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ABSTRACT 
 

Exogenous Treatment and Endogenous Factors: 
Vanishing of Omitted Variable Bias on the Interaction Term 
 
Whether interested in the differential impact of a particular factor in various institutional 
settings or in the heterogeneous effect of policy or random experiment, the empirical 
researcher confronts a problem if the factor of interest is correlated with an omitted variable. 
This paper considers circumstances under which the estimate of the mentioned effect is 
consistent. We find that if the source of heterogeneity and omitted variable are jointly 
independent of policy or treatment, then the OLS estimate on the interaction term between 
the treatment and endogenous factor turns out to be consistent. 
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1 Introduction

Significant increase in the evaluations of random and natural experiments throughout economics fields is

raising the question of whether it is possible to obtain a consistent estimate of the heterogeneous treatment

effect if the heterogeneity is occurring along the lines of a factor which is correlated with some omitted

variable(s). The textbook approach to econometric modeling suggests that the exclusion of a relevant

regressor correlated with included explanatory variables will result in an omitted variable bias. But are

there circumstances when the exclusion of a relevant variable is of not such a severe consequence? It

turns out that this situation is indeed possible and quite common in applied works. If all the regressors

but the exogenous regressor and the interaction term between this exogenous regressor and an endogenous

covariate are jointly independent of the exogenous regressor of interest, the OLS estimate of interaction

term’s coefficient is consistent. While a special case, it is very common in applied studies and is of huge

relevance for policy analysis. Here are several recent examples.

Glewwe, Kremer, and Moulin (2009) in the evaluation of a randomized trial of a free textbook pro-

vision in rural Kenya find that only students with good past text scores benefit from the intervention.

Banerjee et al. (2007) also consider the previous test scores as a source of heterogeneity of an impact

of a remedial education program in India and find that the largest gains are experienced by children with

lowest test-scores. Similarly, Banerjee et al. (2010) estimate the impact of a randomized introduction of

microcredit in a new market depending on the presence of existing business at the time of the program or

on the propensity to become business owners. Clearly, the past test scores and current business ownership

(propensity to become a business owner) are correlated with unobserved variables (for example, ability),

raising the question of whether the estimates can be trusted.

However, the only study that mentions the issue of heterogeneity along the lines a factor correlated

with omitted variables is Blank (1991) which evaluates the American Economic Review experiment of a

double-blind refereeing process held over the period 1987-1989 and resulted in 1,498 papers with com-

pleted referee reports. Double-blind or single-blind review has been assigned randomly. The evaluation

suggests that the double-blind procedure is stricter: lower acceptance rate and more critical referee re-

ports. However, the emphasis of the paper was not on the overall effect of the double-blind refereeing, but

rather on the heterogeneous treatment impact along several dimensions - gender and university rank being

the most important. Clearly, gender is likely to be correlated with other important factors unobserved in
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the experiment - age and experience in the profession, which affect acceptance rate. Likewise, being in

a higher ranked university maybe the result of the overall higher unobserved productivity. The coeffi-

cients on interaction terms turn out to be statistically insignificant, suggesting no benefits of double-blind

refereeing to either women or authors from lower-ranked universities. But can this finding be trusted?

The author states that the coefficients on the interaction terms ”should be robust to the inclusion of any

other variables in the model, since they come from two experimental samples that are identical in all other

characteristics”. However, with respect to the main effects of gender and the university rank, the author

claims that ”it is not clear how to interpret the coefficients on these variables, because they are contami-

nated by excluded variables” (Blank 1991, p. 1054-55). We are to prove this explicitly in the paper - the

consistency of the estimates of the heterogeneous impact of random treatment/ exogenous policy when the

heterogeneity occurs along the lines of a factor correlated with the omitted variable(s).

2 Econometric Result in the Context of the AER Experiment

For concreteness, let us talk about the example of the AER experiment in Blank (1991). To start with, we

consider only one dimension of heterogeneity - the rank of the university. A simplified relation between

the acceptance rates and assignment to the blind review group is described as:

y = �1 + �2x2 + �3x3 + �4x4 + "�; (1)

where x2 = x3 � x4 and "� = " + �5x5. Here, x3 specifies the university rank1, x4 is an indicator of the

double-blind treatment, x5 is the unobserved individual-specific effect, and " is the idiosyncratic error. The

question is whether the effect of the double-blind reviewing affects the acceptance rates differently depend-

ing on the university rank, i.e. whether �2 is statistically different from zero. However, the unobserved

personality traits are correlated with the university rank. Standard econometric wisdom suggests that in a

cross-sectional setting the estimates of all the parameters will be inconsistent since Corr(x3; x5) 6= 0. But

is this indeed the case?

The probability limit of b�2 is derived in the Appendix in formulas (7) and (8), which show that the

“bias” term in b�2 equals �5Q2, where we can express Q2 as

Q2 = plim
�5

�2
�
r25(1� r234) + r35(r24r34 � r23) + r45(r23r34 � r24)

1� r223 � r224 � r234 + 2r23r24r34
: (2)

1Although the university rank is represented by a set of indicators in Blank (1991), we use one variable, x3.
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Here, �j is the sample standard deviation of xj , j = 2; 3; 4; 5, and rkl is the sample correlation between

xk and xl, k = 2; 3; 4 and l = 3; 4; 5. Q2 is the plim of the regression coefficient on x2 in the “auxiliary”

regression of the excluded variable, x5, on the included variables, x2, x3 and x4. Equation (2) is de-

rived under the usual assumptions, which impose no restrictions on the relationships among any variables.

However, we can assume zero correlations among some of the variables when studying the heterogeneous

treatment effect, assuming for example that the university rank and and author productivity are jointly

independent of the assignment process to the double-blind reviewing procedure. Then we obtain

Q2 = plim
�5

�2
�
r25 � r23r35

1� r223 � r224
: (3)

Further, note that independence of x4 and (x3; x5) implies that (1) x4 is independent of x3, and (2) x4

is independent of x5 conditional on x3. The first condition guarantees r23 = �3 �
E(x4)

S:D:(x3�x4)
, where E(x4)

is the expected value of x4 and S:D:(x3 � x4) is the standard deviation of x3 � x4. The two conditions

together insure r25 = r23r35. Thus, when x4 and (x3; x5) are independent, r25�r23r35
1�r2

23
�r2

24

= 0 and the “bias”

term disappears: plim(b�2) = �2. This implies that the coefficient estimate of x3 � x4 is consistent under

independence of x4 and (x3; x5), which is actually stronger than necessary to guarantee this result. For

consistency, it would be sufficient to have either f(x3jx5; x4) = f(x3jx5) or f(x5jx3; x4) = f(x5jx3) in

combination with x4 being independent of either x5 or x3, respectively.

Let us revisit the Blank’s (1991) study. The question of interest there is estimating the differences in

the effect of the double-blind reviewing procedure for different groups of researchers. The author is after

the coefficient estimate of the interaction term between the university rank and variable identifying the

sample randomly assigned to the double-blind reviewing. While there are valid reasons to suspect that

the university rank is correlated with the unobservables (say, productivity of the author), this treatment is

independent of the university rank as well as productivity of the authors once rank is accounted for. These

two independences guarantee that the OLS estimates of the interaction terms between university rank and

treatment dummies are consistent as we show above.

3 Inclusion of Additional Explanatory Variables

In this section Monte Carlo simulations are employed to extend theoretical findings from the previous

section to the cases when other regressors are added to Equation (1). The number of replications is 1000.
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The data generating process (DGP) employed is:

yi = 1 + 2ri � di + 3ri + 4di + 5fi + 6si + 7ni + 8ci + ui: (4)

Here, ri (university rank) and ui (idiosyncratic error) are generated as independent Normal (0; 1). The

unobserved heterogeneity, ci, is generated as ci = �ri + eci ; where eci � Normal (0; 1). The exogenous

treatment, di, is generated as Bernoulli (0:5).

We consider three possibilities for additional regressors: (1) regressors independent of ci (gender of the

referee), (2) regressors correlated with di but uncorrelated with ci
2, (3) regressors with non-zero simple

correlation with ci (gender of the author). Case (1) is represented by fi � Bernoulli (0:5). Case (2)

is represented by si = 0:5di � 1 + esi , where esi � Discrete Uniform (0; 3): For case (3), we consider

two GDPs for ni – the rank of the school granting doctorate to the author3: (A) ni = 0:5ri + eni , and

(B) ni = 0:5ci + eni , where eni � Normal (0; 1). These two DGPs result in non-zero simple correlation

between ci and ni. However, the partial correlation between ni and ci, i.e. correlation net of the effect of

the other included regressors (in particular, ri), is zero for DGP (A), while it is clearly not for DGP (B).

Tables 1 and 2 present simulation results. We consider two regressions: with six (ci is excluded) and

seven (ci is included) regressors (in addition to the constant term). When � = 0, Corr(ri; ci) = 0 and

OLS estimation delivers consistent estimates of all model parameters for both regressions considered, as

long as ci is partially uncorrelated with all of the additional included regressors. Indeed, when � = 0, b�2,
b�4 and b�7 are always consistent when ni � DGP (A). As expected, even when � = 0, b�7 is inconsistent

when ni � DGP (B), since the partial correlation between ci and ni is not zero in that case. Contrary, b�3
from the model with six regressors is consistent only when � = 0 regardless of N and DGP for ni. The

fact that Corr(si; di) 6= 0 has no effect on any of the OLS estimates in all cases, since these variables are

independent of ci. Similarly, b�5 is always consistent.

Clearly, when seven regressors are included all estimates are consistent. More importantly, when only

six regressors are used, b�2 and b�4 are consistent, while the consistency of b�3 and b�7 depends on the (partial)

correlations Corr(ri; ci) and Corr(ni; ci), respectively. The simulation findings are unambiguous: when

the partial correlation between the unobserved heterogeneity and some included regressor is different from

zero, the OLS slope estimate of that included regressor is the only estimate which is inconsistent, and its

2It is difficult to think of such a regressor in the AER experiment, but generally it is possible to have such variables.
3In case of multiple authors, this can be measured by the highest rank of the schools granting doctorate among all co-authors.
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bias does not disappear as N �!1.

4 Conclusions

Increasing interest in the heterogeneity of the impact in policy evaluation and random experiment settings

leads to a question of whether the estimates are consistent when the source of heterogeneity is correlated

with some omitted variable(s). This paper presents the conditions under which it is possible to arrive at

a consistent OLS estimate of the mentioned effect. We discuss relevant applications and illustrate our

findings with some simulation evidence.
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Table 1: OLS Estimation Results for (�2; �3; �4; �5; �6; �7)0 = (2; 3; 4; 5; 6; 7)0 and � = 0:5:

# of Regressors: 6 7 6 7 6 7 6 7

N = 100 N = 1000 N = 100 N = 1000

(A): ni = 0:5ri + eni (B): ni = 0:5ci + eni

(1) b�2 1.959 1.978 2.010 2.003 1.962 1.978 2.013 2.003

SE(b�2) (1.677) (0.210) (0.512) (0.064) (1.502) (0.210) (0.459) (0.064)

(2) b�3 7.007 3.004 6.994 3.000 6.228 3.007 6.192 2.999

SE(b�3) (1.253) (0.165) (0.384) (0.050) (1.071) (0.157) (0.329) (0.048)

(3) b�4 4.051 4.006 3.980 3.996 4.058 4.006 3.990 3.996

SE(b�4) (1.688) (0.211) (0.524) (0.065) (1.512) (0.211) (0.470) (0.065)

(4) b�5 4.952 5.005 5.033 5.001 4.967 5.005 5.032 5.001

SE(b�5) (1.652) (0.206) (0.511) (0.063) (1.479) (0.206) (0.458) (0.063)

(5) b�6 6.000 6.001 5.998 5.998 6.003 6.001 5.993 5.998

SE(b�6) (0.739) (0.092) (0.229) (0.028) (0.661) (0.092) (0.205) (0.028)

(6) b�7 7.028 7.007 6.993 6.999 10.193 7.007 10.190 6.999

SE(b�7) (0.833) (0.104) (0.256) (0.032) (0.666) (0.104) (0.205) (0.032)

(7) RMSE(b�2) 1.700 0.210 0.505 0.064 1.552 0.210 0.450 0.064

(8) SD(b�2) 1.701 0.209 0.506 0.064 1.552 0.209 0.450 0.064

(9) LQ(b�2) 0.795 1.836 1.674 1.961 0.967 1.836 1.693 1.961

(10) Median(b�2) 1.958 1.972 2.008 2.002 1.982 1.972 2.000 2.002

(11) UQ(b�2) 3.197 2.108 2.356 2.044 3.032 2.108 2.319 2.044

Notes: Odd columns report results for the estimating equation with six regressors, while even columns

– for the estimating equation with all seven regressors. Rows (1) through (6) contain means of OLS

slope estimates and their corresponding standard errors from 1000 replications. Rows (7) through (11)

contain the root mean squared error (RMSE), standard deviation (SD), lower quartile (LQ), median, and

upper quartile (UQ) for b�2 – our main coefficient of interest – from 1000 replications. Also, the first

four columns report the results when ni is generated according to DGP (A), while the last four columns –

according to DGP (B).
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Table 2: OLS Estimation Results for (�2; �3; �4; �5; �6; �7)0 = (2; 3; 4; 5; 6; 7)0 and � = 0:

# of Regressors: 6 7 6 7 6 7 6 7

N = 100 N = 1000 N = 100 N = 1000

(A): ni = 0:5ri + eni (B): ni = 0:5ci + eni

(1) b�2 1.959 1.978 2.010 2.003 1.962 1.978 2.013 2.003

SE(b�2) (1.677) (0.210) (0.512) (0.064) (1.502) (0.210) (0.459) (0.064)

(2) b�3 3.007 3.007 2.994 3.000 3.026 3.010 2.990 2.999

SE(b�3) (1.253) (0.156) (0.384) (0.048) (1.058) (0.148) (0.325) (0.045)

(3) b�4 4.051 4.006 3.980 3.996 4.058 4.006 3.990 3.996

SE(b�4) (1.688) (0.211) (0.524) (0.065) (1.512) (0.211) (0.470) (0.065)

(4) b�5 4.952 5.005 5.033 5.001 4.967 5.005 5.032 5.001

SE(b�5) (1.652) (0.206) (0.511) (0.063) (1.479) (0.206) (0.458) (0.063)

(5) b�6 6.000 6.001 5.998 5.998 6.003 6.001 5.993 5.998

SE(b�6) (0.739) (0.092) (0.229) (0.028) (0.661) (0.092) (0.205) (0.028)

(6) b�7 7.028 7.007 6.993 6.999 10.193 7.007 10.190 6.999

SE(b�7) (0.833) (0.104) (0.256) (0.032) (0.666) (0.104) (0.205) (0.032)

(6) RMSE(b�2) 1.700 0.210 0.505 0.064 1.552 0.210 0.450 0.064

(7) SD(b�2) 1.701 0.209 0.506 0.064 1.552 0.209 0.450 0.064

(8) LQ(b�2) 0.795 1.836 1.674 1.961 0.967 1.836 1.693 1.961

(9) Median(b�2) 1.958 1.972 2.008 2.002 1.982 1.972 2.000 2.002

(10) UQ(b�2) 3.197 2.108 2.356 2.044 3.032 2.108 2.319 2.044

Notes: Odd columns report results for the estimating equation with six regressors, while even columns

– for the estimating equation with all seven regressors. Rows (1) through (6) contain means of OLS

slope estimates and their corresponding standard errors from 1000 replications. Rows (7) through (11)

contain the root mean squared error (RMSE), standard deviation (SD), lower quartile (LQ), median, and

upper quartile (UQ) for b�2 – our main coefficient of interest – from 1000 replications. Also, the first

four columns report the results when ni is generated according to DGP (A), while the last four columns –

according to DGP (B).
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Appendix

We can use the popular econometric textbook by Green (2003) to get the following general result. Suppose

the correct specification of the regression model is y = i�1+X2�2+X3�3+", where i is a vector of ones.

Premultiplying this equation by matrix M1 = I � i(i0i)�1i, where I is an n � n identity matrix, yields a

demeaned version of the original model:

M1y = eX2�2 + eX3�3 +M1"; (5)

where eX2 and eX3 are mean-differencedX2 and X3.4 Further, suppose we do not observe X3 and estimate

M1y = eX2�2 + "�, where "� = eX3�3 +M1" and M1" is a vector of mean-differenced errors. Then,

under the usual assumptions, we modify the omitted variable formula from Green (2003) to report the

probability limit of b�2:
plim( b�2) = �2 +Q � �3; (6)

where Q = plim(eX0

2
eX2)

�1 eX0

2
eX3 is the probability limit of the matrix of regression coefficients from the

auxiliary regressions of the excluded mean-differenced variables, eX3, on the included mean-differenced

variables, eX2.

We want to apply general theoretical result (6) to obtain b�2 in our context. Thus, we can rewrite

Equation (6) as

plim(b�2) = �2 + �5Q2; (7)

where scalar Q2 is the first row of a 3� 1 column Q:

Q = plim(�5(�R�)
�1�!) = plim(�5�

�1R�1!); (8)

where � =

0
BBB@

�2 0 0

0 �3 0

0 0 �4

1
CCCA, R =

0
BBB@

1 r23 r24

r23 1 r34

r24 r34 1

1
CCCA and ! =

0
BBB@

r25

r35

r45

1
CCCA. Here, �j is the sample

standard deviation of xj , j = 2; 3; 4; 5, and rkl is the sample correlation between xk and xl, k = 2; 3; 4 and

l = 3; 4; 5.

4Note that we are not able to estimate the intercept �0 from the demeaned model.
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