
The Annals of Applied Probability
2008, Vol. 18, No. 6, 2421–2449
DOI: 10.1214/08-AAP529
© Institute of Mathematical Statistics, 2008

EXIT PROBLEM OF A TWO-DIMENSIONAL RISK PROCESS
FROM THE QUADRANT: EXACT AND ASYMPTOTIC RESULTS

BY FLORIN AVRAM,1,2 ZBIGNIEW PALMOWSKI2,3

AND MARTIJN R. PISTORIUS1,4

Université de Pau, University of Wrocław and King’s College London

Consider two insurance companies (or two branches of the same com-
pany) that divide between them both claims and premia in some specified pro-
portions. We model the occurrence of claims according to a renewal process.
One ruin problem considered is that of the corresponding two-dimensional
risk process first leaving the positive quadrant; another is that of entering the
negative quadrant. When the claims arrive according to a Poisson process,
we obtain a closed form expression for the ultimate ruin probability. In the
general case, we analyze the asymptotics of the ruin probability when the
initial reserves of both companies tend to infinity under a Cramér light-tail
assumption on the claim size distribution.

1. Introduction.

The multidimensional renewal risk model. In collective risk theory, the re-
serves process X of an insurance company is modeled as

X(t) = x + pt − S(t),(1)

where x denotes the initial reserve, p is the premium rate per unit of time and S(t)

is a stochastic process modeling the amount of cumulative claims up to time t . Tak-
ing S to be a compound Poisson or compound renewal process yields the Cramér–
Lundberg model and the Sparre–Andersen model, respectively. Recently, several
authors have studied extensions of classical risk theory toward a multidimensional
reserves model (1) where X(t), x,p and S(t) are vectors, with possible depen-
dence between the components of S(t). Indeed, the assumption of independence
of risks may easily fail, for example, in the case of reinsurance, when incoming
claims have an impact on both insuring companies at the same time. In general, one
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can also consider situations where each claim event might induce more than one
type of claim in an umbrella policy [see Sundt (1999)]. For some recent papers con-
sidering dependent risks, see Dhaene and Goovaerts (1996, 1997), Goovaerts and
Dhaene (1996), Müller (1997a, 1997b) and Denuit, Genest and Marceau (1999),
Ambagaspitiya (1999), Dhaene and Denuit (1999), Hu and Wu (1999) and Chan,
Yang and Zhang (2003).

Model and problem. In this paper we consider a particular two-dimensional
risk model in which two companies split the amount they pay out of each claim in
proportions δ1 and δ2 where δ1 + δ2 = 1, and receive premiums at rates c1 and c2,
respectively. Let Ui denote the risk process of the ith company

Ui(t) := −δiS(t) + cit + ui, i = 1,2,

where ui denotes the initial reserve. We will study here the eventual ruin probabil-
ities in two cases:

1. the Lévy model, obtained by taking S(t) to be a general Lévy process;
2. the Sparre–Andersen/renewal risk model, where S(t) is

S(t) =
N(t)∑
i=1

σi,(2)

N(t) is a renewal process with i.i.d. interarrival times ζi , and the claims σi are
i.i.d. nonnegative random variables independent of N(t).

The intersection of the two cases is the classical Cramér–Lundberg model,
where S(t) is a compound Poisson process with nonnegative jumps.

We shall denote by F(x) the distribution function of the “claims” σi , and by λ

and μ the reciprocals of the means of ζi and σi , respectively.
As usual in risk theory, we assume that Ui(t) → ∞ a.s. as t → ∞ (i = 1,2). In

the case of the Sparre–Andersen model, this amounts to pi > ρ := λ
μ

= Eσ/Eζ .
We shall assume that the second company, to be called reinsurer, receives less

premium per amount paid out, that is,

p1 = c1

δ1
>

c2

δ2
= p2.(3)

Several ruin problems will be considered here:

1. The first time τor when (at least) one insurance company is ruined, that is, the
exit time of (U1(t),U2(t)) from the positive quadrant

τor(u1, u2) := inf{t ≥ 0 :U1(t) < 0 or U2(t) < 0}.(4)

2. The first time τsim when the insurance companies experience simultaneous ruin,
that is, the entrance time of (U1(t),U2(t)) into the negative quadrant

τsim(u1, u2) := inf{t ≥ 0 :U1(t) < 0 and U2(t) < 0}.(5)
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The associated ultimate/perpetual ruin probabilities will be respectively denoted
by ψor(u1, u2) and ψsim(u1, u2)

ψor(u1, u2) = P
(
τor(u1, u2) < ∞)

,

ψsim(u1, u2) = P
(
τsim(u1, u2) < ∞)

.

Letting τi(ui) = inf{t ≥ 0 :Ui(t) < 0}, i = 1,2, we also will consider

ψand(u1, u2) = P
(
τ1(u1) < ∞ and τ2(u2) < ∞)

.(6)

Denoting by ψi(u) := P(τi(u) < ∞), the ruin probability of Ui when Ui(0) = u,
it clearly holds that

ψsim(u1, u2) ≤ ψand(u1, u2) = ψ1(u1) + ψ2(u2) − ψor(u1, u2).(7)

As the ruin probabilities ψor,ψand and ψsim do not change under a scaling of
(U1,U2), we restrict ourselves in the sequel to the respective ruin probabilities
ψor,ψand and ψsim of the scaled process (X1,X2) given by Xi(t) := Ui(t)/δi =
xi + pit − S(t) with xi = ui/δi , pi = ci/δi . This puts into evidence the fact that
all the randomness in our model acts in one direction; in the future, we call this
model informally a “two-dimensional degenerate model.”

Geometrical considerations. The solutions of the “degenerate two-dimensio-
nal” ruin problems ψor,ψsim and ψand strongly depend on the relative position
of the vector of premium rates p = (p1,p2) with respect to the proportions vec-
tor (1,1). A key observation is that the ruin times τor and τsim are also equal to

τb(x1, x2) = inf{t ≥ 0 :S(t) > b(t)},(8)

where b = bmin = min{	1, 	2} and b = bmax = max{	1, 	2}, respectively, with

	i(t) = xi + pit, i = 1,2, t ≥ 0;(9)

see Figure 1. The two-dimensional problems may thus also be viewed as a one-
dimensional crossing problem over a (piecewise) linear barrier.

Our exact results follow directly from this geometrical observation, which es-
sentially breaks the problem in two pieces: ruin of one of the coordinates before
the deterministic time

T = T (x1, x2) = (x2 − x1)+
p1 − p2

(10)

of entering the lower cone x2 ≤ x1, or ruin of the other coordinate subsequently.
If the initial reserves satisfy x2 ≤ x1, the two lines do not intersect. It follows

therefore that the barriers bmin, bmax are actually linear

bmin(t) = x2 + p2t, bmax(t) = x1 + p1t.



2424 F. AVRAM, Z. PALMOWSKI AND M. R. PISTORIUS

FIG. 1. The piecewise-linear barrier corresponding to the degenerate two-dimensional first pas-
sage problem: bmin(t) = mini=1,2{xi + pit}, bmax(t) = maxi=1,2{xi + pit}.

Thus, the “or” and “sim” ruin always happen for the second and first company,
respectively, and

ψor(x1, x2) = ψ2(x2), ψsim(x1, x2) = ψ1(x1).

This case in which explicit and asymptotic formulas for ψsim,ψor and ψand fol-
low directly from the well-known one-dimensional ruin theory; see, for example,
Rolski et al. (1999) or Asmussen (2000)—will not be discussed further.

Contents. This paper is devoted to obtaining exact results for the eventual ruin
probabilities in the other case, when the initial capitals satisfy x1 < x2. We obtain
also sharp “Cramér/light tails” asymptotics, as the initial capitals x1, x2 tend to
infinity along a ray (i.e., x1/x2 is constant).

We introduce notation and gather some necessary prerequisites from one dimen-
sional ruin theory in Section 2.

In Section 3, we obtain several exact decomposition formulas for the two-
dimensional ruin probabilities ψor, ψsim and ψand, in terms of one-dimensional
ruin probabilities. In particular, we obtain for the compound Poisson case with
exponential jumps an exact result in Corollary 1.
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In Section 4, we show in Theorem 3 for the general two-dimensional Lévy case
the natural result:

ψor(x1, x2) ∼ ψ1(x1) + ψ2(x2),

ψand(x1, x2) = o
(
ψ1(x1) + ψ2(x2)

)
,

where we write f (x) = o(h(x)) (x → ∞) if limx→∞ f (x)/h(x) = 0 and similarly
f (x) ∼ h(x) (x → ∞) if limx→∞ f (x)/h(x) = 1. The corresponding renewal
version is stated in Theorem 4.

In Section 5, specializing to the case of the Cramér–Lundberg model, we
sharpen the general result, obtaining two term asymptotic expansions—Theorems
5 and 6. We find different leading terms within subcones of the positive quadrant,
as typical in such cases; see, for example, Borovkov and Mogulskii (2001) and
Ignatyuk, Malyshev and Shcherbakov (1994). We also find in our specific “degen-
erate model” a correction term not present in previous works.

The paper concludes with two explicit examples in Section 6, which provides in-
teresting illustrations of multidimensional sharp large deviations—see the Appen-
dix for the relation to the existing first passage large deviations theory. In this con-
text, it is worth clarifying that our particular results are considerably sharper than
the general logarithmic asymptotics results obtained, for example, by Collamore
(1996), Theorems 2.1 and 2.2, for the first passage times to convex open and open
sets in R

d , respectively. Further, our proofs do not appeal at all to the multidi-
mensional large deviations theory. Instead, exploiting the special structure of our
problem, we make use of a one-dimensional asymptotic limit result; see Theorem 2
in Section 2.3—which is a consequence of the sharp approximation of finite-time
ruin probabilities obtained by Arfwedson (1955) and Höglund (1990).

2. Preliminaries: One dimensional theory. Let Z be a general Lévy process,
that is, a process with stationary and independent increments that is continuous in
probability and starts at 0, defined on some probability space (
,F ,P ) and let
E denote the expectation w.r.t. P . To avoid trivialities, we exclude the case that Z

has monotone paths.
We will restrict ourselves to Lévy processes Z that admit negative exponential

moments, that is, E[e−νZ(t)] < ∞ for some ν > 0. For such processes, Z, we
consider the cumulant exponent:

κ(θ) := t−1 log
(
E

[
eθZ(t)]),

which is well defined on some maximal domain

� = {θ ∈ R :κ(θ) < ∞}
whose interior will be denoted by �o := (θ, θ), where θ = inf� and θ = sup�.
The map θ �→ κ(θ) restricted to the interval (θ, θ) is a convex differentiable func-
tion. By κ ′(θ) [κ ′+(θ)], we denote the [left-]derivative of κ at θ , respectively.

In the particular case that Z is equal to the classical Cramér–Lundberg process
(i.e., a positive drift added to a spectrally negative compound Poisson process), we
note that θ = ∞ and κ ′(θ) → ∞ if θ → ∞.
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2.1. One-dimensional Cramér type sharp asymptotics. Let τ(x) denote the
first passage time of the level −x by Z

τ(x) = inf{t ≥ 0 :x + Z(t) < 0} = inf{t ≥ 0 :X(t) < 0},
where X is the translation of Z by x, X(t) = x + Z(t), and set ψ(x) = P(τ(x) <

∞). Let us assume the Cramér assumption that there exists a γ > 0, such that
κ(−γ ) = 0.

Under this assumption, Cramér has shown that when Z is a Cramér–Lundberg
process, then

lim
x→∞ eγ xψ(x) = C,(11)

where C is given explicitly by [see, e.g., Feller (1971), Chapter XII.5]

C = −κ ′(0)/κ ′+(−γ ),(12)

which is strictly positive if and only if κ ′+(−γ ) > −∞. For a general Lévy process
satisfying the Cramér assumption, Bertoin and Doney (1994) proved that (11) re-
mains valid for some constant C ≥ 0 that can be expressed in terms of the law of
the ladder process and that is positive precisely if E[|Z(1)|] < ∞.

2.2. The Arfwedson–Höglund theorem. We recall now the asymptotics of
the finite time ruin probability ψ(x, t) = P(τ(x) ≤ t) for the Cramér–Lundberg
process, first obtained by Arfwedson (1955) via the saddle-point method. Later,
Höglund (1990) noted similar results for the probability of ruin after time t

w(t, x) = P
(
t < τ(x) < ∞) = ψ(x) − ψ(t, x).(13)

Our formulation below, based on Höglund (1990), Corollary 2.3 and Asmussen
(2000), uses the exponential family of measures {P (c)} defined for all c ∈ � =
{θ :κ(θ) < ∞} by the Radon–Nikodym derivative �(c)

dP (c)

dP

∣∣∣∣
Ft

= �(c)(t) := exp
(
c(Xt − X0) − κ(c)t

) = exp
(
cZt − κ(c)t

)
(14)

with P (0) = P and the corresponding shifted cumulant exponent given by

κ(c)(θ) := κ(θ + c) − κ(c).(15)

Further concepts, familiar from large deviations theory, that will be used are the
convex conjugate κ∗ of the cumulant exponent κ , defined by

κ∗(v) = sup
β∈R

[vβ − κ(β)],(16)

and the reparametrization of the exponential family by the corresponding set of
means of Z. More precisely, it holds that to any −v ∈ (v, v) with

v = lim
θ↓θ

κ ′(θ) and v = lim
θ↑θ

κ ′(θ),
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is associated a unique shift θ ∈ �o = (θ, θ) = (θ,∞) such that

κ ′(θv) = −v.

Further, for any 0 < v < −v, the conjugate shift θ ′
v ∈ � is defined via

κ(θv) = κ(θ ′
v), θv < θ ′

v

and note that v > 0 implies θv < θ ′
v . (Note that we parameterized by −v since the

possible means leading from x > 0 to 0 are necessarily negative.)

REMARK 1. From now on, all quantities related to the shifted measure P (c)

(like, e.g., the cumulant exponent, the adjustment coefficient, etc.) will be indicated
by a superscript (c) added to their P -counterparts. Observe that, in view of (15),
the convex conjugate under P (c) and P are related to each other by κ∗(c)(v) =
κ∗(v) + κ(c) − cv. Similarly, it follows that the shift θ

(c)
v and its conjugate θ

(c)′
v

are related to θv, θ
′
v by θ

(c)
v = θv − c and θ

(c)′
v = θ ′

v − c, respectively.

THEOREM 1. Assume that either κ ′+(0) < 0 or that the Cramér assumption
holds and write ζ = −min{θ :κ(θ) = 0}. If 0 < v < −v and x, t → ∞ such that
x/t = v; it holds that

ψ(x, t) ∼
{

Ce−xζ , if x/t < −κ ′+(−ζ ),
|D(v)|t−1/2e−tκ∗(−v), if x/t > −κ ′+(−ζ ),

(17)

w(x, t) ∼
{

|D(v)|t−1/2e−tκ∗(−v), if x/t < −κ ′+(−ζ ),
Ce−xζ , if x/t > −κ ′+(−ζ ),

(18)

with C = 1 if ζ = 0 and C = −κ ′(0)/κ ′+(−ζ ) if ζ > 0 and

D(v) = c(v) · 1√
2πκ ′′(θv)

with c(v) = θ ′
v − θv

θvθ ′
v

,(19)

where (17) is to be understood as limx,t→∞,x=tv exζψ(x, t) = 0, if κ ′(−ζ ) = −∞
and ζ > 0.

2.3. The asymptotic limit laws of the process before/after ruin. The following
result shows existence of and identifies the limit laws of the Cramér–Lundberg
process X(t) conditioned on t < τ and on t > τ . It will be used to establish Propo-
sitions 2 and 3.

THEOREM 2. Assume that θ < 0 and κ ′(0) < 0.

(i) If 0 < v < −κ ′(0), then

�v = lim
x,t→∞,x=tv

P
(
X(t) ∈ ·|τ(x) > t

)
,(20)
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in the sense of weak convergence, where

�v(dy) = c(v)−1[e−θvy − e−θ ′
vy]1(0,∞)(y) dy(21)

with c(v) the function appearing in (19).
(ii) If −κ ′(0) < v < −v, then

�v = lim
x,t→∞,x=tv

P
(
X(t) ∈ ·|τ(x) < t

)
(22)

in the sense of weak convergence, where

�v(dy) = |c(v)|−1[
e−θ ′

vy1(0,∞)(y) + e−θvy1(−∞,0)(y)
]
dy.(23)

PROOF. (i) First, we verify that the measure �v is a probability measure. In-
deed, it is not hard to verify that �v is a measure (since θ ′

v > θv > 0) that integrates
to one. Further, it is easily checked that the mgf Mv of �v is given by

Mv(c) = θv

θv − c
· θ ′

v

θ ′
v − c

for c < θv.

In view of the continuity theorem, the weak convergence in (20) follows once
we show that the mgfs Mx,t (c) of the measures P(X(t) ∈ · |τ(x) > t) converge
pointwise to Mv(c) as x, t → ∞, x/t = v, for c in some neighborhood of the
origin.

Since θ < 0, it holds that for all c in some neighborhood of the origin Mx,t (c) is
finite and E[ecX(t)1{t<τ(x)}] = ecx+κ(c)tP (c)(t < τ(x)). It also holds that P (c)(t <

τ(x)) = P (c)(t < τ(x) < ∞) [since κ(c)′(0+) < 0]. Therefore,

Mx,t (c) = E
[
ecX(t)|t < τ(x)

] = E[ecX(t)1{t<τ(x)<∞}]
P(t < τ(x) < ∞)

= ecvt+κ(c)tP (c)(t < τ(x) < ∞)

P (t < τ(x) < ∞)
.

Invoking Theorem 1 and (15) for the numerator and denominator, it follows by
taking the limit of x, t → ∞, x = tv that

lim
x,t→∞,x=tv

Mx,t (c) = D(c)(v)/D(v) = θ
(c)′
v − θ

(c)
v

|θ(c)
v θ

(c)′
v |

|θ ′
vθv|

θ ′
v − θv

.

In view of Remark 1, the latter is equal to Mv(c).
The proof of (ii) is similar and omitted. �

2.4. Law of large numbers for the ruin time. We include now for reference a
result concerning the behavior of the time of ruin of a general Lévy process Z for
large initial reserves.

LEMMA 1. Suppose that E[|Z(1)|] < ∞ and E[Z(1)] ≤ 0. Then, as x → ∞:

(i) τ(x)/x → −E[Z(1)]−1 P -a.s. and
(ii) E[τ(x)]/x → −E[Z(1)]−1.
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PROOF. (ii) If E[Z(1)] = 0, then the Lévy process Z oscillates and the iden-
tity follows since then E[τ(x)] = +∞ for every x (see, e.g., Bertoin (1996), Chap-
ter VI, Proposition 17(iii)). Suppose now that −∞ < E[Z(1)] < 0 (so that Z drifts
to −∞) and first exclude the case that Z is a compound Poisson process. Denot-
ing by L−1(t) = inf{u ≥ 0 :L(u) > t}, the inverse of the local time L of Z and
T (x) = inf{t ≥ 0 :H(t) > x} the first passage time of the ladder height process
H(t) = Z(L−1(t)) of Z it is easily verified that τ(x) = L−1(T (x)). The pair
(L−1,H) forms a two-dimensional Lévy process and we denote its bivariate
Laplace exponent by κ̂ . The Laplace transform of E[τ(x)] can then be expressed
as follows: ∫ ∞

0
e−λxE[τ(x)]dx = ∂1κ̂(0,0+)

λκ̂(0, λ)
,

where ∂i denotes the partial derivative with respect to ith variable (see, e.g.,
Bertoin (1996), Chapter VI, Proposition 17). As κ̂(0,0) = 0 and κ̂(0, ·) is right-
differentiable in zero, it follows in view of a Tauberian theorem that

E[τ(x)] ∼ x ∂1κ̂(0,0+)/∂2κ̂(0,0+) as x → ∞.

The strong law of large numbers implies that the product H(t)/L−1(t) =
[Z(L−1(t))/t] × [t/L−1(t)] converges to

E[Z(1)] = E[Z(L−1(1))]E[L−1(1)]−1(24)

(the corresponding result for random walks is known as the famous Wald iden-
tity). Since ∂1κ̂(0+,0) = E[L−1(1)] and ∂2κ̂(0,0+) = E[Z(L−1(1))], the claim
follows. The case of a compound Poisson process follows by adding a small drift.

(i) The strong law of large numbers implies that, P -a.s.,

τ(x)/x = L−1(T (x))/T (x) · T (x)/x → E[L−1(1)]/E[H(1)] = E[Z(1)],
as x → ∞, where we used the Wald identity (24). �

3. The exact ultimate ruin probability for the degenerate 2-d process. In
this section, we consider the probability that a Lévy process S starting at 0 ever
upcrosses a piecewise linear barrier b. To be specific, we consider the first passage
time τb of S over b, as in (8), where b is given by b = bmin or b = bmax with

bmin(t) = min
i=1,2

{xi + pit}, bmax(t) = max
i=1,2

{xi + pit}

where x2 > x1 and p1 > p2. As noted in the Introduction, P(τb < ∞) with b =
bmin (resp. b = bmax) exactly coincides with the ruin probability ψor(x1, x2) [resp.
ψsim(x1, x2)] of the process (X1,X2) with

Xi(t) := xi + pit − S(t), i = 1,2.(25)
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Denoting by

T = T (x1, x2) = x2 − x1

p1 − p2
(26)

the time at which the lines t �→ x1 + p1t and t �→ x2 + p2t cross, we see that, for
example, for S to never cross bmin, it is required to stay below the barrier x1 + p1t

between the times 0 and T and subsequently to stay below the barrier x2 + p2t

after time T . Since S is Markovian and x1 + p1T = x2 + p2T , conditioning at
time T yields

ψor(x1, x2) =
∫ ∞

0
f1(ds, T |x1)F2(s),

where ψor = 1 − ψor, Fi(s) = P(s + S(t) ≤ xi + pi(t + T ) ∀t > 0) and

fi(ds, T |x) := P
(
S(t) ≤ x + pit, ∀t ∈ [0, T ], S(T ) ∈ ds

)
(27)

is the density of S(T ) of the paths at time T that “survived” the upper barrier
x + pit . Reformulating this result in terms of the two coordinates Xi of X =
(X1,X2) and the coordinate-wise densities of the surviving paths

ψi(dz, T |xi) = P
(
τi(xi) > T ,Xi(T ) ∈ dz

)
(28)

we arrive thus at the following result, which relates the ruin probabilities of the
two dimensional process X to those of its coordinates X1,X2.

PROPOSITION 1. Let X = (X1,X2) be the two-dimensional Lévy process with
Xi given in (25) and suppose that x2 > x1 and p2 < p1.

(a) The ruin probabilities ψand,ψsim and ψor are given by

ψsim(x1, x2) = P
(
τ2(x2) ≤ T

) + P

(
τ2(x2) > T , inf

s>T
X1(s) < 0

)
,(29)

ψor(x1, x2) = P
(
τ1(x1) ≤ T

) + P

(
τ1(x1) > T , inf

s>T
X2(s) < 0

)
,(30)

ψand(x1, x2) = P
(
T < τ1(x1) < ∞) + P

(
τ1(x1) ≤ T , τ2(x2) < ∞)

.(31)

(b) The survival probabilities ψor = 1 − ψor and ψ sim = 1 − ψsim are given by

ψ sim(x1, x2) = P

(
τ2(x2) > T , inf

s>T
X1(s) ≥ 0

)
=

∫ ∞
0

ψ2(dz, T |x2)ψ1(z),

ψor(x1, x2) = P

(
τ1(x1) > T , inf

s>T
X2(s) ≥ 0

)
=

∫ ∞
0

ψ1(dz, T |x1)ψ2(z),

where T is given in (26), ψi(dz, T |xi) in (28) and ψi(z) = P(τi(z) = ∞) are
perpetual one-dimensional survival probabilities.
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PROOF. By definition of ψsim, it holds that

ψ sim(x1, x2) = P
(
max{X1(t),X2(t)} ≥ 0 for all t ≥ 0

)
.

Next, we note that, if x2 > x1, it holds that the maximum

max{X1(t),X2(t)} = max{x1 − x2 + (p1 − p2)t,0} + X2(t)

is equal to X2(t) for t ≤ T and to X1(t) for t > T , where T was defined in (26).
Applying subsequently the Markov property of X1 at time T shows that

ψ sim(x1, x2) = P
(
X2(t) ≥ 0 for t ≤ T ,X1(t) ≥ 0 for t ≥ T

)
(32)

=
∫ ∞

0
P

(
X2(T ) ∈ dz, τ (x2) > T

)
P

(
τ1(z) = ∞)

.

The identity in (29) follows by taking the complement of (32). The proof of ψor is
similar and omitted. Finally, write

ψand(x1, x2) = P
(
T < τ1(x1) < ∞, τ2(x2) < ∞) + P

(
τ1(x1) ≤ T , τ2(x2) < ∞)

.

Equation (31) follows then by checking that {τ1(x1) > T } and {infs>T X1(s) < 0}
respectively imply that {τ2(x2) > T } and {infs>T X2(s) < 0}. �

In the special case that S is a compound Poisson process with exponential claims
σi with parameter μ, we have exponential ultimate ruin probabilities

ψi(x) = Cie
−γix,(33)

where Ci = λ
μpi

and γi = μ − λ/pi . Similarly, if S is a spectrally negative Lévy
process, the Markov property and the absence of positive jumps imply the mul-
tiplicativity property P(τi(x + y) < ∞) = P(τi(x) < ∞)P (τi(y) < ∞). Thus,
P(τi(x) < ∞) must be an exponential function (33) and the constant Ci equals 1.
For these two cases, equations (29)–(31) can be developed further by employing
the technique of change of measure.

3.1. The case of exponential ultimate ruin probabilities. Consider now the
relation (30) in the case of exponential ultimate ruin probabilities that is when
ψi(x) = Cie

−γix for Ci, γi > 0 (i = 1,2). Note that

ψor(x1, x2) = P
(
τ1(x1) ≤ T

) + C2E
[
e−γ2X1(T )1{τ1(x1)>T }

]
,(34)

where C2 = 1 in the case that S is a spectrally negative Lévy process. Let κi be
the cumulant exponent of Xi(t) − xi . By a change of measure (14) and using that
−γ2x1 + κ1(−γ2)T = −γ2x2, we find that the second term in (34) is equal to

C2e
−γ2x1+κ1(−γ2)T E

[
�(−γ2)(T )1{τ1(x1)>T }

] = C2e
−γ2x2P (−γ2)

(
τ1(x1) > T

)
.

The probabilities ψsim can be treated using similar arguments, and ψand is ob-
tained from the “complementarity equation” (7). In conclusion, the original two-
dimensional ruin problems ψor/ψsim/ψand are reduced to one-dimensional finite
time ruin problems ψ

(c)
i (x, t) = P (c)(τi(x) ≤ t), as follows.
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COROLLARY 1. Suppose S is a spectrally negative Lévy process, or a com-
pound Poisson process with exponential (positive) jumps and let Xi defined by (25).
If x2 > x1, it holds that

ψsim(x1, x2) = ψ2(x2, T ) + ψ1(x1)ψ
(−γ1)
2 (x2, T ),

ψor(x1, x2) = ψ1(x1, T ) + ψ2(x2)ψ
(−γ2)
1 (x1, T ),

ψand(x1, x2) = w1(x1, T ) + ψ2(x2)ψ
(−γ2)
1 (x1, T ),

where ψ
(c)
i (x, t) = 1 − ψ

(c)
i (x, t) and

w1(x, t) = P(t < τ1(x) < ∞) = ψ1(x) − ψ1(x, t).(35)

PROOF. Let us establish the last statement. By inserting the expression for ψor
in (7), it follows that

ψand(x1, x2) = ψ1(x1) + ψ2(x2) − ψor(x1, x2)

= ψ1(x1) − ψ1(x1, T ) + ψ2(x2)
(
1 − ψ

(−γ2)
1 (x1, T )

)
. �

This decomposition result (and its generalization) will provide the key for ob-
taining the two terms asymptotic expansions in Propositions 2, 3 below.

4. General two-dimensional Cramér asymptotics. We consider now the as-
ymptotics of the ruin probabilities ψsim,ψor and ψand when the initial reserves tend
to infinity along a ray, for a general two-dimensional Lévy process X = (X1,X2)

starting from x = (x1, x2). To avoid degeneracies, we exclude throughout the cases
that X1 or X2 have monotone paths, or that the ratio [X1 − x1]/[X2 − x2] is con-
stant. The law of the process X is determined by its joint cumulant exponent
κ(θ1, θ2) = logE[eθ1(X1(1)−x1)+θ2(X2(1)−x2)] which is well defined on its domain
� = {θ ∈ R

2 :κ(θ) < ∞}, whose interior is denoted by �o. For every θ ∈ �o,
the gradient ∇κ(θ) = (∂1κ(θ), ∂2κ(θ)) is well defined. Other subsets of � play-
ing a role in our setting are: the Cramér set C, its interior Co and its boundary
∂C := C\Co where

C = {(θ1, θ2) ∈ � :κ(θ1, θ2) ≤ 0}.
In view of the convexity of κ , it follows that the set C is convex and that for fixed
θ ′ ∈ ∂C ∩ �o, it holds that

[θ − θ ′] · ∇κ(θ ′) ≤ 0 for all θ ∈ C,(36)

where · denotes the inner-product.
Associated to any c ∈ � is a measure P (c) defined as a twist of P by the mar-

tingale exp(c1(X1(t) − x1) + c2(X2(t) − x2) − κ(c1, c2)t).
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We assume throughout that besides the origin, the Cramér set intersects the axes
in two more points: γ (1) = (−γ1,0),γ (2) = (0,−γ2) ∈ ∂C, γ1, γ2 > 0, so that

κ(−γ1,0) = κ(0,−γ2) = 0.(37)

We shall also assume that

(−γ1,0), (0,−γ2) ∈ �o.(38)

When (37), (38) hold, we will say that the Cramér assumptions hold true for X =
(X1,X2).

EXAMPLE 1. If S(t) is a Lévy process and Xi(t) = xi + pit − S(t) (with the
cumulant generating functions κi), then the joint cumulant generating function κ

of (X1,X2) is related to κ1 and κ2 by

κ(θ1, θ2) = κ1(θ1 + θ2) − θ2(p1 − p2) = κ2(θ1 + θ2) + θ1(p1 − p2)

= p · θ + κS(θ1 + θ2),

where κS is the cumulant exponent of S. It is easy to check that the degenerate
two-dimensional Lévy process X = (X1,X2) satisfies the Cramér-conditions iff
its coordinates do, that is, if there exist constants γi > 0, in the interior of the
domains of the cumulant exponents κi of Xi(t) − xi (i = 1,2), such that

κi(−γi) = 0.(39)

The following result yields the asymptotics of ψor and an order estimate of ψand
for general two-dimensional Lévy processes.

THEOREM 3. Suppose that the Cramér assumptions (37) and (38) hold, and
let a > 0. Then as K → ∞,

ψor(aK,K) ∼ C2e
−γ2K + C1e

−γ1aK,(40)

ψand(aK,K) = o(C2e
−γ2K + C1e

−γ1aK),(41)

where Ci > 0, i = 1,2, are the asymptotic constants corresponding to Xi .

The proof of Theorem 3 is based on the following estimates.

LEMMA 2. The following hold true:

(i) max{ψ1(x1),ψ2(x2)} ≤ ψor(x1, x2) ≤ ψ1(x1) + ψ2(x2);
(ii) ψor(x1, x2) = ψ1≤2(x1, x2) + ψ2≤1(x1, x2) − ψ1=2(x1, x2), where

ψi≤j (x1, x2) := P
(
τi(xi) ≤ τj (xj ), τi(xi) < ∞)

and

ψ1=2(x1, x2) := P
(
τ1(x1) = τ2(x2) < ∞)

.
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PROOF. The estimates follow in view of the observations that

{τi(xi) < ∞} ⊂ {τor(x1, x2) < ∞} ⊂
2⋃

i=1

{τi(xi) < ∞} for i = 1,2,

and

{τor(x1, x2) < ∞} = A1 ∪ A2\[A1 ∩ A2],
where Ai = {τi(xi) < ∞, τi(xi) ≤ τ3−i (x3−i )}. �

LEMMA 3. Suppose that (37) and (38) hold, and write γa,β := βaγ1 + (1 −
β)γ2.

(i) If aγ1 = γ2 it holds that, as K → ∞,

ψ1≤2(aK,K) ∼ C1e
−γ1aK, ψ2≤1(aK,K) ∼ C2e

−γ2K.(42)

(ii) For a > 0 and any β ∈ (0,1), ψsim(aK,K) = o(e−γa,βK) (K → ∞).

This lemma (established below) implies immediately Theorem 3.

PROOF OF THEOREM 3. First note that, in view of the Cramér–Lundberg as-
ymptotics (11) and equation (7), the asymptotics in (40) imply the estimate in (41).
The rest of the proof is therefore devoted to establishing (40).

In view of (11) and Lemma 2(i), it follows that, if γ1a > γ2 [resp. γ1a < γ2], the
lower bound and upper bound in Lemma 2(i) are of the same order of magnitude,
C2e

−γ2K [resp. C1e
−γ1aK ], as K → ∞. Thus, (40) is valid if γ1a �= γ2.

Next we turn to the case γ1a = γ2. Since ψ1=2 is dominated by ψsim and γa,β =
γ2 = aγ1 if aγ1 = γ2, it follows, by invoking Lemma 3(ii), that ψ1=2(aK,K) =
o(e−γ2K) = o(e−γ1aK) as K → ∞. In view of Lemma 2(ii) and Lemma 3(i), it
therefore follows that (40) is also valid if aγ1 = γ2. �

PROOF OF LEMMA 3. (i) The asymptotics of ψ1≤2 follow once we have
shown that as K → ∞ it holds that

eγ1aKψ1≤2(aK,K) = E(−γ1,0)(e−γ1X1(τ1)1{τ1≤τ2,τ1<∞}
) → C1,(43)

where τ1 = τ1(aK) and τ2 = τ2(K). To prove this claim, we compare the
asymptotic behavior of τ1 and τ2 as K → ∞, adapting the argument devel-
oped in Glasserman and Wang (1997) (Proposition 2) for random walk. If
E(−γ1,0)[X2(1)] > x2, then P (−γ1,0)(τ2 = ∞) → 1 as K → ∞ and, invoking (11),
the claim (43) follows. If E(−γ1,0)[X2(1)] ≤ x2, it follows in view of Lemma 1(i)
that as K → ∞, P (−γ1,0)-a.s.,

τ1(aK)

τ2(K)
= a

τ1(aK)

aK

K

τ2(K)
→ a∂2κ(−γ1,0)

∂1κ(−γ1,0)
,(44)
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where we used that ∂iκ(θ) = E(θ)[Xi(1) − xi] for θ ∈ �o, i = 1,2. Applying (36)
with θ = (0,−γ2) and θ ′ = (−γ1,0), we see that the right-hand side of (44) is
bounded above by aγ1/γ2, which is equal to one if γ2 = aγ1. Therefore, τ2(K)

dominates τ1(aK) for all K large enough and (43) follows as a consequence of
the Cramér–Lundberg asymptotics (11). The asymptotics of ψ2≤1 can be treated
similarly.

(ii) Choose β ∈ (0,1) and write γ (β) = β(γ1,0) + (1 − β)(0, γ2) = (γ1(β),

γ2(β)). The key step is to verify that the segment {γ (β),β ∈ (0,1)} is not
part of the boundary ∂C. Indeed, since the function β �→ f (β) with f (β) =
exp(κ(−γ (β))) = E[exp{βγ1(X1(1) − x1) + (1 − β)γ2(X2(1) − x2)}] is strictly
convex with f (0) = f (1) = 1, it follows that f (β) < 1 for β ∈ (0,1). (The
strict convexity is a consequence of the facts that f ′′(β) = E[(γ1(X1(1) − x1) −
γ2(X2(1) − x2))

2eβγ1(X1(1)−x1)+(1−β)γ2(X2(1)−x2)] > 0 and we excluded the case
[X1 − x1]/[X2 − x2] = const.)

Therefore, there exists a −γ ∗ = −(γ ∗
1 , γ ∗

2 ) ∈ Co such that γ ∗
i > γi(β) (i =

1,2). By changing the measure, we see that ψsim(aK,K) is equal to

e−(γ ∗
1 a+γ ∗

2 )KE(−γ ∗)[eγ ∗
2 X2(τsim)+γ ∗

1 X1(τsim)+κ(−γ ∗
1 ,−γ ∗

2 )τsim1{τsim<∞}
]
,

where τsim = τsim(aK,K). Since Xi(τsim) ≤ 0 and κ(−γ ∗
1 ,−γ ∗

2 ) ≤ 0, this ex-
pectation is bounded above by 1, and as aγ ∗

1 + γ ∗
2 > γa,β , it thus follows that

ψsim(aK,K) = o(e−γa,βK) as K → ∞. �

The following result concerns the asymptotics in the upper cone {x1 ≤ x2}, in
the case of the Sparre–Andersen model.

THEOREM 4. Let S be a compound renewal process as in (2) and let a < 1.
Assume there exist γi > 0 and an ε > 0 such that E[e−γipiζ ]E[eγiσ ] = 1 and
E[e(γi+ε)σ ] < ∞. Then it holds that, as K → ∞,

ψor(aK,K) ∼ C2e
−γ2K + C1e

−γ1aK,(45)

ψand(aK,K) = o(C2e
−γ2K + C1e

−γ1aK).(46)

PROOF. In view of the key observation that the ruin probabilities ψor/ψand and
ψsim do not change if we replace X = (X1,X2) by a two-dimensional compound
Poisson process with unit jump rate and jump sizes distributed as (σn −p1ζn, σn −
p2ζn), the statement follows by invoking Theorem 3. �

In Section 5 below, we will sharpen Theorem 3, in the degenerate case. Before
that, we introduce a partition of the quadrant in cones, which turn out to describe
the different asymptotic regimes of the ruin probabilities as the initial reserves
(x1, x2) tend to infinity along a ray.

4.1. The asymptotic cones. We introduce now two cones Di (i = 1,2) within
the quadrant R

2+ = (0,∞)2, situated between the xi axis and the directions of the
expected drift evaluated at the adjustment tilts v(i) := ∇κ(γ (i)), i = 1,2. Heuris-
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tically, these cones can be described as the “asymptotic boundary cones” of the
“sim” ruin, that is, the cones where asymptotically this event happens dominantly
by straight paths running to the half-lines {x :xi = 0, x3−i ≤ 0, i = 1,2}.

Letting si denote the “slopes dx1
dx2

” of the vector ∇κ(γ (i)) (i = 1,2), the cones
are given by

D1 = {(x1, x2) ∈ R
2+ :x1 > x2s1},

(47)
D2 = {(x1, x2) ∈ R

2+ :x1 < x2s2}.
Note that in the degenerate case, si become

s1 = κ ′
1(−γ1)

κ ′
2(−γ1)

, s2 =
(

κ ′
1(−γ2)

κ ′
2(−γ2)

)
+

(48)

and we show in Lemma 4 that s2 < s1, implying that the cones D1 and D2 are
disjoint in this case. Let now

D0 = R
2+\[D1 ∪ D2]

denote the open cone lying between D1 and D2 (where D i is the closure of Di ).
We will show in Theorem 5 that within Di , ψsim(x1, x2) is asymptotically

equivalent to ψi(xi), i = 1,2, respectively, and that a different regime holds within
D0, which is characterized by “radial dependence” on the slope a = a(x) := x1

x2
.

We will also show in Theorem 6 that in the case when D2 is void [which is
characterized by ∂1κ1(γ

(2)) > 0], a special type asymptotic regime holds for ψand,
within a new “secondary cone” D̂2 situated between the x2 axis and the direction
v(3) := ∇κ(γ (3)), where γ (3) is defined as the leftmost intersection of the Cramér
set with the line θ2 = −γ2. In the degenerate case, we have

D̂2 = {(x1, x2) ∈ R
2+ :x1 < x2s3}

where

s3 = κ ′
1(−γ3)/κ

′
2(−γ3)

with γ3 the largest root of κ1(−s) = κ1(−γ2). As stated in Lemma 4 below, if
κ ′

1(−γ2) > 0, it follows that D̂2 �= ∅ = D2 and otherwise the cones D2 and D̂2
coincide. This partition of the positive quadrant into cones

D1, D̂2 and D̂0 := R
2+\[D1 ∪ D̂2]

is illustrated in Figure 2.

5. Sharp asymptotics for degenerate risk-processes. We restrict now our-
selves to a two-dimensional Lévy process (X1,X2) with Xi(t) = xi + pit − S(t),
i = 1,2, where S is a compound Poisson process with positive jumps. Throughout
this section, we assume that

there exist γi > 0, i = 1,2, such that κi(−γi) = 0,

where κi is the cumulant exponent of Xi − xi . Note that whenever γ1 exists, γ2
exists as well, and γ1 > γ2 (by the convexity of κi).
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FIG. 2. Pictured are the positive quadrant, divided in the three cones D1 (shaded with vertical
lines), D2 or D̂2 (shaded with horizontal lines) and D0 or D̂0 (white), as well as the lines x1 = x2
(dashed) and γ1x1 = γ2x2 (dotted).

5.1. A characterization of the asymptotic cones. We start with gathering some
properties of the asymptotic cones, in the degenerate setting.

LEMMA 4. The following hold true:

(i) The cones Di , i = 0,1,2 are disjoint and D0,D1 �= ∅.
(ii) D̂2 = D2 �= ∅ iff κ ′

1(−γ2) < 0 and D2 = ∅ �= D̂2 iff κ ′
1(−γ2) > 0.

(iii) D1 ⊂ U := {(x1, x2) ∈ R
2+ :x2γ2 < x1γ1} and D2 ⊂ R

2+\U.

PROOF. Writing

κ ′
1(s)

κ ′
2(s)

= κ ′
2(s) + p1 − p2

κ ′
2(s)

= 1 + p1 − p2

κ ′
2(s)

,

it follows that s1 < 1, since κ ′
2(−γ1) < 0, and that s2 < s1, since γ1 > γ2 and, by

the strict convexity of κ2, κ ′
2 is strictly increasing on its domain. Next, in view of

the definitions of s2 and s3, it follows that s3 = 0 [resp. s2 = 0] iff κ ′
1(−γ2) = 0

[resp. κ ′
1(−γ2) ≥ 0]. Subsequently, we note that on the ray x1/x2 = γ2/γ1 it holds

that
x2

T (x1, x2)
= p1 − p2

1 − γ2/γ1
= κ2(−γ1) − κ1(−γ1)

γ1 − γ2
= κ2(−γ1) − κ2(−γ2)

γ1 − γ2
.

The strict convexity of κ2 thus implies that along the ray x1/x2 = γ2/γ1 it holds
that −κ ′

2(−γ2) < x2/T (x1, x2) < −κ ′
2(−γ1). It is a matter of algebra to verify that

these inequalities are equivalent to s2 < γ2/γ1 < s1 (see also Lemma 5 below). The
assertions (i), (ii) and (iii) follow then in view of the definitions of Di , i = 0,1,2,
and D̂2. �

A key point in the analysis of the asymptotics of the degenerate risk processes
is an equivalent description of the cones Di in terms of comparisons with the time
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T = T (x1, x2) defined in (26), which will enable us to translate the asymptotics
in two-dimensional space into the “space-time” asymptotics of Arfwedson (1955)
and Höglund (1990).

LEMMA 5. Writing Ti = xi/[−κ ′
i (−γi)] and T̃i = xi/[−κ ′

i (−γ3−i )], i = 1,2,
and a(x) = x1

x2
[where x = (x1, x2) ∈ R

2+], the following hold true:

D2 = {x ∈ R
2+ :a(x) < s2} = {x ∈ R

2+ : T̃1 < T } = {x ∈ R
2+ :T2 < T },

D0 = {x ∈ R
2+ :T1 < T < T2},

D1 = {x ∈ R
2+ : s1 < a(x)} = {x ∈ R

2+ :T < T̃2} = {x ∈ R
2+ :T < T1}.

PROOF. The first two equalities for D1 and D2 are just the definitions, given
in (47). Next, we note that from the definition of T it is easy to check that

x1/x2 = a ⇔ x2/T (x1, x2) = (p1 − p2)/(1 − a) = va.(49)

In particular, inserting a = s1 [defined in (48)] and using κ ′
1(s) = p1 − p2 + κ ′

2(s)

it follows that s1 = x1/x2 iff T = x1/[−κ ′
1(−γ1)] iff T = x2/[−κ ′

2(−γ1)]. The
two representations for D1 now directly follow. The identities for D2 are proved
similarly. Finally, the equalities for D0 follow by intersecting those for the com-
plements D

c

2 and D
c

1. �

5.2. Asymptotics. The leading term asymptotics of the two-dimensional ruin
probabilities will be expressed in terms of the usual “one dimensional large devi-
ations cast”: the adjustment coefficients γi > 0 of Xi satisfying κi(−γi) = 0, and
γ (a) given for 0 < a < 1 by

γ (a) = κ∗
2 (−va)/va where va := (p1 − p2)/(1 − a).

Below we consider asymptotics along the rays (aK,K) in the plane with a < a,
where

a = 1 + (p1 − p2)/v

with, as before,

θ = inf{θ :κ2(θ) < ∞} and v = lim
θ↓θ

κ ′
2(θ).(50)

Note that in terms of the “space-time velocities” the restriction a < a reads as
v = va < −v.

THEOREM 5. Assume that θ < −γ1. If a < a, it holds as K → ∞,

ψsim(aK,K) ∼
⎧⎪⎨⎪⎩

C1e
−γ1aK, if (aK,K) ∈ D1,(

D#
2(va) + D′

2(va)
)
K−1/2e−γ (a)K, if (aK,K) ∈ D0,

C2e
−γ2K, if (aK,K) ∈ D2,
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where, for i = 1,2, Ci = −κ ′
i (0)/κ ′

i (−γi) and

D′
i (w) = θ

(i)
w − θw

|θwθ
(i)
w |

√
w√

2πκ ′′
3−i (θw)

,(51)

D#
i (w) =

[
1

θw

− 1

θ
(i)
w

+ κ ′
3−i (0)

κ3−i (θ
(i)
w )

− κ ′
3−i (0)

κ3−i (θw)

] √
w√

2πκ ′′
3−i (θw)

,(52)

where θw < θ
(i)
w satisfy κ ′

2(θw) = −w and κi(θw) = κi(θ
(i)
w ).

Next, we turn to the asymptotics of the ruin probability ψand, which are formu-
lated in terms of the (sometimes different) partition of the positive quadrant into
D1, D̂2 and D̂0 = R

2+\[D1 ∪ D̂2].

THEOREM 6. If a < a, then it holds that, as K → ∞,

ψand(aK,K) ∼
⎧⎪⎨⎪⎩

C1e
−γ1aK, if (aK,K) ∈ D1,(

D′
1(va) − D#

1(va)
)
K−1/2e−γ (a)K, if (aK,K) ∈ D̂0,

Ĉ2e
−(aγ3+(1−a)γ2)K, if (aK,K) ∈ D̂2,

where

Ĉ2 = −C2κ
′
1(−γ2)/κ

′
1(−γ3)

and D′
1 and D#

1 are respectively given by (51) and (52).

NOTE. These results imply that if (aK,K) is contained in either D1 or D2,
then ψsim(aK,K) and ψand(aK,K) are of the same order.

5.3. Two terms asymptotic expansions in terms of one-dimensional shifted mea-
sures. The key for obtaining “two terms asymptotic expansions” for ψor and ψsim
(and then also leading term asymptotics) is given by the following decompositions
that are generalizations of Corollary 1 to the current setting.

COROLLARY 2. Let x2 > x1. It holds that

ψor(x1, x2) = ψ1(x1, T ) + C2(x1, T )e−γ2x2ψ
(−γ2)
1 (x1, T ),

ψsim(x1, x2) = ψ2(x2, T ) + C1(x2, T )e−γ1x1ψ
(−γ1)
2 (x2, T ),

where, for i = 1,2,

Ci(x3−i , T ) = E(−γi)[hi(X3−i (T ))|τ3−i (x3−i ) > T ]
with hi(x) = eγixψi(x), i = 1,2.
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PROOF. In view of (30), the Markov property and a change of measure it fol-
lows that

ψor(x1, x2) = ψ1(x1, T ) + P

(
τ1(x1) > T , inf

T ≤s<∞X2(s) < 0
)

(53)

= ψ1(x1, T ) + e−γ2x2E(−γ2)
[
h2(X1(T ))1{τ1(x1)>T }

]
(54)

using that X1(T ) = X2(T ). The proof of the decomposition of ψsim is similar and
omitted. �

For ψand similar decompositions are derived in the following result. Recall that
γ3 is defined as the largest root of κ1(−γ2) = κ1(−θ) and set γ̃ := γ3 − γ2.

COROLLARY 3. For x2 > x1 it holds that

ψand(x1, x2) = w1(x1, T ) + P
(
τ1(x1) ≤ T , τ2(x2) < ∞)

(55)

where w1 is given in (35) and, with τ1 = τ1(x1) and τ2 = τ2(x2),

eγ2x2+γ̃ x1P(τ1 ≤ T , τ2 < ∞)

= E(−γ̃ ,−γ2)
[
eγ̃X1(τ1)h2(X2(τ1))1{τ1≤T }

]
(56)

= eγ̃ x1C2(x2, T )ψ
(−γ2)
2 (x2, T ) + C1(x1, T )ψ

(−γ3)
1 (x1, T ),

for C2(x2, T ) = E(−γ2)[eγ2X2(T )ψ2(X2(T ))|τ2 ≤ T ] and

C1(x1, T ) = E(−γ3)
[
eγ3X1(T )ψ2(X1(T ))|τ1 ≤ T

]
.

PROOF. Recall that (55) was derived in Proposition 1. It follows by definition
of γ3 that κ1(−γ2 − γ̃ ) = κ1(−γ2) or, equivalently, κ

(−γ2)
1 (−γ̃ ) = 0. In view of

this observation and the form of κ(u, v), derived in Example 1, it follows that
κ(−γ̃ ,−γ2) = 0. Changing measure with the martingale exp(−γ̃ (X1(t) − x1) −
γ2(X2(t) − x2)) and applying the strong Markov property at τ1 yields the first
equality in (56).

The second equality follows by noting that

P(τ1 ≤ T , τ2 < ∞)

= P(τ1 ≤ T , τ2 ≤ T ) + P(τ1 ≤ T ,T < τ2 < ∞)

= P(τ2 ≤ T ) + E
[
1{τ1≤T <τ2}PX2(T )(τ2 < ∞)

]
= E

[
1{τ2≤T }ψ2(X2(T ))

] + E
[
1{τ1≤T }ψ2(X2(T ))

]
= e−γ2x2E(−γ2)

[
eγ2X2(T )ψ2(X2(T ))|τ2 ≤ T

]
ψ

(−γ2)
2 (x2, T )

+ e−γ2x2−γ̃ x1 × E(−γ3)
[
eγ3X1(T )ψ2(X1(T ))|τ1 ≤ T

]
ψ

(−γ3)
1 (x1, T ),
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where in the second line we used the Markov property and that {τ2 ≤ T } ⊂ {τ1 ≤
T } and in the last line we changed the measure and that X1(T ) = X2(T ). �

We write

f ≈ g + h as x → ∞ iff lim
x→∞(f − g)/h(x) = lim

x→∞(f − h)/g(x) = 1.

PROPOSITION 2. Assume that θ < −γ1. For any v < −v, it holds that, if
x1, x2 → ∞ such that x2/T (x1, x2) = v,

ψor(x1, x2) ≈ ψ1(x1, T ) + C̃2(v)e−γ2x2ψ
(−γ2)
1 (x1, T ),(57)

ψsim(x1, x2) ≈ ψ2(x2, T ) + C̃1(v)e−γ1x1ψ
(−γ1)
2 (x2, T ),(58)

where, for i = 1,2 and v �= −κ ′
2(−γ1),−κ ′

2(−γ2),

C̃i(v) =
{

Ci, if −κ ′
2(−γi) < v,

c3−i (v, γi)
−1[

ψ∗
i (θv) − ψ∗

i

(
θ

(3−i)
v

)]
, if 0 < v < −κ ′

2(−γi),

where θv < θ
(i)
v satisfy κ ′

2(θv) = −v, κi(θv) = κi(θ
(i)
v ), and

ci(v, c) = θ
(i)
v − θv

(θ
(i)
v + c)(θv + c)

with ψ∗
i being the Laplace transform of ψi .

PROPOSITION 3. For any v < −v, it holds that, if x1, x2 → ∞ such that
x2/T (x1, x2) = v,

ψand(x1, x2)

≈ ψ1(x1) − ψ1(x1, T )(59)

+ {
C2(v)e−γ2x2ψ

(−γ2)
2 (x2, T ) + C1(v)e−γ2x2−γ̃ x1ψ

(−γ3)
1 (x1, T )

}
,

where γ̃ = γ3 − γ2 and for v �= −κ ′
2(−γ3),

C2(v) =
{

0, if 0 < v < −κ ′
2(−γ3),

|c2(v, γ2)|−1 · ψ∗
2
(
θ

(2)
v

)
, if v > −κ ′

2(−γ3),

C1(v) =
⎧⎪⎨⎪⎩−C2

κ ′
1(−γ2)

κ ′
1(−γ3)

, if 0 < v < −κ ′
2(−γ3),

|c1(v, γ3)|−1 · [
ψ∗

2

(
θ

(1)
v

) − θ−1
v

]
if v > −κ ′

2(−γ3),

with ψ
∗
i being the Laplace transform of ψi .
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PROOF OF PROPOSITION 2. In view of Corollary 2, the proof for ψor is com-
plete once we show that C2(x1, T ) converges to C̃2(v) if x1, x2 → ∞ such that
x2/T = v. We distinguish between two cases.

If x1 + κ ′
1(−γ2)T > 0, then the strong law of large numbers implies that

X1(T ) → ∞ P (−γ2)-a.s. and that P (−γ2)(τ1(x1) ≤ T ) tends to zero (see Theo-
rem 1). Since h2(y) → C2 as y → ∞ (by the Cramér–Lundberg approximation),
we conclude that C2(x1, T ) converges to C2 (by bounded convergence).

In the case that x1 + κ ′
1(−γ2)T < 0, we note that by virtue of Theorem 2(i)

the distribution of X1(T ) conditioned on τ1 > T (under P (−γ2)) converges to the
measure �v in (23), with the shifts in (23) calculated using the cumulant exponent
κ

(−γ2)
1 and direction v′ = x1/T (x1, x2). Note that the application of Theorem 2

is justified since we have that θ < −γ1 < −γ2. Indeed, observe at this point that
κ

(−γ2)′
1 (θ

(−γ2)
v ) = κ ′

1(θv) = −v′ and that, in view of Remark 1, θ
(−γ2)
v = θv + γ2

and θ
(1)(−γ2)
v = θ

(1)
v + γ2. Thus, C2(x2, T ) converges to∫ ∞

0
h2(y)�v(dy) =

∫ ∞
0

ψ2(y)
(θv + γ2)(θ

(1)
v + γ2)

θ
(1)
v − θv

[
e−θvy − e−θ

(1)
v y]

dy.(60)

The proof of the asymptotics of ψsim is similar and omitted. �

PROOF OF PROPOSITION 3. In view of Corollary 3 to finish the proof, we
have to show convergence of the conditional expectations in the two different
cases.

In the first case when x1 +κ ′
1(−γ3)T < 0, it follows by the law of large numbers

that P (−γ3)(τ1 ≤ T ) tends to 1. Also, taking note of Lemma 1 and of the fact that
in view of the definition of T , it holds that X2(τ1) = X1(τ1) + (p1 − p2)[T −
τ1]), it follows that X2(τ1) → ∞ and h2(X2(τ1)) → C2, P (−γ3)-a.s. Therefore, the
bounded convergence theorem implies that the expectation in the first line of (56)
converges to C2C̃ (where C̃ denotes the asymptotic constant for ψ1 under P (−γ2)).

In the opposite case that x1 + κ ′
1(−γ3)T > 0 invoking Theorem 2 as in Propo-

sition 2 (which is in this case justified as θ ≤ −γ1 < −γ3 ≤ −γ2) yields the form
of C1(v) and C2(v) and in view of (31), the proof is complete. �

5.4. Proofs of Theorems 5 and 6. In the proof, we use the following result:

LEMMA 6. (i) We have γ (a) > max{aγ1, γ2} for a �= s1, s2 and

γ (a) = aγ1 + κ
∗(−γ1)
2 (−va)/va = aγ1 + κ

∗(−γ1)
1 (−ava)/va = κ∗

1 (−ava)/va.

(ii) If κ ′
i (0

+) > 0, it holds that ψ∗
i (θ) = θ−1 − κ ′

i (0)/κi(θ).

PROOF. (i) is a direct consequence of the definitions of γ (a), γi and Remark 1.
(ii) directly follows from Bertoin (1996), Theorem VII.10. �

PROOF OF THEOREMS 5 AND 6. In view of (58), the proof of Theorem 5 con-
sists in identifying the leading order term by applying the Arfwedson–Höglund’s
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Theorem 1 to the different terms in (58). Invoking the characterization of the
cones in Lemma 5 and (49), it follows, for example, that for (x1, x2) ∈ D2,
ψ2(x2, T ) ∼ C2e

−γ2x2 whereas for (x1, x2) ∈ D
c

1 ⊃ D2 it holds that

ψ
(−γ1)
2 (x2, T ) ∼ ∣∣D(−γ1)

2 (va)
∣∣(va/x2)

1/2e−x2κ
∗(−γ1)

2 (−va)/va ,(61)

where D
(−γ1)
2 is specified by D in Theorem 1 with κ = κ

(−γ1)
2 . Thus, by

Lemma 6(i), it follows that the leading term is C2e
−γ2x2 if (x1, x2) ∈ D2. Sim-

ilarly, it can be checked that the leading term is C1e
−γ1x1 if (x1, x2) ∈ D1. Finally,

in the case that (x1, x2) ∈ D0, we note that both terms in (58) are of the same order
[cf. Lemma 6(ii)]. More precisely,

ψsim(x1, x2) ∼ [
D2(va) + C̃1(va)D

(−γ1)
2 (va)

]
(va/x2)

1/2e−γ (a)x2,

where D2,D
(−γ1)
2 are specified by D in Theorem 1 with κ = κ2 and κ = κ

(−γ1)
2 ,

respectively, and C̃1 is given in Proposition 2. Using Lemma 6 and that κ ′′
1 = κ ′′

2 ,
it is a matter of algebra to verify the form of the constants D′

2 and D#
2 .

Drawing on Proposition 3, Theorem 6 can be proved following an analogous
line of reasoning. We omit the details. �

6. Examples. We now develop two explicit examples that illustrate the results
shown in the previous sections.

6.1. Cramér–Lundberg model with exponential jumps. Let X be a drift p mi-
nus a compound Poisson process with rate λ and exponential jump sizes with
mean μ starting at x. Then the characteristic function of X reads as κ(θ) = pθ −
λθ/(μ+ θ) and, if p > λ

μ
, the ultimate ruin probability is equal to ψ(x) = Ce−γ x ,

where the adjustment coefficient is γ = μ − λ/p and C = λ/(μp). More gener-
ally, it was shown by Asmussen (1984), Knessl and Peters (1994) (with p = 1) and
Pervozvansky (1998) that the finite time ruin probability ψ(x, t) is given by

ψ(x, t) = 1 − ψ(x, t) = [1 − Ce−γ x]1(γ>0) + w(x, t),(62)

where

w(x, t) = 1

π

√
λ

μp

∫ s+

s−
ea(q)x−qt sin

(
b(q)x − φ(q)

)dq

q
(63)

with s± = (
√

λ ± √
μp)2, φ(q) = arccos(pμ+λ−q

2
√

λμp
) and

a(q) = λ − μp − q

2p
, b(q) =

√
4pqμ − (λ − μp − q)2

2p
.(64)

Further, we note that, under P (c), X is still a drift p minus a compound Poisson
process with exponential jumps with the changed rates λc = λ

μ
μ+c

and μc = μ+c.

In particular, λ−γ = μp and μ−γ = λ/p are the parameters under P (−γ ).
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In view of the previous paragraph, we see that, under P (−γ1), the drift of X2

is always negative, κ
(−γ1)′
2 (0) = κ ′

2(−γ1) < 0. Also, under P (−γ2), the adjustment
parameter of X1 is positive if and only if ρ > ρ∗ := p2

2/p1 and is then equal to

γ̃ = γ3 − γ2 = μ

p2

(
ρ − p2

2

p1

)
,(65)

and the asymptotic constant C̃ satisfies Ĉ2 = C̃C2 = p2
p1

. Inserting the expres-
sions (62)–(64) (with the proper choices of parameters) into Corollary 1 leads then
to explicit expressions for ψand,ψsim and ψor.

It is a matter of calculus to verify that

s1 = p2
1/ρ − p1

p2
1/ρ − p2

, s2 = (p2
2/ρ − p1)+
p2

2/ρ − p2

and, if ρ > ρ∗,

s3 = ρp2
1/p

2
2 − p1

ρp2
1/p

2
2 − p2

.

Also, by invoking Corollary 1 or by a direct calculation, we see that

Ci(v) ≡ λ

μpi

= Ci, i = 1,2.

Inserting these quantities into Propositions 2 and 3 yields explicit asymptotics ex-
pansions for ψand,ψsim and ψor.

6.2. Brownian motion with drift. If X(t) = mt + B(t) where B(t) is standard
Brownian motion, then its characteristic exponent reads as κ(θ) = 1

2θ2 + mθ . If
m > 0, ψ(x) = e−γ x , where γ = 2m is the adjustment coefficient. Further, under
P (c), X is still Brownian motion, but the drift changes to m + c. The drift of the
measure associated to c = −γ is −m, that is, the Brownian motion switches its
drift. In view of the Corollary 1 and the well-known first-passage distribution of
Brownian motion with drift,

ψ(x, t) = �

(
x + mt√

t

)
− e−2mx�

(−x + mt√
t

)
,(66)

we find that if x2 > x1 then

ψor(x1, x2) = P
(
τ1(x1) ≤ T

) + e−2p2x2P (−2p2)
(
τ1(x1) > T

)
= 1 − �(a(x1,p1)) + e−2p1x1�(a(−x1,p1))

(67)
+ e−2p2x2 × [

�
(
a(x1,p1 − 2p2)

)
− e−2x1(p1−2p2)�

(
a(−x1,p1 − 2p2)

)]
,
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ψsim(x1, x2) = P
(
τ2(x2) ≤ T

) + e−2p1x1P (−2p1)
(
τ2(x1) > T

)
= 1 − �(a(x2,p2)) + e−2p2x2�(a(−x2,p2))

(68)
+ e−2p1x1 × [

�
(
a(x2,p2 − 2p1)

)
− e−2x2(p2−2p1)�

(
a(−x2,p2 − 2p1)

)]
,

ψand(x1, x2) = �(a(x1,p1)) − 1 + e−2p1x1
(
1 − �(a(−x1,p1))

)
+ e−2p2x2 × [

e−2x1(p1−2p2)�
(
a(−x1,p1 − 2p2)

)
(69)

+ 1 − �
(
a(x1,p1 − 2p2)

)]
,

where a(x,p) = [x + pT ]/√T and � denotes the cumulative standard normal
distribution function. In view of the facts that �(−x) = 1 −�(x) and 1 −�(x) ∼
(2π)−1/2x−1 exp(−x2/2) as x → ∞, it follows from (68) and (69) that if x1, x2
tend to infinity with x1/x2 = a then

ψand(x1, x2) ≈
⎧⎪⎨⎪⎩

e−2p2x2−2(p1−2p2)
+x1 + o(ava), if 0 < a < s3,

o(ava), if s3 < a < s1,
e−2p1x1 + o(ava), if s1 < a < 1,

(70)

ψsim(x1, x2) ≈
⎧⎪⎨⎪⎩

e−2p2x2 + δ(va), if 0 < a < s2,
δ(va), if s2 < a < s1,
e−2p1x1 + δ(va), if s1 < a < 1,

(71)

where

o(v) =
[

2v

p2
1 − v2

+ 2v

v2 − (p1 − 2p2)2

] √
v√

2πx1
e−x1(v+p1)

2/[2v],

δ(v) =
[

2v

v2 − p2
2

+ 2v

(p2 − 2p1)2 − v2

] √
v√

2πx2
e−x2(v+p2)

2/[2v]

and

s1 = p1

2p1 − p2
, s2 = (2p2 − p1)+

p2
,

and, if p1 > 2p2,

s3 = p1 − 2p2

2p1 − 3p2
.

The asymptotics of ψsim agree with the asymptotics of the steady state distribution
of a tandem queue calculated in Lieshout and Mandjes (2007).

By straightforward calculations, it can be verified that if S is a Brownian motion,
then Ci = 1 and θv = −v − p2, θ ′

v = v − p2, θ�
v = v + p2 − 2p1 and

C̃i(v) = 1, κ∗
i (−v) = (v + pi)

2

2
, κ∗

1 (−ava) = κ∗
2 (−va)
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for i = 1,2. Inserting these quantities in (58)–(59) and comparing with (70)
and (71) it follows that Propositions 2 and 3 and Theorems 5 and 6 remain valid if
S is a Brownian motion.

APPENDIX

In this section, we briefly review the general large deviations theory for first
passage times developed by Collamore (1996) and explicitly relate it to the results
for ψsim in Theorem 5 by calculating the relevant quantities of the general theory.

We denote by (X1,X2) the two-dimensional Lévy process given by Xi(t) =
pit − S(t) where S is a Lévy process (starting at zero) and write A = Aa =
(−∞,−a) × (−∞,−1) and TB for the first hitting time of a set B by (X1,X2).
The probability ψsim(aK,K) is then equal to P(TKA < ∞). If κ(θ1, θ2) =
logE[eθ1X1+θ2X2] is finite in a neighborhood of the Cramér set C = {θ :κ(θ) ≤ 0}
and 0 ∈ Co, then it holds that [Theorem 2.1 of Collamore (1996)]

lim
K→∞

1

K
logψsim(aK,K) = − inf

x∈Aa

Ĩ (x),

where Ĩ is the support function of the Cramér set C,

Ĩ (x) = sup
θ∈C

〈θ, x〉.(72)

In the next result Ĩ (x) is identified:

PROPOSITION 4. For x1, x2 < 0, it holds that

Ĩ (x1, x2) = |x2|γ (x1/x2),

where

γ (a) =
{

κ∗
2 (−|va|)/|va|, if a �= 1,

−θ := − inf
θ∈C

〈θ,1〉, if a = 1

with 1 = (1,1), κ∗
2 (s) := supθ∈R{θs − κ2(θ)} and va = (p1 − p2)/(1 − a).

Using this result, we can calculate the first-passage rate function:

COROLLARY 4. It holds for a > 0 that

inf
x∈Aa

Ĩ (x) =
⎧⎨⎩

γ2, if 0 < a ≤ s2,
γ (a), if s2 < a < s1,
aγ1, if a ≥ s1.

We observe here that Corollary 4 agrees with the exponents of the asymptotics
found in Theorem 5 (as it should).
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PROOF OF PROPOSITION 4. The linear functional θ �→ 〈θ, x〉 attains it maxi-
mum over the closed set C at a point θ∗ of the boundary ∂C. In view of the form
of κ (Example 1), the definition of va and κ(θ∗) = 0, it is a matter of algebra to
check that for a �= 1

Ĩ (x1, x2) = sup
θ∈∂C

{
θ1x1 + θ2x2 − (

κ2(θ1 + θ2) + (p1 − p2)θ1
) ·

∣∣∣∣x2

va

∣∣∣∣}

=
∣∣∣∣x2

va

∣∣∣∣ · sup
θ∈∂C

{(θ1 + θ2)(−|va|) − κ2(θ1 + θ2)}

=
∣∣∣∣x2

va

∣∣∣∣ sup
η≥θ

{η(−|va|) − κ2(η)} =
∣∣∣∣x2

va

∣∣∣∣κ∗
2 (−|va|),

where θ = inf{θ :κ2(θ) < ∞} and in the last line we used that κ2(θ1 + θ2) =
−θ1(p1 − p2) for (θ1, θ2) ∈ ∂C. The rest of the statements follows by straight-
forward calculations. �

PROOF OF COROLLARY 4. From the form of Ĩ , we deduce that Ĩ attains
it minimum over Aa at the boundary ∂Aa . If we set x2 = −1, the minimization
reduces to infb≥a γ (b). Taking note of the fact that κ∗

2 (−v) ≥ γ2v with equality if
and only if v = −s2 we see that

inf
b≥a

γ (b) =
{

γ2, if 0 < a ≤ s2,
γ (a), if a > s2.

(73)

Similarly, setting x1 = −a, leads to the minimization infc≤1 cγ (a/c) or equiva-
lently, infd≤a γ (d)/d . Observing that

κ∗
2 (−|va|)
a|va| = sup

θ∈R

{
−θ − κ1(θ)

a|va|
}
,

we see that κ∗
2 (−|va|) ≥ aγ1|va| with equality if and only if a = s1 and conclude

that

inf
d≤a

γ (d)/d =
{

aγ1, if a ≥ s1,
γ (a), if 0 < a < s1.

(74)

Combining equations (73) and (74) completes the proofs. �

Let us also note that classical arguments for the large deviations (LD) theory for
stationary increments processes allow us to explain heuristically the structure of
“or” and “sim” ruins in the quadrant. Let us consider for example the “sim” ruin.
From the LD theory, we expect that paths exiting the positive quadrant, seen from
far away, will be concentrated near one of three possible directions: the direct path
to the origin, and the “dominant” (most probable) paths reaching the x1 = 0/x2 = 0
axes, respectively.
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It turns out that all the dominant exit paths for reaching the {x1 < 0, x2 = 0}
semi-axis are parallel to each other and, therefore, give rise to a “boundary”
cone D1. Similarly, the dominant exit paths reaching the x1 = 0, x2 < 0 semi-axis
gives rise to a cone D2. These two cones will be disjoint in our case, as indicated
in Figure 2. In these two boundary cones, the probability of simultaneous ruin is
equivalent to the probability of ruin of the X1/X2 process respectively, that is, it
holds asymptotically for large x1, x2 on a ray that lies within these cones Di that
ψsim(x1, x2) ≈ ψi(xi).

A similar result holds for the “or” ruin. We may note geometrically that the
boundary cones for hitting the semi-axes {x1 = 0, x2 > 0} and x2 = 0, x1 > 0 are
precisely the complements C2 = D

c

1,C1 = D
c

2.
This intuitive picture is confirmed and sharpened by Theorem 5 and Proposi-

tion 2.
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