
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2016; 00:1–38
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Exogenous Coordination of Concurrent Software Components
with JavaBIP

Simon Bliudze1∗, Anastasia Mavridou2, Radoslaw Szymanek3 and Alina Zolotukhina1

1Ecole polytechnique fédérale de Lausanne 1015, Lausanne, Switzerland
2Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37235, USA

3Crossing-Tech S.A., EPFL Innovation Park, 1015, Lausanne, Switzerland

SUMMARY

A strong separation of concerns is necessary in order to make the design of domain-specific functional
components independent from cross-cutting concerns, such as concurrent access to the shared resources of
the execution platform. Native coordination mechanisms, such as locks and monitors, allow developers
to address these issues. However, such solutions are not modular, they are complex to design, debug
and maintain. We present the JavaBIP framework that allows developers to think on a higher level of
abstraction and clearly separate the functional and coordination aspects of the system behavior. It implements
the principles of the BIP component framework rooted in rigorous operational semantics. It allows the
coordination of existing concurrent software components in an exogenous manner, relying exclusively on
annotations, component APIs and external specification files. We introduce the annotation and specification
syntax of JavaBIP and illustrate its use on realistic examples; present the architecture of our implementation,
which is modular and easily extensible; provide and discuss performance evaluation results. Copyright c©
2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: BIP; JavaBIP; Component coordination; Concurrency; Modularity

∗Correspondence to: EPFL IC IINFCOM LCA2, Station 14, 1015 Lausanne, Switzerland.
E-mail: Simon.Bliudze@epfl.ch

Copyright c© 2016 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 S. BLIUDZE ET AL.

CONTENTS

1 Introduction 3

1.1 The BIP Component Framework . 4
1.2 Paper Contribution and Structure . 4

2 JavaBIP Design Workflow 5

3 JavaBIP by examples 6

3.1 Camel routes . 7
3.2 Publish-Subscribe server . 10
3.3 Trackers and Peers example . 12

4 Theoretical foundations 13

4.1 Component model without data . 13
4.1.1 Components and glue . 13
4.1.2 Connectors . 14
4.1.3 Boolean encoding of the connectors and macro notation 15
4.1.4 Macro notation based on component types 17

4.2 Extension of the model with data . 19
4.2.1 Components with data . 19
4.2.2 Composition . 21

5 System specification 22

5.1 Behavior specification . 22
5.2 Glue specification . 23
5.3 Data-wire specification . 26

6 Implementation 26

6.1 JavaBIP module . 27
6.2 JavaBIP engine . 28

6.2.1 Engine kernel . 28
6.2.2 Glue coordinator . 29
6.2.3 Data coordinator . 30

6.3 Experimental evaluation . 30

7 Related work 31

8 Conclusion and Future Work 35

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 3

1. INTRODUCTION

When building large concurrent systems, one of the key difficulties lies in coordinating component
behavior and, in particular, management of the access to shared resources of the execution platform.
This is well illustrated by our motivating use-case, which consists in managing the memory usage
by a set of Camel routes [1]. Camel routes are extensively utilized in Connectivity FactoryTM—the
flagship product of Crossing-Tech S.A. A Camel route connects a number of data sources to transfer
data among them. The data can be fairly large and may require additional processing. Hence, Camel
routes share and compete for memory. Without additional coordination, simultaneous execution of
several Camel routes can lead to OutOfMemory exceptions, even when each route has been tested
and sized appropriately on its own.

In all mainstream programming languages, including Java and C++, basic coordination primitives
are implemented as built-in features of the language [2, 3]. Different variations of locks, semaphores
and monitors are used to express coordination constraints. However, these low-level primitives
are mixed up with the functional code, forcing developers to keep both aspects simultaneously
in mind—not only at design time, but also during debugging and maintenance. Since in concurrent
environments it is practically infeasible to envision all possible execution scenarios, synchronization
errors can result in race conditions and deadlocks.

Furthermore, an observable trend in software engineering is the increasing utilization of the
declarative design techniques. Developers provide specifications of what must be achieved, rather
than how this must be achieved. These specifications are then interpreted by the corresponding
engines, which generate—often on the fly—the corresponding software entities. It is not always
possible to instrument or even access the actual source code. Even if the code is generated explicitly,
it is usually not desirable to modify it, since this can lead to a considerable increase of maintenance
costs. This precludes the use of low-level primitives for the coordination of concurrent components
that have to be reusable in different configurations and assemblies. Therefore, the problem of
coordinating concurrent components calls for an exogenous solution that would allow developers to
think on a higher level of abstraction, separating functional and coordination aspects of the system
behavior.

To address this concurrency challenge, we have developed JavaBIP—a Java adaptation of the BIP
(Behavior, Interaction, Priority) framework [4]—relying on the following observations. Domain
specific components, such as Camel routes, have states (e.g., idle, working, suspended) that are
known to component users with domain expertise. Furthermore, components always provide APIs
that allow programs to invoke operations (e.g., suspend or resume) in order to change their state, or
to be notified when the component changes the state spontaneously. Thus, component behavior can
be represented by Finite State Machines (FSM). An FSM has a finite set of states and a finite set
of transitions between these states. Transitions are associated with calls to API functions, which
force a component to take an action, or with event notifications that allow reacting to external
events coming from the environment. Since such states and transitions have intuitive meaning for
developers, representing components as FSMs is an adequate level of abstraction for reasoning about
their behavior.

To use JavaBIP, developers must provide—for the relevant components—the corresponding
FSMs in the form of annotated Java classes. These classes are used to drive the interaction with
the corresponding components through their provided APIs. The FSMs describe the protocol that
must be respected to access a shared resource or use a service provided by a component, ensuring
correct utilization of component interfaces.

For component coordination, JavaBIP provides two primitive mechanisms: 1) multi-party
synchronization of component transitions and 2) asynchronous event notifications. The latter
embodies the reactive programming paradigm. In particular, JavaBIP extends the Actor model [5],
since event notifications can be used to emulate asynchronous messages. Providing the
synchronization of component transitions as a primitive mechanism gives the developers a powerful
and flexible tool to manage coordination.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

4 S. BLIUDZE ET AL.

JavaBIP clearly separates system-wide coordination policies from the component behavior.
Interaction constraints, defining the possible synchronizations among transitions of different
components, are specified in XML configuration files independently from the design of individual
components. For coordination scenarios that require global state information, dedicated monitor

components can be added. This allows one to centralize all the information related to coordination
in one single location, instead of distributing it across the components. Coordination is applied in an
exogenous manner, relying totally on component APIs. Furthermore, JavaBIP components do not
carry coordination logic that relies on the characteristics of any specific execution environment.

Thus, JavaBIP addresses the major coordination issues by providing strong modularity, which,
in its turn, enables maximal reusability of components and facilitates the management of product
variants. The separation of functional and coordination aspects greatly reduces the burden of system
complexity. Finally, integration with the BIP framework (cf. Section 2), allows the use of existing
tools [6, 7] for deadlock-detection and model checking, ensuring the correctness of generated
systems.

1.1. The BIP Component Framework

JavaBIP implements the BIP coordination mechanism [4]. BIP is a framework for component-
based design of correct-by-construction applications. It provides a simple, but powerful mechanism
for coordination of concurrent components by superposing three layers: Behavior, Interaction,
and Priority. The first layer describes the behavior of components as FSMs having transitions
labeled with ports and extended with data stored in local variables. Ports form the interface of a
component and are used to define its interactions with other components. They can also export
part of the local variables, allowing access to the component’s data. The second layer defines
component coordination by means of interaction models, i.e., sets of interactions. Interactions are
sets of ports that define allowed synchronizations between components. An interaction model is
defined in a structured manner by using connectors [8]. For each interaction, a connector also
specifies how the data is retrieved, filtered and updated in each of the participating components.
In particular, a Boolean guard can be associated to an interaction. The interaction is only enabled
if the data provided by the components satisfies the guard [9]. In the third layer, priorities are used
to impose scheduling constraints and to resolve conflicts when multiple interactions are enabled
simultaneously. Interaction and Priority layers are collectively called Glue.

The execution of a BIP system is driven by the BIP engine applying the following protocol in a
cyclic manner:

1. Upon reaching a state, each component notifies the BIP engine about the possible outgoing
transitions;

2. The BIP engine picks an interaction satisfying the glue specification, performs the data
transfer and notifies all the involved components;

3. The notified components execute the functions associated with the corresponding transitions.

1.2. Paper Contribution and Structure

In [10], we have published a preliminary, proof-of-concept implementation of our approach focusing
on the adaptation of the BIP coordination primitives in the Java software-engineering context. The
main difference of that implementation from the classical BIP was the addition of spontaneous
transitions, which allow components to update their state based on the events occurring in their
environment (cf. Section 3).

This paper presents a new implementation, which has been almost completely redesigned and
extended as follows. First of all, in order to make JavaBIP applicable to practical systems, we have
extended the behavior specification and the coordination mechanisms to explicitly handle data and
data transfer between components. In order to give developers full control of data exposure and use
within the interactions among components, we have implemented a simplified form of data transfer,
which, however, has the same expressive power as in the classical BIP.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 5

Figure 1. JavaBIP design workflow.

In order to implement the data transfer and facilitate future extensions of the JavaBIP framework,
we have developed a new modular and extensible engine, consisting of a symbolic kernel and a
coordinator stack. At each execution cycle, the kernel determines the next interaction by solving
the combined system constraints. Each coordinator is responsible for 1) encoding a particular
type of constraints into a form that the kernel can process and 2) interpreting the relevant part
of the solution provided by the kernel to drive the component execution. We implemented two
coordinators: the Glue Coordinator, implementing the BIP coordination mechanism, and the Data
Coordinator, controlling data transfer among components.

We provide a formalization of the semantic model underlying the JavaBIP implementation.
Although this formalization is based on the previous work on BIP [4, 8, 11], it is adapted and
extended to reflect the specificities of JavaBIP. Finally, we have designed new examples that we use
to illustrate the JavaBIP modelling concepts and evaluate the overhead induced by the engine.

The rest of the paper is structured as follows. Section 2 presents the JavaBIP design
workflow. Section 3 provides examples of JavaBIP models, explaining how the proposed design
methodology can be applied in practice. Section 4 defines the formal semantic model underlying the
JavaBIP design.† Section 5 presents the annotations and XML constructs used to design JavaBIP
specifications. Section 6 describes the implemented software architecture and presents performance
results. Section 7 presents the related work. Section 8 summarizes the results and future work
directions.

2. JAVABIP DESIGN WORKFLOW

Figure 1 shows the steps of the JavaBIP design flow. In the step ①, the system specification is
designed, consisting of the following annotated Java classes and XML configuration files:

• A behavior specification for each component, given by an FSM extended with ports and data.
This is provided as an annotated Java class, whereof the methods can call APIs provided by
the coordinated components.

†The formal material in Section 4 can be omitted by readers interested only in understanding how to use the JavaBIP
framework.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

6 S. BLIUDZE ET AL.

• The glue specification, which is the interaction model of the system that specifies how the
transitions of different components must be synchronized. This is provided as an XML
configuration file.

• Optionally, data transfer can be defined, by providing the data-wire specification for each data
variable of every component, that specifies which data are exchanged between components.
This is provided as an XML configuration file.

The optional analysis loop starts in step ②, where the system specification is automatically
translated into an equivalent model of the system expressed in the BIP language.‡ This model can
then be verified for deadlock freedom or other safety properties (we provide examples in Section 3.1
and Section 3.2), using DFinder [6], ESST or nuXmv [7] (step ③). Other analyses can be performed
using any tool for which a model transformation from BIP is available. If the required safety
properties are not satisfied by the model, the specification can be refined by the developers (step ④)
and analyzed anew. Finally, when developers are satisfied with the design, the refined specification
can be executed (step ⑤). Steps ②, ③, and ④ are optional and can be repeated several times.

As shown in Figure 1, the runnable system consists of two major parts: the engine and several
modules, one for each component to be coordinated. Each module is composed of a dedicated
executor, a behavior specification and the corresponding functional code of the component (cf.
Figure 15). The executor has access to the behavior specification of the component and uses it to
drive the module execution. The behavior specification of each component along with the glue and
data-wire specifications are provided to the engine. The engine orchestrates the overall execution of
the system by deciding which component transitions must be executed at each cycle. It then notifies
the executors of the selected transitions and they make the corresponding calls to the functional
code.

3. JAVABIP BY EXAMPLES

In this section, we provide three examples illustrating the modeling concepts of JavaBIP. The
Camel routes example (Section 3.1) illustrates the basic notions, i.e. the FSMs, the three kinds
of transitions and simple connectors. The Publish-Subscribe server example (Section 3.2) illustrates
use of notifications to encode Actor-like asynchronous communication. Finally, Trackers and Peers
(Section 3.3) is a toy example intentionally designed with a complex coordination pattern involving
multiparty interaction. These examples are also used in the rest of the paper to illustrate the proposed
annotation language and, in Section 6.3, to evaluate the overhead incurred by using the JavaBIP
framework. In particular, the complexity of the coordination pattern of the Trackers and Peers
example will allow us to subject the JavaBIP engine to a stress test under high coordination load
and evaluate the practical limitations of the current implementation.

FSM transitions can be of three types: enforceable, spontaneous and internal. Enforceable
transitions are controlled by the engine. At each execution cycle, executors inform the engine about
enforceable transitions offered by the components in their current state. The engine decides which
of these should be executed and notifies the executors of its decision. Spontaneous transitions are
used to take into account changes in the environment and, therefore, they are not announced to the
engine but rather executed after detection of events in the environment of the component. Finally,
internal transitions allow behavior specifications to update its state based on internal information—
when enabled, they are executed immediately. Spontaneous and internal transitions cannot be used
for synchronization with other components.

Interaction models can be represented in many equivalent ways. Among these are connectors [8]
and Boolean formulas on variables representing port participation in interactions [12]. Connectors
are most appropriate for graphical design and interaction representation, whereas Boolean formulas

‡We have developed a prototype of the JavaBIP-to-BIP transformation tool. However, its presentation is not in the scope
of this paper.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 7

Figure 2. JavaBIP models of three routes and a monitor.

are most appropriate for manipulation and efficient encoding. In this paper, we use the graphical
notation in the figures illustrating the examples. Equivalent notation based on Boolean macros (cf.
Section 5) is used to define the allowed synchronizations in the glue specification.

In Figures 2, 5 and 8, the initial states of all FSMs are denoted by a double circle; Boolean
guards on transitions are shown in square brackets; enforceable transitions are shown with solid
blue arrows, spontaneous transitions with dashed red arrows and internal transitions with solid grey
arrows.

3.1. Camel routes

A Camel route [1] transfers data among a number of data sources. The data can be fairly large
and may require additional processing. Hence, Camel routes share and compete for memory.
Without additional coordination, simultaneous execution of several Camel routes can lead to
OutOfMemory exceptions, even when each route has been tested and sized appropriately on its
own. The Camel API provides the methods resumeRoute and suspendRoute to control the
activation of a route. For simplicity, we assume here that the memory used by an active route is
known, whereas the memory used by a suspended route is negligible.

Consider the Route and Monitor models, shown in Figure 2. Our goal is to limit the number
of routes running simultaneously to ensure that the available memory is sufficient for the safe
functioning of the system. To achieve this, we introduce an additional monitor component. The
behavior specifications of the Route and Monitor component types are shown in Figures 3 and 4
respectively. The precise syntax is explained in Section 5.1.

The Route model, shown in the left-hand side of Figure 2, has four states: off, on, wait and
done. Its initial state is off. When the route is at state off, it can start working by executing
the on transition. Respectively, when the route is at state on, it can suspend its work by executing
the off transition. The on and off transitions are both enforceable (Figure 3: lines 3–4) and are
associated with the resumeRoute and suspendRoute methods of the Camel API (Figure 3:
lines 19–27).

Following the call to suspendRoute associated with the transition off, the route moves to
the state wait. At this point, if the route has finished processing the previous data batch, it can be
suspended immediately—represented by the internal transition to the done state (Figure 3: lines
32–33). Otherwise, the internal transition is disabled. Instead, to move to state done, the route
has to wait for the processing termination event, associated with the spontaneous transition end

(Figure 3: lines 29–30). The guard g (Figure 3: lines 38–42) is used to check whether the route has
finished processing.

The Monitor model, shown in the right-hand side of Figure 2, has only one state and two
enforceable transitions: add (Figure 4: lines 16–20) for adding running routes and rm (Figure 4:
lines 22–25) for removing them. The add transition has the guard hasCapacity (Figure 4:

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

8 S. BLIUDZE ET AL.

1 @Ports({

2 @Port(name = "end", type = PortType.spontaneous),

3 @Port(name = "on", type = PortType.enforceable),

4 @Port(name = "off", type = PortType.enforceable),

5 @Port(name = "finished", type = PortType.enforceable)

6 })

7 @ComponentType(initial = "off", name = "Route")

8 public class Route implements CamelContextAware {

9

10 private CamelContext camelContext;

11 private String routeId;

12 private int deltaMemory = 100; // Dummy value, for the sake of simplicity

13

14 public Route(String routeId, CamelContext camelContext) {

15 this.routeId = routeId;

16 this.camelContext = camelContext;

17 }

18

19 @Transition(name = "on", source = "off", target = "on")

20 public void startRoute() throws Exception {

21 camelContext.resumeRoute(routeId);

22 }

23

24 @Transition(name = "off", source = "on", target = "wait")

25 public void stopRoute() throws Exception {

26 camelContext.suspendRoute(routeId);

27 }

28

29 @Transition(name = "end", source = "wait", target = "done", guard = "!g")

30 public void spontaneousEnd() {} // "!g" in the guard above means "not g"

31

32 @Transition(name = "", source = "wait", target = "done", guard = "g")

33 public void internalEnd() {}

34

35 @Transition(name = "finished", source = "done", target = "off")

36 public void finishedTransition() {}

37

38 @Guard(name = "g")

39 public boolean isFinished() {

40 return camelContext.getInflightRepository().

41 size(camelContext.getRoute(routeId).getEndpoint()) == 0;

42 }

43

44 @Data(name = "deltaMemoryOnTransition",

45 accessTypePort = AccessType.allowed, ports = { "on", "finished" })

46 public int deltaMemoryOnTransition() {

47 return deltaMemory;

48 }

49 }

Figure 3. Annotations for the Route component type.

lines 27–30) that checks whether the available memory limit of the system, defined through the
constructor of the MemoryMonitor class (Figure 4: lines 12–14), is sufficient for adding more
running routes.

The complete system consists of several routes and one monitor. The Route model is the same
for all routes and the monitor is connected to all of them in the same manner. The port on of each
route component must synchronize with the port add of the monitor. This means that when a route
component is executing the on transition, the monitor component must execute the add transition
simultaneously. Thus, if the available memory capacity is not sufficient, the on transition is blocked.
Since the add port of the monitor is connected to the on ports of several different routes by binary
connectors, it must only synchronize with one of them at a time. Similarly, transition finished of

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 9

1 @Ports({

2 @Port(name = "add", type = PortType.enforceable),

3 @Port(name = "rm", type = PortType.enforceable)

4 })

6 @ComponentType(initial = "on", name = "MemoryMonitor")

7 public class MemoryMonitor {

8

9 final private int memoryLimit;

10 private int currentCapacity = 0;

11

12 public MemoryMonitor(int memoryLimit) {

13 this.memoryLimit = memoryLimit;

14 }

15

16 @Transition(name = "add", source = "on", target = "on",

17 guard = "hasCapacity")

18 public void addRoute(@Data("memoryUsage") Integer deltaMemory) {

19 currentCapacity += deltaMemory;

20 }

21

22 @Transition(name = "rm", source = "on", target = "on")

23 public void removeRoute(@Data(name="memoryUsage") Integer deltaMemory) {

24 currentCapacity -= deltaMemory;

25 }

26

27 @Guard(name = "hasCapacity")

28 public boolean hasCapacity(@Data("memoryUsage") Integer memoryUsage) {

29 return currentCapacity + memoryUsage < memoryLimit;

30 }

31 }

Figure 4. Annotations for the Monitor component type.

each route must be synchronized with the transition rm of the monitor. Notice that the specification
of synchronizations between the on-add transitions and rm-finished transitions is not part of
the behavior specification presented in Figures 2 and 4. These synchronizations are included in the
glue specification presented in Figure 13.

At each execution cycle, the monitor decides whether there is sufficient amount of memory in the
system to add another route. To do that, data are being exchanged between the non-running routes
and the monitor. Every route has a value of how much memory it consumes if it resumes working
(Figure 3: lines 44–48) and sends this to the monitor. The monitor then decides by computing
the hasCapacity guard value and informs the JavaBIP engine of its decision. Data exchange
between the routes and the monitor happens if the on-add synchronization can be executed, i.e.,
some of the routes are at state off. Additionally, data exchange occurs before the finished-rm
synchronization is executed: the corresponding route tells the monitor how much memory it will
release upon suspending its execution.

Notice that the access control functionality implemented in this example, can also be implemented
in an actor-based framework, through a synchronization on a future. Indeed, by implementing the
monitor as an actor capable of serving the request hasCapacity, it is sufficient to send such a
request before resuming a route and store the returned Boolean yes-or-no value in a future, then
immediately consulting this future as part of a branching condition. This would block the route
activation until the reply from the monitor is available, effectively achieving a synchronization
between the route and the monitor. The advantage of the JavaBIP approach is that—contrary to
the solution using a Boolean future—it does not require the synchronization to be hardcoded in the
route specification: in the ideal situation, where infinite memory is available, exactly the same BIP
specification of the routes can be used without the monitor and the corresponding glue. Similarly,
if, at a later stage in the project or for the purpose of debugging, the developer needed to introduce
a logger component to keep track of route management operations, this could be achieved simply

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

10 S. BLIUDZE ET AL.

Figure 5. JavaBIP models of a publish-subscribe server.

by defining the corresponding BIP specification and replacing binary synchronizations (Figure 2)
by ternary ones. As will be explained in Section 5.2, this latter operation only involves editing an
XML configuration file, which can even be performed by a system administrator, without requiring
an intervention by a developer.

The complete model of this example is deadlock free and satisfies the following safety property:
‘A route cannot be added unless sufficient memory capacity is available’. Notice that this property is
enforced on an arbitrary number of routes by synchronizing them in the predefined manner with an
additional Monitor component. The Monitor component together with the associated connectors
(Figure 2) forms a pattern, called an architecture. In [13, 14], the authors have developed a
compositional theory of architectures—illustrated by a large case study in [15]—that allows the
definition and composition of such patterns to enforce arbitrary combinations of safety properties.

3.2. Publish-Subscribe server

In this section, we present a JavaBIP implementation of the Publish-Subscribe server. The server
manages a number of different topics to which the clients can subscribe, unsubscribe and publish
messages. To that end, clients send commands, which are handled by the server in a concurrent
fashion.

Consider the model in Figure 5. The solid connectors between ports denote synchronizations,
i.e., the execution of the corresponding transitions must be synchronized. In all synchronizations,
data are exchanged between components. The dotted arrows from transitions to ports represent
asynchronous communication realized by generating events corresponding to the spontaneous
transitions of the receiving components.

The server consists of components of the six types shown in Figure 5. For each client, there is a
dedicated TCPReader, responsible for receiving commands. Additionally, for each client there is a
dedicated ClientProxy, responsible for receiving 1) acknowledgments that the client has been added
or removed from a topic and 2) messages published from other clients registered in same topics.
Thus each client is modeled by two dedicated components (a TCPReader and a ClientProxy), each
modeling a distinct functional aspect of the client.

Upon reception by a TCPReader, each command is forwarded to the unique CommandBuffer
component through the synchronization of the give and put enforceable transitions. The guard
commandExists of the TCPReader is used to check whether it has received a new command and
the guard notFull of the CommandBuffer is used to check whether the buffer is not full before
receiving a new command (Figure 6: lines 29–30). If both guards evaluate to true, the command is
transferred as data to the CommandBuffer (Figure 6: line 25).

The CommandBuffer is a passive component: the responsibility for retrieving commands from the
CommandBuffer belongs to CommandHandlers. This happens through the synchronization of the
handle and get enforceable transitions, when the notEmpty guard evaluates to true (Figure 6:
lines 21–22). There can be arbitrarily many CommandHandlers that are concurrently handling
commands. The CommandHandlers asynchronously forward commands to the TopicManager, by
generating the event associated to the execute spontaneous transition of the TopicManager
(Figure 7: lines 2 & 13). Notice that the @Data annotation is used to define input data necessary for
the processing of spontaneous events (Figure 7: line 14). This mechanism allows CommandHandlers
to send commands in the form of data to the TopicManager, in a manner very similar to
asynchronous message passing.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 11

1 @Ports({

2 @Port(name="put", type=PortType.enforceable),

3 @Port(name="get", type=PortType.enforceable)

4 })

5

6 @ComponentType(initial="0", name="CommandBuffer")

7 public class CommandBuffer {

8 private LinkedList<Command> commandList;

9 private int bufferSize;

10

11 public CommandBuffer(int bufferSize){

12 this.bufferSize = bufferSize;

13 this.commandList = new LinkedList<Command>();

14 }

15

16 @Transition(name="get", source="0", target="0", guard="notEmpty")

17 public void get() {

18 commandList.remove();

19 }

20

21 @Guard(name="notEmpty")

22 public boolean notEmpty() { return !commandList.isEmpty(); }

23

24 @Transition(name="put", source="0", target="0", guard="notFull")

25 public void put(@Data(name="input") Command cmd) {

26 commandList.add(cmd);

27 }

28

29 @Guard(name="notFull")

30 public boolean notFull() { return commandList.size() < bufferSize; }

31

32 @Data(name="command")

33 public Command getNextCommand() { return commandList.get(0); }

34 }

Figure 6. Annotations for the CommandBuffer component type.

Depending on the type of the command (Figure 7: lines 16, 20, 24), the TopicManager
asynchronously triggers one of the add, remove or publish transitions of the corresponding
Topic (Figure 7: lines 18, 22, 26). The Topic executes the commands and triggers the corresponding
transitions of a ClientProxy to either send an acknowledgment to the client in the case of
the subscribe/unsubscribe commands or to distribute the message to all the subscribed clients
of the topic in the case of a publish command. All transitions of TopicManager, Topic and
ClientProxy components are spontaneous, i.e., they are executed asynchronously upon reception
of the corresponding events.

An example of the above execution is the following: A TCPReader forwards the command
subscribe epfl via data transfer through the synchronization of the give transition of
the TCPReader with the put transition of the CommandBuffer. A CommandHandler receives
the command from the CommandBuffer through the synchronization of the get and handle

transitions. Then, the CommandHandler forwards the command to the TopicManager. This triggers
the execute spontaneous transition during which the client reference is retrieved from the
command and transferred to the epfl topic. This results in the asynchronous execution of the add
transition of the epfl topic. During the execution of add the client reference, which was received
though the data transfer, is stored and the name of the topic (epfl) is forwarded to the dedicated
ClientProxy asynchronously via the data transfer. The ClientProxy stores the topic name and writes
an acknowledgment in the socket, while executing the add spontaneous transition asynchronously.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

12 S. BLIUDZE ET AL.

1 @Ports({

2 @Port(name="execute", type=PortType.spontaneous)

3 })

4

5 @ComponentType(initial="0", name="TopicManager")

6 public class TopicManager {

7 private HashMap<String, BIPActor> topics;

8

9 public TopicManager(HashMap<String, BIPActor> topics) {

10 this.topics = topics;

11 }

12

13 @Transition(name="execute", source="0", target="0")

14 public void execute(@Data(name="value") Command c) {

15 switch (c.getId()) {

16 case SUBSCRIBE:

17 Topic topic = topics.get(c.getTopic());

18 topic.add(c.getClient()); // Generate an "add" event in the topic

19 break;

20 case UNSUBSCRIBE:

21 Topic topic = topics.get(c.getTopic());

22 topic.remove(c.getClient()); // Generate a "remove" event in the topic

23 break;

24 case PUBLISH:

25 Topic topic = topics.get(c.getTopic());

26 topic.publish(c.getClient(), c.getMessage());

27 break; // Generate a "publish" event in the topic

28 default:

29 break;

30 }

31 }

32 }

Figure 7. Annotations for the TopicManager component type.

3.3. Trackers and Peers example

The following example was initially presented in [11]. Although it is inspired by a wireless audio
protocol for peer-to-peer communication, it should be noted that this example does not implement
any kind of message passing (see also the discussion in Remark 4.2). Here, we provide it purely
as an example of BIP model that will be used in Section 6.3 to stress-test the JavaBIP engine.
Additionally, this example illustrates the use of n-ary connectors (here n = 3) and of trigger ports.

There are two component types: Tracker and Peer. The protocol allows an arbitrary number of
peers to communicate along an arbitrary number of wireless communication channels. Each channel
is managed by a unique tracker.

The model for two peers and one tracker is shown in Figure 8. Peers are allowed to use at most
one channel at a time. Access to channels is subject to the following registration mechanism. Every
peer selects the channel it wants to use and registers through the register transition that is
synchronized with the log transition of the tracker. During this synchronization, components are
exchanging data. In particular, the tracker sends its identity to the peer and the peer stores it. Once
registered, peers can either speak to the channel or listen to other registered peers in the channel.
To ensure atomicity of each communication, every tracker enforces that 1) at most one registered
component is speaking and 2) all other registered components are listening.

In the connectors enforcing the above constraints, the broadcast port of a tracker is a
trigger (Section 4.1.2). This allows the broadcast transition to happen on its own, without
requiring synchronization with transitions of other components. However, broadcast accepts
synchronization with the speak and listen transitions. The listen and speak ports
are synchrons, i.e., their corresponding transitions require synchronization with broadcast.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 13

Figure 8. JavaBIP models of one tracker and two peers.

Peers can register (resp. unregister) through the register-log (resp. unregister-log)
synchronization.

Notice that the interaction structure of the example is exponentially complex. In particular,
the number of all possible interactions is (2T − 1) · (2P + P · 2P−1 + 2 · P), where P is the total
number of peers and T is the total number of trackers.

To allow all peers to communicate with all trackers, all corresponding connectors must be present
in the system. Data transfer (Section 4.2) is used to ensure that peers can interact only with the
tracker they had previously been registered with: for each interaction, trackers propose their identity
as data and peers use the idOK guard to decide with which trackers they can synchronize. Thus, all
transitions of the system are enforceable and in all possible interactions (except when a tracker is
broadcasting without any registered peers) data are exchanged between components.

4. THEORETICAL FOUNDATIONS

In this section, we provide the formal component and coordination model underlying the JavaBIP
framework. This model extends that of BIP [4, 8] by considering three types of transitions:

• enforceable transitions represent the controllable behavior of the component;

• spontaneous transitions represent changes in the environment that affect the component
behavior, but cannot be controlled;

• internal transitions represent computations independent of the component environment.

We consider a system of components, each represented by a Finite State Machine (FSM) extended
with ports and data. An FSM is specified by its states and the guarded transitions between them.
Each transition has a function and a port associated to it. In general, one port can be associated to
several transitions. However, the FSM is deterministic in the following sense: there cannot be two
simultaneously enabled transitions leaving the same state that are both internal or both labeled by
the same port.

For the sake of clarity, we will first present the model without data, then extend it by introducing
data variables and data wires used for the transfer of values among the components.

4.1. Component model without data

4.1.1. Components and glue A component is a Finite State Machine (FSM) given by a quadruple
C = (Q,P e, P s,−→), where:

• Q is a finite set of states,

• P e and P s are disjoint finite sets of, respectively, enforceable and spontaneous ports,

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

14 S. BLIUDZE ET AL.

• −→⊆ Q× P ×Q, with P = P e ∪ P s ∪ {τ} and τ 6∈ P e ∪ P s, is a transition relation, where
the special symbol τ is used to label internal transitions.

Below, we will use the common notation, writing q
p
−→ q′ as a shorthand for (q, p, q′) ∈−→. We

say that a port p ∈ P is enabled in the state q ∈ Q iff there exists q′ ∈ Q, such that q
p
−→ q′.

Remark 4.1. Notice that the above definition allows non-determinism in the component behavior.
For the practical implementation, we require that all components be deterministic, i.e. such that,
for any q ∈ Q and any p ∈ P , there is at most one outgoing transition from q labeled by p or,
formally, |{q′ ∈ Q | (q, p, q′) ∈−→}| ≤ 1. While this additional assumption does not have any impact
on the theoretical foundations of the JavaBIP framework, as presented in this section, it noticeably
simplifies the implementation.

Let Ci = (Qi, P
e
i , P

s
i ,−→), for i ∈ [1, n],§ be a set of components with pairwise disjoint sets Pi =

P e
i ∪ P s

i , i.e., Pi ∩ Pj = ∅, for all i 6= j. We denote P e =
⋃n

i=1 P
e
i and P s =

⋃n
i=1 P

s
i , respectively,

the sets of all enforceable and spontaneous ports in the system.
Since our goal is to model interaction through synchronization among the actions performed by

components, we introduce the notion of interaction as a non-empty set of enforceable ports a ⊆ P e,
such that |a ∩ P e

i | ≤ 1, for all i ∈ [1, n], labeling the transitions to be synchronized. Indeed, we
require that any interaction contain at most one port from any given component, reflecting the fact
that a component can only execute one transition at a time.

The glue used to compose the components is the set of interactions that are allowed in the system.
Let γ ⊆ 2P

e

\ {∅} be such a set of interactions. The composition of components C1, . . . , Cn with
the glue γ is the component γ(C1, . . . , Cn) = (Q, γ, P s,−→), where Q =

∏n
i=1 Qi is the Cartesian

product of the sets of states of the individual components and −→ is the set of transitions defined as
follows:

• for any i ∈ [1, n] and any spontaneous port p ∈ P s
i ,

(q1, . . . , qi, . . . , qn)
p
−→ (q1, . . . , q

′
i, . . . , qn) ⇐⇒ qi

p
−→ q′i ,

• similarly for internal transitions, for any i ∈ [1, n],

(q1, . . . , qi, . . . , qn)
τ
−→ (q1, . . . , q

′
i, . . . , qn) ⇐⇒ qi

τ
−→ q′i ,

• for any interaction a ∈ γ,

(q1, . . . , qn)
a
−→ (q′1, . . . , q

′
n) ⇐⇒

{
qi

pi
−→ q′i, if a ∩ P e

i = {pi} ,

qi = q′i, if a ∩ P e
i = ∅ .

Thus, the notion of enabledness is extended from ports to interactions: an interaction a ∈ γ

is enabled in γ(B1, . . . , Bn), only if, for each component Ci participating in a—that is, such
that a ∩ P e

i = {pi}, for some pi ∈ P e
i —the port pi is enabled in Ci. Notice that the states of

components that do not participate in the interaction remain unchanged. Observe also that γ defines
the set of allowed interactions: it is possible that an interaction a ∈ γ is never actually enabled in
γ(C1, . . . , Cn).

4.1.2. Connectors Interactions among the enforceable ports of the system components are specified
by connectors [8]. A connector defines a set of interactions based on the synchronization attributes
of the connected ports, which may be either synchron or trigger (Figure 9a):

• if all connected ports are synchrons, then synchronization is by rendezvous, i.e., the connector
defines exactly one interaction, which comprises all its ports (Figure 9b);

§Here and below, we omit the index on transition relations −→, since it is always clear from the context.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 15

synchron trigger

(a) Port attributes

p q r

{pqr}

(b) Rendezvous

p q r p q r

{p, pq, pr, pqr} {p, q, pq, pr, qr, pqr}

(c) Broadcast

q rp

Rendezvous
{pqr}

q rp

Atomic broadcast
{p, pqr}

q rp

Causality chain
{p, pq, pqr}

(d) Hierarchical connectors

Figure 9. BIP connectors: below each connector, we show the set of interactions it defines

• if the connector has at least one trigger, the synchronization is by broadcast, i.e., the connector
defines the set of interactions comprised by all non-empty subsets of the connected ports
containing at least one of the trigger ports (Figure 9c).

Remark 4.2. Notice that our use of the terms “broadcast” and “atomic broadcast” is very different
from the meaning commonly used in distributed computing, where messages are broadcast to a
number of recipients through a network. In this paper, we use the terms “rendezvous”, “broadcast”
and “atomic broadcast” for the sake of homogeneity with previous work on BIP (e.g. [8]), to denote
different kinds of connectors as described above. The use of the term “broadcast” in [8] was inspired
by previous work on Statecharts [16].

The same principle is recursively extended to hierarchical connectors, where one interaction from
each subconnector is used to form an allowed interaction according to the synchron/trigger labeling
of the connector nodes. For instance the causal chain connector in Figure 9d has the port p labeled as
a trigger, whereas the binary broadcast subconnector q–r is labeled as a synchron. Thus the causal
chain connector allows the singleton interaction p and any interaction that combines p with some
interaction of the subconnector. Since the latter allows interactions q and qr, this results in three
interactions allowed by the hierarchical connector: p, pq and pqr.

When, as in the examples of Section 3, there are several connectors in a system, the allowed
interactions are precisely those that are defined by at least one connector.

Among the connectors in the examples of Section 3, Camel Routes and Publish Subscribe
Server rely on strong binary rendezvous. The Trackers and Peers example uses weak (broadcast)
synchronization defined by ternary connectors with triggers.

4.1.3. Boolean encoding of the connectors and macro notation Connectors are very convenient for
graphical design and representation of interaction sets. However, their use requires the knowledge of
all components (hence also all ports) in the system. In JavaBIP, we have opted for a macro notation
similar to that introduced in [11]. This notation imposes synchronization constraints based on the
component types, rather than on the component instances, allowing for a better separation between
component and glue specification. It is based on the Boolean characterization of connectors [17],
which we succinctly present below, before introducing the macro notation.

Consider a set of interactions γ ⊂ 2P
e

, where P e is the set of all enforceable ports in the system.
This set can be characterised by a Boolean predicate φγ ∈ B[P e] on the set of enforceable ports: an
interaction a ⊆ P e belongs to γ if and only if the valuation, which assigns to each port p ∈ P e the
value true if p ∈ a and false otherwise, satisfies φγ . The predicate φγ is called the characteristic

predicate of γ and is defined by putting

φγ =
∨

a∈γ

(∧

p∈a

p ∧
∧

p∈P e\a

p
)
.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

16 S. BLIUDZE ET AL.

Table I. Boolean encoding of connectors in Figure 9 (we omit the common conjunct (a ∨ b ∨ c))

Name Set of allowed interactions Boolean encoding

Rendezvous {pqr} (p ⇒ qr) ∧ (q ⇒ pr) ∧ (r ⇒ pq)
Broadcast 1 {p, pq, pr, pqr} (q ⇒ p) ∧ (r ⇒ p)
Broadcast 2 {p, q, pq, pr, qr, pqr} (r ⇒ p ∨ q)
Atomic broadcast {p, pqr} (q ⇒ pr) ∧ (r ⇒ pq)
Causality chain {p, pq, pqr} (q ⇒ p) ∧ (r ⇒ q)

Notice, however, that, for a given γ, this predicate can be equivalently written in a different
form. For example, consider the left-hand side connector in Figure 9c with P e = {p, q, r} and
γbdc = {p, pq, pr, pqr}. Omitting, for clarity, the conjunction operator, we then have

φγbdc
= p q r ∨ p q r ∨ p q r ∨ p q r ≡ p ,

which corresponds, indeed, to the meaning defined above: this connector allows any interaction
among the ports p, q and r that contains p. Similarly, for the causality chain in Figure 9d, we have
γcc = {p, pq, pqr}, characterised by

φγcc
= p q r ∨ p q r ∨ p q r ≡ p ∧ (r ⇒ q) .

Here, the meaning of the implication r ⇒ q is that the participation of the port r in any interaction
requires that of the port q. Finally, observe that φγcc

can also be equivalently rewritten as

φγcc
≡ (p ∨ q ∨ r) ∧ (q ⇒ p) ∧ (r ⇒ q) , (1)

which makes all such requirements explicit. Indeed the second and third conjuncts in (1) explicitate
the causal dependencies visible in the connector structure, whereas the first conjunct simply states
that at least one port must participate in any interaction. In [17], we have shown that the set of
interactions defined by any connector can be characterised by a Boolean formula similar to (1),
where the implications in each conjunct take the form

p ⇒ a1 ∨ · · · ∨ an , (2)

with p being a port and each ai being a conjunction of several ports. In the implication (2), we call
p the effect, whereof a1, . . . , an are the causes. Indeed, for p to participate in an interaction, all the
ports belonging to at least one of a1, . . . , an must participate. Thus, we can say that the participation
of ai, for some i ∈ [1, n], in an interaction is the reason why p can participate. Table I provides the
encodings of all the connectors shown in Figure 9.

Similarly to [11],¶ we use the macro

p Require a1; . . . ; an

to specify the constraint (2). For example the encodings of Broadcast 2 and Atomic broadcast
(Table I) are, respectively,

r Require p; q and

{
q Require pr

r Require pq
.

Notice the semicolon in the left-hand side macro.
In the commonly encountered systems, such as the examples in Section 3, most of the ports

participate in very few connectors. In the constraints (1), this translates by conjuncts of the form

¶The notation used in [11] differs from JavaBIP in that it uses the additional Unique macro to specify cardinality
exactly one, which in JavaBIP is expressed directly in the Require macro. Additionally, in [11] it is not possible to
express exact cardinalities larger than one.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 17

p ⇒ false,‖ meaning that the port p cannot participate in any interaction allowed by the connector.
However, adding such conjuncts explicitly for all ports that do not participate in a connector is rather
tedious. Furthermore, it is often convenient to define the constraints for a subsystem, independently
of the way it will be used. In such case, some ports of the system, which will not participate in the
defined interactions, are not yet known. Hence, one needs a notation to specify that only a certain
set of ports can participate in an interaction that contains p, other ports being implicitly excluded.
This is achieved by the macro

p Accept a , which formally means p ⇒
∧

q∈P e\a
q 6=p

q .

The macro Accept is defined for a single port, therefore for a port r to participate in the interaction
that contains p, it must be accepted by every other port participating in the interaction.

4.1.4. Macro notation based on component types In the previous subsection, we have introduced
the Require-Accept macro notation for the definition of glue for a system consisting of a given set
of components. Similarly to [11], JavaBIP relies on component types, rather than on component
instances for the definition of glue. Although this approach is less expressive—it only allows the
definition of regular glue, which imposes the same synchronization constraints on all instances of
a given component type—, it provides better separation between glue and component specification.
It is sufficient for practical purposes: firstly, finer specification can be obtained by considering
component subtypes and, secondly, data variables and transfer (see Section 4.2) can be used by a
component to remember the identities of other components it interacted with and use them to restrict
subsequent interactions (e.g., continue interacting with the same component as in the previous
cycle).∗∗

Let T be a set of component types. Each component type represents a set of component instances
with identical interfaces and behavior. For a component type T ∈ T , we will write C : T to denote
a component C of type T ; we denote T.p the port type p, i.e., a port belonging to the interface of the
type T , and C.p, for a component C : T , the port instance of the type T.p; finally, we denote C.P e

the set of all enforceable ports of the component C.
We are now in position to extend the Require-Accept macro notation to component types. Let

T 1, T 2 ∈ T be component types and let C1
i : T 1 and C2

j : T 2 (with i ∈ [1, n], j ∈ [1,m]) be the
corresponding component instances. We define

T 1.p Require T 2.q ≡

n∧

i=1

C1

i .p ⇒

m∨

j=1

(
C2

j .q ∧
∧

k 6=j

C2
k .q

)

 ,

which means that, to participate in an interaction, each of the ports C1
i .p (with i ∈ [1, n]) requires the

participation of precisely one of the ports C2
j .q (with j ∈ [1,m]). This is in contrast with the meaning

used in [11], where a separate macro is used to enforce uniqueness of the cause port. Thus, we have
opted for a macro notation where the cardinality of the causes is explicit: should two instances of
the same port type be required, this is specified by explicitly putting the cause port type twice:

T 1.p Require T 2.q T 2.q ≡

n∧

i=1

C1

i .p ⇒

m∨

j=1

∨

k 6=j

(
C2

j .q C
2
k .q ∧

∧

l 6=j,k

C2
l .q

)

and so on for higher cardinalities. This choice of notation is motivated by our observation that
cardinalities higher than one are very rare in practical examples.

‖This is equivalent to (2) with the empty list of causes.
∗∗This is similar to the use of history variables in [11].

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

18 S. BLIUDZE ET AL.

Similarly, we define the notation for the Accept macro for component types:

T 1.p Accept T 2.q ≡

n∧

i=1

C1

i .p ⇒
∧

r∈P e\{C2

j .q | j∈[1,m]}

r 6=C1

i .p

r

 ,

where P e =
⋃

T∈T

⋃

C:T

C.P e .

The generalization of the above definitions to more complex macros is straightforward, but
cumbersome. Therefore we omit it here.

Example 4.3. To illustrate the use of the above macro notation, let us consider the Camel routes
example (Section 3.1). The glue constraints imposed by the connectors in Figure 2 are specified by
the following combination of macros:

Monitor.add Require Route.on Monitor.add Accept Route.on

Monitor.rm Require Route.finished Monitor.rm Accept Route.finished

Route.on Require Monitor.add Route.on Accept Monitor.add

Route.finished Require Monitor.rm Route.finished Accept Monitor.rm

Route.off Require − Route.off Accept − ,

where the dashes ‘−’ in the last line indicate that the port Route.off neither requires, nor accepts
synchronization with any other port. Recall that the port Route.end is spontaneous. Hence, it
does not have any associated glue constraints. Finally, notice that this set of macros is independent
from the number of Camel routes in the system.

Example 4.4. Now, let us consider an alteration of the previous example, where we require that the
Monitor component removes two routes simultaneously at the execution of the port rm. Thus, in
the require macro for the rm port type, the cardinality of the causes must be equal to two. This is
specified by putting the cause port type finished twice as shown below:

Monitor.add Require Route.on Monitor.add Accept Route.on

Monitor.rm Require Route.finished Monitor.rm Accept Route.finished

Route.finished

Route.on Require Monitor.add Route.on Accept Monitor.add

Route.finished Require Monitor.rm Route.finished Accept Monitor.rm

Route.finished

Route.off Require − Route.off Accept − .

Notice that the accept macro for the finished port type has also changed, by accepting not
only rm but also finished.

Example 4.5. Let us now consider a more general example to illustrate the expressiveness of the
JavaBIP glue. Assume that there are three component types A, B, C with port types a, b,

c, respectively. Through the require macros, we enforce the following three constraints: 1) A.a
requires synchronization with two instances of B.b; 2) B.b requires synchronization either with
a) a single instance of A.a and a single instance of C.c or b) just two instances of C.c; 3) C.c
does not require synchronizations with other ports, however it accepts synchronizations with any
possible combination of ports A.a, B.b, C.c:

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 19

A.a Require B.b B.b A.a Accept A.a B.b C.c

B.b Require A.a C.c ; C.c C.c B.b Accept A.a B.b C.c

C.c Require − C.c Accept A.a B.b C.c .

Notice that by the combination of the first two require macros, a synchronization involving exactly
an instance of A.a and two instances of B.b is not allowed, since B.b requires at least one instance
of C.c to also participate in the synchronization.

Example 4.6. The set of interactions allowed by the connectors in the Trackers and Peers example
(Section 3.3) can be specified as follows (notice the semicolon in the require constraint for
Tracker.log):

Peer.speak Require Tracker.broadcast

Peer.speak Accept Tracker.broadcast Peer.listen

Peer.listen Require Tracker.broadcast

Peer.listen Accept Tracker.broadcast Peer.speak Peer.listen

Peer.register Require Tracker.log

Peer.register Accept Tracker.log

Peer.unregister Require Tracker.log

Peer.unregister Accept Tracker.log

Tracker.broadcast Require −

Tracker.broadcast Accept Peer.speak Peer.listen

Tracker.log Require Peer.register ; Peer.unregister

Tracker.log Accept Peer.register Peer.unregister .

4.2. Extension of the model with data

4.2.1. Components with data Data transfer is essential to allow information flow between
components. For each component we consider two types of data:

• input data that the component receives from its environment (including other components);

• output data that the component provides to other components.

To each type of data we associate the corresponding set of variables. For simplicity, we assume in
this section that all variables have the same domain D. In our implementation, variables can have
any type that can be defined in a Java program.

In the presence of data, the state of a component is defined by the combination of the control
location and the valuation of its output variables. Since the input data are provided by the
environment, they do not contribute to the state of the component. This is analogous to the
combination of the program counter and the valuation of variables in the semantics of programming
languages. In the absence of data (Section 4.1), the state and the control location coincide. Therefore,
for the sake of presentation uniformity, we will continue referring as “state” to the control location
of the FSM underlying the component; we will refer as “complete state” to the combination of the
control location and the valuation of output variables.

Let us first introduce some additional notation. Assume that X in and Xout are two given sets of,
respectively, input and output variables of a component. We denote

B[X in , Xout] , the set of Boolean predicates on input and output variables,

E[X in , Xout] , the set of assignment expressions of the form Y := e(X), with
X ⊆ X in ∪Xout and Y ⊆ Xout .

For a guard g ∈ B[X in , Xout] or an expression f ∈ E[X in , Xout], we denote in(g), in(f) ⊆ X in

and out(g), out(f) ⊆ Xout the corresponding sets of input and output variables used in g and f .
A component with data is a tuple C = (Q,P e, P s, X in , Xout , d ,−→), where:

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

20 S. BLIUDZE ET AL.

Figure 10. Example of a non-deterministic component with data

• Q is a finite set of states,

• P e and P s are disjoint finite sets of, respectively, enforceable and spontaneous ports,

• X in and Xout are disjoint finite sets of, respectively, input and output variables,

• d : P e → 2X
out

is a data access mapping, associating to each enforceable port p ∈ P e the set
of output variables that are accessible through p;

• −→⊆ Q× P × G × F ×Q is a transition relation (as above, we write q
p,g,f
−−−→ q′ as a

shorthand for (q, p, g, f, q′) ∈−→), where

– G = B[X in , Xout] is a set of guards,

– F = E[X in , Xout] is a set of update expressions,

– P = P e ∪ P s ∪ {τ} with τ 6∈ P e ∪ P s,

such that in(f) = in(g) = ∅, for any internal transition q
τ,g,f
−−−→ q′.

Example 4.7. This definition of components with data can be illustrated by the listings in
Figure 3 and 4. In Figure 3, there is only one @Data annotation (lines 44–45) associated
to a method. It defines the output variable deltaMemoryOnTransition (see Section 5.1
for the detailed presentation of the @Data annotation). Thus, we have X in = ∅ and Xout =
{deltaMemoryOnTransition}. Furthermore, the fields accessTypePort and ports indicate
that this output variable can be accessed through ports on and finished. Thus the data access
mapping is given by:

d =

on 7→ {deltaMemoryOnTransition} ,

off 7→ ∅ ,

finished 7→ {deltaMemoryOnTransition}

.

The @Data annotations in the listing in Figure 4 (lines 18, 23 and 28) are associated to method
parameters. They define three utilisations of the same input variable memoryUsage. Thus, we
have X in = {memoryUsage}, Xout = ∅ and, since there are no output variables, the data access
mapping is constant: d(p) = ∅, for all ports p ∈ P e.

Remark 4.8. Similarly to Remark 4.1, the above definition of components with data
allows non-deterministic behavior. In the practical implementation, we require that all
components be deterministic, i.e. we require that for any port p ∈ P and any complete

state (q, v), with state q ∈ Q and valuation of variables v : X in ∪Xout → D, we have∣∣{(g, f, q′) ∈ G × F ×Q | q
p,g,f
−−−→ q′, g(v) = true}

∣∣ ≤ 1.
Notice that, as opposed to Section 4.1.1, in a component with data, there can be several outgoing

transitions in the same state, labeled with the same port. However, we require that at most one of

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 21

them be enabled—meaning that its guard evaluates to true—with any valuation of the component
variables. For example, consider the component shown in Figure 10. Although there are three
outgoing transitions in state value labelled with the same port test, this component is, indeed,
deterministic, since only one of these transitions can be enabled, for any value of x.

The input variables do not have persistent values—they represent the arguments of transition
guards and update expressions, and have to be assigned a value provided by the environment every
time, when the corresponding guard or update expression must be evaluated. Hence, indeed, the sets
X in and Xout are disjoint.

As mentioned above, at any given execution cycle, the complete state of the component is formed
by the combination of its current control location and the valuation of its output variables. The
component can change its complete state by executing a transition only if its environment provides
all the necessary inputs—i.e., the input data required by the guard and the update expression of
the transition—and the guard is satisfied. Upon executing the transition the values of the output
variables are modified using the update expression. Notice that the values of the output variables
that a component provides are those before the execution of the transition. Furthermore, these need
not be the same as the output variables updated by the transition. In other words, for a transition

q
p,g,f
−−−→ q′, with p ∈ P e, there is no a priori relation between d(p) and out(f).

We denote C̃ = (Q,P e, P s,−→da), with q
p
−→da q′ iff q

p,g,f
−−−→ q′, for some g ∈ G and f ∈

F , the component obtained by abstracting the data from the component with data C =
(Q,P e, P s, X in , Xout , d ,−→).

4.2.2. Composition Let Ci = (Qi, P
e
i , P

s
i , X

in
i , xout

i , di −→), for i ∈ [1, n], be a set of components
with data with pairwise disjoint sets of ports Pi = P e

i ∪ P s
i and variables Xi = X in

i ∪Xout
i , i.e.,

Pi ∩ Pj = Xi ∩Xj = ∅, for all i 6= j. We denote P e =
⋃n

i=1 P
e
i and P s =

⋃n
i=1 P

s
i , respectively,

the sets of all enforceable and spontaneous ports in the system; X in =
⋃n

i=1 X
in
i and Xout =⋃n

i=1 X
out
i , respectively, the sets of all input and output variables.

The glue defining the composition of components with data comprises, in addition to a set of
interactions γ ⊆ 2P

e

, the data wire relation δ ⊆ X in ×Xout , associating input and output variables
in the system.

We say that the system is closed if, for each interaction allowed by γ, all input variables
have corresponding output variables. Denoting, for an interaction a = {pi | i ∈ I} ∈ γ, in(a) =⋃

i∈I

(
in(gi) ∪ in(fi)

)
and out(a) =

⋃
i∈I d(pi), this can be formally defined as follows: for any

set of component transitions {qi
pi,gi,fi
−−−−−→ q′i | i ∈ I}, holds the property

∀x ∈ in(a),
(
∃x′ ∈ out(a) : (x, x′) ∈ δ

)
.

A given interaction is possible in the composed system δγ(C1, . . . , Cn) if and only if the same
interaction would be possible in the data-abstract system γ(C̃1, . . . , C̃n) and, for each of the involved
components, all the necessary inputs—i.e., the input data required by the guard and the update
expression of the corresponding transition—are available and the guard is satisfied.

Formally, the composition is defined as δγ(C1, . . . , Cn) = (Q, γ, P s, X in , Xout , d −→), where
Q =

∏n
i=1 Qi is the Cartesian product of the sets of states of the individual components, the data

access mapping is defined, for any interaction a = {pi | i ∈ I}, by letting

d(a) =
⋃

i∈I

di(pi),

and −→ is the set of transitions defined as follows:

• for any i ∈ [1, n] and any spontaneous port p ∈ P s
i ,

(q1, . . . , qi, . . . , qn)
p,g,f
−−−→ (q1, . . . , q

′
i, . . . , qn) ⇐⇒ qi

p,g,f
−−−→ q′i ,

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

22 S. BLIUDZE ET AL.

• similarly for internal transitions, for any i ∈ [1, n],

(q1, . . . , qi, . . . , qn)
τ,g,f
−−−→ (q1, . . . , q

′
i, . . . , qn) ⇐⇒ qi

τ,g,f
−−−→ q′i ,

• for any interaction a = {pi | i ∈ I} ∈ γ and any mapping δ′ : in(a) → out(a), such that(
x, δ′(x)

)
∈ δ, for any x ∈ in(a),

(q1, . . . , qn)
a,g,f
−−−→ (q′1, . . . , q

′
n) ⇐⇒

qi
pi,gi,fi
−−−−−→ q′i, if i ∈ I,

qi = q′i, if i 6∈ I,

g =
∧

i∈I g̃i,

f =
(
f̃i
)
i∈I

,

where g̃i and f̃i denote the expressions obtained, respectively, from gi and fi, by substituting
each input variable x by the corresponding output variable δ′(x); and

(
f̃i
)
i∈I

denotes the

combined execution of the update expressions f̃i.

Notice that, in the definition of f , all the assignments are executed in parallel using the previous
values provided as inputs to the component update expressions. Hence, the order of updates is
irrelevant.

The presentation in this section has provided the theoretical foundations for the implementation
of the JavaBIP Executor class and Engine, on one hand, and the component and glue specifications,
on the other hand. Indeed, the Executor and the Engine (Section 6) implement, respectively, the
semantics of components (Section 4.2.1) and glue (Section 4.2.2). In Section 5, we present the
various syntactic constructs used to define JavaBIP systems. Java annotations used for the definition
of BIP Specifications (Section 5.1) are based on the component model defined in Sections 4.1.1
and 4.2.1. The XML formats used for the definition of glue constraints (Section 5.2) and data wires
(Section 5.3) directly mirror the corresponding formalizations in Sections 4.1.4 and 4.2.2. Short of
a formal proof, this close link between the formal model and the implementation provides a high
degree of confidence in the correctness of the framework. Furthermore, it enables the JavaBIP-to-
BIP transformation, for the connection with the various analysis tools available in the BIP tool-set
as discussed in Section 2.

5. SYSTEM SPECIFICATION

The following subsections present the constructs used to provide behavior, glue and data-wire
specifications (Figure 1 step ①). We refer to the examples of Section 3 to illustrate these constructs.

5.1. Behavior specification

Developers must specify component behavior through FSMs extended with ports and data. An
FSM has states and guarded transitions between them. Each transition has a method and a port
associated with it. Although, in general, one port can be associated with several transitions, such
transitions must have different origin state. In other words, FSMs are deterministic: there cannot be
two transitions leaving the same state and labeled by the same port.

The Behavior specification can be provided via annotations associated with class, method and
parameter declarations. To write a Behavior specification, developers must use the following
annotations:

• @ComponentType: Annotates a Java class. Declares a component type by specifying its
name and the initial state of the underlying FSM (Figure 7: line 5).

• @Port: Annotates a Java class. Declares a port by specifying its name and type—
“spontaneous” or “enforceable” (Figure 7: line 2).

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 23

• @Ports: Annotates a Java class. Groups all @Port annotations associated to a given
component type (Figure 7: line 1).

• @Guard: Annotates a method returning a Boolean value. Declares that the method can be
used as part of a transition guard, by specifying the guard name (Figure 6: line 21).

• @Transition: Annotates a method returning void. Declares an FSM transition, by
specifying the name of the corresponding port, the source and the target states, and the guard,
which is a Boolean expression on the guard names declared with the @Guard annotation
(Figure 6: line 16). Guard expressions can be defined using parenthesis and three logical
operators: negation ‘!’, conjunction ‘&’ and disjunction ‘|’.

The type of the transition is defined by that of the port it is labeled with (Figure 6: lines 2–3
and Figure 7: line 2). Internal transitions are specified by leaving the transition name empty
(Figure 3: line 32).

• @Data: Annotates a non-void method or a method parameter. Defines the data required
(input) or provided (output) by the component:

– input datum, when associated with a parameter of a guard or transition method (Figure 7:
line 14);

– output datum, when associated with a method returning a value (Figure 6: line 32).

@Data annotations always have the field name. Data names are used to establish connections
(called data wires—see Section 5.3) between inputs and outputs provided by the application
components. When the @Data annotation is used to define an output datum, it has two
additional fields: accessTypePort (allowed, disallowed or any) and ports. The
latter is a list of ports of the component in question, which is used to specify how this datum
can be accessed, based on the value of the accessTypePort field:

– allowed means that the datum can be accessed only through the ports in ports;

– disallowed means that the datum can be accessed only through the ports not in
ports;

– any means that the datum can be accessed at any execution point—the list of ports must
be empty.

Notice that the output values are provided by the @Data-annotated methods. The methods
associated to transitions do not return any value—they must be declared as public void.

The usage of data as parameters in guards allows components to disable interactions based on the
data values proposed by other components. For example, in Figure 4, transition add (lines 16–20)
depends on the guard hasCapacity, which requires the datum memoryUsage (lines 27–30).
This datum is received from another component potentially participating in an interaction. If the
proposed datum does not satisfy the guard, the interaction among these particular components is
disabled.

5.2. Glue specification

To define the interaction model, a developer must specify the interaction constraints of the system;
i.e., which ports of different components must synchronize. Interaction constraints need to be
specified once for each component type of the system. For instance, in the Publish-Subscribe
example of Figure 5, many instances of readers may exist in the system, however, the interaction
model of the TCPReader component type needs to be specified only once.

Interaction constraints are specified using macro-notation:

• Causal constraints (Require) specify ports of other components, necessary for any
interaction involving the port with which the constraint is associated.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

24 S. BLIUDZE ET AL.

1 <require>

2 <effect id="give" specType="TCPReader"/>

3 <causes>

4 <port id="put" specType="CommandBuffer"/>

5 </causes>

6 </require>

7 <accept>

8 <effect id="give" specType="TCPReader"/>

9 <causes>

10 <port id="put" specType="CommandBuffer"/>

11 </causes>

12 </accept>

Figure 11. Glue specification for the Publish-Subscribe example (cf. Section 3.2).

1 <require>

2 <effect id="broadcast" specType="Tracker"/>

3 <causes>

4 </causes>

5 </require>

6 <accept>

7 <effect id="broadcast" specType="Tracker"/>

8 <causes>

9 <port id="speak" specType="Peer"/>

10 <port id="listen" specType="Peer"/>

11 </causes>

12 </accept>

13 <require>

14 <effect id="log" specType="Tracker"/>

15 <causes>

16 <port id="register" specType="Peer"/>

17 </causes>

18 <causes>

19 <port id="unregister" specType="Peer"/>

20 </causes>

21 </require>

22 <accept>

23 <effect id="log" specType="Tracker"/>

24 <causes>

25 <port id="register" specType="Peer"/>

26 <port id="unregister" specType="Peer"/>

27 </causes>

28 </accept>

Figure 12. Glue specification for the Trackers-and-Peers example (cf. Section 3.3).

• Acceptance constraints (Accept) define optional ports of other components, accepted in
the interactions involving the port with which the constraint is associated.

The glue specification must be provided in an XML file (cf. Figure 11). Each constraint has two
parts: effect and causes. The former defines the port to which the constraint is associated—
intuitively, the effect is the firing of a transition labeled by this port. The latter lists the ports that are
necessary to “cause” the “effect”. For the require constraints, all causes must be present; for the
accept constraints, any (possibly empty) combination of the causes is accepted.

For example, the constraint in Figure 11, lines 1–6 forces the port give of any component of type
TCPReader to synchronize with the port put of some component of type CommandBuffer. The
constraint in Figure 11, lines 7–12 specifies that no other ports are allowed to participate in the same
interaction. These two constraints essentially define binary connectors between ports give of each
TCPReader and the port put of the CommandBuffer (cf. Figure 5).

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 25

1 <require>

2 <effect id="on" specType="Route"/>

3 <causes>

4 <port id="add" specType="Monitor"/>

5 </causes>

6 </require>

7 <accept>

8 <effect id="on" specType="Route"/>

9 <causes>

10 <port id="add" specType="Monitor"/>

11 </causes>

12 </accept>

13 <require>

14 <effect id="finished" specType="Route"/>

15 <causes>

16 <port id="rm" specType="Monitor"/>

17 </causes>

18 </require>

19 <accept>

20 <effect id="finished" specType="Route"/>

21 <causes>

22 <port id="rm" specType="Monitor"/>

23 </causes>

24 </accept>

25 <require>

26 <effect id="add" specType="Monitor"/>

27 <causes>

28 <port id="on" specType="Route"/>

29 </causes>

30 </require>

31 <accept>

32 <effect id="add" specType="Monitor"/>

33 <causes>

34 <port id="on" specType="Route"/>

35 </causes>

36 </accept>

37 <require>

38 <effect id="rm" specType="Monitor"/>

39 <causes>

40 <port id="finished" specType="Route"/>

41 </causes>

42 </require>

43 <accept>

44 <effect id="rm" specType="Monitor"/>

45 <causes>

46 <port id="finished" specType="Route"/>

47 </causes>

48 </accept>

49 <require>

50 <effect id="off" specType="Route"/>

51 <causes>

52 </causes>

53 </require>

54 <accept>

55 <effect id="off" specType="Route"/>

56 <causes>

57 </causes>

58 </accept>

Figure 13. Glue specification for the Camel Routes example (Section 3.1).

The glue specification for the broadcast and log ports of the Tracker component type
of Section 3.3 is shown in Figure 12. The causal constraint (Figure 12: lines 1–5) means

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

26 S. BLIUDZE ET AL.

1 <wire>

2 <from specType="TCPReader" id="readerInput"/>

3 <to specType="CommandBuffer" id="input"/>

4 </wire>

Figure 14. Data-wire specification for the Publish-Subscribe example (cf. Section 3.2).

that the broadcast ports of trackers do not require any synchronization with ports of other
components. However, they accept synchronization with the speak and listen ports of the
peers (Figure 12: lines 6–12). Notice that the require constraint for the port log has two
causes sections, corresponding to the two independently sufficient causes (Peer.register
and Peer.unregister) as discussed in Sections 4.1.3 and 3.3. In Figure 13, the complete glue
specification of the Camel Routes example (Section 3.1) in XML is presented. The glue specification
of the Camel Routes example with the require and accept macros was previously explained in
Example 4.3. The empty causes sections of the constraints in lines 49–58 indicate the port
Route.off neither requires, nor accepts synchronization with any other port.

5.3. Data-wire specification

JavaBIP components exchange data and make decisions concerning the components they want to
interact with based on the data they receive. Data wires specify data that can be exchanged between
components, by connecting the input data with the output data provided by other components.

The data-wire specifications must be provided in an XML file, as shown in Figure 14. In the
Publish-Subscribe example of Section 3.2, the buffer component collects data from the TCPReaders
that correspond to the commands sent from the clients. The data wire of Figure 14 connects the input
datum of the CommandBuffer (input) with the output datum of the TCPReader (readerInput).
The data transfer is finalized only if the associated transitions that require data can be executed, i.e.,
the corresponding guards evaluate to true. For instance, a TCPReader can send data only when the
corresponding client sends a command and the buffer is not full, i.e., the give-add interaction
can be executed.

6. IMPLEMENTATION

The software architecture of the JavaBIP runnable system is shown in Figure 15. It consists of two
main parts: the modules and the engine, as shown, respectively, in the top and bottom parts of the
figure. The exchange of information between the engine and the modules is illustrated in Figure 15
with arrows. Information is either exchanged only once at initialization of the engine (illustrated in
Figure 15 with solid arrows) or at each execution cycle (illustrated in Figure 15 with dashed arrows).
Each module sends specification of its behavior. The glue and data-wire specifications are provided
as XML files directly to the JavaBIP engine.

The implementation of the engine is modular. It consists of a stack of coordinators and the
kernel. The coordinators manage the flow of information between the modules and the kernel.
Coordinators use dedicated encoders to transform the diverse specifications into permanent and
temporary constraints that are sent to the kernel.

The kernel solves the combined constraints imposed by the behavior, glue and data-wire
specifications and passes the solution back to the coordinators. Each coordinator interprets the
relevant part of the solution and triggers the corresponding action in the executors, where the actual
API function calls to the controlled source code are made. How the solution is forwarded from the
kernel to the functional code is illustrated in Figure 15 with dashed arrows labeled execute. If the
kernel cannot find a solution because the combined constraints are contradictory, a deadlock occurs.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 27

Figure 15. JavaBIP software architecture.

6.1. JavaBIP module

A module comprises the functional code and the behavior specification of the corresponding
component (cf. Section 5.1), as well as a dedicated executor. The behavior specification contains
the FSM with calls to the API methods provided by the component. It is used by the executor to
drive the interaction with the engine and the environment.

We have developped a generic Executor class that is instantiated in conjunction with any BIP
specification, i.e., a Java class with BIP annotations, and, using Java Reflection API, drives the
execution of the corresponding component. The Executor is also responsible for communicating
with the JavaBIP engine to enforce the BIP protocol.

The JavaBIP engine creates a new executor instance upon registration of each module. Thus,
executors are almost entirely transparent for developers. Indeed, the Executor class implements
several interfaces, among which the only one that is visible to developers is the interface that
provides only one method for sending spontaneous events to the executor. At each execution cycle,
an executor computes the set of transitions enabled in the current state of the component (both
enforceable and spontaneous). A transition is enabled when it has no guard or when its guard
evaluates to true. The executor then uses the following protocol to pick one transition to fire:

1. Internal: At most one internal transition can be enabled at a time (cf. Section 4). The executor
fires it right away.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

28 S. BLIUDZE ET AL.

2. Spontaneous: If no internal transitions are enabled, but the executor has received a notification
corresponding to an enabled spontaneous transition, one such transition is fired. Event
notifications are stored in a queue waiting to be processed. If more than one spontaneous
transition can be fired, the executor picks the first from the queue.

3. Enforceable: If there are no internal or spontaneous transitions enabled, an enforceable one
can be fired. The executor sends a list of disabled enforceable transitions to the BIP Engine
and waits for a response, indicating the port to be executed. Notifications for spontaneous
events that arrive at this point are not processed, but only stored in the queue. Upon receiving
the response from the Engine, the Executor performs the corresponding transition.

Notice that, if no transition of any type is enabled, the component skips the cycle and waits for a
notification to arrive or for a guard on one of its transitions to become true.

If a transition requires data for the execution, it is provided by the engine along with the port.
When a transition is executed, the function associated to the transition is called using reflection and
the current state of the FSM is updated. To use the transition synchronization mechanism, developers
must ensure that the component states remain stable during one cycle of the engine protocol
presented in Section 1.1, this means that a component must be able to perform any transition it

has announced as possible to the JavaBIP Engine. Therefore, the component must be designed
in such a way that no spontaneous transition will invalidate the ability to perform the announced
enforceable transition. This is the rationale why we postpone treatment of spontaneous notifications
between announcement to the engine of enabled enforceable transitions and the execution of the
enforceable transition chosen by the engine.

As mentioned in Remarks 4.1 and 4.8 (Section 4), we require that FSM specifying component
behavior be deterministic. The transition enabledness may depend on data evaluation, therefore the
validity of this condition is, in general, undecidable and cannot be checked statically at design time.
Developers are responsible for enforcing component determinism. However, the BIP Executor logs
an exception when an invalid component model is detected at runtime.

6.2. JavaBIP engine

The engine comprises the kernel and a set of coordinators. The kernel combines and solves the
various constraints of the system. The coordinators receive different types of information from the
modules and encode the received information as Boolean constraints using dedicated encoders.
These Boolean constraints are then passed to the engine kernel. We have developed two coordinators
that produce different types of constraints: the Glue coordinator and the Data coordinator.

As shown in Figure 15, the coordinators form a chain. Depending on the needs of the application,
different coordinators can be used. For instance, if there is data transfer, the Data coordinator must be
used on top of the Glue coordinator. Otherwise, the use of solely the Glue coordinator is sufficient.
Other coordinators can be easily added to manage other types of constraints—the implementation
of the coordinator stack renders the architecture extensible.

6.2.1. Engine kernel The kernel combines and solves the various constraints of the system. Its
implementation is based on Binary Decision Diagrams (BDDs)†† [18], which are efficient data
structures to store and manipulate Boolean formulas. The kernel applies the three-step protocol
presented in Section 1.1 in a cyclic manner. In particular, it receives from the coordinators
constraints in the form of Boolean formulas and assembles them by taking their conjunction to find
a solution. The solution is sent back to the coordinators which interpret it and notify the components
accordingly. The imposed constraints can be of two types:

• Permanent constraints that are received only once at initialization. They encode information
about the Behavior, Glue and data wires of the components. In Figure 15, permanent
constraints are shown with arrows labeled permanent.

††We have used the JavaBDD package, available at http://javabdd.sourceforge.net

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

http://javabdd.sourceforge.net

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 29

• Temporary constraints that are received at each execution cycle. They encode information
about the enabled transitions of the components. In Figure 15, temporary constraints are
shown with arrows labeled temporary.

6.2.2. Glue coordinator The Glue coordinator manages the information about the behavior, glue
and current state of the components. It encompasses three dedicated encoders (cf. Figure 15):
the Behavior encoder, the Glue encoder and the Current State encoder. The Boolean constraints
encoding component behavior and glue are permanent, hence only computed—by the Behavior and
Glue encoders, respectively—once at initialization. The Boolean constraints encoding the current
states of components are temporary, hence recomputed at each execution cycle.

Each component is registered with the Glue coordinator by providing its behavior specification.
Then, the Glue coordinator forwards to the Behavior encoder the lists of enforceable ports and states
of each registered component. For each enforceable port, a Boolean port variable is created by the
BDD manager. Similarly, for each state, a Boolean state variable is created. The behavior constraints
are built, using the port and state variables.

The Behavior encoder computes the behavior BDD based on the following constraints:

1. Each component can be in one state at a time.

2. A set of enforceable ports is associated to each state. These ports can be enabled when the
component is in their associated state.

3. A component may skip the cycle (execute none of the transitions and remain at the same
state).

In order to avoid overloading the formulas and since glue constraints only involve enforceable
ports, we omit below the superscript e used to denote enforceable ports, e.g. we write P instead of
P e. Let Qi and Pi be the set of states and ports of a component Ci. Let P q

i = {p ∈ Pi | ∃q
′ : q

p
−→ q′}.

We compute the behavior BDD for component Ci, by letting

BDDB
i =

∨

q∈Qi

q ∧

∧

q′∈Qi\{q}

q′ ∧
∨

p∈P q

i

p ∧

∧

p/∈P q

i

p

 ∨

∧

p∈Pi

p .

The system behavior BDD is computed as the conjunction of all the component behavior BDDs:

BDDB =

n∧

i=1

BDDB
i .

The Glue encoder receives from the Glue coordinator the glue specification. The glue BDD is
computed by interpreting the Require and Accept constraints as shown in Section 4.1.4, using the
same Boolean port variables that have been previously created and used by the Behavior encoder.
Both glue and behavior BDDs are computed once during the initialization of the system.

The Current State encoder is notified each time the Glue Coordinator is informed of a component
state and its disabled ports. Ports can be disabled due to evaluation of guards. Let q be the current
state and P dis

i be the set of disabled ports of a component Ci. Then, the current state BDD for
component Ci is computed as follows:

BDD
Q
i = q ∧

∧

q′ 6=q, q′∈Qi

q′ ∧
∧

p∈P dis
i

p .

The current state BDD of each component is then transferred to the engine kernel, where the
conjunction of all current state BDDs is computed at each execution cycle and is further conjuncted
with the Behavior and Glue BDDs.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

30 S. BLIUDZE ET AL.

6.2.3. Data coordinator The Data coordinator is used on top of the Glue coordinator. Using the
Data encoder, it encodes as permanent constraints the information about data wires, which connect
input and output data provided by the components. In particular, at initialization phase, the Data
coordinator receives the data-wire specification of the system (cf. Section 5.3). The Data coordinator
queries the registered components to determine the ports that require data (input data) and the ports
that provide data (output data). Then, the Data coordinator passes to the Data encoder the data wires
and the pairs of ports that require and provide data. For each pair of ports, the Data encoder creates
a Boolean data variable. For each data variable d and its corresponding pair of port variables p and
r, the Data encoder creates the constraint

d ⇒ (p ∧ r) ,

meaning that data can only be transferred along the data wire going through ports p and q if these
two ports participate in the interaction. Additionally, for each port p, which has associated data
variables, the Data encoder creates the following constraint:

p ⇒
∨

d∈Dp

d,

where Dp is the set of data variables associated to port p, meaning that These two constraints form
the permanent constraint of the Data encoder, which is only computed once at initialization time.
The permanent constraint is the following:

BDDD
perm =

∧

d∈D

(
d ∨ (pd ∧ rd)

)
∧

∧

p∈P, s.t. Dp 6=∅

p ∨

∨

d∈Dp

d

 ,

where pd and rd are the ports connected by the data wire corresponding to the data variable d and
Dp is as above.

At each execution cycle, the Data coordinator produces temporary constraints imposed on
component interaction by the guards associated to component inputs. These temporary constraints
disable the interactions involving data transfer, where the proposed output data values do not satisfy
the guards associated to the corresponding input data. To this end, each guard that requires input
data is evaluated on all data values proposed along the data wires attached to the corresponding port.

6.3. Experimental evaluation

We show experimental results for four case-studies: 1) two implementations of the Camel routes
example (Section 3.1), i.e., one with and one without data transfer; 2) the Trackers-and-Peers
example of Section 3.3 and 3) the Publish-Subscribe example of Section 3.2. The experiments were
run on an Intel Core i7-2640M CPU at 2.80GHz x 4 with 8GB RAM. The JavaBIP models of these
systems are available at the JavaBIP website‡‡.

In the Camel routes examples (with and without data), we consider C − 1 routes and 1 monitor,
where C is the total number of components. In the Trackers-and-Peers example, there are always
four times more peers than trackers. In the Publish-Subscribe example there is always one buffer,
one topic-manager, and varying numbers of TCPReaders, handlers and topics. The number of client-
proxies is the same as the number of TCPReaders.

Figure 16a shows the average execution time of the first 1000 engine cycles for all four examples,
with the number of components ranging from 5 to 75. Figure 16b shows the peak memory usage
of the BDD Manager for each of the three examples. Table II summarizes all results shown in
Figures 16a and 16b. The Camel routes implementations illustrate the impact of data transfer
on the performance of the engine. The behavior and interaction models of the two Camel route
implementations are equivalent; in the latter, components also exchange data. Although data transfer

‡‡http://risd.epfl.ch/javabip

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

http://risd.epfl.ch/javabip

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 31

(a) Average engine execution time. (b) BDD Manager peak memory usage.

Figure 16. Performance diagrams

causes an increase in the execution time and memory usage of JavaBIP, the overall coordination
overhead remains low. The Publish-Subscribe example uses both enforceable and spontaneous
transitions. Spontaneous transitions are not controlled by the JavaBIP engine which leads to low
coordination overhead as illustrated in Figure 16a.

It should be noted that the complexity and the overhead induced by the JavaBIP engine depends
on the size of the kernel BDD. This is characterised by the number of Boolean variables used
in the encoding and their ordering in relation with the encoded constraints. Table III summarizes
the number of Boolean variables used by the engine for each of the four case-studies for 5, 50
and 75 components. Notice that we take into account only enforceable ports, which correspond to
transitions that are controlled by the JavaBIP engine. Table IV presents the total number of variables
(which is the sum of states, ports and data variables shown in Table III) and the number of possible
interactions computed by the engine for each of the four case-studies for 5, 50 and 75 components.
For 75 components, the total number of variables is: 1) 521 for Camel Routes without data; 2) 669
for Camel Routes with data; 3) 645 for Trackers & Peers and 4) 226 for Publish-Subscribe.

Although the increase of the number of variables results in increasing the overhead of the engine,
what really affects the performance of the engine is the complexity of the glue specification. We
have used the Trackers & Peers case-study as a stress test for the JavaBIP engine. In particular, in
the Trackers & Peers case-study, the number of possible interactions increases exponentially with
the number of components, e.g., for 75 components, there exist 1.17 · 1024 possible interactions
(Table IV). Coordinating a system of such complexity with traditional techniques would be very
difficult and error-prone. In JavaBIP, the full glue specification does not exceed 20 lines of code and
is specified externally for the global system.

To compare the engine’s execution time, we have used Camel Routes to transfer files of different
size on an Intel Core i7-2640M CPU at 2.80GHz x 4 with 8GB RAM. We measured that a Camel
Route needs 113ms to transfer a 3KB file, while for a 75MB file a Camel Route needs 890ms. Notice
that this is “an ideal scenario” since only one Camel route is running at each time. In the case where
4 Camel Routes are running simultaneously, to transfer the 75MB file we need more than 900ms.
We argue that the engine’s overhead which is < 1ms for 4 Camel Routes and 1 Monitor is negligible
when compared to 900ms or even to 113ms. Additionally, the memory usage of the BDD Manager
remains very low, less than 2MB for 75 components, for the Camel Routes with data case-study.

7. RELATED WORK

Locking provides very efficient means for coordinating concurrent access to shared resources.
However, it leads to code that is hard to understand, debug and maintain. Several solutions,

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

32 S. BLIUDZE ET AL.

Table II. Engine times and BDD Manager peak memory usages. Time is in milliseconds and memory is in
Megabytes.

Nb of Routes no data Routes with data Trackers & Peers Publish-Subscribe

comps Time Memory Time Memory Time Memory Time Memory

5 < 1 0.010 < 1 0.015 < 1 0.640 < 1 0.026
10 < 1 0.029 < 1 0.075 2.103 2.278 < 1 0.048
15 < 1 0.047 1.147 0.099 4.264 7.584 < 1 0.084
20 < 1 0.079 1.254 0.180 6.002 10.338 < 1 0.108
25 < 1 0.099 1.585 0.220 8.980 15.932 < 1 0.130
30 1.254 0.120 1.614 0.324 12.329 23.670 < 1 0.161
35 1.328 0.169 1.895 0.456 18.643 31.896 < 1 0.184
40 1.459 0.200 2.393 0.560 24.727 43.045 < 1 0.233
45 1.874 0.238 2.731 0.700 31.187 51.598 < 1 0.251
50 2.167 0.280 3.568 0.780 38.943 69.984 < 1 0.295
55 2.346 0.340 3.796 0.840 49.766 87.097 < 1 0.315
60 2.786 0.387 5.093 0.920 63.766 99.983 < 1 0.338
65 3.286 0. 410 5.345 1.028 85.327 113.983 < 1 0.366
70 3.749 0.450 5.548 1.105 99.876 131.237 1.001 0.394
75 4.133 0.488 6.970 1.170 113.657 146.476 1.125 0.437

Table III. Number of Boolean variables used for States (S), Ports (P) and Data Variables (DV).

Nb of Routes no data Routes with data Trackers & Peers Publish-Subscribe

comps S P DV S P DV S P DV S P DV

5 17 14 - 17 14 8 9 18 16 5 6 5
50 197 149 - 197 149 98 90 180 160 50 51 50
75 297 224 - 297 224 148 135 270 240 75 76 75

Table IV. Total number of Boolean Variables (V). Number of possible Interactions (I).

Nb of Routes no data Routes with data Trackers & Peers Publish-Subscribe

comps V I V I V I V I

5 31 8 39 8 43 46 16 5
50 346 98 444 98 430 2.36 · 1016 151 50
75 521 148 669 148 645 1.17 · 1024 226 75

originating with the Actor model [5, 19] and the Active Object pattern [20], have been proposed
for dealing with these difficulties, e.g., [21, 22, 23, 24]. (We refer the reader to [25] for an
overview.) By restricting the coordination mechanisms to asynchronous message passing, the
Actor model guarantees deadlock-freedom and renders the designed software easily amenable
for distribution. Furthermore, it prevents components from directly accessing the state of other
components, eliminating data races. However, race conditions may still occur: when two actors
send messages to a third one, the resulting state of the latter depends on the order of arrival of
the two messages. Although, in some cases, such race conditions may be benign, in general they
might need to be avoided, representing a trade-off between performance and behavioral properties,
such as predictability and reproducibility. Indeed, avoiding such race conditions requires some
form of synchronization (e.g., barriers), which decreases the performance, since all synchronised
processes must wait for each other. In Actor- and Active-Object-based approaches, this trade-off is
realised by the use of extended features, such as synchronization on futures. Instead, the JavaBIP
approach dissociates synchronization from communication of values and provides a powerful and
flexible mechanism for the definition of synchronization patterns of arbitrary complexity. Thus, the
above approaches focus primarily on scalability at the expense of the expressiveness of coordination
primitives. They do not impose the separation of computation from coordination, thus only partially
alleviating the above difficulties. Since component code substantially depends on its environment,
modularity suffers. Indeed, send and receive primitives are embedded directly into the functional

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 33

code and fairly complex message exchange protocols have to be designed, which are spread
out across multiple actors and interleave with their computation code. Any modification of the
coordination policy calls for corresponding modifications in the behavior of several actors. On
the contrary, as illustrated by the Camel Routes example in Section 3.1, the JavaBIP approach
provides high modularity, since coordination patterns can be applied or changed without requiring
any modifications of existing components. Notice, finally, that asynchronous message passing used
in the Actor-based approaches is encoded through the use of spontaneous transitions as illustrated
by the Publish-Subscribe server example (Section 3.2); it is easy to see that synchronization on
futures can also be encoded by combining spontaneous transitions with the JavaBIP synchronization
mechanism.

Fractal [26] is a hierarchical component model that provides mechanisms for component control
and interception. Beyond the primitive bindings between a client and server interface that commonly
appear in such context, Fractal allows the so-called composite bindings. A composite binding is a
communication path between an arbitrary number of component interfaces, assembled from binding
components. Composite bindings can define multiparty interactions similar to those used in BIP and
JavaBIP. The major distinction is that there is no strong restriction on the behavior of the binding
components necessary to achieve that. Such use of binding components, to coordinate the execution
of the functional ones, can be compared to the use of coordinators in the BIP architecture-based
approach [13, 14] for enforcing property satisfaction by construction. However, enforcing properties
that do not require additional state information can be achieved in both BIP and JavaBIP without
introducing additional behavior, thereby providing a stronger separation of the coordination and
functional concerns. Composite bindings in Fractal bear similarity to the connector architectures in
SOFA 2 [27, 28], with the same remarks about separation of concerns being applicable.

The Grid Component Model (GCM) [29], is an Active-Object-based extension of Fractal
for grid computing. The reference implementation of GCM, called GCM/ProActive is built
on top of the ProActive [22, 30] Java middleware implementing multi-threaded active objects.
The component-based approach advocated by Fractal, in general, and implemented in the
GCM/ProActive framework is very close to that of BIP, particularly in their strong emphasis on the
separation of concerns between coordination and computation. Apart from the above discussion of
synchronization mechanisms, the main difference is that GCM/ProActive relies on code generation,
as opposed to the exogenous coordination approach of JavaBIP.

It should be noted that a number of languages and frameworks mentioned above, in particular
Rebeca, SOFA 2 and GCM/ProActive, have associated verification tools [23, 31, 32]. Among the
behavioral model used for the verification by these tools, the one closest to BIP is the pNets [33]
model used for the verification of GCM models in CADP [34]. We leave for future work a study of
the connection between BIP and GCM, which would allow applying the verification tools from the
BIP tool-set to GCM models. Similarly, it would be interesting to explore potential application of
Rebeca or SOFA 2 verification tools to the analysis of the JavaBIP spontaneous notifications.

Xcd [35] and SIP [36], impose the separation of concerns principles while dealing with
coordination of concurrent software components. Xcd makes the choice of emphasizing specifically
the realizability of distributed architectures, thus excluding up-front the possibility of centralized
synchronization. SIP represents the functional logic of an application as a state machine and
manages synchronization contracts that specify application needs in resources. Even though this
work bears similarity to our approach, it cannot be used to enforce complex synchronization
scenarios as in JavaBIP.

A number of other approaches further explore the issue of coordination in concurrent
environment. D [37] is a language framework based on Java and extended with aspect languages.
Cool, the coordination aspect language within D, provides functionality to model mutual exclusion,
synchronization state, guarded suspension and notification of threads. Coordination of multiple
classes is possible, however, the synchronization of actions is hard to specify. Another aspect-
oriented approach is taken in [38], where the authors focus on separating the design and the choice
of a specific synchronization mechanism and present a library allowing declarative specification
of synchronization using tagging. In [39], discrete-event systems theory is used to generate

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

34 S. BLIUDZE ET AL.

concurrency control code. Using control-flow graphs of threads coupled with predefined relevant
control events, the authors build simplified FSMs for each thread. Based on these FSMs, a general
supervisor is constructed, from which the concurrent code is generated using semaphores. In both of
these approaches, tags or events are embedded in the code, resulting in poor separation of concerns.

In [40], a component model with explicit symbolic protocols based on Symbolic Transition
Systems is presented. The authors define a component language to describe the interfaces and the
protocol of a component. Connection mechanisms are represented by channels. However, only one-
to-one connections are allowed. Furthermore, even though a controller is implemented whose role
bears similarity to the JavaBIP executor, controller classes have to be manually created for each
component in the architecture.

Automatic generation of synchronization constraints from global invariants expressed by logic
formulas is discussed in [41]. The authors suggest an approach where the regions of code requiring
synchronization are marked with syntactic tags and the synchronization policy for sets of dependent
regions are separately defined. The limitation of this work is that it cannot define coordination
scenarios taking into account variable values.

The coordination meta language for distributed objects, SynchNet, presented in [42], is inspired
by the Actor model and based on Petri Nets. It allows the specification of coordination patterns
for automatic generation of distributed code. However, the language uses only method labels and
cannot account for data.

Using FSMs to model program behavior constitutes a common practice. In [43], the authors
propose a methodology to automatically extract the finite-state models of object-oriented class
interfaces. In the extracted FSMs, the states correspond to methods, while the transitions represent
acceptable sequencing of method calls. The extracted models may serve as documentation, they
can also be used to check whether the program exhibits expected behavior or as complementary
material in a test suite. In our approach, FSMs define a relevant abstract view of the behavior of
the software, which is more complex and complete than just method call sequencing and therefore
can be effectively used for more complex system analysis. For instance, a state is the combination
of the control location (between method calls) and data valuations, which allows, among others, to
consider guards.

Similarly, in [44, 45, 46] behavioral types, represented by FSMs are used to describe the behavior
of component types and their interaction protocols. The latter are constrained by the fact that
behavioral types strictly describe method calls and thus, cannot describe n-ary synchronizations
among components. Additionally, in contrast to JavaBIP behavioral and interaction specifications,
behavioral types do not capture data transfer information. Behavioral types can be used for runtime
verification through automatic generation of monitors that are executed in parallel with a system
implementation. Runtime monitors, in [44], are connected to components using AspectJ. Similarly
to the JavaBIP approach, this requires the developers to be aware of the APIs of the underlying
components. With respect to JavaBIP, the advantage of [44] could be that components need
not specifically provide spontaneous ports in their interfaces. Instead a developer could set up
notifications for spontaneous transitions, as long as a sufficiently close pointcut can be defined.
In JavaBIP, however, we have intentionally taken a less invasive approach that allows exogenous
monitoring of components and is not subject to some of the compositionality and coupling issues
linked with the aspect programming approach [47]. Similar considerations apply for AOKell [48]—
an aspect-based implementation of the Fractal component model mentioned above.

In [49], the authors argue for the extension of objects with state information through Typestate-
Oriented Programming. A number of works [50, 51] support the importance of this approach, which
allows for the specification of classes of temporal safety properties in the form of FSMs. This
extension of types serves in checking whether an operation is allowed in a specific context. These
works address the problems of retrieving or verifying method call sequences, whereas JavaBIP
focuses on enforcing coordination.

The Behavior Driven Development [52] software approach puts a strong focus on explicitly
stating the behavior of system components. In particular, Behavior Driven Development focuses
on understanding the behavior of the components defined as simple given-when-then scenarios.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 35

Such a scenario can be simply explained as follows: given the state of the component, when an
action is executed the component reaches the corresponding then state. The JBehave tool [53] that
supports Behavior Driven Development also requires a user to create an object model (an instance
of a Java class) that directly maps scenarios to functions within this object model. Similarly to
Behavior Driven Development, our approach puts a strong focus on explicitly stating the behavior
of the system components. The JavaBIP mechanism for behavior specification could be used to
define given-when-then scenarios for all transitions within a Behavior specification.

Another example is the Domain Driven Design (DDD) [54]. In DDD, it is important to model
a system using a ubiquitous language based on the business domain, so the business vocabulary
permeates the code base. JavaBIP specifications allow creating an abstract view of a software entity
where one can create a clean model of the system component using terms from the language of
the business domain. At the same time, BIP specification may internally interact with existing
software components originating from legacy systems that have different vocabulary as well as often
technical (non-business) nature. Business transitions specified within a Behavior specification can
internally use functionality of technical components, e.g., transactional support within a database. A
Bounded context concept from DDD encourages explicitly stating the boundaries for the application
of the models. By encapsulating technical components, JavaBIP Behavior specifications can provide
abstract representations of their behaviour at levels of detail appropriate for the corresponding
business domains.

8. CONCLUSION AND FUTURE WORK

The main goal of our work was to allow an exogenous approach to the coordination of software
components relying, for the interaction with the controlled components, on existing APIs. To
this end, JavaBIP specifications are defined as separate Java classes that, on one hand, allow
the interaction with other components through the mediation of the JavaBIP engine and, on the
other hand, interact with the controlled components through the provided APIs and notifications
of spontaneous events. All JavaBIP models are defined separately from the functional code of the
components. The behavior specifications are very well localized, which makes them easy to provide.
Furthermore, the glue and data-wire specifications can be defined and modified without altering the
functional code, which is impossible with traditional approaches.

We have presented experimental results that validate the effectiveness of JavaBIP for the
coordination of software components. Verification tools, e.g., DFinder and nuXmv, can be used to
validate JavaBIP specifications, ensuring correctness of the designed systems. JavaBIP coordination
has been tested and validated in Connectivity FactoryTM by Crossing-Tech S.A.

In a somewhat broader context, we argue that the existing notion of an interface is not sufficient
for ensuring correct manipulation of objects. Indeed, Java interfaces only specify the methods that
must be implemented by a class, but the information about when these methods can be called
is hidden from other components: the responsibility of checking whether the state of an object
allows the execution of a given method is relegated to the method itself. This has several important
consequences: 1) all the information about the conditions when the method can be called must be
available at the design time; 2) it is difficult to impose additional restrictions on these conditions
without having to change the existing implementation; 3) this information cannot be used for
coordinating the execution of other components. Our work addresses all these issues by extending
Java interfaces with state information. This is a first step in the direction that we consider important
in the future development of programming languages such as Java. Notice that a class can implement
several interfaces. Similarly, several FSMs can represent independent abstract views of different
aspects of the component behavior. Extending interfaces with state information is compatible with
interface composition and inheritance.

Future work comprises several directions: extending our framework with additional coordinators,
e.g., to manage priorities, dynamic component creation and resource allocation policies;
incorporating run-time state validity verification by annotating states with assertions that would

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

36 S. BLIUDZE ET AL.

be checked after firing a transition; finally, improving scalability by combining existing techniques
from the BIP framework for parallelizing and distributing the JavaBIP engine.

Currently, in JavaBIP, we are using the Require and Accept macros to specify the glue. These
macros are based on first-order interaction logic and define architectural constraints [13]. In order
to generalize these specifications, we plan to use configuration logics [55, 56] and architecture
diagrams [15, 57] to define not a single architecture but families of architectures that share common
characteristics such as the type of the involved components and the properties they impose. By
using families of architectures, we facilitate reusability and correctness-by-construction. A software
developer that uses JavaBIP would not always need to create new glue specifications but rather
generate them directly from a library of specifications, which have been previously checked for
correctness.

ACKNOWLEDGEMENTS

Our implementation of the Publish-Subscribe example in JavaBIP was based on the native Java code
by Thomas Ropars and Martin Biely for the Concurrency class taught at EPFL by André Schiper. We
are very grateful to the anonymous reviewers for their comments and constructive suggestions that have
made significant contributions to improving this paper. This work was partially supported by the Swiss
Commission for Technology and Innovation (CTI 14432.1 PFES-ES).

REFERENCES

1. The Apache Software Foundation. Apache Camel:Routes. http://camel.apache.org/routes.html.
(Accessed on 12/02/2016.).

2. Williams A. C++ Concurrency in Action: Practical Multithreading. 1st edn., Manning Publications: Greenwich,
CT, USA, 2012.

3. Lea D. Concurrent programming in Java: design principles and patterns. Addison-Wesley Professional, 2000.
4. Basu A, Bensalem S, Bozga M, Combaz J, Jaber M, Nguyen TH, Sifakis J. Rigorous Component-Based System

Design Using the BIP Framework. IEEE Software 2011; 28(3):41–48, doi:10.1109/MS.2011.27.
5. Agha G. Actors: a model of concurrent computation in distributed systems. MIT Press: Cambridge, MA, USA,

1986.
6. Bensalem S, Bozga M, Nguyen TH, Sifakis J. D-Finder: A tool for compositional deadlock detection and

verification. Computer Aided Verification, Lecture Notes in Computer Science, vol. 5643, Springer, Springer Berlin
Heidelberg: Grenoble, France, 2009; 614–619.

7. Bliudze S, Cimatti A, Jaber M, Mover S, Roveri M, Saab W, Wang Q. Formal verification of infinite-state BIP
models. 13th International Symposium on Automated Technology for Verification and Analysis, LNCS, vol. 9364,
Springer International Publishing: Shanghai, China, 2015; 326–343, doi:10.1007/978-3-319-24953-7_25.

8. Bliudze S, Sifakis J. The algebra of connectors—structuring interaction in BIP. IEEE Transactions on Computers
2008; 57(10):1315–1330, doi:http://doi.ieeecomputersociety.org/10.1109/TC.2008.26.

9. Bliudze S, Sifakis J, Bozga MD, Jaber M. Architecture internalisation in BIP. Proceedings of the 17th International
ACM Sigsoft Symposium on Component-based Software Engineering (CBSE ’14), ACM: Marcq-en-Bareul, France,
2014; 169–178, doi:10.1145/2602458.2602477.

10. Bliudze S, Mavridou A, Szymanek R, Zolotukhina A. Coordination of software components with BIP: Application
to OSGi. Proceedings of the 6th International Workshop on Modeling in Software Engineering, MiSE 2014, ACM:
New York, NY, USA, 2014; 25–30, doi:10.1145/2593770.2593777.

11. Bozga M, Jaber M, Maris N, Sifakis J. Modelling dynamic architectures using Dy-BIP. Lecture Notes in Computer
Science 2012; 7306:1–16, doi:10.1007/978-3-642-30564-1_1.

12. Bliudze S, Sifakis J. Synthesizing glue operators from glue constraints for the construction of component-based
systems. Software Composition, Apel S, Jackson E (eds.), Lecture Notes in Computer Science, Springer: Zurich,
Switzerland, 2011; 51–67, doi:10.1007/978-3-642-22045-6_4.

13. Attie P, Baranov E, Bliudze S, Jaber M, Sifakis J. A general framework for architecture composability. 12th
International Conference on Software Engineering and Formal Methods (SEFM 2014), Giannakopoulou D, Salaün
G (eds.), no. 8702 in LNCS, Springer International Publishing: Switzerland, 2014; 128–143.

14. Attie P, Baranov E, Bliudze S, Jaber M, Sifakis J. A general framework for architecture composability. Formal
Aspects of Computing Apr 2016; 18(2):207–231.

15. Mavridou A, Stachtiari E, Bliudze S, Ivanov A, Katsaros P, Sifakis J. Architecture-based design: A satellite on-
board software case study. 13th International Conference on Formal Aspects of Component Software (FACS 2016),
2016. To appear.

16. Harel D. Statecharts: a visual formalism for complex systems. Science of Computer Programming Jun 1987;
8(3):231–274, doi:10.1016/0167-6423(87)90035-9.

17. Bliudze S, Sifakis J. Causal semantics for the algebra of connectors. Formal Methods in System Design 2010;
36(2):167–194, doi:10.1007/s10703-010-0091-z.

18. Akers S. Binary decision diagrams. IEEE Transactions on Computers 1978; C-27(6):509–516, doi:10.1109/TC.
1978.1675141.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

http://camel.apache.org/routes.html

EXOGENOUS COORDINATION OF CONCURRENT SOFTWARE COMPONENTS WITH JAVABIP 37

19. Gupta M. Akka Essentials. Community experience distilled, Packt Publishing, 2012.
20. Lavender RG, Schmidt DC. Active object: An object behavioral pattern for concurrent programming. Pattern

Languages of Program Design, vol. 2, Vlissides JM, Coplien JO, Kerth NL (eds.). Addison-Wesley Longman
Publishing Co., Inc.: Boston, MA, USA, 1996; 483–499. URL http://dl.acm.org/citation.cfm?id=
231958.232967.

21. Johnsen EB, Hähnle R, Schäfer J, Schlatte R, Steffen M. ABS: A core language for abstract behavioral specification.
Revised Papers of the 9th International Symposium on Formal Methods for Components and Objects , FMCO
2010, Lecture Notes in Computer Science, vol. 6957, Springer: Graz, Austria, 2010; 142–164, doi:10.1007/
978-3-642-25271-6_8. URL http://dx.doi.org/10.1007/978-3-642-25271-6_8.

22. Caromel D, Henrio L, Serpette BP. Asynchronous sequential processes. Information and Computation 2009;
207(4):459–495, doi:10.1016/j.ic.2008.12.004. URL http://dx.doi.org/10.1016/j.ic.2008.12.
004.

23. Sirjani M, Movaghar A, Shali A, De Boer FS. Modeling and verification of reactive systems using Rebeca.
Fundamenta Informaticae 2004; 63(4):385–410.

24. Cavé V, Budimlić Z, Sarkar V. Comparing the usability of library vs. language approaches to task parallelism.
Evaluation and Usability of Programming Languages and Tools, PLATEAU ’10, ACM: Reno, Nevada, USA, 2010;
9:1–9:6, doi:10.1145/1937117.1937126.

25. Henrio L, Rochas J. From modelling to systematic deployment of distributed active objects. Proceedings of
the 18

th IFIP WG 6.1 International Conference on Coordination Models and Languages (COORDINATION
2016), Lecture Notes in Computer Science, vol. 9686, Springer: Heraklion, Greece, 2016; 208–226, doi:10.1007/
978-3-319-39519-7_13. URL http://dx.doi.org/10.1007/978-3-319-39519-7_13.

26. Bruneton E, Coupaye T, Leclercq M, Quéma V, Stefani JB. The Fractal component model and its support in Java.
Software: Practice and Experience 2006; 36(11–12):1257–1284, doi:10.1002/spe.767.

27. Bures T, Plasil F. Communication style driven connector configurations. Proceedings of the 1
st International

Conference on Software Engineering Research and Applications (SERA 2003), Lecture Notes in Computer Science,
vol. 3026, Springer Berlin Heidelberg: San Francisco, CA, USA, 2004; 102–116, doi:10.1007/978-3-540-24675-6_
11. URL http://dx.doi.org/10.1007/978-3-540-24675-6_11.

28. Bures T, Hnetynka P, Plasil F. Sofa 2.0: Balancing advanced features in a hierarchical component model.
Proceedings of the 4

th Int. Conf. on Software Engineering Research, Management and Applications (SERA 2006),
IEEE Computer Society: Seattle, Washington, USA, 2006; 40–48, doi:10.1109/SERA.2006.62.

29. Baude F, Caromel D, Dalmasso C, Danelutto M, Getov V, Henrio L, Pérez C. GCM: A grid extension to Fractal
for autonomous distributed components. annals of telecommunications - annales des télécommunications 2009;
64:5–24, doi:10.1007/s12243-008-0068-8.

30. ProActive Parallel Suite. Available online: http://proactive.activeeon.com/. Accessed on
17/10/2016.

31. Kofron J. Checking software component behavior using behavior protocols and spin. Proceedings of the 2007 ACM
Symposium on Applied Computing, SAC ’07, ACM: New York, NY, USA, 2007; 1513–1517, doi:10.1145/1244002.
1244326. URL http://doi.acm.org/10.1145/1244002.1244326.

32. Henrio L, Kulankhina O, Li S, Madelaine E. Integrated environment for verifying and running distributed
components. Proceedings of the 19th International Conference on Fundamental Approaches to Software
Engineering (FASE 2016), Lecture Notes in Computer Science, vol. 9633, Stevens P, Wąsowski A (eds.), Springer
Berlin Heidelberg, 2016; 66–83, doi:10.1007/978-3-662-49665-7_5. URL http://dx.doi.org/10.1007/
978-3-662-49665-7_5.

33. Ameur-Boulifa R, Henrio L, Madelaine E, Savu A. Behavioural semantics for asynchronous components. Research
Report RR-8167, INRIA Dec 2012. URL https://hal.inria.fr/hal-00761073.

34. Garavel H, Lang F, Mateescu R, Serwe W. CADP 2010: A toolbox for the construction and analysis of distributed
processes. Proceedings of the 17th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2011), Lecture Notes in Computer Science, vol. 6605, Springer Berlin Heidelberg:
Saarbrücken, Germany, 2011; 372–387, doi:10.1007/978-3-642-19835-9_33. URL http://dx.doi.org/10.
1007/978-3-642-19835-9_33.

35. Ozkaya M, Kloukinas C. Design-by-contract for reusable components and realizable architectures. Proceedings of
the 17th International ACM Sigsoft Symposium on Component-based Software Engineering, CBSE ’14, ACM: New
York, NY, USA, 2014; 129–138, doi:10.1145/2602458.2602463.

36. Huang Y, Cheung E, Dillon LK, Stirewalt REK. A thread synchronization model for SIP servlet containers.
IPTComm ’09, ACM, 2009; 7:1–7:12, doi:10.1145/1595637.1595647.

37. Lopes CIV. D: A language framework for distributed programming. PhD Thesis, Northeastern University 1997.
38. Zhang C. FlexSync: An aspect-oriented approach to Java synchronization. Proceedings of the 31st International

Conference on Software Engineering, ICSE ’09, IEEE Computer Society: Washington, DC, USA, 2009; 375–385,
doi:10.1109/ICSE.2009.5070537.

39. Dragert C, Dingel J, Rudie K. Generation of concurrency control code using discrete-event systems theory.
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ’08/FSE-16, ACM: New York, NY, USA, 2008; 146–157, doi:10.1145/1453101.1453122.

40. Pavel S, Noyé J, Poizat P, Royer JC. A Java implementation of a component model with explicit symbolic protocols.
Software Composition, LNCS, vol. 3628. Springer, 2005; 115–124, doi:10.1007/11550679_9.

41. Deng X, Dwyer MB, Hatcliff J, Mizuno M. Invariant-based specification, synthesis, and verification of
synchronization in concurrent programs. Proceedings of the 24th International Conference on Software
Engineering, ICSE ’02, ACM: New York, NY, USA, 2002; 442–452, doi:10.1145/581339.581394.

42. Ziaei R, Agha G. Synchnet: A petri net based coordination language for distributed objects. Proceedings of the 2Nd
International Conference on Generative Programming and Component Engineering, GPCE ’03, Springer-Verlag
New York, Inc.: New York, NY, USA, 2003; 324–343.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

http://dl.acm.org/citation.cfm?id=231958.232967
http://dl.acm.org/citation.cfm?id=231958.232967
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1016/j.ic.2008.12.004
http://dx.doi.org/10.1016/j.ic.2008.12.004
http://dx.doi.org/10.1007/978-3-319-39519-7_13
http://dx.doi.org/10.1007/978-3-540-24675-6_11
http://proactive.activeeon.com/
http://doi.acm.org/10.1145/1244002.1244326
http://dx.doi.org/10.1007/978-3-662-49665-7_5
http://dx.doi.org/10.1007/978-3-662-49665-7_5
https://hal.inria.fr/hal-00761073
http://dx.doi.org/10.1007/978-3-642-19835-9_33
http://dx.doi.org/10.1007/978-3-642-19835-9_33

38 S. BLIUDZE ET AL.

43. Whaley J, Martin MC, Lam MS. Automatic extraction of object-oriented component interfaces. SIGSOFT Softw.
Eng. Notes Jul 2002; 27(4):218–228, doi:10.1145/566171.566212.

44. Behavioral Types for Component-Based Development of Cyber-Physical Systems, Lecture Notes in Computer
Science, vol. 9509, Springer: York, UK, 2015.

45. Blech JO. Towards a framework for behavioral specifications of OSGi components. Formal Engineering
Approaches to Software Components and Architectures, Electronic Proceedings in Theoretical Computer Science,
vol. 108, Rome, Italy, 2013; 79–93.

46. Blech JO. Ensuring OSGi component based properties at runtime with behavioral types. 10th Workshop on Model-
Driven Engineering, Verification, and Validation, CEUR Workshop Proceedings: Miami, Florida, USA, 2013; 51–
60.

47. Gybels K, Brichau J. Arranging language features for more robust pattern-based crosscuts. Proceedings of the 2nd
International Conference on Aspect-oriented Software Development, AOSD ’03, ACM: New York, NY, USA, 2003;
60–69, doi:10.1145/643603.643610. URL http://doi.acm.org/10.1145/643603.643610.

48. Seinturier L, Pessemier N, Duchien L, Coupaye T. A component model engineered with components and
aspects. Proceedings of the 9th International Symposium on Component-Based Software Engineering, CBSE
2006, Lecture Notes in Computer Science, vol. 4063, Springer, 2006; 139–153, doi:10.1007/11783565_10. URL
http://dx.doi.org/10.1007/11783565_10.

49. Aldrich J, Sunshine J, Saini D, Sparks Z. Typestate-oriented programming. OOPSLA ’09, ACM: New York, NY,
USA, 2009; 1015–1022, doi:10.1145/1639950.1640073.

50. DeLine R, Fähndrich M. Typestates for objects. ECOOP 2004, LNCS, vol. 3086. Springer, 2004; 465–490, doi:
10.1007/978-3-540-24851-4_21.

51. Joshi P, Sen K. Predictive typestate checking of multithreaded Java programs. 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2008), IEEE: L’Aquila, Italy, 2008; 288–296, doi:10.1109/
ASE.2008.39.

52. Solís C, Wang X. A study of the characteristics of Behaviour Driven Development. 37th EUROMICRO Conference
on Software Engineering and Advanced Applications, IEEE, 2011; 383–387, doi:10.1109/SEAA.2011.76.

53. North D. JBehave. A framework for behaviour driven development (BDD) 2011.
54. Evans E. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley Professional,

2004.
55. Mavridou A, Baranov E, Bliudze S, Sifakis J. Configuration Logics: Modelling architecture styles. Formal

Aspects of Component Software - 12th International Conference, FACS 2015, Niterói, Brazil, October 14-
16, 2015, Revised Selected Papers, Lecture Notes in Computer Science, vol. 9539, Braga C, Ölveczky PC
(eds.), Springer, 2015; 256–274, doi:10.1007/978-3-319-28934-2_14. URL http://dx.doi.org/10.1007/
978-3-319-28934-2_14.

56. Mavridou A, Baranov E, Bliudze S, Sifakis J. Configuration logics: Modeling architecture styles. Journal of Logical
and Algebraic Methods in Programming 2017; 86(1):2–29, doi:10.1016/j.jlamp.2016.05.002.

57. Mavridou A, Baranov E, Bliudze S, Sifakis J. Architecture diagrams: A graphical language for architecture
style specification. Proceedings 9th Interaction and Concurrency Experience (ICE), Electronic Proceedings in
Theoretical Computer Science, vol. 223, 2016; 83–97, doi:10.4204/EPTCS.223.6.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

http://doi.acm.org/10.1145/643603.643610
http://dx.doi.org/10.1007/11783565_10
http://dx.doi.org/10.1007/978-3-319-28934-2_14
http://dx.doi.org/10.1007/978-3-319-28934-2_14

	1 Introduction
	1.1 The BIP Component Framework
	1.2 Paper Contribution and Structure

	2 JavaBIP Design Workflow
	3 JavaBIP by examples
	3.1 Camel routes
	3.2 Publish-Subscribe server
	3.3 Trackers and Peers example

	4 Theoretical foundations
	4.1 Component model without data
	4.1.1 Components and glue
	4.1.2 Connectors
	4.1.3 Boolean encoding of the connectors and macro notation
	4.1.4 Macro notation based on component types

	4.2 Extension of the model with data
	4.2.1 Components with data
	4.2.2 Composition

	5 System specification
	5.1 Behavior specification
	5.2 Glue specification
	5.3 Data-wire specification

	6 Implementation
	6.1 JavaBIP module
	6.2 JavaBIP engine
	6.2.1 Engine kernel
	6.2.2 Glue coordinator
	6.2.3 Data coordinator

	6.3 Experimental evaluation

	7 Related work
	8 Conclusion and Future Work

