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Abstract
Future mainstream microprocessors will likely integrate special-
ized accelerators, such as GPUs, onto a single die to achieve bet-
ter performance and power efficiency. However, it remains a keen
challenge to program such a heterogeneous multi-core platform,
since these specialized accelerators feature ISAs and functional-
ity that are significantly different from the general purpose CPU
cores. In this paper, we present EXOCHI: (1) Exoskeleton Se-
quencer (EXO), an architecture to represent heterogeneous accel-
erators as ISA-based MIMD architecture resources, and a shared
virtual memory heterogeneous multithreaded program execution
model that tightly couples specialized accelerator cores with gen-
eral purpose CPU cores, and (2) C for Heterogeneous Integration
(CHI), an integrated C/C++ programming environment that sup-
ports accelerator-specific inline assembly and domain-specific lan-
guages. The CHI compiler extends the OpenMP pragma for hetero-
geneous multithreading programming, and produces a single fat bi-
nary with code sections corresponding to different instruction sets.
The runtime can judiciously spread parallel computation across the
heterogeneous cores to optimize performance and power.

We have prototyped the EXO architecture on a physical het-
erogeneous platform consisting of an Intel R© CoreTM 2 Duo pro-
cessor and an 8-core 32-thread Intel R© Graphics Media Accelera-
tor X3000. In addition, we have implemented the CHI integrated
programming environment with the Intel R© C++ Compiler, run-
time toolset, and debugger. On the EXO prototype system, we have
enhanced a suite of production-quality media kernels for video
and image processing to utilize the accelerator through the CHI
programming interface, achieving significant speedup (1.41X to
10.97X) over execution on the IA32 CPU alone.

Categories and Subject Descriptors C.1.4 [Processor Architec-
tures]: Parallel Architectures; D.3.4 [Programming Languages]:
Processors—Compilers

General Terms Performance, Design, Languages

Keywords Heterogeneous multi-cores, GPU, OpenMP
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1. Introduction
The relentless pace of Moore’s Law will lead to mainstream multi-
core microprocessor designs with extensive on-die integration of
a large number of cores [14]. Fundamentally, to scale multi-core
processor designs to incorporate a large number of cores, ultra low
EPI (Energy Per Instruction) cores are essential [10]. For example,
to achieve a 20X improvement (e.g., from 5GOPS to 100GOPS) in
throughput performance while staying below the power envelope
of 150W, the building-block cores must have an average EPI of
approximately 1nJ. The EPI for the Intel R© CoreTM 2 Duo processor
core [31] is approximately 10nJ while the EPI for the 8-core 32-
thread Intel R© Graphics Media Accelerator X3000 [15] is only
0.3nJ. One approach to improving EPI by an order of magnitude
is through heterogeneous multi-core design, in which some cores
vary in functionality, instruction set (ISA), performance, power,
and energy efficiency [2, 17]. The key challenge then becomes
how to accomplish such heterogeneous integration and achieve
high performance while still maintaining the look-and-feel of the
classic mainstream IA32-based programming models and software
ecosystem.

In this paper, we present EXOCHI: Exoskeleton Sequencer
(EXO), an architecture to represent heterogeneous accelerators as
ISA-based MIMD architectural resources, and C for Heteroge-
neous Integration (CHI), a programming environment that sup-
ports tightly-coupled integration of heterogeneous cores. The EXO
architecture supports the familiar POSIX shared virtual memory
multithreaded programming model for heterogeneous cores. Like
application-managed sequencers in the Multiple Instruction Stream
Processor (MISP) architecture [11], the non-IA32 cores are archi-
tecturally exposed to the programmer as a new form of sequencer
resource. They can be regarded essentially as application-level
MIMD functional units on which user-level threads, or shreds, en-
coded in the accelerator-specific ISA can execute. Having a shared
virtual address space between the IA32 sequencer and accelerator
sequencers facilitates code and data sharing and harmonizes coop-
eration between the concurrent shreds of different ISAs.

The CHI integrated programming environment allows an ap-
plication developer to inline blocks of accelerator-specific assem-
bly or domain-specific language with traditional C/C++ code. The
CHI compiler produces a single fat binary consisting of executable
code sections corresponding to the different ISAs. CHI further ex-
tends the OpenMP pragmas [25, 26, 30] to allow the program-
mer to express thread-level parallelism by demarcating parallel
regions of code targeting non-IA32 accelerators. The CHI exten-
sions to OpenMP support both fork-join and producer-consumer
parallelism among the accelerator shreds and between the IA32
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shreds and the accelerator shreds. The CHI runtime can judiciously
spread the shreds across the heterogeneous sequencers dynamically
to maximize throughput performance while minimizing power.

This paper makes the following contributions:

• We describe the EXO architecture and the CHI programming
environment that support shared virtual memory multithreaded
programs for a heterogeneous multi-core processor.

• We detail a heterogeneous multi-core prototype of the EXO ar-
chitecture consisting of an Intel R© CoreTM 2 Duo [31] proces-
sor and an 8-core 32-thread Intel R© Graphics Media Accelerator
(GMA) X3000 [15].

• We present an implementation of the CHI programming envi-
ronment based on the Intel R© C++ Compiler [29] that supports
the seamless integration of accelerator-specific assembler and
domain-specific languages.

• We report significant performance gains for a set of production-
quality media-processing kernels by employing heterogeneous
shreds on the GMA X3000, achieving speedups of up to
10.97X.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 introduces the EXO architecture and de-
scribes a physical prototype system using an Intel Core 2 Duo pro-
cessor and an Intel GMA X3000. Section 4 presents the CHI inte-
grated programming environment and details the extensions to the
OpenMP pragmas for heterogeneous multithreading support in the
Intel C++ Compiler and the supporting CHI runtime software sys-
tem. Section 5 evaluates the performance of CHI-enabled media-
processing kernels on the EXO hardware prototype. Section 6 con-
cludes.

2. Related Work
There has been a rich body of research on heterogeneous acceler-
ation. In most published work, the execution models usually fall
into two categories: (1) an ISA-based tightly-coupled approach, or
(2) a device driver-based loosely-coupled execution model. An ex-
ample of the tightly-coupled approach is the SCP architecture [7]
in which a custom ISA extension represents the operations imple-
mented by a hardware accelerator attached to the CPU. The CPU
is then responsible for sequencing, decoding and dispatching each
co-processor instruction, stalling until the co-processor execution
completes. This approach resembles the classic x87 escape-wait
style co-processor instruction execution where the co-processor
does not sequence instructions independently from the CPU.

Examples of the second category include most known GPGPU
infrastructures [9, 22]. GPGPU uses the massive computational
power of a modern GPU, normally dedicated to render graphics op-
erations, to accelerate general purpose computation. In this line of
work, depicted in Figure 1(a), the CPU resources (cores and mem-
ory) are managed by the OS, and the GPU resources are separately
managed by vender-supplied device drivers. Applications and de-
vice drivers run in separate address spaces, and consequently, the
data communication and synchronization between them are usually
carried out in coarse granularity through explicit data copying via
device driver APIs.

In the EXOCHI framework depicted in Figure 1(b), the EXO
architecture supports an execution model with a shared virtual ad-
dress space and a POSIX multithreaded programming model for
the OS-managed IA32 sequencer and application-managed non-
IA32 accelerator sequencers. EXO differs from the existing tightly-
coupled approaches (category 1) by allowing independent sequenc-
ing and concurrent execution of multiple instruction streams on
multiple sequencers within a single OS thread context. EXO also
differs from the loosely-coupled, driver-based approaches (cate-
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Figure 1. Alternate Programming Environments

gory 2) by directly exposing the heterogeneous sequencers to appli-
cation programs and by supporting a shared virtual address space
amongst these sequencers. Without requiring an OS device driver to
manage the accelerators, EXOCHI’s user-level runtime can be used
to schedule shreds and coordinate light-weight inter-shred data
communication efficiently through shared virtual memory. With
direct architectural support for shared virtual memory, EXOCHI
avoids the significant burden of emulating shared memory in soft-
ware and orchestrating DMA data transfers to provide the illusion
of a shared memory multithreaded programming model, as with
CELL [5].

Clearly, the programming models for most prior research on
heterogeneous acceleration have been significantly influenced by
the underlying architecture. For example, different levels of GPU
abstractions have been introduced in various GPGPU programming
models. These abstractions range from allowing to-the-metal pro-
gramming in the GPU’s assembly language, to high-level language
extensions with full-fledged runtime systems that abstract away any
implementation or vendor-specific GPU hardware intricacy. As il-
lustrated in Figure 1(a), at the lowest level of abstraction, an infras-
tructure like the Data Parallel Virtual Machine (DPVM) [24] allows
developers to program the GPU in its native assembly language by
exposing the instruction set and by providing a set of special device
driver APIs. However, DPVM exposes the GPU as a device that op-
erates in a separate address space and requires the programmer to
explicitly manage the GPU’s device-specific hardware. Therefore,
data communication between the application program and the GPU
driver code still occurs through data copying.

In other approaches, the GPU can also be programmed using
domain-specific APIs, such as OpenGL or DirectX, or through a
higher-level domain-specific programming language, such as the
OpenGL Shader Language [6] or Cg [19]. This approach provides
a higher level abstraction of the GPU by hiding both the internal
ISA and the device-specific GPU hardware complexity. However,
the APIs and shader language restrictions predefined for the graph-
ics processing domain may become cumbersome when used to ex-
press an algorithm in another domain. For example, in order to at-
tain GPU acceleration, the programmer needs to remap the data
structure representation of the application to the native data types
for OpenGL and DirectX, e.g., vertices and pixels. The program-
mer also needs to convert the algorithm into a computationally-
equivalent GPU operation, e.g., mapping an integer sorting opera-
tion to a texture sampling operation.

At the next level of abstraction are the streaming program-
ming models, where the GPU is abstracted as a stream processor;
such an approach is used in Brook [1], CUDA [3], StreamIt [28],
StreamC [16], SPUR [32], and Sh [20]. With this approach, the pro-
grammer is presented with more general purpose language syntax
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to support data structures like those in high level languages such
as C/C++. While this approach provides the programmer a much
more productive programming environment to produce code for the
GPU hardware, the GPU still works as a device. As examples of
the loosely-coupled execution model (category 2), these streaming
programming environments also lack efficient integration with the
traditional CPU-based programming environment and ecosystem.

Further up the abstraction hierarchy are domain-specific vir-
tual machines, such as Stanford Stream Virtual Machine [18] and
RapidMind Streaming Execution Manager [21] for stream pro-
gramming, Microsoft Accelerator [27] for data parallelism explo-
ration, and PeakStream Virtual Machine [23] for HPC accelera-
tion. By using GPU-optimized math library APIs provided by this
approach, the programmer does not need to program the GPU di-
rectly, but can still take advantage of GPU acceleration.

All these prior works treat the CPU and GPU as essentially sep-
arate, loosely-coupled entities until the highest level of abstraction
is reached, as illustrated in Figure 1(a). EXO, in contrast, tightly
couples the heterogeneous sequencers with the OS-managed IA32
sequencer and can potentially provide a much leaner software run-
time stack for better performance, as illustrated in Figure 1(b). In
addition, by supporting the shared virtual memory heterogeneous
multithreaded execution model, the CHI integrated programming
environment facilitates the application developer to inline blocks of
accelerator-specific assembly or domain-specific languages within
traditional C/C++ code. This allows performance-sensitive parts of
an algorithm to be optimized for the accelerator ISA just as Intel’s
SSE ISA extensions are traditionally used in implementing a high
performance math library. CHI’s extensions to OpenMP allow pro-
grammers to express the underlying thread-level parallelism in a
familiar parallel programming environment.

3. EXO Architecture
Architecturally, Exoskeleton Sequencer (EXO) extends the MISP
architecture [11] in three significant ways: (1) MISP exoskeleton
(2) address translation remapping (ATR), and (3) collaborative
exception handling (CEH). With this architectural support, EXO
fundamentally enables a powerful shared virtual memory heteroge-
neous multithreaded programming model, despite ISA differences
between the IA32 sequencer and the exo-sequencers.

3.1 MISP Exoskeleton

EXO provides a minimal architectural “wrapper”, or exoskele-
ton, to make a non-IA32 heterogeneous accelerator sequencer
conform to the MISP inter-sequencer signaling mechanism. With
this exoskeleton, the accelerator sequencer can be exposed as an
application-managed sequencer, even though it has a different ISA
from IA32. To distinguish from an application-managed IA32 se-
quencer, we call such heterogeneous accelerator sequencers exo-
sequencers. The exoskeleton supports interaction with the OS-
managed IA32 sequencer through either initiating or responding
to inter-sequencer user-level interrupts. With this enhancement, the
code on an OS-managed IA32 sequencer can use MISP’s SIGNAL
instruction to dispatch shreds of a non-IA32 ISA to run on the
exo-sequencers. This demands no additional OS support beyond
MISP’s requirements.

3.2 Address Translation Remapping

To support shared virtual memory between the OS-managed IA32
sequencer and the exo-sequencers, EXO provides an address trans-
lation remapping (ATR) mechanism to allow the IA32 sequencer to
handle page faults on behalf of the exo-sequencers.

Maintaining a shared virtual address space between two se-
quencers requires the same virtual address to be resolved to the
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Figure 2. ATR and CEH between Heterogeneous Sequencers

same physical memory address on both sequencers. Among se-
quencers of the same architecture, this is accomplished by having
the sequencers utilize the same page table for address translation.
In a heterogeneous multi-core with IA32 sequencers and non-IA32
exo-sequencers however, the page table format understood by each
sequencer may differ. Directly accessing the IA32 page table is not
an option for the exo-sequencers in such cases. For example, the
internal TLB of the Intel GMA X3000 assumes the industry stan-
dard GPU driver-oriented page table format, which is different from
the IA32 page table formats. Without significant hardware changes,
the exo-sequencers cannot use the IA32 page table to service TLB
misses.

EXO solves this problem with its ATR mechanism. With ATR,
when an exo-sequencer incurs a translation miss, it suspends shred
execution and signals the IA32 sequencer to request proxy exe-
cution [11] in order to service that TLB miss or page fault. Like
MISP, upon receiving the proxy request as a user-level interrupt,
the IA32 shred transfers control to a proxy handler that will touch
the virtual address on behalf of the exo-sequencer. Once the page
fault is serviced on the IA32 sequencer, however, unlike MISP,
ATR will transcode the IA32 page table entry to the format of the
exo-sequencer’s page table entry before inserting the entry to the
exo-sequencer’s TLB. The exo-sequencer’s TLB will point to the
same physical page as the IA32’s TLB, and can directly access the
needed data. The exo-sequencer then resumes execution. As shown
in Figure 2, an address translation remapping mechanism is respon-
sible for remapping the IA32 page entry to the native format on the
accelerator.

The shared virtual memory space for heterogeneous sequencers
provides many benefits over the alternative approaches described
in Section 2. It provides the essential architectural foundation
to extend the classic shared memory multithreaded programming
paradigm to heterogeneous multi-core processors. With a shared
virtual address space, shreds from a single memory image exe-
cutable running on IA32 sequencers and exo-sequencers can per-
form data communication and synchronization in familiar and effi-
cient ways, e.g., without having to resort to explicit data copying as
is necessary in the loosely-coupled approach.

It is important to note that even though ATR provides the nec-
essary architectural support for a shared virtual address space, ATR
by itself does not guarantee or require cache coherence between the
IA32 sequencer and an exo-sequencer. In the absence of hardware
support for cache coherence between the IA32 sequencer and an
exo-sequencer, it is the responsibility of the programmer to use crit-
ical sections to protect other IA32 shreds from reading or writing
the data being processed by shreds on the exo-sequencers. When
an IA32 shred hands off a shared data structure to a shred on an
exo-sequencer to process, the IA32 shred must first flush its cache
to commit any dirty lines to main memory. Similarly, when the exo-
sequencer shred completes its computation, it also needs to flush its
cache before releasing a semaphore to the IA32 sequencer.

Clearly, with full cache coherence support between the IA32
sequencer and the exo-sequencer, the programmer’s work can be
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greatly eased. In particular, there is no need to use critical sections
to ensure mutual exclusion on reads to the shared working set. This
enables more concurrency between shreds on the IA32 sequencer
and the exo-sequencer. In Section 5.2, we provide a more quanti-
tative analysis of the benefit of shared virtual memory support and
the impact of cache coherence.

3.3 Collaborative Exception Handling

As with page faults, execution on the exo-sequencers could poten-
tially incur exceptions or faults that require OS services. In con-
ventional MISP, if an exception occurs on an application-managed
sequencer, the instruction causing the exception can be replayed
on the OS-managed sequencer through proxy execution. However,
when the exception occurs on a non-IA32 exo-sequencer, the fault-
ing instruction cannot simply be replayed on the IA32 CPU se-
quencer. Because the exo-sequencer uses a different ISA, the fault-
ing instruction might have a data type that is not supported by IA32
ISA directly, or the exo-sequencer may require a different exception
handling convention. To address this, EXO adds hardware support
for collaborative exception handling (CEH) and a software-based
exception handling mechanism, which allows faults or exceptions
that occur on the exo-sequencer to be handled by the OS by proxy
on the OS-managed IA32 sequencer.

Through CEH, an exception is handled in a similar fashion to a
TLB miss. For example, as shown in Figure 2, when a double pre-
cision floating point vector instruction on an exo-sequencer incurs
an exception, the exo-sequencer first signals the IA32 sequencer, as
it does with ATR. The IA32 sequencer then functions as the proxy
for the exo-sequencer by invoking an application-level handler to
emulate the faulting vector instruction or use an OS service such as
structured exception handling (SEH) to provide full IEEE compli-
ant handling of the exception on the particular excepting scalar el-
ement. Once the exception is handled on the IA32 sequencer, CEH
ensures the result is updated in the exo-sequencer before resuming
execution.

3.4 EXO Hardware Prototype

We prototyped the EXO architecture enhancements using an In-
tel Santa Rosa platform [13]. The system consists of an Intel Core
2 Duo [31] processor and an Intel 965G Express chipset [12],
which contains the integrated Intel Graphics Media Accelerator
X3000 [15]. Figure 3 shows a high-level view of the GMA X3000
hardware. The GMA X3000 contains eight programmable, general
purpose graphics media accelerator cores, called Execution Units
(EU), each of which supports four hardware thread contexts. From
the programmer’s perspective, 32 exo-sequencers are available. We
use a custom emulation firmware that uses an IA32 CPU core as the
OS-managed sequencer and uses the 32 GMA X3000 sequencers
as exo-sequencers. The firmware implements all essential architec-
tural extensions required by the EXO architecture, including MISP
exoskeleton, ATR and CEH.

A shred for the GMA X3000 exo-sequencer can be created ei-
ther by an IA32 shred or spawned from another GMA X3000 shred.
Once created, GMA X3000 shreds are scheduled in a software

work queue in shared virtual memory like POSIX threads. The
work queue can have a far greater number of shreds than the num-
ber of GMA X3000 exo-sequencers. The emulation firmware is re-
sponsible for translating a shred descriptor, which includes shred
continuation information like instruction and data pointers to the
shared memory, into implementation-specific hardware commands
that the GMA X3000 exo-sequencers can consume and execute.
The emulation layer hides all device-specific hardware details from
the programmer.

On the GMA X3000, one shred can write directly to another
shred’s register file to facilitate inter-shred communication. This
creates a producer-consumer relationship between shreds and en-
ables the development of very sophisticated yet efficient multi-
threaded algorithms. The X3000 ISA is optimized for data- and
thread-level parallelism and each exo-sequencer supports wide
SIMD operations on up to 16 data elements in parallel. The X3000
ISA also features both specialized instructions for media process-
ing and a full complement of control flow mechanisms. The exo-
sequencers share access to specialized, fixed function hardware that
can execute performance-critical tasks, such as texture sampling
and scattering/gathering memory operations.

The four exo-sequencers, physically implemented in each GMA
X3000 core, alternate fetching through fly-weight switch-on-stall
multithreading. As each exo-sequencer fetches and retires instruc-
tions in-order, the core’s fine-grained thread multiplexing capabil-
ity plays a critical role in sustaining throughput performance. For
example, a stall in one exo-sequencer due to an instruction depen-
dency or cache miss is mitigated by preferentially fetching from
one of the other three exo-sequencers bound to the same core.

4. CHI Programming Environment
C for Heterogeneous Integration (CHI) is designed to provide an
IA32 look-and-feel programming environment to support user-
level multi-shredding on heterogeneous sequencers. In the CHI
infrastructure, we enhance the Intel C++ Compiler to support
accelerator-specific inline assembly within the C/C++ source. In
addition, we extend OpenMP pragmas to support heterogeneous
multi-shredding, and provide the related runtime support. The run-
time library is responsible for judiciously scheduling heteroge-
neous shreds across the exo-sequencers. The compiler can also em-
bed debugging information for different ISAs in a single binary.
Such information can be used by an enhanced version of the Intel
Debugger (IDB) to enable source-level debugging for both C/C++
code on the IA32 CPU target and the accelerator-specific code on
the accelerator target. Figure 4 depicts the overall CHI compilation
infrastructure. Three new capabilities are provided in the CHI com-
piler to allow programmers to express multi-shredded computation
for the heterogeneous exo-sequencers in the C/C++ source code:

• A method to specify a region of accelerator-specific computa-
tion in either inline assembly or domain-specific language.

• A method to specify fork-join or producer-consumer style
shred-level parallel execution for the inline accelerator-specific
code region with OpenMP pragmas.

• A method to specify input and output memory regions and live-
in values for the accelerator-specific code region.

4.1 Inline Accelerator Assembly Support

C/C++ provides a facility to inline assembly code blocks directly
within the high-level source code. This capability provides pro-
grammers access to new instructions or processor features not
exposed through the compiler and allows the most performance-
critical parts of a program to be custom optimized in assembly.
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Figure 4. CHI Compilation Flow

This inline assembly construct can be naturally extended to pro-
vide accelerator-specific inline assembly support.

Many variants of asm keyword and syntax exist. In CHI we
adopt the Microsoft MASM syntax, i.e.,

asm {asm statements;}
where brackets are used to enclose the assembly statements. asm
is the keyword that indicates the enclosed block of code is a spe-
cial assembly block written specifically for the given accelerator
ISA. The asm statements enclosed in the ensuing brackets are com-
piled into an accelerator-specific executable binary. The target ISA
for the asm statements is specified through the enclosing OpenMP
pragma with the target clause, which is described in Section
4.2. As shown in Figure 4, a separate accelerator-specific assem-
bler is dynamically linked with the Intel compiler. Similar to tra-
ditional inline assembly, this accelerator-specific assembler gen-
erates code for the target ISA by translating the inline assembly
instructions enclosed in the brackets into binary code, and resolv-
ing symbolic names for memory locations and other entities refer-
enced within the assembly block. After the assembler compiles the
assembly block, the resulting binary code is embedded in a spe-
cial code section of the executable indexed with a unique identifier.
The final executable is a fat binary, consisting of binary code sec-
tions corresponding to different ISAs. With a similar inline com-
pilation mechanism, the CHI compiler also supports integration of
a domain-specific high-level language for programming the GMA
X3000 hardware.

4.2 OpenMP Parallel Pragma Extension

Traditionally, the OpenMP parallel directive is used to demar-
cate a program region for fork-join parallel thread execution. When
such a construct is encountered, a number of threads (the thread
team) is spawned to execute the dynamic extent of a parallel re-
gion. This team of threads, including the main thread that spawned
them, participates in the parallel computation. At the conclusion of
the parallel region, the main thread waits at an implied barrier until
all threads in the thread team complete execution. The main thread
then resumes serial execution. The programmer can use additional
clauses to specify attributes for the thread team; for example, the
num threads clause indicates the number of threads to create.

CHI extends the OpenMP parallel pragma. The construct
for generating heterogeneous shreds of an accelerator-specific in-
struction set is outlined in Figure 5(a). The target clause speci-
fies the particular accelerator instruction set used within the paral-

#pragma omp parallel target(targetISA) [clause[[,]clause]…]
structured-block

(a) Parallel specification in fork-join threading model

#pragma intel omp taskq target(targetISA) [clause[[,]clause]…]
structured-block

(b) Queue specification in producer-consumer threading model

#pragma intel omp task target(targetISA) [clause[[,]clause]…]
structured-block

(c) Task specification in producer-consumer threading model

Where clause can be any of the following:
firstprivate(variable-list)

private(variable-list)
shared(variable-ptr-list)

descriptor(descriptor-ptr-list)
num_threads(integer-expression)

master_nowait

Where clause can be any of the following:
firstprivate(variable-list)

private(variable-list)
shared(variable-ptr-list)

descriptor(descriptor-ptr-list)
num_threads(integer-expression)

master_nowait

Where clause can be any of the following:
captureprivate(variable-list)

shared(variable-ptr-list)
descriptor(descriptor-ptr-list)

Figure 5. CHI Extensions to OpenMP Pragmas

lel region. The compiler inserts appropriate calls to the CHI run-
time layer to enable judicious dynamic shred scheduling and dis-
patching onto the targeted exo-sequencers. When the main IA32
shred encounters an accelerator-specific parallel construct with
the target(targetISA) clause, the IA32 shred spawns a team of
num threads heterogeneous shreds for the parallel region, where
each shred eventually executes the enclosed assembly block on an
exo-sequencer. By default, the main IA32 shred waits at the end of
the construct until it is notified by the CHI runtime of the comple-
tion of all heterogeneous shreds. Similar to the traditional nowait
clause, an optional master nowait clause allows the main IA32
shred to continue execution past the construct after spawning the
team of heterogeneous shreds, without having to wait for their
completion. This allows concurrent execution on both the IA32 se-
quencer and its exo-sequencers. The CHI runtime is responsible
for asynchronously notifying the IA32 sequencer of the eventual
completion of all heterogeneous shreds. This concurrency model
presents an interesting opportunity for managing parallelism. For
example, the programmer may use the heterogeneous shreds to pro-
cess two thirds of an image while using the main IA32 shred to pro-
cess the rest of the image in parallel. Section 5.3 further quantifies
the benefit of such cooperative heterogeneous multi-shredding.

As in standard OpenMP, data communication between the IA32
main shred and the heterogeneous shreds can be specified via data
clauses, namely, shared, private, and firstprivate. In the
proposed extension to the OpenMP parallel directive for hetero-
geneous shreds, the semantics of these clauses remains identical to
their respective meaning for homogeneous symmetric multiproces-
sors, in both syntax and spirit. By definition, for each variable spec-
ified in the shared clause, all shreds in a team can access the same
memory area. For each variable specified in the firstprivate
clause, a private copy-constructed variable is created for all shreds
with the same value. When the parallel for loop is used, the
compiler parses the loop construct and, for the variables specified
in the private clause, each shred context is initialized with differ-
ent copy-constructed variable values evaluated by each loop itera-
tion. When the team of shreds is launched, each shred executes the
same code in the pragma. CHI also introduces a new descriptor
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clause to allow programmer to optionally associate an accelerator-
specific descriptor to a variable enumerated in the shared clause.
We discuss this further in Section 4.4.

For accelerators highly optimized for thread-level parallelism,
such as the GMA X3000, the number of heterogeneous shreds
launched may be quite large. For example, as shown in Table 2,
a linear filter algorithm for image smoothing, representative of
many media filtering operations that are embarrassingly parallel,
can launch thousands to tens of thousands of shreds. Each sub-
unit (e.g. an 8x8 macroblock) in the input image can be indepen-
dently processed by a separate parallel shred. Through the use of
the parallel pragma in CHI, the starting coordinates of the mac-
roblock for each shred to operate on is calculated based on the loop
index and passed in through the private clause, while the en-
tire source image is shared among all heterogeneous shreds via the
shared clause. The smoothing constants are then passed to each
shred via the firstprivate clause. With this OpenMP extension,
the programmer can use OpenMP to express the algorithmic thread-
level parallelism without having to worry about implementation
specific details on how the compiler and runtime translate the par-
allel construct into shreds and how these shreds are scheduled to
run on the exo-sequencers.

4.3 OpenMP Work-Queuing Extension

The fork-join model of the OpenMP parallel pragma is an ideal
fit for supporting parallel execution of independent threads. In order
to support concurrent threads with intricate dynamic inter-thread
dependencies (e.g., due to the use of irregular data structures), the
Intel C++ Compiler supports irregular parallelism through two spe-
cial OpenMP pragmas taskq and task [26]. In CHI, we further
enhance the compiler and runtime to support inter-shred dependen-
cies among heterogeneous shreds using these pragmas.

The work-queuing model supports the producer-consumer (or
pipeline) form of thread level parallelism. It is a flexible mechanism
for specifying units of work that are not pre-computed at the start
of the work-queuing construct. The construct is implemented by
specifying the environment (taskq) and the units of work (task)
separately. A taskq pragma creates an empty queue of tasks. The
code inside a taskq block is executed serially. Any task pragma
construct encountered while executing a taskq block specifies that
the enclosed work is associated with the queue. A taskq pragma
may be nested within either a taskq block or a task block; in
both cases a subordinate queue is formed. The parallel taskq
construct and the task construct for an exo-sequencer are outlined
in Figure 5(b) and Figure 5(c).

When an IA32 shred encounters a taskq pragma construct with
the target(targetISA) clause, the IA32 shred calls to the CHI
runtime to select a shred as the root shred. The root shred sequen-
tially executes the while or for loop within the taskq construct,
and for each task pragma encountered the CHI runtime creates a
child shred of the root shred and enqueues it into the queue asso-
ciated with the taskq. The captureprivate clause creates a pri-
vate copy-constructed version for each object in variable-list
for the task at the time the task is enqueued.

While the extension to the OpenMP parallel pragma is use-
ful for exploiting large numbers of independent shreds through the
fork-join model, the taskq and task work-queuing constructs en-
sure that the producer-consumer dependency can be honored be-
tween GMA X3000 shreds as well. An example that uses such a
construct is a deblocking filter for video processing. The recent
video coding standards including H.264/AVC follow the block-
based hybrid coding approach, in which each picture is represented
and processed in block-shaped units. As in block-based transfor-
mation and quantization, the block-based processing may induce
more distortion in the boundaries of blocks. Deblocking filtering

#1 chi alloc desc(targetISA,ptr,mode,width,height)
#2 chi free desc(targetISA,desc)
#3 chi modify desc(targetISA,desc,attrib id,value)
#4 chi set feature(targetISA,feature id,value)
#5 chi set feature pershred(targetISA,shr id,feature id,value)

Table 1. CHI APIs for Programming an Exo-sequencer of
targetISA

has been used to diminish this kind of block artifact. The deblock-
ing filtering in H.264/AVC is computationally intensive with com-
plicated data access patterns. In order to ensure the quality of the
filtering, the deblocking algorithm requires macroblocks to be pro-
cessed in a particular order; for example, a macroblock will not
be processed until its left and upper neighboring macroblocks have
been completely processed. Such inter-shred dependency can be
easily supported by the work-queuing extension in CHI.

4.4 CHI Runtime Support

The CHI runtime is a software library that translates the programmer-
specified OpenMP directives into primitives to create and manage
shreds that can carry out the parallel execution on the heteroge-
neous multi-core target. Table 1 lists the main APIs for the CHI
runtime. Like conventional OpenMP runtimes, the CHI runtime
layer provides a layer of abstraction that hides the details of man-
aging the exo-sequencers from users of the OpenMP pragmas. Built
on the EXO architecture, the runtime layer uses the MISP archi-
tectural support for user-level inter-sequencer communication and
proxy execution. Like the Shredlib runtime for MISP [11], the CHI
runtime is responsible for scheduling and dispatching the hetero-
geneous shreds for execution and for handling exceptions that may
occur on the exo-sequencers.

The compiler translates CHI’s OpenMP parallel pragma ex-
tensions to a series of calls to the runtime layer, which is responsi-
ble for appropriately configuring the accelerator hardware for par-
allel execution. The accelerator-specific assembly block is replaced
with a call into a CHI runtime service that is responsible for locat-
ing the corresponding accelerator binary code in the fat binary. The
CHI runtime service then initiates the parallel execution of the het-
erogeneous shreds by dispatching shred continuations to the exo-
sequencers through the SIGNAL instruction. Another critical task
for the CHI runtime is to manage data communication between the
IA32 and the exo-sequencers, which may have different views on
the same shared virtual memory object specified by shared data
clause, as described in Section 4.2.

General purpose CPU architectures, such as the IA32 family,
view the virtual address space as a contiguous one-dimensional lin-
ear uniform memory space. For such architectures a memory object
(e.g., a global or local variable) in C/C++ can be easily bound to an
operand in the inline assembly via a register move or a load instruc-
tion. However, domain-optimized accelerators may view memory
in a significantly different way than the general purpose CPU [8].
For instance, the GMA X3000 is optimized for 2-D image and
video media processing. It accesses virtual memory via surfaces,
which are two-dimensional blocks of memory. Configuring surface
information such as the tiling format is important for achieving the
best possible performance in media acceleration code. Even within
the same application, one surface can have significantly different
attributes from other surfaces.

In order to allow the accelerator more efficient access to the
C/C++ variables specified by the shared data clause, programmers
can use the CHI runtime APIs to convey accelerator-specific access
information through data structures known as descriptors. Descrip-
tors are used by the accelerator to interpret the attributes of the
shared variables that are accessed by the shreds. The first three
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1. A_desc = chi_alloc_desc(X3000, A, CHI_INPUT, n, 1);
2. B_desc = chi_alloc_desc(X3000, B, CHI_INPUT, n, 1);
3. C_desc = chi_alloc_desc(X3000, C, CHI_OUTPUT, n, 1);
4. #pragma omp parallel target(X3000) shared(A, B, C)
5. descriptor(A_desc,B_desc,C_desc) private(i) master_nowait
6. {
7. for (i=0; i<n/8; i++)
8. __asm
9. {
10. shl.1.w vr1 = i, 3
11. ld.8.dw [vr2..vr9] = (A, vr1, 0)
12. ld.8.dw [vr10..vr17] = (B, vr1, 0)
13. add.8.dw [vr18..r25] = [vr2..vr9], [vr10..vr17]
14. st.8.dw (C, vr1, 0) = [vr18..vr25]
15. }
16. }
17. #pragma omp parallel for shared(D,E,F) private(i)
18. {
19. for (i=0; i<n; i++)
20. F[i] = D[i] + E[i];
21. }

Figure 6. CHI Code Example with GMA X3000 Pseudo-code

APIs listed in Table 1 are used for managing descriptors. API #1
allocates a descriptor by specifying the input/output mode, as well
as the width and height of the surface. API #2 deallocates the exist-
ing descriptor, and API #3 is a general API to modify the descriptor
from its default attributes.

CHI provides two generic runtime APIs for programmers to
specify and access specialized features on accelerators. API #4
makes a global change to all exo-sequencers’ states, which ap-
ply to all heterogeneous shreds created. API #5 changes an exo-
sequencer’s state on a per shred basis. An application can directly
utilize new hardware features simply by making the appropriate
call in the source file, without requiring any changes to the com-
piler.

4.5 Debugging Tools

In the CHI programming environment, the C/C++ compiler, inline
assembler and domain-specific language compiler together produce
comprehensive source-level debugging information that maps each
accelerator-specific instruction to source code. We extend the Intel
Debugger (IDB) and the CHI runtime layer to create a debugging
environment for the application programmer. The enhanced version
of the Intel Debugger is capable of debugging code that is running
on the IA32 sequencers as well as the shreds that are running on the
exo-sequencers. The debugger extensions consist of two parts. The
first part is the introduction of commands to set breakpoints, single-
step, and examine state on the GMA X3000 exo-sequencers. The
second part comprises the enhancements in the debugger and the
CHI run time layer so they can communicate debugging informa-
tion to one another. This debugger is essential to provide the IA32
look-and-feel in CHI for productive development of heterogeneous
multi-shredded code.

4.6 Putting It All Together

Figure 6 shows an example of C code using the extended OpenMP
pragmas and CHI runtime APIs for a heterogeneous target consist-
ing of an IA32 sequencer and GMA X3000 exo-sequencers. The
example depicts a simple addition of two vectors (A and B) with the
results written to a third vector C. The C code (lines 1-16) uses the
extended version of the OpenMP parallel pragma to perform the
vector addition by spreading the computation to n/8 shreds, with
each shred operating on eight elements in the vector using 8-wide
SIMD instructions in the GMA X3000 ISA.

In this example, the binding of C variables A, B, C to the inline
assembly GMA3000 shred kernel code is done via the shared
data clause of the parallel pragma as specified in line 4. Lines

1-3 illustrate the use of the CHI runtime API #1 to describe the
additional information on the surface memory area for the GMA
X3000. The surfaces in this example are categorized as either input
or output, and described as vector arrays with width of n and height
of 1. The resulting descriptors for the shared variables can be
communicated via the descriptor data clause of the parallel
pragma as specified in line 5. Before forking the heterogeneous
shreds, the CHI runtime inspects these descriptors and configures
the accelerator appropriately. The private clause specifies the
loop index i as an input value for each shred.

The example creates n/8 GMA X3000 shreds, each executing
the asm block. Each shred operates on the same three input
vectors, but accesses distinct regions of the surfaces, depending on
the per-shred input value i. The first line of assembly (line 10)
shifts the input value i left by 3 bits to calculate the index into the
surface and locates the block area to perform computation (line 11-
12). After the vector add is executed (line 13), the result is written
to the output surface (line 14). The master nowait clause allows
the IA32 sequencer to continue executing the traditional OpenMP
code (line 17-21) to perform vector add of different arrays without
waiting for the pending GMA X3000 shreds to finish, thus creating
the parallel execution of both IA32 and GMA X3000 shreds.

5. Performance Evaluation
The EXOCHI framework described in this paper has already been
deployed within Intel for successful development of production-
quality, GMA X3000 media-processing kernels and other work-
loads of growing importance [4]. We select a representative sub-
set of these kernels as benchmarks for performance evaluation. Ta-
ble 2 summarizes these kernels and inputs. From left to right the
columns indicate the kernel name and abbreviation, the input data
set, a brief description of the kernel, and finally the total number
of shreds spawned per kernel execution. These kernels exhibit a
significant amount of data- and thread-level parallelism, and thus,
readily lend themselves to efficient execution on the GMA X3000
exo-sequencers.

Implementation of these kernels is made easy due to special
GMA X3000 ISA features optimized for media processing. The key
ISA features include wide SIMD instructions, predication support,
and a large register file of 64 to 128 vector registers for each
GMA X3000 exo-sequencer. With CHI, programmers can directly
use the GMA X3000 ISA features via inline assembly in C/C++
code as if they are traditional ISA extensions to IA32 like SSE. By
providing such IA32 look-and-feel, CHI enables highly productive
development of heterogeneous multi-shredded code.

All benchmarks are compiled with the enhanced version of the
Intel C++ Compiler using the most aggressive optimization settings
(–fast –Qprof use). These compiler optimizations include auto-
vectorization, profile-guided optimization, and tune specifically for
the Intel Core 2 Duo processor used in the EXO prototype system.
LinearFilter, SepiaTone and FGT make use of the optimized
and SSE-enhanced Intel IPP library, and the other benchmarks were
manually tuned and SSE-optimized. Performance results measure
the wall clock execution time.

5.1 Performance Speedup on GMA X3000 Exo-sequencers
over IA32 Sequencer

Figure 7 shows the speedup achieved over IA32 sequencer ex-
ecution by executing media kernels on the GMA X3000 exo-
sequencers. Significant speedup is achieved, ranging from 1.41X
for BOB up to 10.97X for Bicubic. Two factors are crucial in
achieving this high throughput performance on the GMA X3000
exo-sequencers. Most important is the availability of abundant
shred-level parallelism. As each GMA X3000 exo-sequencer sup-
ports only in-order execution within a shred, the accelerator relies
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Kernel # GMA
(Abbreviation)

Data size Description
X3000 Shreds

Linear Filter 640x480 image Compute output pixel as average of input 6,480
(LinearFilter) 2000x2000 image pixel and eight surrounding pixels 83,500

Sepia Tone 640x480 image Modify RGB values to artificially age image 4,800
(SepiaTone) 2000x2000 image 62,500

Film Grain Technology Apply artificial film grain filter from H.264
(FGT)

1024x768 image
standard

96

Bicubic Scaling Scale 30 frames Scale video using bicubic filter
(Bicubic) 360x240 to 720x480

2,700

Kalman 30 frames 512x256 Video noise reduction filter 4,096
(Kalman) 30 frames 2048x1024 65,536

Film Mode Detection Detect video cadence so inverse telecine can
(FMD)

60 frames 720x480
be applied

1,276

Alpha Blending Blend 64x32 image Bi-linear scale 64x32 image up to 720x480
(AlphaBlend) onto 720x480 and blend with 720x480 image

2,700

De-interlace BOB Avg De-interlace video by averaging nearby pixels
(BOB)

30 frames 720x480
within a field to compute missing scanlines

2,700

Advanced De-interlacing Computationally intensive advanced de-
(ADVDI)

30 frames 720x480
interlacing filter with motion detection

2,700

ProcAmp Simple linear modification to YUV values
(ProcAmp)

30 frames 720x480
for color correction

2,700

Table 2. Media-Processing Kernels
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Figure 7. Speedup from Execution on GMA X3000 Exo-
sequencers over IA32 Sequencer

on the presence of multiple concurrent shreds to cover up stalls
incurred in one shred by switching to another shred. A second, but
related issue is the need to maximize cache hit rate and the memory
bandwidth utilization. The GMA X3000 supports simultaneous ex-
ecution of 32 hardware threads, each of which might be reading and
writing multiple data streams. The CHI runtime allows program-
mers to carefully orchestrate shred scheduling to ensure shreds ac-
cessing adjacent or overlapping macroblocks are ordered closely
together in the work queue so as to take advantage of spatial and
temporal localities.

Other than support for thread-level parallelism, the GMA
X3000 ISA also provides strong support for data-level parallelism.
It features significantly wider SIMD operations (8 to 16-wide vec-
tor) than the SSE on today’s IA32 CPU. LinearFilter, ProcAmp
and SepiaTone are able to take advantage of such ISA support
by aggressively unrolling loops. AlphaBlending benefits from
the ability to access the texture sampler fixed function unit; in the
absence of a texture sampler the IA32 sequencer code has to em-
ulate this behavior in software. Bicubic benefits both from the

GMA X3000’s wide SIMD execution bandwidth and its generous
number of general purpose registers (64 to 128).

The lone exception is BOB, which achieves a meager, albeit non-
trivial, speedup of 1.41X. Compared to the other kernels studied,
this kernel is the least computationally intensive. Instead, it is pri-
marily bandwidth-bound, and benefits much less from the greater
aggregate execution rate of the GMA X3000 than the other kernels.

5.2 Impact of Data Copying Versus Shared Virtual Address
Space

In general, the performance improvement by using an accelerator is
determined not only by the accelerator architecture but also by the
data communication overhead between the CPU and accelerator.
This overhead varies greatly depending on the memory model be-
tween the CPU and the accelerator. Figure 7 shows overall perfor-
mance improvement achieved with a cache coherent shared virtual
memory model between the IA32 sequencer and the GMA X3000
exo-sequencers. In the absence of cache coherence or shared mem-
ory, the data communication overheads can significantly degrade
the speedup achieved by accelerating the computation. In Figure 8
we contrast performance impacts for three memory model config-
urations.

The first configuration, Data Copy, assumes a model without
shared virtual memory and no cache coherence between the IA32
sequencer and the GMA X3000 exo-sequencers. Consequently,
data communication between IA32 shred and GMA X3000 shreds
requires explicit data copying, for which we assume a 3.1GB/s
data copy rate. This corresponds to an aggressive data copy rate
using an SSE-enhanced memory copy routine when copying data
from a cacheable memory source to a destination region marked
as uncacheable, write-combining memory. The Core 2 Duo pro-
cessor features special write-combining buffers that allow aggres-
sive burst mode transfers when copying from cacheable memory to
write-combining memory. Due to the lack of shared virtual mem-
ory, the inter-shred communication between the IA32 shred and
GMA X3000 shreds resemble that of traditional message passing
communication between processes from different address spaces.

The second configuration, Non-CC Shared, assumes a shared
virtual address space but without cache coherency between the
IA32 sequencer an the GMA X3000 exo-sequencers. Data copying
can be avoided in this case as both the IA32 sequencer and GMA
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Figure 8. Impact of Shared Virtual Memory

X3000 exo-sequencers can access the identical physical memory
location for the same virtual address. Memory writes performed by
the IA32 sequencer or the GMA X3000 exo-sequencers may not
be visible to the other until after a cache flush operation, which
forces any dirty cache lines to be written back to main memory.
However, data communication can still be accomplished by passing
a pointer to a shared data structure between the IA32 sequencer and
an GMA X3000 exo-sequencer as long as cache flush operations
are appropriately invoked. Due to lack of cache coherence, the IA32
shred and the GMA X3000 shreds need to use critical sections to
enforce mutually exclusive access to shared data structures. The
semaphore on the critical section will not be released until the
GMA X3000 exo-sequencers completely flush the dirty lines into
the memory.

The third configuration, CC Shared, models a cache-coherent
shared virtual address space, which is the configuration assumed in
Section 5.1. In this model, between the IA32 shred and the GMA
X3000 shreds, the data communication becomes much more ef-
ficient. Similarly, the synchronization on mutual access to shared
data structure is also made much easier to the programmers. For
example, while critical sections are still necessary to provide mu-
tual exclusion on writes to a shared variable, one shred can always
read the shared variables that are updated by the other shreds. This
allows more execution concurrency between shreds.

The performance data in Figure 8 demonstrate the benefits of a
shared virtual address space compared to data copying. While sig-
nificant performance improvement is still possible even with data
copying, for computationally intensive kernels (e.g., bicubic and
ADVDI), the gains are significantly reduced from the original CC
Shared configuration in cases such as LinearFilter and BOB. For
benchmarks in which the GMA X3000 performs little computation
on the loaded input data, the time to copy data between separate
address spaces represents a significant fraction of the processing
time. Even with a highly optimized implementation on the latest
IA32 Core 2 Duo, the data copying achieves only 70.5% of that
seen for a coherent shared virtual address space.

The cost of copying data can be ameliorated if the IA32 se-
quencer and the GMA X3000 exo-sequencers operate within a
shared virtual address space, even if cache coherency is not sup-
ported. The time required to flush caches is still nontrivial, how-
ever, and the lack of coherency (Non-CC Shared) still yields 85.3%
of the performance achieved with full cache coherency. Support for
cache coherence improves performance because the cache flush op-
eration is not needed to synchronize memory accesses.

1. n = 800;
2. GMA_iters = 600;
3. IN_desc = chi_alloc_desc(X3000, IN, CHI_INPUT, n, 1);
4. OUT_desc = chi_alloc_desc(X3000, OUT, CHI_OUTPUT, n, 1);
5. #pragma omp parallel target(X3000) shared(IN, OUT)
6. descriptor(IN_desc,OUT_desc) private(i) master_nowait
7. {
8. for (i=0; i<GMA_iters; i++)
9. __asm
10. {
11. ...
12. }
13. }
14. #pragma omp parallel for shared(IN, OUT) private(i)
15. {
16. for (i=GMA_iters; i<n; i++)
17. ...
18. }

Figure 9. Cooperative Execution Code Example which Executes
600 Loop Iterations on GMA X3000 Exo-sequencers and 200 Loop
Iterations on the IA32 Sequencer

For the Non-CC Shared configuration, when an IA32 shred
spawns GMA X3000 shreds, it may appear necessary to flush the
IA32 sequencer’s cache fully before any GMA X3000 shred can
be launched. In reality the majority of the cache flush operation on
the IA32 sequencer can be overlapped with parallel shred execution
on the GMA X3000 exo-sequencers if cache flush operations and
shred launches can be interleaved. As each exo-sequencer shred
only reads and writes a tiny portion of each data buffer (e.g., a
16 pixel by 16 pixel macroblock), as long as that data has been
flushed back to memory by the IA32 producer shred, the exo-
sequencer consumer shred for that macroblock can be launched
and can execute safely. Additional cache flush operations can then
proceed in parallel with useful work being performed in parallel on
the exo-sequencers.

For example, in a system where the cache flush operation has
not been optimized and only writes data back to memory at 2GB/s
(not shown), executing LinearFilter yields a speedup of only
3.15X over IA32 sequencer execution. This occurs if the entire
cache flush cost for a 640x480 RGB input must be paid up front
before any exo-sequencer shreds are spawned. However, the initial
32 exo-sequencer shreds (which fully populate the GMA X3000
exo-sequencers) access less than 1% of the total input data. By
flushing just this necessary data initially, and flushing the remaining
data in parallel with execution on the exo-sequencers in the system,
performance very close to a cache-coherent shared virtual memory
configuration can be achieved without hardware support for cache
coherency. This intelligent cache flushing scheme can be carried
out by the CHI runtime support, transparent to the programmer.

A shared virtual address space, with or without cache coher-
ence, offers performance benefits by eliminating the cost of copy-
ing data between virtual address spaces. More importantly, how-
ever, a shared virtual address space allows the IA32 sequencer and
the GMA X3000 exo-sequencers to closely cooperate in the ex-
ecution of a given workload. We discuss this approach further in
Section 5.3.

5.3 Cooperative Execution between Heterogeneous
Sequencers

The shared virtual address space enabled by EXO allows the IA32
sequencer and GMA X3000 exo-sequencers to simultaneously op-
erate on the same data. Because of this, further speedup is possible
by dividing available work between the IA32 sequencer and the
GMA X3000 sequencers. Figure 9 illustrates such an example. For
each targeted ISA, the programmer provides a separate version of
the code to execute a parallel loop, and divides those loop itera-
tions which should execute on each type of sequencer. By using the
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Figure 10. Cooperative Multi-shredding Between IA32 Sequencer
and GMA X3000 Exo-sequencers

master nowait clause, cooperative heterogeneous parallel execu-
tion can be initiated.

Figure 10 shows the performance improvement when work is
divided between the IA32 sequencer and the GMA X3000 exo-
sequencers using four different work partitions: (1) 0% of the work
is executed by the IA32 sequencer, (2) a static partition where 10%
of the work is executed by the IA32 sequencer, (3) a static partition
where 25% of the work is executed by the IA32 sequencer and
(4) an oracle work partition which optimally distributes the work
so that both the IA32 sequencer and GMA X3000 exo-sequencers
finish execution as close to the same time as possible. The height of
each bar shows the execution time relative to execution on the IA32
sequencer alone, and each bar is divided according to the time when
the IA32 sequencer, the GMA X3000 exo-sequencers, or both are
busy. This data assumes a cache-coherent shared virtual address
space, but by carefully dividing the work among sequencers this
technique can also be applicable even if cache coherency is not
supported.

For kernels in which the IA32 sequencer performs well, sig-
nificant speedup is possible, and BOB, which shows the best rela-
tive IA32 sequencer performance, achieves up to 38% for the or-
acle scheme. Bicubic, on the other hand, sees an improvement
of only 8% for the oracle case. While cooperative parallel execu-
tion can yield further speedup in all cases, performance is sensitive
to work imbalance. In certain cases with poor divisions of labor,
e.g., Bicubic in partition (3), the performance from cooperative
execution is worse than simply executing on the GMA X3000 exo-
sequencers. Unfortunately, determining the appropriate work divi-
sion a priori can be challenging, and will only get more complex
as the numbers and types of heterogeneous sequencers available
continue to grow.

This challenge can be overcome, however, by extending the CHI
multi-shredding runtime to support a dynamic work distribution
policy. To implement dynamic heterogeneous work scheduling, the
programmer can provide a separate version of the code to execute
an individual loop iteration for each targeted ISA. At runtime, the
multi-shredding runtime creates multiple candidate shred continua-
tions, one for each targeted ISA, for each loop iteration. The multi-
shredding runtime then divides the parallel loop iterations among
the sequencers in the system. Whenever a sequencer completes its
assigned work it requests additional work of the runtime.

Both fork-join and producer-consumer style parallelism can be
utilized. If cache coherency is supported, it is easy to extend the tra-
ditional shared-memory synchronization primitives, such as locks
and mutexes, allowing fine-grained cooperative execution between

the heterogeneous sequencers. In systems without cache coherency,
mutual exclusion must be ensured in data accesses by the IA32 se-
quencer and the GMA X3000 exo-sequencers. However, this can
be maintained by selectively flushing the necessary data prior to
spawning any exo-sequencer shred to consume data produced by
the IA32 sequencer. Dynamic work scheduling is an area of ongo-
ing work.

6. Conclusion
As long as Moore’s Law continues, the level of on-die device in-
tegration will continue to grow. Thus, due to the desire for de-
sign flexibility, the need to amortize cost across multiple uses,
and the necessity to observe power constraints, future micropro-
cessor designs will bring more heterogeneous building blocks on-
die. This level of on-die integration presents challenges as well
as opportunities to both microprocessor architecture and the soft-
ware stack. In particular, this integration will inevitably bring about
salient re-architecting of the processor hardware hierarchy, e.g.,
re-partitioning of power budget to introduce new features, and
shedding legacy interfaces to achieve efficiency. Re-partitioning
the hardware hierarchy can significantly affect the software stack.
On the one hand, there is a need to cope with legacy software
ecosystem constraints. On the other hand, a higher degree of on-
die hardware integration makes it possible to present traditionally
system-level resources as user-level architecture resources, allow-
ing a much tighter coupling between applications and hardware
resources. Consequently, hardware resource management can be
changed from centralized OS control to application-level control.
Such changes can reduce the bloated software stack between appli-
cation programs and silicon.

In this paper we present the EXO MIMD extension to the IA32
ISA to expose heterogeneous cores as application-level architecture
resources and provide shared virtual memory to support the classic
multi-shredded programming model for the heterogeneous multi-
core. The EXO architecture allows application programs to directly
use heterogeneous hardware as MIMD functional units while re-
quiring minimal additional dependency on the existing OS ecosys-
tem. In addition, in order to take advantage of the rich ecosystem
legacy for IA32 software development, the CHI programming en-
vironment provides an IA32 look-and-feel by extending the Intel
C++ Compiler, OpenMP runtime and debugger toolchains to sup-
port user-level heterogeneous multi-shredding. Since its develop-
ment, EXOCHI has been used in Intel’s production media kernel
development. Based on extensive feedback from developers, there
is strong evidence that the IA32 look-and-feel of the programming
environment has significantly improved productivity over prior de-
vice driver-based development environments.
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