Corrigendum

ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes

Hailong Wang¹, Zhen Li¹, Ruonan Jia¹, Jia Yin¹, Aiying Li¹, Liqiu Xia², Yulong Yin^{1,2,3}, Rolf Müller^{1,4}, Jun Fu^{1,*}, A. Francis Stewart^{5,*} and Youming Zhang^{1,*}

¹Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China, ²State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, 410081 Changsha, People's Republic of China, ³Key Laboratory of Subtropical Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan Province 410125, People's Republic of China, ⁴Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany and ⁵Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47–51, 01307 Dresden, Germany

Nucleic Acids Research (2017) gkx1249, https://doi.org/10.1093/nar/gkx1249

The authors wish to make the corrections highlighted in **bold** to Table 1 of their article. The corrections have also been made in the published article and do not affect the results and overall conclusions of the work.

Table 1. Large genomic segments directly cloned from bacteria, mammalian cells and human blood with ExoCET

Target	Source	Genome (Mb)	Digestion enzymes	Fragment (kb)	Vector	c.f.u. (/ml)	Correct/ checked
plu3535-3532	P. luminescens DSM15139	5.69	XbaI	38	pBAC2015	1815±132	12/12
plu2670	P. luminescens DSM15139	5.69	XbaI+XmaI	53	p15A	787 ± 194	10/12
salinomycin cluster	S. albus DSM41398	8.38	EcoRV	106	pBeloBAC11	425±91	2/24
salinomycin cluster	S. albus DSM41398	8.38	Cas9	106	pBeloBAC11	260 ± 14	1/24
Wnt4	Mouse melanoma B16 cell	2800.06	SwaI	45	p15A	76±16	8/25
Lmbr1l-Tuba1a	Mouse melanoma B16 cell	2800.06	SwaI	53	p15A	52±6	1/12
Prkar1a	Mouse melanoma B16 cell	2800.06	HpaI	8	p15A	205 ± 17	10/12
IGFLR1-ARHGAP33	Human blood	3221.49	BstZ17I	41	p15A	275±76	5/48
ZBTB32-LIN37	Human blood	3221.49	NdeI	45	p15A	115±35	2/48
Dpy30	Mouse melanoma B16 cell	2800.06	BamHI+KpnI	8.7	p15A	273±18	9/12
DP Y30	HEK 293T cell	3221.49	SpeI	9.1	p15A	40 ± 10	17/24
DP Y30	Human blood	3221.49	SpeI	9.1	p15A	45±2	5/24
Oct4-Venus	Mouse R1 ES cells	2800.06	EcoRV+PacI	9.6	p15A	34±1	9/36
Nanog-Cherry	Mouse R1 ES cells	2800.06	NdeI	13	p15A	49±12	17/54
Gata2-Venus	Mouse GM8 ES cells	2800.06	BstZ171	16.8	p15A	212 ± 27	5/45
Mll4 (1)	Mouse R1 ES cells	2800.06	SspI+SpeI	17.1	p15A	127±38	7+3/24
Mll4 (2)			• •		•	323±65	2+2/36
Mll4 (3)						142±27	6+9/72
Mll4 (4)						483±91	3+5/36

All experiments were done in triplicate; c.f.u. includes standard deviation and fidelity was monitored by restriction analysis of the indicated number of colonies. For the Mll4 experiments, fidelity shows the targeted allele + wt allele/colonies examined. DNA analyses are shown in Supplementary Figure S6.

^{*}To whom correspondence should be addressed. Tel: +86 531 8836 3082; Fax: +86 531 8836 3082; Email: zhangyouming@sdu.edu.cn Correspondence may also be addressed to Jun Fu. Tel: +49 351 4634 0101; Fax: +49 351 4634 0143; Email: fujun@sdu.edu.cn Correspondencemay also be addressed to A. Francis Stewart. Tel: +49 351 4634 0129; Fax: +49 351 4634 0143; Email: francis.stewart@biotec.tu-dresden.de

[©] The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution L.