Lambrecht (2001). While offering a very interesting analysis
on how the capital structure and possibilities of debt renegotiation affect the exit
patterns of the firms, the paper simplifies the strategic interaction by assuming the
stopping sets to be connected in order to ensure a unique subgame perfect equi-
librium. Our paper concerns the relaxation of this assumption: when uncertainty
is increased, an equilibrium with a disconnected strategy may appear ruining the
uniqueness.
Methodologically the model is closely related to some literature on stopping time

games. The formulation of strategies is similar to Dutta and Rustichini (1995).
Other related papers are Huang and Li (1990), who prove the existence of equi-
librium for a class of continuous time stopping games under certain monotonicity
conditions, and Dutta and Rustichini (1993), who characterize the pure strategy
equilibria in another class of stopping games. Both of these papers are mainly con-
cerned with symmetric settings, whereas in our model the most interesting results
are obtained with asymmetric firms. Fine and Li (1989) present a model of exit
where the market declines according to a discrete time stochastic process. They
show that if the discrete jumps in the process are sufficiently large, there is no
unique equilibrium. The present paper, however, shows that there need not be a
unique equilibrium even when the underlying stochastic process is continuous. This
is also in contrast to the presumption stated in Ghemawat and Nalebuff (1990)

4 In many preemption models the strategy of a firm is defined simply as a threshold level, i.e.,
a level to which the shock variable has to rise in order to trigger the investment. If we would use
similar definition in our model, there would be two equilibria in every relevant case. Our definition
allows us to use the sub-game perfection criterium to rule out some outcomes.
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according to which there is a unique equilibrium with stochastic demand as long as
it changes continuously.
The paper is organized as follows. In Section 2 we introduce the model and

notation. We derive the equilibrium in three steps. First, in Section 3, we derive
the optimal strategy of a firm that is alone in the market. In Section 4 we derive the
best response strategy of a firm as a reaction to any given strategy of its competitor.
Finally, in Section 5 we analyze the equilibria of the model. In Section 6 we illustrate
the main results with an example. Section 7 concludes.

2 Model
We consider an industry that is initially a duopoly. If one of the firms exits, the
remaining firm enjoys monopoly profits until it exits as well. The model is in
continuous time with an infinite horizon. The two firms are labelled 1 and 2. By
index i we refer to an arbitrary firm and by j to the ‘other firm’. Both firms discount
their cash flows with a fixed discount rate ρ.
The profitability of an active firm depends on two factors. First, there is an ex-

ogenous shock process X that characterizes the general profitability in the industry.
Second, the presence of a competitor lowers the revenues. To model this, we define
constants Mi and Di such that 0 < Di < Mi (i = 1, 2), and assume that the shock
variable X affects revenues multiplicatively: the revenue flow is ΠMi (X) = XMi

when alone in the market, and ΠDi (X) = XDi in the presence of a competitor (M
for monopoly, D for duopoly). To be active in the market costs Ci units of money
in a time unit. Thus, the profit flows of i in monopoly and duopoly are respectively:

πMi (X) = ΠMi (X)− Ci = XMi − Ci,
πDi (X) = ΠDi (X)− Ci = XDi − Ci.

The exogenous shock variable follows a geometric Brownian motion:

dX

X
= αdt+ σdz, (1)

where α and σ are constants and dz is the standard Brownian motion increment.
We require that α < ρ to ensure finite firm values, and α < σ2/2 to ensure that the
firms want to exit in a finite time. By X we refer generally to a solution process of
(1), by Xt to the value of the process at time t, and in particular by {Xx

t } we refer
to a solution process of (1) that starts at x.5

The only decision the firms have to make is to choose when to exit. Firm i is
free to exit permanently at any moment by paying a fixed exit cost Ui. To ensure
that it can ever be optimal for a firm to exit, we assume that Ci > ρUi ∀ i = 1, 2
(otherwise, a firm would rather pay the cost stream Ci forever than to pay the exit
cost Ui). Once one of the firms has exited, the remaining firm enjoys monopoly
profits until it finds it optimal to exit as well. However, for the sake of clarity, we
transform the game so that it ends already at the moment when one of the firms
exits. The remaining firm simply gets as the termination payoff the value function
of its optimization problem as a monopoly firm. We derive this termination payoff
in the next section, where we consider the optimal exit problem with no strategic
interaction.

5{Xx
t } is a sequence of random variables indexed by t > 0 defined on a complete probability

space (∆,z, P ) and adapted to the nondecreasing sequence {zt}t≥0 of sub-σ-fields of z. zt
contains the information generated by X on the interval [0, t].
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In order to utilize the subgame perfection criterion, the strategies must be de-
fined so that they specify the actions of the firms at all possible courses of events.
We restrict our attention to pure strategies. As X is a Markov process, it is also
natural to restrict ourselves to Markov strategies.6 Given the current shock value
Xt, the strategy of i should tell whether to continue operating or to exit. Thus, it
can be expressed as a stopping set, that is, a set of values of R+ such that i exits
if and only if Xt is within this set.7 We call such a set an exit region. Firm i exits
when X hits the corresponding exit region for the first time. We restrict the exit
regions to be closed in order to present the subsequent equilibrium analysis in the
simplest possible form (cf. closed Markov strategies in Dutta and Rustichini, 1995).
This assumption is not restrictive, because an optimal exit region of a firm regard-
less of the strategy of the other firm can always be expressed as a closed stopping
set. The formal definition of the strategies is given below:

Definition 1 The strategy of i is a closed stopping set Si ⊂ R+, which defines i’s
actions as long as j is still in the market: if Xt ∈ Si, then i exits immediately,
otherwise i stays in the market. We denote by S = {S1, S2} the strategy profile
containing the strategies of both firms.

To formalize the objective functions, we define τ (x,A) as the time when X hits
some region A ⊂ R+ for the first time when starting at some x. This first-passage
time is a Markov time:

τ (x,A) = inf {t > 0 : Xx
t ∈ A} .

We denote by τ i the time when the state variable hits the exit region of firm i
for the first time, that is, τ i = τ (x, Si). The game ends at time eτ = τ (x, S1 ∪ S2) =
min {τk}k=1,2. If τ i < τ j , firm i exits and j gets a monopoly position. Given the
strategies of both firms, the value of i at state value X = x is:8

V Di (x, S) = Ex [

eτZ
0

πDi (X
x
t ) e
−ρtdt

+e−ρeτ ³χ{τ i>τj} · VMi (Xxeτ )− χ{τ i≤τj} · Ui
´
] , (2)

where Ex denotes the expectation given the current state value x, and χ{·} is
an indicator function, i.e. χ{true} = 1 and χ{false} = 0. The termination payoff
function VMi (·) is the monopoly value of the firm i, which will be derived in the next
section. The problem of firm i is to choose its strategy Si so that (2) is maximized
at all state values x.

6 In general, strategies in a dynamic game are decision rules that associate an action at a
given time for each history of the game. By Markov strategies one refers to a class of strategies
that depend only on the current state. By restricting on such strategies, we assume that agents
condition their actions only on variables that directly influence their payoffs. An equilibrium in
Markov strategies remains an equilibrium even when history-dependent strategies are allowed.

7 See Dutta and Rustichini (1995) for such a definition of strategies in a related class of stochastic
games. They have also another component in the strategy in order to allow the firms to react
instantaneously to each other’s actions. This is not needed in our model, because it is never
optimal for a firm to react instantly to the other firm’s exit decision.

8The firms are assumed to be risk-neutral. This assumption is not crucial for our results.
Alternatively we could incorporate risk-aversity by assuming that fluctuations in X are spanned
by traded assets and interpret the objectives of the firms using equivalent risk-neutral valuation.
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3 Optimal exit with no strategic interaction
In this section we consider the optimal exit strategy in the absence of strategic
interaction. The firm under consideration either does not have any competitors, or
has a passive competitor that never exits. The purpose is to derive the monopoly
value function VMi (x) and some other useful results for the subsequent analysis.
To emphasize that we have no strategic interaction, we leave for a moment the
subscript i out: the profit flow is π = Π − C and the exit cost is U . By Π we
represent all possible revenue terms introduced in the previous section (ΠMi (X),
ΠDi (X), i = 1, 2). In any case, it is a multiplicative of X and therefore follows the
same geometric Brownian motion:

dΠ

Π
= αdt+ σdz.

The active firm is an asset that earns the revenue flow Π in return to the cost
flow C. In addition, the firm owns the option to exit permanently from the market
by giving up the fixed cost U . The firm should choose the optimal time to exit
in order to maximize the expected present value of the future cash flows, in other
words, consider when the momentary losses are so severe that it is no longer worth
to stick to the market in the hope of future profits. This is a standard optimal
stopping problem, and we will merely state the main results. For a more detailed
solving of the problem see Dixit (1989), where also re-entry is allowed.
It is clear that the lower the revenue flow, the more tempting it becomes to exit.

Therefore, the optimal exit region can be expressed as a threshold level Π∗ such
that it is optimal to exit whenever the revenue flow has a value in (0,Π∗]. Since
Π is a Markov process, the value of the firm can be expressed as a function V (Π).
It is a standard result that as long as it is not optimal to stop, this value function
must satisfy the following differential equation, which results from the Bellman’s
principle of optimality and the application of Ito’s lemma on V :

1

2
σ2Π2V 00(Π) + αΠV 0(Π)− ρV (Π) +Π− C = 0, (3)

where the primes denote derivatives with respect to Π. The general solution to
this is:

V (Π) = aΠβ1 + bΠβ2 +
Π

δ
− C

ρ
, (4)

where

β1 =
1

2
− α

σ2
+

s·
α

σ2
− 1
2

¸2
+
2ρ

σ2
> 1 and

β2 =
1

2
− α

σ2
−
s·

α

σ2
− 1
2

¸2
+
2ρ

σ2
< 0

are the roots of the characteristic equation 1
2σ

2β (β − 1) + αβ − ρ = 0. Coeffi-
cients a and b are free parameters, which are solved by applying appropriate bound-
ary conditions. In this case the conditions are derived from the value-matching and
smooth-pasting conditions at Π∗, and the condition that eliminates the speculative
bubbles (see Dixit, 1989; Dixit and Pindyck, 1994). Applying these in (4) results
in an exact solution for Π∗ and V (Π):
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Π∗ =
β2 (ρ− α)

β2 − 1
µ
C

ρ
− U

¶
, (5)

V (Π) =

(
Π

ρ−α − C
ρ +

³
−U − Π

ρ−α +
C
ρ

´ ¡
Π
Π∗
¢β2 , when Π > Π∗

−U , when Π ≤ Π∗.
(6)

To conclude this section, we apply the result to the original duopoly setting.
Assume that firm j has exited, but i is still in the market. Then the revenue flow of
i is Π = XMi, and the optimal exit threshold in terms of the shock variable X must
be XM

i = Π∗/Mi. Simple substitution gives XM
i and the corresponding monopoly

value VMi (·) as a function of the current state value x:

XM
i =

β2 (ρ− α)

Mi (β2 − 1)
µ
Ci
ρ
− Ui

¶
, (7)

VMi (x) =

(
xMi

ρ−α − Ci
ρ +

³
−Ui − xMi

ρ−α +
Ci
ρ

´³
x
XM
i

´β2
, when x > XM

i

−Ui , when x ≤ XM
i .

(8)

The value function (8) gives the termination payoff used in (2). In other words,
it is the value of firm i when j leaves the market at the state value x. The function
VMi (·) is increasing, continuous, and smooth everywhere.
For later use, we consider also firm i in duopoly under the pessimistic assumption

(from i’s point of view) that j is passive, i.e., will never exit. Then the only required
modification is to replaceMi with Di. We denote by XD

i the optimal exit threshold
for i under that assumption:

XD
i =

β2 (ρ− α)

Di (β2 − 1)
µ
Ci
ρ
− Ui

¶
. (9)

Clearly, XD
i > XM

i . Since X
D
i is the optimal exit threshold for i at the most

pessimistic scenario where there is no hope that j exits before i, it can never be
optimal for i to exit at values above XD

i , irrespective of the strategy of j. On the
other hand, since it is optimal for i to exit at XM

i even when j has already exited, it
can never be optimal for i to stay at values below XM

i , irrespective of the strategy
of j. We can thus already say that when Si is optimally chosen,

¡
0,XM

i

¤ ⊂ Si and
Si ∩

¡
XD
i ,∞

¢
= ∅, irrespective of Sj .

4 Best response to a given strategy
In this section we consider the optimal strategy of i given that j adopts an arbitrary
strategy Sj . In order to apply the subgame perfection criterion, the optimal actions
must be specified at all state values. The main insight to be established is that such
a best response strategy may be a disconnected set. We start with the following
definition:

Definition 2 The best response of i is a strategy Si that maximizes (2) at all x > 0,
given that j’s strategy Sj is fixed. We denote the best response to Sj by Ri (Sj).

The problem considered is to find a closed set Ri (Sj) that maximizes (2) given
that τ i = τ (x,Ri (Sj)) and τ j = τ (x, Sj). This is a time-homogenous, yet some-
what more complicated optimal stopping problem than the one considered in Section
3. To keep the key ideas as accessible as possible, we maintain a relatively low level
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of technical formality. For mathematical treatments of optimal stopping problems
see, e.g., Friedman (1976), Karatzas and Shreve (1998), or Øksendal (2000).
In order to facilitate the communication of the main points, we adopt the fol-

lowing definitions:

Definition 3 Given a point x0 > XM
i , the upper reaction of i to x

0 is the lowest
value above it where it is optimal for i to exit given that j would exit as soon
as X falls below x0. We denote the upper reaction to x0 by r+i

¡
x0
¢
. Formally,

r+i
¡
x0
¢
> x0 is the upper reaction to x0 if it maximizes the expression:

Ex [

eτZ
0

πDi (X
x
t ) e
−ρtdt

+e−ρeτ ³χ{τ i>τj} · VMi (Xxeτ )− χ{τ i≤τj} · Ui
´
] , (10)

when τ i = inf
©
t > 0 : Xx

t ≥ r+i
¡
x0
¢ª
, τ j = inf

©
t > 0 : Xx

t ≤ x0
ª
, eτ = min {τ i, τ i},

and x ∈ ¡x0, r+i ¡x0¢¢. If it is not optimal for i to exit above x0, then we say that
the upper reaction to x0 does not exist.
Similarly, the lower reaction of i to some x0 > XM

i is the highest value below
x0 where it is optimal for i to exit given that j would exit as soon as X rises above
x0. We denote the lower reaction to x0 by r−i

¡
x0
¢
. Formally, r−i

¡
x0
¢
< x0 is

the lower reaction to x0 if it maximizes (10) when τ i = inf
©
t > 0 : Xx

t ≤ r−i
¡
x0
¢ª
,

τ j = inf
©
t > 0 : Xx

t ≥ x0
ª
, eτ = min {τ i, τ i}, and x ∈ ¡r−i ¡x0¢ , x0¢. Since it must

eventually be optimal to exit if X falls low enough, the lower reaction exists for all
x0 > XM

i .

We consider next the actual derivation of the upper and lower reactions to some
arbitrary x0 > XM

i . Whenever it is optimal for i to wait, the value function must
satisfy (3). Thus, the value function in the continuation region must be of the form:

V Ci (x) = a (xDi)
β1 + b (xDi)

β2 +
(xDi)

ρ− α
− Ci

ρ
, (11)

where a and b are free parameters. It is now easy to check whether an upper
reaction to a given x0 exists (the lower reaction always exists for any x0 > XM

i ).
This is done by adding an artificial constraint that i can not exit above x0. The
corresponding value function, valid for x ∈ ¡x0,∞¢ and denoted eVi ¡x;x0,∞¢, is
given by (11), where ruling out ‘speculative bubbles’ implies that a = 0 (see Dixit
and Pindyck, 1994), and the other free parameter b is fixed by requiring that the
value function gives the correct termination payoff at x0, that is eVi ¡x0;x0,∞¢ =
VMi

¡
x0
¢
. If eVi ¡x;x0,∞¢ > −Ui, ∀x > x0, then it can not be optimal for i to exit

above x0, because continuing until j exits gives a higher payoff. In that case there
is no upper reaction to x0. If eVi ¡x;x0,∞¢ ≤ −Ui for some x > x0, r+i ¡x0¢ exists.
The upper and lower reactions can be solved by applying appropriate value-

matching and smooth-pasting conditions to (11). Let ex 6= x be the optimal exit
point (the upper or lower reaction to x0). The following conditions must then hold:

V Ci
¡
x0
¢
= VMi

¡
x0
¢
, (12)

V Ci (ex) = −Ui, (13)

∂V Ci (x)

∂x
|x=ex = 0. (14)

Equations (12) and (13) are the value-matching conditions that actually result
from the fact that the value function (2) is continuous in x everywhere for any
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strategy profile S. Thus, the value function in the continuation region must match
the termination payoffs at the points where the game ends. Equation (14) is the
smooth-pasting condition, which ensures the optimality of the exit point ex (see
Dixit and Pindyck, 1994, for a heuristic proof, or Friedman, 1976, for mathematical
verification applicable to the present case). Since x0 is given (or chosen by j), there
is no optimality requirement from the point of view of i, and thus no smooth-pasting
condition at x0.
The optimal upper (lower) reaction can be solved by finding a, b, and ex > x0

(ex < x0) such that (12) - (14) are satisfied. Since these equations are linear in
a and b, one can use two of the equations to determine a and b as functions ofex, and substitute these in the third, which results in a non-linear equation for ex.
The lower reaction can be solved by finding ex < x0 that satisfies this equation.
Correspondingly, if an upper reaction exists, it can be solved by finding ex > x0 that
satisfies this equation.
Next, we move on to constructing the entire best-response exit region. We do

that under the assumption that the strategy set Sj consists of a countable number of
closed intervals (cf. interval-based Markov strategy in Dutta and Rustichini, 1995).
This is sufficient for our purpose, since any closed set on R+ may be approximated
to an arbitrary precision by such a set.
Denote the value function of i associated with the best response by V Ri (x, Sj).

This must be solved together with the optimal exit region. First, from (2) it is easy
to conclude that in the region where j exits, the value is defined by the termination
payoff VMi (x):

V Ri (x, Sj) = V
M
i (x) , when x ∈ Sj . (15)

On the other hand, when it is optimal for i to exit, the value is defined by the
termination payoff −Ui:

V Ri (x, Sj) = −Ui , when x ∈ Ri (Sj) . (16)

Finally, in the region where j does not exit, and it is optimal for i to wait (in the
continuation region [Sj ∪Ri (Sj)]C), the value function must be of the form (11).
As shown in Section 3, it is always optimal for i to exit below XM

i , so
¡
0,XM

i

¤ ⊂
Ri (Sj) for all Sj . Similarly, it can never be optimal for i to exit above XD

i , so¡
XD
i ,∞

¢ ∩ Ri (Sj) = ∅. The problem is thus only to split the region
¡
XM
i ,X

D
i

¤
between continuation and stopping regions. We denote this interesting region by
Ωi =

¡
XM
i ,X

D
i

¤
. Since VMi (x) > −Ui for all x > XM

i , conditions (15) and
(16) imply that in Ωi it is never optimal for the firms to exit together (that is,
Sj ∩Ri (Sj) ∩ Ωi = ∅). Thus, in Ωi the state space is divided into three mutually
exclusive sets, which we denote for a moment simply as:

∆j = Sj ∩ Ωi, where j exits,
∆i = Ri (Sj) ∩ Ωi, where i exits, and
∆c = Ωi \ (∆i ∪∆j) , where none of the firms exits.

The best-response value function in these sets is given by (15), (16), and (11)
respectively. The continuity of V Ri (x, Sj) together with (15) and (16) imply that
the value matching condition could not be satisfied at a boundary between ∆i and
∆j , which means that these sets must be isolated from each other.
Since ∆j is given, it remains to work out how the set Ωi \∆j is split between

stopping and continuation regions ∆i and ∆c. Because Sj is composed of closed
intervals, Ωi \∆j is composed of a number of intervals separated by the exit regions
of j, and thus the optimal stopping region can be solved by considering each such
interval separately. Consider an arbitrary interval

¡
xL, xR

¢ ⊂ Ωi \∆j such that j
exits at the end points xL and xR. Given that the current state value is within this

9



interval, the first question is whether it is always optimal for i to wait until X hits
one of the end points where j exits, or is it optimal to exit somewhere in the middle.
The answer is easy to obtain by once again assuming that i can not exit within the
interval. The ‘artificial’ value function under this condition, eVi ¡x;xL, xR¢, is found
by taking a function of the form (11), and setting the free parameters to match the
boundary conditions eVi ¡xL;xL, xR¢ = VMi

¡
xL
¢
and eVi ¡xR;xL, xR¢ = VMi

¡
xR
¢
.

This is a linear system for parameters a and b to be solved. Since eVi ¡x;xL, xR¢ is
the value in the case where it is not possible to exit, it is straightforward to conclude
that if eVi ¡x;xL, xR¢ > −Ui within the whole interval, it would not be optimal to
exit in any case, and thus

¡
xL, xR

¢ ⊂ ∆c. On the contrary, if eVi ¡x;xL, xR¢ ≤ −Ui
for some x ∈ ¡xL, xR¢, there must be an exit region in the middle. Since r+i ¡xL¢ is
the lowest point where it is optimal to exit given that j exits at xL, and r−i

¡
xR
¢
is

the highest point where it is optimal to exit given that j exits at xR, the optimal
exit region must be

£
r+i
¡
xL
¢
, r−i

¡
xR
¢¤
. Thus,

¡
xL, r+i

¡
xL
¢¢∪¡r−i ¡xR¢ , xR¢ ⊂ ∆c

and
£
r+i
¡
xL
¢
, r−i

¡
xR
¢¤ ⊂ ∆i.

At the left and right ends of Ωi there may be intervals in Ωi \∆j where j exits
at one endpoint only. At the left-hand side, this interval is

¡
XM
i , x

R
¢
, where j exits

only at xR. In that case,
¡
XM
i , r

−
i

¡
xR
¢¤ ⊂ ∆i and ¡r−i ¡xR¢ , xR¢ ⊂ ∆c. At the

right-hand side, the interval is
¡
xL,XD

i

¤
, where j exits only at xL. In that case, if

r+i
¡
xL
¢
exists, then

¡
xL, r+i

¡
xL
¢¢ ⊂ ∆c and £r+i ¡xL¢ ,XD

i

¤ ⊂ ∆i. If r+i ¡xL¢ does
not exist, then

¡
xL,XD

i

¤ ⊂ ∆c.
The best response is constructed by processing all intervals of Ωi \ ∆j in the

way described above. This is illustrated in figure 1, where Sj is composed of three
closed intervals, [x1, x2], [x3, x4], and [x5, x6].9 As can be seen in the figure, the
best response value function is V Ri (x, Sj) = VMi (x) within all these intervals, as
determined by (15). Since all these intervals are within Ωi, ∆j is the union of them,
and Ωi\∆j consists of four intervals:

¡
XM
1 , x1

¢
, (x2, x3), (x4, x5), and

¡
x6,X

D
i

¤
. For

the first interval,
¡
XM
i , r

−
i (x1)

¤ ⊂ ∆i and ¡r−i (x1) , x1¢ ⊂ ∆c. The best response
value function V Ri (x, Sj) is given by (16) in the former, and (11) in the latter.
For the second interval, the ‘artificial’ value function eVi (x;x2, x3) ≤ −Ui for some
values, which means that there must be an exit region within the interval, which
is determined by solving r+i (x2) and r

−
i (x3) using (12) - (14): the exit region is£

r+i (x2) , r
−
i (x3)

¤ ⊂ ∆i. The value function V Ri (x, Sj) is again given by (16) in the
exit region, and (11) in continuation regions. For the third interval, eVi (x;x4, x5)
> −Ui ∀x ∈ (x4, x5). Thus it is not optimal to exit and V Ri (x, Sj) = eVi (x;x4, x5).
Finally, since eVi (x;x6,∞) > −Ui ∀x ∈ (x6,∞), it is not optimal to exit above
x6 and V Ri (x, Sj) = eVi (x;x6,∞) everywhere above x6. Summing up, the optimal
exit region of i within Ωi is ∆i =

¡
XM
i , r

−
i (x1)

¤ ∪ £r+i (x2) , r−i (x3)¤ and the best-
response strategy is Ri (Sj) =

¡
0,XM

i

¤ ∪ ∆i = ¡
0, r−i (x1)

¤ ∪ £r+i (x2) , r−i (x3)¤.
Note that V Ri (x, Sj) is continuous everywhere (the value-matching conditions hold)
and smooth at the boundaries between Ri (Sj) and the continuation regions (the
smooth-pasting conditions hold).
The main thing to note is that the best response strategy is disconnected. How-

ever, the strategies given in the figure do not form an equilibrium, because even if
Ri (Sj) is the best response to Sj , the converse is not true. Nevertheless, in the next
section we will show that such disconnected strategies may appear in equilibrium.

9The parameter values used in the figure are ρ = .05, α = −.05, σ = .1, Di = 1, Mi = 2,
Ci = 2, and Ui = 5, which result XM

i = .8 and XD
i = 1.6. The parameters that determine Sj are

x1 = .91, x2 = .93, x3 = 1.22, x4 = 1.24, x5 = 1.4, and x6 = 1.42.
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Figure 1: Construction of the best response.

5 Equilibrium

5.1 Definitions and preliminary results

Both firms wish to maximize their values at every state. The equilibrium is defined
as follows:

Definition 4 S is an equilibrium if and only if the strategies of both firms are the
best responses to each other, that is, S1 = R1 (S2) and S2 = R2 (S1).

In other words, the equilibrium is such a strategy pair S that it is not possible for
any of the firms to unilaterally improve (2) at any x > 0. To characterize potential
equilibria, we define two special classes of strategy profiles, one for each firm:

Definition 5 We denote by Θi, i ∈ {1, 2} the collection of all such strategy profiles
S = {S1, S2} where

supSi = X
D
i > supSj .

The definition refers to classes within which all the strategies are equivalent
in the sense that if the initial value is high enough, the game ends when firm i’s
exit is triggered by X falling below XD

i . We use the term outcome to refer to
the actual development of the game, that is, the order and the timing of exit. It
should be noted that there is an infinite number of strategies that result in one
outcome. The reason for our seemingly too rich strategy structure is that it enables
the distinction between strategies that would imply different actions at a state that
has been reached by disequilibrium actions in the past or by a low initial value.
This is essential for applying the sub-game perfection criterion to sort out adequate
equilibria.
The next proposition says that there are only two possible outcomes in equilib-

rium: either firm 1 exits first at threshold level XD
1 or firm 2 exits first at XD

2 :

Proposition 1 Let S be an equilibrium strategy profile. Then, S ∈ Θ1 ∪Θ2.

Proof. See the Appendix.
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The proposition means that the potential equilibrium profiles can be divided into
two classes in both of which the firms exit sequentially: Θ1 where firm 1 exits first,
and Θ2 where firm 2 exits first. Stating who exits first actually identifies completely
the outcome in equilibrium. We are interested in whether one or both of these exit
orders are possible in equilibrium. Ghemawat and Nalebuff (1985) show in the
deterministic framework that the application of the sub-game perfection criterion
rules out one of the two exit orders. This result is extended to a stochastic market
in Lambrecht (2001), who defines the strategies to be connected sets. We consider
such connected strategies in the next subsection. However, after that we will show
that when disconnected strategies are allowed, the sub-game perfection criterion
may lose its power if the degree of uncertainty is high enough.

5.2 Equilibria with connected strategy sets

In this subsection we restrict ourselves to the simplest kind of strategies, namely
those where Si, i = 1, 2, are connected sets (i.e. single closed intervals on R+).
Consider first the symmetric game. Then, as can be expected, there is no unique
equilibrium:

Proposition 2 In a symmetric game, where D1 = D2, M1 = M2, C1 = C2,
U1 = U2, the following two equilibria exist:

1)
©
S1 =

¡
0,XD

¤
, S2 =

¡
0,XM

¤ª ∈ Θ1,

2)
©
S1 =

¡
0,XM

¤
, S2 =

¡
0,XD

¤ª ∈ Θ2,

where XD = XD
1 = XD

2 and XM = XM
1 = XM

2 .

Proof. See the Appendix.
However, in reality no two firms are exactly alike. Therefore, it is interesting

to look at what happens when there is some difference between the firms. The
asymmetries in the firm specific parameters generally imply that XD

1 6= XD
2 and

XM
1 6= XM

2 . We assume in the following that at least X
M
1 6= XM

2 .
10

It will turn out that the most important factor for the nature of the equilibria
is how the monopoly threshold levels XM

1 and XM
2 are located. In particular,

it is important which of the firms has the lower XM
i , because that firm would

‘last’ longer in the monopoly position. We say that the firm with the lower XM
i

is stronger.11 Without loss of generality, we assume that it is the firm 1 that is
stronger (Assumption 1 below). However, to avoid confusion with excessive special
conditions, we do not want too much asymmetry. Therefore, we rule out the special
case where one of the firms is so much less profitable in duopoly that it would
be optimal to exit at the ‘duopoly threshold’ XD

i even under the most optimistic
scenario where the other firm exits at the corresponding level XD

j (Assumption 2
below). If this assumption would not hold for one of the firms, there would be no
interesting strategic interaction since it would be obvious that this firm exits first.
Summing up, we assume through the rest of the paper that the parameters are

such that the following hold:
Assumption 1: Firm 1 is stronger than firm 2, i.e., XM

1 < XM
2 .

Assumption 2: XD
i /∈ RDi

¡¡
0,XD

j

¤¢ ∀i ∈ {1, 2} , j 6= i.
The following proposition shows that even a slightest asymmetry destroys one

of the two equilibria of the symmetric model:
10 In section 6 we give an example where XM

1 6= XM
2 , but XD

1 = XD
2 .

11Fine and Li (1989) use the term ‘stronger’ in a slightly different meaning than we do. They say
that a firm is stronger than its competitor if its profit flow at any shock variable value is greater.
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Proposition 3 Under assumptions 1 and 2, there is an equilibrium where firm 2
exits first: ©

S1 =
¡
0,XM

1

¤
, S2 =

¡
0,XD

2

¤ª ∈ Θ2. (17)

However, the corresponding profile in Θ1,©
S1 =

¡
0,XD

1

¤
, S2 =

¡
0,XM

2

¤ª ∈ Θ1, (18)

is not an equilibrium.

Proof. See the Appendix.
Proposition 3 together with Proposition 1 means that the equilibrium given in

(17) is the only possible equilibrium with connected strategies. It is actually the
subgame perfection criterion that rules out one of the two potential equilibria. The
result is similar as in Ghemawat and Nalebuff (1985) and Lambrecht (2001).
As we have now shown that there is at least one equilibrium both in the sym-

metric and asymmetric cases, we have in practice shown that there always exists an
equilibrium in the model.

5.3 Equilibria with disconnected strategy sets

To complete the discussion of equilibria, the possibility of equilibria where the exit
regions are not connected sets must also be analyzed. In particular, we are interested
in whether there can be an equilibrium where the strong firm exits first, that is,
an equilibrium in Θ1, because that would mean that there is no unique equilibrium
outcome.
It was shown in Section 4 that the best response exit region of i is isolated from

the exit region of j above XM
i . On the other hand, it is easy to see that since firm 2

should always exit within the interval
¡
XM
1 ,X

M
2

¤
, there can not be an equilibrium

where firm 1 exits within that region. Therefore, if there is some equilibrium where
firm 1 exits first, then there must be some ‘empty space’ between the exit regions
of the firms such that there is an exit region of firm 1 above and of firm 2 below the
space. In other words, there must be an interval (x, x) such that none of the firms
exits within it, but firm 1 exits at x and firm 2 exits at x. To make it possible that
such an interval exists in equilibrium, x must be the upper reaction of firm 1 to x,
and x must be the lower reaction of firm 2 to x. This is formalized in the following
proposition:

Proposition 4 Under assumptions 1 and 2, there is an equilibrium in Θ1 if and
only if there is a point x > XM

2 such that r+1 (x) exists and x = r
−
2

¡
r+1 (x)

¢
. This

equilibrium is of the form:©
S1 =

¡
0,XM

1

¤ ∪ £x,XD
1

¤
, S2 = (0, x]

ª ∈ Θ1, (19)

where x = r+1 (x) and x = r
−
2

¡
r+1 (x)

¢
= r−2 (x) .

Proof. See the Appendix.
We call this kind of an equilibrium where there is an empty gap between the

exit regions of the firms a gap equilibrium. An interesting property of such an
equilibrium is that if Xt ∈ (x, x) and none of the firms has exited, then it may be
that the exit is triggered by an increase in the shock process. In other words, an
improvement in the profitability of the industry may trigger firm 1 to exit. The
reason is that firm 1 would like firm 2 to exit first, but as X rises, it becomes less
likely that 2 is going to exit in the near future, so it becomes optimal for 1 to exit.
It should be emphasized, however, that the state where neither of the firms has
exited when Xt ∈ (x, x) can only be reached by a ‘mistake’ or by a low initial value,

13



because normally firm 1 would already have exited when X crossed the exit region£
x,XD

1

¤ ⊂ S1.
The next proposition says that a gap equilibrium may exist only if the degree

of uncertainty is sufficiently high.

Proposition 5 Let α < 0 and all other parameters except σ are fixed at such values
that assumptions 1 and 2 hold. Then, there is some non-empty interval (0,σ] such
that when σ ∈ (0,σ], the equilibrium (17) given in Proposition 3 is unique.

Proof. See the Appendix.
Intuitively, the result can be explained by noting that as uncertainty is decreased

towards zero, the lower reaction to any x > XM
i moves towards x, but on the

contrary, the upper reaction (if it exists) remains strictly above x no matter how
low the uncertainty. Thus, as uncertainty is decreased, it becomes impossible to
have such a pair x and x that the upper and lower reactions of the firms ‘match
each other’. Then a gap equilibrium can not exist.
The proposition provides the main conclusion of this paper: when there is little

uncertainty, the game has a unique equilibrium where the stronger firm can force
the weaker firm to exit first. However, it is equally important to acknowledge
that when uncertainty is increased beyond some point, a gap-equilibrium with the
reversed order of exit may appear ruining the uniqueness. We will demonstrate this
in the next section through an example.

6 Example
In this section we illustrate the model by specifying it as in Ghemawat and Nale-
buff (1985), except for the uncertainty.12 Consider a market for a homogenous
good, where the demand fluctuates stochastically. We assume that the two firms
differ from each other with respect to their production capacities. We denote the
capacities of the firms K1 and K2.
We assume that the exogenous shock variable affects demand multiplicatively.

The price of the product is thus given by an inverse demand function of the form:

P = XD(q1 + q2),

where qi is the output of firm i. We assume that functionD satisfies ∂D (q) /∂q <
0 and ∂ (D (q) q) /∂q > 0. The second assumption implies that marginal revenue is
always positive, and is made in order to ensure that the firms want to fully utilize
their capacities. It is satisfied by, e.g., an isoelastic demand function with a high
enough elasticity. We thus specify further that D is of the form D (q) = Aq−

1
ε ,

where A is a positive parameter and price elasticity satisfies: ε > 1.
We also adopt the same assumption on the cost structure as Ghemawat and

Nalebuff (1985): the cost of keeping the firm operating imposes a cost flow pro-
portional to the firm’s capacity. We denote by c the cost flow per unit of capacity.
Since marginal revenue is always positive and there are no operating costs, firms
always utilize fully their capacities as long as they stay in the market. Thus, in the
following we associate the outputs of the firms with their capacities, i.e. qi = Ki,
i = 1, 2. The cost flow of operating is thus Ci = cKi and can only be avoided
by exiting permanently. We assume that also the exit cost is proportional to the
capacity of the firm, i.e., Ui = uKi, where u is a parameter.13

12This is done in order to link the results directly to the deterministic industrial organization
literature. The example is perfectly consistent with the original model of section 2 and captures
all of its essential properties.
13Ghemawat and Nalebuff (1985) assume that exit is free. Of course, we may also assume that

by setting u = 0.
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The revenue flow of i when alone in the market and when j coexists are respec-
tively:

ΠMi (X) = KiXD(Ki),

ΠDi (X) = KiXD(K1 +K2).

Thus, using the notation of Section 2, Mi = KiD(Ki), Di = KiD(K1 +K2).
The exit threshold levels XM

i and XD
i are now obtained from (7) and (9):

XM
i =

β2 (ρ− α)

KiD (Ki) (β2 − 1)
µ
cKi

ρ
− uKi

¶
=

β2 (ρ− α)

D (Ki) (β2 − 1)
µ
c

ρ
− u

¶
,

XD
i =

β2 (ρ− α)

D (K1 +K2) (β2 − 1)
µ
c

ρ
− u

¶
.

The difference between the firms is in the production capacity: we assume that
firm 2 produces at a larger scale than firm 1, i.e. K2 > K1. This implies that firm
1 is stronger: XM

1 < XM
2 . However, X

D
1 = XD

2 ≡ XD.
According to Proposition 3, there is an equilibrium where firm 2 exits first: S1 =¡

0,XM
1

¤
, S2 =

¡
0,XD

¤
. Figure 2 shows the values V Di (x, S) in that equilibrium

as functions of x with two values of σ: .1 (dashed lines) and .3 (solid lines). The
capacities of the firms are K1 = 1, K2 = 1.12. The other parameter values are:
ρ = .05, α = −.05, c = 2, u = 5, A = 2, ε = 1.08. It can be seen that the value
of firm 1 is considerably larger than that of firm 2.14 The kinks in the values of
firm 1 are due to the fact that firm 2 exits at those points. It can be seen that
increasing uncertainty increases the value of firm 2. This is a standard result in the
real options literature. In the present case, however, there is a region where firm 1 is
more valuable at a lower uncertainty. This is due to the strategic interaction: at the
higher uncertainty, firm 2 is willing to stay in the market at values where it would
exit at the lower uncertainty. This makes firm 1 worse off at those demand shock
values. On the other hand, one can see that the increased uncertainty reduces the
payoff difference arising from the strategic interaction: the difference in the firms’
values is much lower in the case σ = .3 than σ = .1.
To examine whether there are equilibria where firm 1 exits first, we utilize Propo-

sition 4: to have such an equilibrium, there must be a point x > XM
2 such that

r+1 (x) exists and x = r
−
2

¡
r+1 (x)

¢
. For a given x, we can calculate r+1 (x) by setting

x0 = x in (12) and finding a, b, and ex > x such that (12)-(14) are satisfied. If the
solution exits, then r+1 (x) = ex. Similarly, r−2 (x) can be calculated by finding a, b,
and ex < x such that the equations are satisfied, and setting r−2 (x) = x.
Figure 3 shows the curves y = r−2 (x) and x = r

+
1 (y) with the same parameter

values as used in figure 2. It can be seen that when σ = .1, the two curves do not
intersect. However, as σ is increased the curves move closer to each other eventually
crossing each other: when σ = .3, the two curves intersect at a point that we denote
x = x, y = x. At this point x = y = r−2 (x) = r−2

¡
r+1 (y)

¢
= r−2

¡
r+1 (x)

¢
. Then,

according to Proposition 4, there is a gap equilibrium where firm 1 exits first:15

S1 =
¡
0,XM

1

¤ ∪ £x,XD
¢
, S2 = (0, x]. This is a demonstration of Proposition

5: with low uncertainty there is a unique equilibrium where the weak firm exits
first. However, with higher uncertainty the uniqueness breaks down and there are
suddenly two different equilibria: the “normal” equilibrium where the weak firm
14Except outside the figure area at very high values of X, where the high industry profitability

makes firm 2 more valuable due to its larger capacity even if it is strategically weaker than firm 1.
15The curves could intersect at more than one point. This would mean that there are many gap

equilibria. We are only interested in whether a gap equilibrium exists, not in the number of such
equilibria.
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Figure 2: Values of the firms in equilibrium.

exits first, and the gap equilibrium where the strong firm exits first. Figure 4 shows
the values of the firms in the gap equilibrium. It should be noted that contrary to
the normal equilibrium, firm 2 is initially more valuable, because firm 1 exits first.
However, when asymmetry between the firms is large enough, the gap equi-

librium does not exist anymore even when uncertainty is high. This is easy to
demonstrate by increasing the difference in the firms’ capacities while keeping their
sum fixed. At some point, the curves y = r−2 (x) and x = r

+
1 (y) will not intersect,

no matter how much uncertainty is increased.
This example demonstrates the main conclusion of this paper. The more there

is uncertainty, the more likely it is that there is no unique equilibrium. On the
other hand, the more there is asymmetry, the more likely it is that there is a unique
equilibrium.

7 Conclusions
We have studied the devolution of a stochastically declining duopoly, where the
firms choose when to exit permanently from the market. We have shown that
there always exists at least one equilibrium, and in every equilibrium the firms exit
sequentially.
We have demonstrated the effect of strategic interaction on the shapes of the

curves that represent the firms values as functions of the shock variable value. In
equilibrium, the value function of the firm that stays in the market longer has a
kink that corresponds to the exit of its competitor. The strategic interaction also
changes the effect of uncertainty on the value of this firm. Without competition,
increasing uncertainty would increase the value of the firm with an abandonment
option. In duopoly, however, the increased uncertainty changes the behavior of the
competitor, and the total effect may be that the value of the firm is decreased at
some demand shock values. It was also demonstrated that the increased uncertainty
reduces the effect of strategic interaction on the payoff difference between the firms.
The main result of the paper is that a unique equilibrium exists only when

uncertainty is sufficiently low or asymmetry between the firms is sufficiently high.
In that case, one of the firms is doomed to exit before the other, because the other
firm can credibly commit to staying in the market longer in case it is left alone.
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However, when the degree of uncertainty is high enough and asymmetry low enough,
then a ‘gap equilibrium’, where the exit order of the firms is reversed, may appear.
Then there is no unique equilibrium outcome, and it is no longer possible to predict
which of the firms would exit first.
It is interesting to compare this main result with the paper by Ghemawat and

Nalebuff (1985). Their model is deterministic and they specify that the difference
between the firms is in the size. In their model, the larger firm exits first (unless
there is a major cost advantage in favor of the large firm). The basic version of
their model is in fact a special case of our model with demand shock volatility set
to zero.16 The present paper shows that if uncertainty is increasingly added in that
model, then at some point the uniqueness of the equilibrium may suddenly break
down. In that kind of a situation it is hard to predict the outcome of the game,
particularly the order in which the firms exit. This is an important addition to the
theory, because in reality uncertainty is a main property of many industries.
It is also interesting to compare our results with the paper by Fine and Li

(1989). They also extend deterministic exit models to a stochastic environment,
but work in discrete time. They have a result similar to ours: the uniqueness of the
equilibrium, as in Ghemawat and Nalebuff (1985) and Fudenberg and Tirole (1986),
does not hold. However, they assert that jumps in the demand process drive the
multiple equilibria result, independent of whether the demand process is stochastic
or deterministic. Our model shows that the multiple equilibria result may also be
driven by uncertainty, even if the demand decline path is continuous.
16Except that they have a more general deterministic time trajectory for the evolution of the

profitability.
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A Appendix
Proofs of Propositions 1-5 follow.
Proof of Proposition 1. It is given that S is an equilibrium profile. Let i

denote a firm for which it holds that supSi ≥ supSj . Then, given a high enough
initial value for X, firm i knows that j will not exit before i. Since Si is the best
response to Sj , it must be that i behaves exactly as it would do in the case where j
never exits, that is, i exits at the first moment when X falls belowXD

i . Therefore, it
must be that supSi = XD

i . If supSj = supSi, then i’s strategy would intersect with
Sj above XM

i . However, it was shown in Section 4 that the best-response strategy
of i can not intersect with Sj above XM

i . Thus, it must be that supSj < supSi.
Summing up, supSi = XD

i > supSj , which means that S ∈ Θi. Since i = 1 or 2,
S ∈ Θ1 ∪Θ2. Q.E.D.
Proof of Proposition 2. Assume that firm j has adopted a strategy Sj =¡

0,XM
¤
, and consider i’s best response Ri (Sj). As shown before,

¡
0,XM

i

¤
must

be contained in any best response strategy. Since XM
i = XM

j = XM , j will not
exit before i, and thus it must be optimal for i to exit everywhere between XM

and XD. It must then be that Ri
¡¡
0,XM

¤¢
=
¡
0,XD

¤
. On the other hand,

given that i has adopted Si =
¡
0,XD

¤
, j will get the termination payoff VMj (x)

anywhere within the interval
¡
XM ,XD

¤
by waiting. Since this is greater than the

termination payoff in the case where j exits, namely −Uj , it can not be optimal for j
to exit within

¡
XM ,XD

¤
. Since it is never optimal for j to exit above XD

j , it must
be that Rj

¡¡
0,XD

¤¢
=
¡
0,XM

¤
. Being best responses to each other, strategies©

Si =
¡
0,XD

¤
, Sj =

¡
0,XM

¤ª
form an equilibrium profile. Since i was arbitrary,

both profiles in Proposition 2 are equilibria. Q.E.D.
Proof of Proposition 3. Using the same argumentation as in the proof

of Proposition 2, it is straight-forward to show that R1
¡¡
0,XD

2

¤¢
=
¡
0,XM

1

¤
and

R2
¡¡
0,XM

1

¤¢
=
¡
0,XD

2

¤
, which means that (17) is an equilibrium. However, the

same argumentation does not work for strategies (18), because if firm 2 adopts
S2 =

¡
0,XM

2

¤
, then there is the interval

¡
XM
1 ,X

M
2

¤
where firm 1 would prefer to

stay. Therefore, S1 =
¡
0,XD

1

¤
can not be the optimal response to S2 =

¡
0,XM

2

¤
.

Q.E.D.
Proof of Proposition 4. Because

¡
0,XM

2

¤ ∈ R2 (S1) for any S1, and R1 (S2)
can not intersect with S2 aboveXM

1 , the interval
¡
XM
1 ,X

M
2

¤
can not be contained in

S1 in equilibrium. By definition, for a profile S to be inΘ1 means that supS1 = XD
1 ,

so S1 can not be connected. The “only if” part of the proposition is then clear from
the way the best response strategies are constructed. To confirm the “if” part, it
suffices to show that (19) is an equilibrium profile. Assuming that x = r−2

¡
r+1 (x)

¢
,

and denoting x = r+1 (x), it is straight-forward to check that R1 ((0, x]) =
¡
0,XM

1

¤∪£
x,XD

1

¤
and R2

¡¡
0,XM

1

¤ ∪ £x,XD
1

¤¢
= (0, x], which confirms that the profile is an

equilibrium. Q.E.D.
Proof of Proposition 5. Observe that the upper and lower reactions r+i (x)

and r−i (x) depend on the parameter σ through the conditions (12) - (14). To
account for that, we write them here as r+i (x,σ) and r

−
i (x,σ). It is easy to conclude

that r+i (x,σ) and r
−
i (x,σ) are continuous in σ (when r+i (x,σ) exists).

We utilize the following observations:

lim
σ→0

r−i (x,σ) = x, ∀XM
i < x < XD

i , (A1)

lim
σ→0

r+i (x,σ) > x, ∀x > XM
i s.t. lim

σ→0
r+i (x,σ) exists. (A2)

Proving these rigorously would be lengthy, but they can be justified by consid-
ering the deterministic case where σ = 0. Consider first (A1). If j will not exit
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below x, then i should exit immediately below x, if there is no chance that X will
rise again to x. Naturally, the limit of r−i (x,σ) as σ goes to zero must then be x.
On the other hand, since VMi (x) > −Ui for all x > XM

i , i is not willing to exit if
j is going to exit within a very short interval for certainty. Thus, for any x > XM

i ,
there must be a nonnegative interval above x where i rather waits for X to fall to
x to get VMi (x), than exits immediately. This justifies (A2).
From (A1) and (A2) we can directly state that there is a σ > 0 such that:

x0 − r−2 (x0,σ) < r+1 (x00,σ)− x00 (A3)

for all σ < σ, x0 > XM
i , and x

00 > XM
2 for which r+1 (x

00,σ) exists.
According to Proposition 4, if there is an equilibrium for σ < σ where firm 1 exits

first, there must be a x > XM
2 for which r+1 (x,σ) exists and x = r

−
2

¡
r+1 (x,σ) ,σ

¢
.

Assume that this is the case. However, if we take this particular x and write x00 = x,
x0 = r+1 (x,σ), then (A3) says that r

+
1 (x,σ)− r−2

¡
r+1 (x,σ) ,σ

¢
< r+1 (x,σ)− x, i.e.

x < r−2
¡
r+1 (x,σ) ,σ

¢
. This is a contradiction. Thus, if σ < σ, there can not be an

equilibrium where firm 1 exits first.
It has now been shown that there can not be an ‘empty’ interval such that there

is an exit region of firm 1 above, and of firm 2 below the interval. Since
¡
0,XM

2

¤ ⊂
R2 (S1) for any S1, the interval

¡
XM
1 ,X

M
2

¤
can not be contained in any S1 that is a

best response to R2 (S1). Thus, the only connected S1 that can be the best response
to a best response of firm 2 is S1 =

¡
0,XM

1

¤
. Since R2

¡¡
0,XM

1

¤¢
=
¡
0,XD

2

¤
, the

equilibrium (17) is unique. Q.E.D.

20



References
[1] Alvarez, L.H.R. “Exit Strategies and Price Uncertainty: A Greenian Ap-

proach.” Journal of Mathematical Economics, Vol. 29 (1998), pp. 43-56.

[2] ––. “Optimal Exit and Valuation under Demand Uncertainty: A Real Op-
tions Approach.” European Journal of Operational Research, Vol. 114 (1999),
pp. 320-329.

[3] Baldursson, F.M. and Karatzas, I. “Irreversible Investment and Industry Equi-
librium.” Finance and Stochastic, Vol. 1 (1996), pp. 69-89.

[4] Dixit, A.K. “Entry and Exit Decisions under Uncertainty.” Journal of Political
Economics, Vol. 97 (1989), pp. 620-638.

[5] –– and Pindyck, R.S. Investment under Uncertainty. New Jersey: Princeton
University Press, 1994.

[6] Dutta, P.K. and Rustichini, A. “A Theory of Stopping Time Games with Ap-
plications to Product Innovations and Asset Sales.” Economic Theory, Vol. 3
(1993), pp. 743-763.

[7] –– and ––. “(s,S) Equilibria in Stochastic Games.” Journal of Economic
Theory, Vol. 67 (1995), pp. 1-39.

[8] Fine, C.H. and Li, L. “Equilibrium Exit in Stochastically Declining Industries.”
Games and Economic Behavior, Vol. 1 (1989), pp. 40-59.

[9] Friedman, A. Stochastic Differential Equations and Applications. Volume 2.
New York: Academic Press, 1976.

[10] Fudenberg, D. and Tirole, J. “Preemption and Rent Equalisation in the Adop-
tion of New Technology.” Review of Economic Studies, Vol. 52 (1985), pp.
383-401.

[11] –– and ––. “A Theory of Exit in Duopoly.” Econometrica, Vol. 54 (1986),
pp. 943-960.

[12] ––, Gilbert, R., Stiglitz, J., and ––. “Preemption, Leapfrogging, and Com-
petition in Patent Races.” European Economic Review, Vol. 22 (1983), pp.
3-31.

[13] Ghemawat, P. and Nalebuff, B. “Exit.” Rand Journal of Economics, Vol. 16
(1985), pp. 184-194.

[14] –– and ––. “The Devolution of Declining Industries.” Quarterly Journal of
Economics, Vol. 105 (1990), pp. 167-186.

[15] Grenadier, S.R. “The Strategic Exercise of Options: Development Cascades
and Overbuilding in Real Estate Markets.” Journal of Finance, Vol. 51 (1996),
pp. 1653-1679.

[16] Huang, C.-F. and Li, L. “Continuous Time Stopping Games with Monotone
Reward Structures.” Mathematics of Operations Research, Vol. 15 (1990), pp.
496-507.

[17] Joaquin, D.C. and Butler, K.C. “Competitive Investment Decisions - A Synthe-
sis.” In M.J. Brennan and L. Trigeorgis, eds. Project Flexibility, Agency, and
Competition: New Developments in the Theory of Real Options. New York:
Oxford University Press, 1999.

21



[18] Karatzas, I. and Shreve, S.E. Methods of Mathematical Finance. Applications
of Mathematics, Stochastic Modelling and Applied Probability 39. New York:
Springer-Verlag, 1998.

[19] Kulatilaka, N. and Perotti, E.C. “Strategic Growth Options.” Management
Science, Vol. 44 (1998), pp. 1021-1031.

[20] Lambrecht, B. “Strategic Sequential Investments and Sleeping Patents.” In
M.J. Brennan and L. Trigeorgis, eds. Project Flexibility, Agency, and Compe-
tition: New Developments in the Theory of Real Options. New York: Oxford
University Press, 1999.

[21] ––. “The Impact of Debt Financing on Entry and Exit in a Duopoly.” Review
of Financial Studies, Vol. 14 (2001), pp. 765-804.

[22] Leahy, J.V. “Investment in Competitive Equilibrium: The Optimality of My-
opic Behavior.” Quarterly Journal of Economics, Vol. 108 (1993), pp. 1105-
1133.

[23] Mason, R. and Weeds, H. “Irreversible Investment with Strategic Interactions.”
Discussion Papers in Industrial Organization 3013, Centre for Economic Policy
Research, London, 2001.

[24] McDonald, R. and Siegel, D. “The Value of Waiting to Invest.” Quarterly
Journal of Economics, Vol. 101 (1986), pp. 707-728.

[25] Moretto, M. “Option Games: Waiting vs. Preemption in the Adoption of New
Technology.” Nota Di Lavoro 55.96, Fondazione Eni Enrico Mattei, University
of Padua, 1996.

[26] Øksendal, B. Stochastic Differential Equations: An Introduction with Appli-
cations. 5th edition. Berlin: Springer, 2000.

[27] Pindyck, R.S. “Irreversible Investment, Capacity Choice, and the Value of the
Firm.” American Economic Review, Vol. 78 (1988), pp. 969-985.

[28] Smit, H.T.J. and Ankum, L.A. “A Real Options and Game-Theoretic Approach
to Corporate Investment Strategy under Competition.” Financial Management,
Vol. 22 (1993), pp. 241-250.

[29] Weeds, H. “Strategic Delay in a Real Options Model of R&D Competition.”
Review of Economic Studies, Vol. 69 (2002), pp. 729-747.

[30] Williams, J.T. “Equilibrium and Options on Real Assets.” Review of Financial
Studies, Vol. 6 (1993), pp. 825-850.

22


