
Exokernel: An Operating System Architecture for

Application-Level Resource Management

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr.

M.I.T. Laboratory for Computer Science

Cambridge, MA 02139, U.S.A

{engler, kaashoek, james}@lcs .mit. edu

Abstract

Traditional operating systems limit the performance, flexibility, and

functionality of applications by fixing the interface and implemen-

tation of operating system abstractions such as interprocess com-

munication and virtual memory. The exokernel operating system

architecture addresses this problem by providing application-level

management of physical resources. In the exokernel architecture, a

small kernel securely exports all hardware resources through a low-

level interface to untrusted library operating systems. Library op-

erating systems use this interface to implement system objects and

policies. This separation of resource protection from management

allows application-specific customization of traditional operating

system abstractions by extending, specializing, or even replacing

libraries.

We have implemented a prototype exokernel operating system.

Measurements show that most primitive kernel operations (such

as exception handling and protected control transfer) are ten to 100

times faster than in Ultrix, a mature monolithic UNIX operating sys-

tem. In addition, we demonstrate that an exokemel allows applica-

tions to control machine resources in ways not possible in traditional

operating systems. For instance, virtual memory and interprocess

communication abstractions are implemented entirely within an

application-level library. Measurements show that application-level

virtual memory and interprocess communication primitives are five

to 40 times faster than Ultrix’s kernel primitives. Compared to

state-of-the-art implementations from the literature, the prototype

exokemel system is at least five times faster on operations such as

exception dispatching and interprocess communication.

1 Introduction

Operating systems define the interface between applications and

physical resources. Unfortunately, this interface can significantly

limit the performance and implementation freedom of applications.

Traditionally, operating systems hide information about machine

resources behind high-level abstractions such as processes, tiles,

address spaces and interprocess communication. These abstrac-

tions define a virtual machine on which applications execute; their

implementation cannot be replaced or modified by untrusted appli-

cations. Hardcoding the implementations of these abstractions is

Tins research was supported m part by the Advanced ResearchProjects Agency under

contract NOOO14-94-1-0985 and by a NSF National Young Investigator Awwd.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to tists, requires prior specific permission
andior a fee,

SIGOPS ’95 12/95 CO, USA

ID 1995 ACM 0-89791 -715-419510012... $3.50

inappropriate for three main reasons: it denies applications the ad-

vantages of domain-specific optimizations, it discourages changes

to the implementations of existing abstractions, and it restricts the

flexibility of application builders, since new abstractions can only

be added by awkward emulation on top of existing ones (if they can

be added at all).

We believe these problems can be solved through application-

level (i.e., untrusted) resource management. To this end, we have

designed a new operating system architecture, exokernel, in which

traditional operating system abstractions, such as virtual memory

(VM) and interprocess communication (IPC), are implemented en-

tirely at application level by untrusted software. In this architecture,

a minimal kernel-which we call an exokernel—securely multi-

plexes available hardware resources. Library operating systems,

working above the exokemel interface, implement higher-level ab-

stractions. Application writers select libraries or implement their

own. New implementations of library operating systems are incor-

porated by simply relinking application executable.

Substantial evidence exists that applications can benefit greatly

from having more control over how machine resources are used

to implement higher-level abstractions. Appel and Li [5] reported

that the high cost of general-purpose virtual memory primitives

reduces the performance of persistent stores, garbage collectors, and

distributed shared memory systems. Cao et al. [10] reported that

application-level control over file caching can reduce application

running time by L$5~0. Harty and Cheriton [26] and Krueger et

al. [30] showed how application-specific virtual memory policies

can increase application performance. Stonebraker [47] argued

that inappropriate tile-system implementation decisions can have a

dramatic impact on the performance of databases. Thekkath and

Levy [50] demonstrated that exceptions can be made an order of

magnitude faster by deferring signal handling to applications.

To provide applications control over machine resources, an ex-

okemel defines a low-level interface. The exokemel architecture is

founded on and motivated by a single, simple, and old observation:

the lower the level of a primitive, the more efficiently it can be

implemented, and the more latitude it grants to implementors of

higher-level abstractions.

To provide an interface that is as low-level as possible (ideally,

just the hardware interface), an exokemel designer has a single

overriding goal: to separate protection from management. For

instance, an exokemel should protect framebuffers without under-

standing windowing systems and disks without understanding file

systems. One approach is to give each application its own virtual

machine [17]. As we discuss in Section 8, virtual machines can

have severe performance penalties. Therefore, an exokemel uses a

different approach: it exports hardware resources rather than emu-

lating them, which allows an efficient and simple implementation.

An exokemel employs three techniques to export resources securely.

First, by using secure bindings, applications can securely bind to

machine resources and handle events. Second, by using visible re -

251

source revocation, applications participate in a resource revocation

protocol. Third, by using an abortprotocol, an exokernel can break

secure bindings of uncooperative applications by force.

We have implemented a prototype exokemel system based on

secure bindings, visible revocation, and abort protocols. It includes

an exokemel (Aegis) and an untrusted library operating system

(ExOS). We use this system to demonstrate several important prop-

erties of the exokemel architecture: (1) exokemels can be made

efficient due to the limited number of simple primitives they must

provide; (2) low-level secure multiplexing of hardware resources

can be provided with low overhead; (3) traditional abstractions,

such as VM and IPC, can be implemented efficiently at application

level, where they can be easily extended, specialized, or replaced;

and (4) applications can create special-purpose implementations of

abstractions, tailored to their functionality and performance needs.

In practice, our prototype exokernel system provides applica-

tions with greater flexibility and better performance than mono-

lithic and microkemel systems. Aegis’s low-level interface allows

application-level software such as ExOS to manipulate resources

very efficiently. Aegis’s protected control transfer is almost seven

times faster than the best reported implementation [33]. Aegis’s

exception dispatch is five times faster than the best reported imple-

mentation [50]. On identical hardware, Aegis’s exception dispatch

and control transfer are roughly two orders of magnitude faster than

in Ultrix 4.2, a mature monolithic system.

Aegis also gives ExOS (and other application-level software)

flexibility that is not available in microkemel-based systems. For

instance, virtual memory is implemented at application level, where

it can be tightly integrated with distributed shared memory systems

and garbage collectors. Aegis’s efficient protected control trans-

fer allows applications to construct a wide array of efficient IPC

primitives by trading performance for additional functionality. In

contrast, microkemel systems such as Amoeba [48], Chorus [43],

Mach [2], and V[15] do not allow untrusted application software to

define specialized IPC primitives because virtual memory and mes-

sage passing services are implemented by the kernel and trusted

servers. Similarly, many other abstractions, such as page-table

structures and process abstractions, cannot be modified in micro-

kemels. Finally, many of the hardware resources in microker-

nel systems, such as the network, screen, and disk, are encapsu-

lated in heavyweight servers that cannot be bypassed or tailored

to application-specific needs. These heavyweight servers can be

viewed as fixed kernel subsystems that run in user-space.

This paper focuses on the exokemel architecture design and how

it can be implemented securely and efficiently. Section 2 provides

a more detailed case for exokemels. Section 3 discusses the issues

that arise in their design. Section 4 overviews the status of our proto-

type and explains our experimental methodology. Sections 5 and 6

present the implementation and summarize performance measure-

ments of Aegis and ExOS. Section 7 reports on experiments that

demonstrate the flexibility of the exokemel architecture. Section 8

summarizes related work and Section 9 concludes.

2 Motivation for Exokernels

Traditionally, operating systems have centralized resource manage-

ment via a set of abstractions that cannot be specialized, extended,

or replaced. Whether provided by the kernel or by trusted user-

level servers (as in microkemel-based systems), these abstractions

are implemented by privileged software that must be used by all

applications, and therefore cannot be changed by untrusted soft-

ware. Typically, the abstractions include processes, files, address

spaces, and interprocess communication. In this section we discuss

the problems with general-purpose implementations of these ab-

stractions and show how the exokernel architecture addresses these

problems.

2.1 The Cost of Fixed High-Level Abstractions

The essential observation about abstractions in traditional operating

systems is that they are overly general. Traditional operating sys-

tems attempt to provide all the features needed by all applications.

As previously noted by Lampson and Sproul [32], Anderson et

al. [4] and Massalin and PO [36], general-purpose implementations

of abstractions force applications that do not need a given feature to

pay substantial overhead costs. This longstanding problem has be-

come more important with explosive improvements in raw hardware

performance and enormous growth in diversity of the application

software base. We argue that preventing the modification of the

implementation of these high-level abstractions can reduce the per-

formance, increase the complexity, and limit the functionality of

application programs.

Fixed high-level abstractions hurt application performance be-

cause there is no single way to abstract physical resources or to

implement an abstraction that is best for all applications. In im-

plementing an abstraction, an operating system is forced to make

trade-offs between support for sparse or dense address spaces,

read-intensive or write-intensive workloads, etc. Any such trade-

off penalizes some class of applications. For example, relational

databases and garbage collectors sometimes have very predictable

data access patterns, and their performance suffers when a general-

purpose page replacement strategy such as LRU is imposed by

the operating system. The performance improvements of such

application-specific policies can be substantial; Cao et al. [1 O] mea-

sured that application-controlled file caching can reduce application

running time by as much as 45%.

Fixed high-level abstractions hide information from applica-

tions. For instance, most current systems do not make low-level

exceptions, timer interrupts, or raw device I/O directly available to

application-level software. Unfortunately, hiding this information

makes it difficult or impossible for applications to implement their

own resource management abstractions. For example, database im-

plementors must struggle to emulate random-access record storage

on top of tile systems [47]. As another example, implementing

lightweight threads on top of heavyweight processes usually re-

quires compromises in correctness and performance, because the

operating system hides page faults and timer interrupts [4]. In such

cases, application complexity increases because of the difficuky of

getting good performance from high-level abstractions.

Fixed high-level abstractions limit the jimctionality of appli-

cations, because they are the only available interface between ap-

plications and hardware resources. Because all applications must

share one set of abstractions, changes to these abstractions occur

rarely, if ever. This may explain why few good ideas from the

last decade of operating systems research have been adopted into

widespread use: how many production operating systems support

scheduler activations [4], multiple protection domains within a sin-

gle address space [11], efficient IPC [33], or efficient and flexible ‘

virtual memory primitives [5, 26, 30]?

2.2 Exokernels: An End-to-End Argument

The familiar “end-to-end” argument applies as well to low-level

operating system software as it does to low-level communication

protocols [44], Applications know better than operating systems

what the goal of their resource management decisions shordd be

and therefore, they should be given as much control as possible over

252

A ‘pplicatiOnsA
/ Www \ I DSM \

Figure 1: An example exokemel-based system consisting of a thin

exokemel veneer that exports resources to library operating systems

through secure bindings. Each library operating system implements

its own system objects and policies. Applications link against stan-

dard libraries (e.g., WWW, POSIX, and TCP libraries for Web ap-

plications) or against specialized libraries (e.g., a distributed shared

memory library for parallel applications).

those decisions. Our solution is to allow traditional abstractions to

be implemented entirely at application level.

To provide the maximum opportunity for application-level re-

source management, the exokernel architecture consists of a thin

exokemel veneer that multiplexes and exports physical resources

securely through a set of low-level primitives. Library operating

systems, which use the low-level exokemel interface, implement

higher-level abstractions and can define special-purpose implemen-

tations that best meet the performance and functionality goals of

applications (see Figure 1). (For brevity, we sometimes refer to

“library operating system” as “application.”) This structure allows

the extension, specialization and even replacement of abstractions.

For instance, page-table structures can vary among library operat-

ing systems: an application can select a library with a particular

implementation of a page table that is most suitable to its needs.

To the best of our knowledge, no other secure operating system

architecture allows applications so much useful freedom.

This paper demonstrates that the exokemel architecture is an ef-

fective way to address the problems listed in Section 2.1. Many of

these problems are solved by simply moving the implementation of

abstractions to application level, since conflicts between application

needs and available abstractions can then be resolved without the

intervention of kernel architects. Furthermore, secure multiplexing

does not require complex algorithms; it mostly requires tables to

track ownership. Therefore, the implementation of an exokernel can

be simple. A simple kernel improves reliability and ease of main-

tenance, consumes few resources, and enables quick adaptation to

new requirements (e.g., gigabit networking). Additionally, as is

true with RISC instructions, the simplicity of exokemel operations

allows them to be implemented efficiently.

2.3 Library Operating Systems

The implementations of abstractions in library operating systems

can be simpler and more specialized than in-kernel implementa-

tions, because library operating systems need not multiplex a re-

source among competing applications with widely different de-

mands. In addition, since libraries are not trusted by an exokemel,

they are free to trust the application. For example, if an application

passes the wrong arguments to a library, only that application will

be affected. Finally, the number of kernel crossings in an exokemel

system can be smaller, since most of the operating system runs in

the address space of the application.

Library operating systems can provide as much portability and

compatibility as is desirable. Applications that use an exokemel

interface directly will not be portable, because the interface will in-

clude hardware-specific information. Applications that use library

operating systems that implement standard interfaces (e.g., POSIX)

will be portable across any system that provides the same interface.

An application that runs on an exokemel can freely replace these

library operating systems without any special privileges, which sim-

plifies the addition and development of new standards and features.

We expect that most applications will use a handful of available

library operating systems that implement the popular interfaces;

only designers of more ambitious applications will develop new

library operating systems that fit their needs. Library operating

systems themselves can be made portable by designing them to use

a low-level machine-independent layer to hide hardware details.

Extending or specializing a library operating system might be

considerably simplified by modular design. It is possible that object-

oriented programming methods, overloading, and inheritance can

provide useful operating system service implementations that can

be easily specialized and extended, as in the VM++ library [30].

To reduce the space required by these libraries, support for shared

libraries and dynamic linking will bean essential part of a complete

exokemel-based system.

As in microkemel systems, an exokemel can provide backward

compatibility in three ways: one, binary emulation of the operating

system and its programs; two, by implementing its hardware ab-

straction layer on top of an exokemel; and three, re-implementing

the operating system’s abstractions on top of an exokemel.

3 Exokernel Design

The challenge for an exokemel is to give library operating systems

maximum freedom in managing physical resources while protecting

them from each othen a programming error in one library operat-

ing system should not affect another library operating system. To

achieve this goal, an exokemel separates protection from manage-

ment through a low-level interface.

In separating protection from management, an exokemel per-

forms three important tasks: (1) tracking ownership of resources,

(2) ensuring protection by guarding all resource usage or binding

points, and (3) revoking access to resources. To achieve these

tasks, an exokemel employs three techniques. First, using secure

bindings, library operating systems can securely bind to machine

resources. Second, visible revocation allows library operating sys-

tems to participate in a resource revocation protocol. Third, an

abort protocol is used by an exokemel to break secure bindings of

uncooperative library operating systems by force.

In this section, we enumerate the central design principles of

the exokemel architecture. Then, we discuss in detail the three

techniques that we use to separate protection from management.

3.1 Design Principles

An exokemel specifies the details of the interface that library op-

erating systems use to claim, release, and use machine resources.

This section articulates some of the principles that have guided

our efforts to design an exokemel interface that provides library

operating systems the maximum d%= of control.

Securely expose hardware. The central tenet of the exoker-

nel architecture is that the kernel should provide secure low-level

253

primitives that allow all hardware resources to be accessed as di-

rectly as possible. An exokernel designer therefore strives to safely

export all privileged instructions, hardware DMA capabilities, and

machine resources. The resources exported are those provided by

the underlying hardware: physical memory, the CPU, disk memory,

translation look-aside buffer (TLB), and addressing context iden-

tifiers. This principle extends to less tangible machine resources

such as interrupts, exceptions, and cross-domain calls. An exok-

emel should not impose higher-level abstractions on these events

(e.g., Unix signal or RPC semantics). For improved flexibility,

most physical resources should be finely subdivided. The num-

ber, format, and current set of TLB mappings should be visible to

and replaceable by library operating systems, as should any “priv-

ileged” co-processor state. An exokemel must export privileged

instructions to library operating systems to enable them to imple-

ment traditional operating system abstractions such as processes

and address spaces. Each exported operation can be encapsulated

within a system call that checks the ownership of any resources

involved.

Phrased negatively, this principle states that an exokemel should

avoid resource management, It should only manage resources to

the extent required by protection (i.e., management of allocation,

revocation, and ownership). The motivation for this principle is our

belief that distributed, application-specific, resource management

is the best way to build efficient flexible systems. Subsequent

principles deal with the details of achieving this goal.

Expose allocation. An exokemel should allow library operat-

ing systems to request specific physical resources. For instance, if a

library operating system can request specific physical pages, it can

reduce cache conflicts among the pages in its working set [29]. Fur-

thermore, resources should not be implicitly allocated; the library

operating system should participate in every allocation decision.

The next principle aids the effectiveness of this participation.

Expose Names. An exokernel should export physical names.

Physical names are efficient, since they remove a level of indirection

otherwise required to translate between virtual and physical names.

Physical names also encode useful resource attributes. For example,

in a system with physically-indexed direct-mapped caches, the name

of a physical page (i. e., its page number) determines which pages

it conflicts with. Additionally, an exokemel should export book-

keeping data structures such as freelists, disk arm positions, and

cached TLB entries so that applications can tailor their allocation

requests to available resources,

Expose Revocation. An exokemel should utilize a visible re-

source revocation protocol so that well-behaved library operating

systems can perform effective application-level resource manage-

ment. Visible revocation allows physical names to be used easily

and permits library operating systems to choose which instance of

a specific resource to relinquish.

Policy

An exokemel hands over resource policy decisions to library op-

erating systems. Using this control over resources, an application

or collection of cooperating applications can make decisions about

how best to use these resources. However, as in all systems, an ex-

okernel must include policy to arbitrate between competing library

operating systems: it must determine the absolute importance of

different applications, their share of resources, etc. This situation

is no different than in traditional kernels. Appropriate mechanisms

are determined more by the environment than by the operating

system architecture. For instance, while an exokemel cedes man-

agement of resources over to library operating systems, it controk

the allocation and revocation of these resources. By deciding which

allocation requests to grant and from which applications to revoke

resources, an exokemel can enforce traditional partitioning strate-

gies, such as quotas or reservation schemes. Since policy conflicts

boil down to resource allocation decisions (e.g., allocation of seek

time, physical memory, or disk blocks), an exokemel handles them

in a similar manner.

3.2 Secure Bindings

One of the primary tasks of an exokemel is to multiplex resources

securely, providing protection for mutually distrustful applications.

To implement protection an exokernel must guard each resource. To

perform this task efficiently an exokemel allows library operating

systems to bind to resources using secure bindings,

A secure binding is a protection mechanism that decouples au-

thorization from the actual use of a resource. Secure bindings

improve performance in two ways. First, the protection checks

involved in enforcing a secure binding are expressed in terms of

simple operations that the kernel (or hardware) can implement

quickly. Second, a secure binding performs authorization only at

bind time, which allows management to be decoupled from protec-

tion. Application-level software is responsible for many resources

with complex semantics (e.g., network connections). By isolating

the need to understand these semantics to bind time, the kernel can

efficiently implement access checks at access time without under-

standing them. Simply put, a secure binding allows the kernel to

protect resources without understanding them.

Operationally, the one requirement needed to support secure

bindings is a set of primitives that application-level software can

use to express protection checks. The primitives can be imple-

mented either in hardware or software. A simple hardware secure

binding is a TLB entry: when a TLB fault occurs the complex map-

ping of virtual to physical addresses in a library operating system’s

page table is performed and then loaded into the kernel (bind time)

and then used multiple times (access time). Another example is the

packet filter [37], which allows predicates to be downloaded into

the kernel (bind time) and then run on every incoming packet to de-

termine which application the packet is for (access time). Without a

packet filter, the kernel would need to query every application or net-

work server on every packet reception to determine who the packet

was for. By separating protection (determining who the packet is

for) from authorization and management (setting up connections,

sessions, managing retransmissions, etc.) very fast network multi-

plexing is possible while still supporting complete application-level

flexibility.

We use three basic techniques to implement secure bindings:

hardware mechanisms, software caching, and downloading appli-

cation code.

Appropriate hardware support allows secure bindings to be

couched as low-level protection operations such that later oper-

ations can be efficiently checked without recourse to high-level

authorization information. For example, a file server can buffer

data in memory pages and grant access to authorized applications

by providing them with capabilities for the physical pages. An

exokemel would enforce capability checking without needing any

information about the file system’s authorization mechanisms. As

another example, some Silicon Graphics frame buffer hardware as-

sociates an ownership tag with each pixel. This mechanism can be

used by the window manager to set up a binding between a library

operating system and a portion of the frame buffer. The application

can access the frame buffer hardware directly, because the hardware

checks the ownership tag when I/O takes place.

Secure bindings can be cached in an exokemel. For instance,

an exokemel can use a large software TLB [7, 28] to cache address

254

translations that do not fit in the hardware TLB. The software TLB

can be viewed as a cache of frequently-used secure bindings.

Secure bindings can be implemented by downloading code into

the kernel. This code is invoked on every resource access or event to

determine ownership and the actions that the kernel should perform.

Downloading code into the kernel allows an application thread of

control to be immediately executed on kernel events. The advan-

tages of downloading code are that potentially expensive crossings

can be avoided and that this code can run without requiring the

application itself to be scheduled. Type-safe languages [9, 42], in-

terpretation, and sandboxing [52] can be used to execute untrusted

application code safely [21].

We provide examples of each of these three techniques below

and discuss how secure bindings apply to the secure multiplexing

of physical memory and network devices.

Multiplexing Physical Memory

Secure bindings to physical memory are implemented in our pro-

totype exokemel using self-authenticating capabilities [12] and ad-

dress translation hardware. When a library operating system al-

locates a physical memory page, the exokemel creates a secure

binding for that page by recording the owner and the read and write

capabilities specified by the library operating system. The owner

of a page has the power to change the capabilities associated with

it and to deallocate it.

To ensure protection, the exokernel guards every access to a

physical memory page by requiring that the capability be presented

by the library operating system requesting access. If the capability is

insufficient, the request is denied. Typically, the processor contains

a TLB, and the exokemel must check memory capabilities when a

library operating system attempts to enter a new virtual-to-physical

mapping. To improve library operating system performance by

reducing the number times secure bindings must be established,

an exokemel may cache virtual-to-physical mappings in a large

software TLB.

If the underlying hardware defines a page-table interface, then

an exokemel must guard the page table instead of the TLB. Although

the details of how to implement secure memory bindings will vary

depending on the details of the address translation hardware, the

basic principle is straightforward: privileged machine operations

such as TLB loads and DMA must be guarded by an exokemel. As

dictated by the exokernel principle of exposing kernel book-keeping

structures, the page table should be visible (read only) at application

level.

Using capabilities to protect resources enables applications to

grant access rights to other applications without kernel interven-

tion. Applications can also use “well-known” capabilities to share

resources easily.

To break a secure binding, an exokemel must change the as-

sociated capabilities and mark the resource as free. In the case of

physical memory, an exokemel would flush all TLB mappings and

any queued DMA requests.

Multiplexing the Network

Multiplexing the network efficiently is challenging, since protocol-

specific knowledge is required to interpret the contents of incoming

messages and identify the intended recipient.

Support for network demultiplexing can be provided either in

software or hardware. An example of a hardware-based mechanism

is the use of the virtual circuit in ATM cells to securely bind streams

to applications [1 9].

Software support for message demuhiplexing can be provided

by packet filters [37]. Packet filters can be viewed as an implemen-

tation of secure bindings in which application code—the filters—

are downloaded into the kernel. Protocol knowledge is limited to

the application, while the protection checks required to determine

packet ownership are couched in a language understood by the ker-

nel. Fault isolation is ensured by careful language design (to bound

runtime) and runtime checks (to protect against wild memory ref-

erences and unsafe operations).

Our prototype exokernel uses packet filters, because our cur-

rent network does not provide hardware mechanisms for message

demultiplexing. One challenge with a language-based approach is

to make running filters fast. Traditionally, packet filters have been

interpreted, making them less efficient than in-kernel demultiplex-

ing routines. One of the distinguishing features of the packet filter

engine used by our prototype exokemel is that it compiles packet

filters to machine code at runtime, increasing demultiplexing per-

formance by more than an order of magnitude [22].

The one problem with the use of a packet filter is ensuring that

that a filter does not “lie” and accept packets destined to another

process. Simple security precautions such as only allowing a trusted

server to install filters can be used to address this problem. On a

system that assumes no malicious processes, our language is simple

enough that in many cases even the use of a trusted server can be

avoided by statically checking a new filter to ensure that it cannot

accept packets belonging to another; by avoiding the use of any

central authority, extensibility is increased.

Sharing the network interface for outgoing messages is easy.

Messages are simply copied from application space into a transmit

buffer. In fact, with appropriate hardware support, transmission

buffers can be mapped into application space just as easily as phys-

ical memory pages [19].

3.2.1 Downloading Code

In addition to implementing secure bindings, downloading code can

be used to improve performance. Downloading code into the kernel

has two main performance advantages. The first is obvious: elimi-

nation of kernel crossings. The second is more subtle: the execution

time of downloaded code can be readily bounded [1 8]. The crucial

importance of “tamed” code is that it can be executed when the

application is not scheduled. This decoupling allows downloaded

code to be executed in situations where context switching to the

application itself is infeasible (e.g., when only a few microseconds

of free processing time is available). Packet filters are an example

of this feature: since the packet-filter runtime is bounded, the kernel

can use it to demultiplex messages irrespective of what application

is scheduled; without a packet filter the operating system would

have to schedule each potential consumer of the packet [37].

Application-specljlc Safe Handlers (ASHS) are a more inter-

esting example of downloading code into our prototype exokemel.

These application handlers can be downloaded into the kernel to

participate in message processing. An ASH is associated with a

packet filter and runs on packet reception. One of the key features

of an ASH is that it can initiate a message. Using this feature,

roundtrip latency can be greatly reduced, since replies can be trans-

mitted on the spot instead of being deferred until the application

is scheduled. ASHS have a number of other useful features (see

Section 6).

A salient issue in downloading code is the level at which the

code is specified. High-level languages have more semantic infor-

mation, which provides more information for optimization. For

example, our packet-filter language is a high-level declarative lan-

guage. As a result packet filters can be merged [56] in situations

255

where merging a lower-level, imperative language would be infea-

sible. However, in cases where such optimizations are not done,

(e.g., in an exception handler) a low-level language is more in keep-

ing with the exokemel philosophy: it allows the broadest range

of application-level languages to be targeted to it and the simplest

implementation. ASHS are another example of this tradeoti most

ASHS are imported into the kernel in the form of the object code

of the underlying machine; however, in the few key places where

higher level semantics are useful we have extended the instruction

set of the machine.

3.3 Visible Resource Revocation

Once resources have been bound to applications, there must be a way

to reclaim them and break their secure bindings. Revocation can

either be visible or invisible to applications. Traditionally, operating

systems have performed revocation invisibly, deallocating resources

without application involvement. For example, with the exception

of some external pagers [2, 43], most operatings ystems deallocate

(and allocate) physical memory without informing applications.

This form of revocation has lower latency than visible revocation

since it requires no application involvement. Its disadvantages are

that library operating systems cannot guide deallocation and have

no knowledge that resources are scarce.

An exokemel uses visible revocation for most resources. Even

the processors explicitly revoked at the end of a time slice; a library

operating system can react by saving only the required processor

state. For example, a library operating system could avoid saving

the floating point state or other registers that are not live. However,

since visible revocation requires interaction with a library operating

system, invisible revocation can perform better when revocations

occur very frequently. Processor addressing-context identifiers are

a stateless resource that may be revoked very frequently and are

best handled by invisible revocation.

Revocation and Physical Naming

The use of physical resource names requires that an exokemel re-

veal each revocation to the relevant library operating system so that

it can relocate its physical names. For instance, a library operating

system that relinquishes physical page “5” should update any of its

page-table entries that refer to this page. This is easy for a library

operating system to do when it deallocates a resource in reaction to

an exokernel revocation request. An abort protocol (discussed be-

low) allows relocation to be performed when an exokemel forcibly

reclaims a resource.

We view the revocation process as a dialogue between an ex-

okemel and a library operating system. Library operating systems

should organize resource lists so that resources can be deallocated

quickly. For example, a library operating system could have a sim-

ple vector of physical pages that it owns: when the kernel indicates

that some page should be deallocated, the library operating system

selects one of its pages, writes it to disk, and frees it.

3.4 The Abort Protocol

An exokemel must also be able to take resources from library operat-

ing systems that fail to respond satisfactorily to revocation requests.

An exokemel can define a second stage of the revocation protocol

in which the revocation request (“please return a memory page”)

becomes an imperative (“return a page within 50 microseconds”).

However, if a library operating system fails to respond quickly, the

secure bindings need to be broken “by force.” The actions taken

when a library operating system is recalcitrant are defined by the

abort protocol.

One possible abort protocol is to simply kill any library op-

erating system and its associated application that fails to respond

quickly to revocation requests. We rejected this method because

we believe that most programmers have great difficulty reasoning

about hard real-time bounds. Instead, if a library operatings ystem

fails to comply with the revocation protocol, an exokemel simply

breaks all existing secure bindings to the resource and informs the

library operating system.

To record the forced loss of a resource, we use a repossession

vector. When an exokernel takes a resource from a library oper-

ating system, this fact is registered in the vector and the library

operating system receives a “repossession” exception so that it can

update any mappings that use the resource. For resources with

state, an exokemel can write the state into another memory or disk

resource. In preparation, the library operating system can pre-load

the repossession vector with a list of resources that can be used for

this purpose. For example, it could provide names and capabilities

for disk blocks that should be used as backing store for physical

memory pages.

Another complication is that an exokemel should not arbitrarily

choose the resource to repossess. A library operating system may

use some physical memory to store vital bootstrap information such

as exception handlers and page tables. The simplest way to deal with

this is to guarantee each library operating system a small number

of resources that will not be repossessed (e.g., five to ten physical

memory pages). If even those resources must be repossessed, some

emergency exception that tells a library operating system to submit

itself to a “swap server” is required.

4 Status and Experimental Methodology

We have implemented two software systems that follow the exoker-

nel architecture: Aegis, an exokemel, and ExOS, a library operating

system. Another prototype exokemel, Glaze, is being built for an

experimental SPARC-based shared-memory multiprocessor [35],

along with F%OS, a parallel operating system library.

Aegis and ExOS are implemented on MIPS-based DECstations.

Aegis exports the processor, physical memory, TLB, exceptions,

and interrupts. In addition, it securely exports the network inter-

face using a packet filter system that employs dynamic code gen-

eration. ExOS implements processes, virtual memory, user-level

exceptions, various interprocess abstractions, and several network

protocols (ARP/RARP, 1P, UDP, and NFS), A native extensible file

system that implements global buffer management is under devel-

opment. Currently, our prototype system has no real users, but is

used extensively for development and experimentation.

The next three sections describe the implementation of Aegis,

ExOS, and extensions to ExOS. Included in the discussion are ex-

periments that test the efficacy of the exokemel approach. These

experiments test four hypotheses:

Exokemels can be very efficient,

Low-level, secure multiplexing of hardware resources can be

implemented efficiently.

Traditional operating system abstractions can be implemented

efficiently at application level.

Applications can create special-purpose implementations of

these abstractions.

On identical hardware we compare the performance of Aegis

and ExOS with the performance of Ukrix4.2, a mature monolithic

UNIX operating system. It is important to note that Aegis and

256

Machhre Processor SPEC rating MIPS

DEC21OO(12.5 MHz) R2000 8.7 SPECint89 ~11

DEC3 100 (16.67 MHz) R3000 11.8 SPECint89 -15

DEC5000/125 (25 MHz)] R3000 16.1 SPECint92 ~ 25 I

Table 1: Experimental platforms.

ExOS do not offer the same level of firnctionality as Ultrix. We

do not expect these additions to cause large increases in our timing

measurements.

The comparisons with Ultrix serve two purposes. First, they

show that there is much overhead in today’s systems, which can

be easily removed by specialized implementations. Second, they

provide a well-known, easily-accessible point of reference for un-

derstanding Aegis’s and ExOS’s performance. Ultrix, despite its

poor performance relative to Aegis, is not a poorly tuned system; it

is a mature monolithic system that performs quite well in compari-

son to other operating systems [39]. For example, it performs two

to three times better than Mach 3.0 in a set of I/O benchmarks [38].

Also, its virtual memory performance is approximately twice that

of Mach 2.5 and three times that of Mach 3.0 [5].

In addition, we attempt to assess Aegis’s and ExOS’S perfor-

mance in the light of recent advances in operating systems research.

These advances have typically been evaluated on different hardware

and frequently use experimental software, making head-to-head

comparisons impossible. In these cases we base our comparisons

on relative SPECint ratings and instruction counts.

Table 1 shows the specific machine configurations used in the ex-

periments. For brevity, we refer to the DEC5000/125 as DEC5000.

The three machine configurations are used to get a tentative mea-

sure of the scalability of Aegis. All times are measured using the

“wall-clock.” We used clock on the Unix implementations and

a microsecond counter on Aegis. Aegis’s time quantum was set

at 15.625 milliseconds. All benchmarks were compiled using an

identical compiler and flags: gcc version 2.6.0 with optimization

flags “-02.” None of the benchmarks use floating-point instruc-

tions; therefore, we do not save floating-point state. Both systems

were run in “single-user” mode and were isolated from the network.

The per-operation cost was obtained by repeating the operation a

large number of times and averaging. As a result, the measurements

do not consider cold start misses in the cache or TLB, and therefore

represent a “best case.” Because, Ultrix has a much larger cache

and virtual memory footprint than Aegis, this form of measurement

is more favorable to Ultrix. Because Ultrix was sensitive to the

instance of the type of machine it was run on, we took the best time

measured. The exokemel numbers are the median of three trials.

A few of our benchmarks are extremely sensitive to instruction

cache conflicts. In some cases the effects amounted to a factor of

three performance penalty. Changing the order in which ExOS’S

object files are linked was sufficient to remove most conflicts. A

happy side-effect of using application-level libraries is that object

code rearrangement is extremely straightforward (i.e., a “make-

file” edit). Furthermore, with instruction cache tools, conflicts

between application and library operating system code can be re-

moved automatically—an option not available to applications using

traditional operating systems. We believe that the large impact of

instruction cache conflicts is due to the fact that most Aegis opera-

tions are performed at near hardware speed; as a result, even minor

conflicts are noticeable.

System call I Description

Yield Y]eld processor to named process

Stall Synchronous protected control transfer

Acall Asynchronous protected control transfer

Allot Allocation of resources (e.g., physical page)

Dealloc Deallocation of resources

Table 2: A subset of the Aegis system call interface.

Primitive operations I Description

TLBwr] Insert mapping into TLB

F PUmod Enable/disable FPU

CIDswitch Install context identifier I
TLBvadelete Delete virtual address from TLB

Table 3: A sample of Aegis’s primitive operations.

5 Aegis: an Exokernel

This section describes the implementation and performance of

Aegis. The performance numbers demonstrate that Aegis and low-

level multiplexing can be implemented efficiently. We describe in

detail how Aegis multiplexes the processor, dispatches exceptions,

translates addresses, transfers control between address spaces, and

multiplexes the network.

5.1 Aegis Overview

Table 2 lists a subset of the Aegis interface. We discuss the

implementation of most of the system calls in this section. Aegis

also supports a set of pr-ihritive operations that encapsulate privi-

leged instructions and are guaranteed not to alter application-visible

registers (see Table 3 for some typical examples). These primitive

operations can be viewed as pseudo-instructions (similar to the Al-

pha’s use of PALcode [45]). In this subsection we examine how

Aegis protects time slices and processor environments; other re-

sources are protected as described in Section 3.

5.1.1 Processor Time Slices

Aegis represents the CPU as a linear vector, where each element

corresponds to a time slice. Time slices are partitioned at the clock

granularity and can be allocated in a manner similar to physical

memory. Scheduling is done “round robin” by cycling through

the vector of time slices. A crucial property of this representation

is position, which encodes an ordering and an approximate upper

bound on when the time slice will be run. Position can be used to

meet deadlines and to tradeoff latency for throughput. For example,

along-running scientific application could allocate contiguous time

slices in order to minimize the overhead of context switching, while

an interactive application could allocate several equidistant time

slices to maximize responsiveness.

Timer intemrpts denote the beginning and end of time slices, and

are delivered in a manner similar to exceptions (discussed below): a

register is saved in the “interrupt save area,” the exception program

counter is loaded, and Aegis jumps to user-specified interrupt han-

dling code with interrupts re-enabled. The application’s handlers

are responsible for general-purpose context switching: saving and

restoring live registers, releasing locks, etc. This framework gives

applications a large degree of control over context switching. For

example, it can be used to implement scheduler activations [4].

Fairness is achieved by bounding the time an application takes to

save its context: each subsequent timer interrupt (which demarcates

a time slice) is recorded in an excess time counter. Applications pay

257

for each excess time slice consumed by forfeiting a subsequent time

slice, If the excess time counter exceeds a predetermined threshold,

the environment is destroyed. In a more friendly implementation,

Aegis could perform a complete context switch for the application.

This simple scheduler can support a wide range of higher-level

scheduling policies. As we demonstrate in Section 7, an application

can enforce proportional sharing on a collection of sub-processes.

5.1.2 Processor Environments

An Aegis processor environment is a structure that stores the in-

formation needed to deliver events to applications. All resource

consumption is associated with an environment because Aegis must

deliver events associated with a resource (such as revocation excep-

tions) to its designated owner.

Four kinds of events are delivered by Aegis: exceptions, inter-

rupts, protected control transfers, and address translations. Proces-

sor environments contain the four contexts required to support these

events:

Exception context: for each exception an exception context

contains a program counter for where to jump to and a pointer to

physical memory for saving registers.

Interrupt context for each interrupt an interrupt context in-

cludes a program counters and register-save region. In the case

of timer interrupts, the interrupt context specifies separate program

counters for start-time-slice and end-time-slice cases, as well as

status register values that control co-processor and interrupt-enable

flags.

Protected Entry context a protected entry context specifies

program counters for synchronous and asynchronous protected con-

trol transfers from other applications. Aegis allows any processor

environment to transfer control into any otheL access control is

managed by the application itself.

Addressing context an addressing context consists of a set

of guaranteed mappings. A TLB miss on a virtual address that is

mapped by a guaranteed mapping is handled by Aegis. Library

operating systems rely on guaranteed mappings for bootstrapping

page-tables, exception handling code, and exception stacks. The

addressing context also includes an address space identifier, a status

register, and a tag used to hash into the Aegis software TLB (see

Section 5.4). To switch from one environment to another, Aegis

must install these three values.

These are the event-handling contexts required to define a pro-

cess. Each context depends on the others for validity: for example,

an addressing context does not make sense without an exception

context, since it does not define any action to take when an excep-

tion or interrupt occurs.

5.2 Base Costs

The base cost for null procedure and system calls are shown in

Table 4. The null procedure call shows that Aegis’s scheduling

flexibility does not add overhead to base operations. Aegis has two

system call paths: the first for system calls that do not require a

stack, the second for those that do. With the exception of protected

control transfers, which are treated as a special case for efficiency,

all Aegis system calls are vectored along one of these two paths.

Ultrix’s getpid is approximately an order of magnitude slower

than Aegis’s slowest system call path—this suggests that the base

cost of demultiplexing system calls is significantly higher in Uhrix.

Part of the reason Ultrix is so much less efficient on this basic oper-

ation is that it performs a more expensive demultiplexing operation.

For example, on a MIPS processor, kernel TLB faults are vectored

m
OS Procedure call Syscall (getpid)

DEC5000 Aegis 0.28 1.612.3

Table 4: Time to perform null procedure and system calls. Two

numbers are listed for Aegis’s system calls: the first for system calls

that do not use a stack, the second for those that do. Times are in

microseconds.

Machine 0s unalign overflow coproc prot

DEC21 00 Uhrix nla 208.0 n/a 238.0

DEC21 00 Aegis 2.8 2.8 2.8 3.0

DEC3 100 Ultnx nla 151.0 nla 177.0

DEC31 00 Aegis 2.1 2.1 2,1 2.3

DEC5000 Ultrix nla 130.0 nla 154,0

DEC5000 Aegis 1.5 1.5 1.5 1.5

Table 5: Time to dispatch an exception in Aegis and Ultrix; times

are in microseconds.

through the same fault handler as system calls. Therefore, Ultrix

must take great care not to disturb any registers that will be required

to “patch up” an interrupted TLB miss. Because Aegis does not

map its data structures (and has no page tables) it can avoid such

intricacies. We expect this to be the common case with exokemels.

5.3 Exceptions

Aegis dispatches all hardware exceptions to applications (save for

system calls) using techniques similar to those described in Thekkath

and Levy [50]. To dispatch an exception, Aegis performs the fol-

lowing actions:

1

2,

3

It saves three scratch registers into an agreed-upon “save

area.” (To avoid TLB exceptions, Aegis does this operation

using physical addresses.)

It loads the exception program counter. the last virtual address

that failed to have a valid translation, and the cause of the

exception,

It uses the cause of the exception to perform an indirect jump

to an application-specified program counter value, where ex-

ecution resumes with the appropriate permissions set (i. e,, in

user-mode with interrupts re-enabled).

After processing an exception, applications can immediately resume

execution without entering the kernel. Ensuring that applications

can return from their own exceptions (without kernel intervention)

requires that all exception state be available for user reconstruction.

This means that all registers that are saved must be in user-accessible

memory locations.

Currently, Aegis dispatches exceptions in 18 instructions. The

low-level nature of Aegis allows an extremely efficient implementa-

tion: the time for exception dispatching on a DECstation5000/l 25

is 1.5 microseconds. This time is over five times faster than the

most highly-tuned implementation in the literature (8 microsec-

onds on DECstation5000/200 [50], a machine that is 1.2 faster on

SPECint92 than our DECstation5000/l 25). Part of the reason for

this improvement is that Aegis does not use mapped data structures,

and so does not have to separate kernel TLB misses from the more

258

general class of exceptions in its exception demultiplexing rou-

tine. Fast exceptions enable a number of intriguing applications:

efficient page-protection traps can be used by applications such as

distributed shared memory systems, persistent object stores, and

garbage collectors [5, 50].

Table 5 shows exception dispatch times for unaligned pointer

accesses (unalign), arithmetic overflow (overflow), attempted use

of the floating point co-processor when it is disabled (coproc) and

access to protected pages (prot). The times for unalign are not

available under Ultrix since the kernel attempts to “fix up” an un-

aligned access and writes an error message to standard error. Addi-

tionally, Ultrix does not allow applications to disable co-processors,

and hence cannot utilize the coproc exception. Times are given in

Table 5. In each case, Aegis’s exception dispatch times are approx-

imately two orders of magnitude faster than Ultrix.

5,4 Address Translations

This section looks at two problems in supporting application-level

virtual memory: bootstrapping and efficiency. An exokernel must

provide support for bootstrapping the virtual naming system (i.e., it

must support translation exceptions on both application page-tables

and exception code). Aegis provides a simple bootstrapping mech-

anism through the use of a small number of guaranteed mappings.

A miss on a guaranteed mapping will be handled automatically by

Aegis. This organization frees the application from dealing with

the intricacies of boot-strapping TLB miss and exception handlers,

which can take TLB misses. To implement guaranteed mappings

efficiently, an application’s virtual address space is partitioned into

two segments. The first segment holds normal application data and

code. Virtual addresses in the segment can be “pinned” using guar-

anteed mappings and typically holds exception handling code and

page-tables.

On a TLB miss, the following actions occuc

1. Aegis checks which segment the virtual address resides in. If

it is in the standard user segment, the exception is dispatched

directly to the application. If it is in the second region,

Aegis first checks to see if it is a guaranteed mapping. If so,

Aegis installs the TLB entry and continues; otherwise, Aegis

forwards it to the application.

2. The application looks up the virtual address in its page-table

structure and, if the access is not allowed raises the appro-

priate exception (e.g., “segmentation fault”). If the mapping

is valid, the application constructs the appropriate TLB en-

try and its associated capability and invokes the appropriate

Aegis system routine.

3. Aegis checks that the given capability corresponds to the

access rights requested by the application. If it does, the

mapping is installed in the TLB and control is returned to the

application. Otherwise an error is returned.

4. The application performs cleanup and resumes execution.

In order to support application-level virtual memory efficiently,

TLB refills must be fast. To this end, Aegis caches TLB entries

(a form of secure bindings) in the kernel by overlaying the hard-

ware TLB with a large software TLB (STLB) to absorb capacity

misses [7, 28]. On aTLB miss, Aegis first checks to see whether the

required mapping is in the STLB. If so, Aegis installs it and resumes

execution; otherwise, the miss is forwarded to the application,

The STLB contains 4096 entries of 8 bytes each. It is direct-

mapped and resides in unmapped physical memory. An STLB “hit”

takes 18 instructions (approximately one to two microseconds). In

Table 6: Time to perform a (unidirectional) protected control trans-

fe~ times are in microseconds.

contrast, performing an upcall to application level on a TLB miss,

followed by a system call to install a new mapping is at least three

to six microseconds more expensive.

As dictated by the exokemel principle of exposing kernel book-

keeping structures, the STLB can be mapped using a well-known

capability, which allows applications to efficiently probe for entries.

5.5 Protected Control Transfers

Aegis provides aprotectedcontrol transfer mechanism as a substrate

for efficient implementations of IPC abstractions. Operationally, a

protected control transfer changes the program counter to an agreed-

upon value in the callee, donates the current time slice to the callee’s

processor environment, and installs the required elements of the

callee’s processor context (addressing-context identifier, address-

space tag, and processor status word).

Aegis provides two forms of protected control transfers: syrr-

chronous and asynchronous. The difference between the two is

what happens to the processor time slice. Asynchronous calls do-

nate only the remainder of the current time slice to the callee. Syn-

chronous calls donate the current time and all future instantiation

of i~ the callee can return the time slice via a synchronous con-

trol transfer call back to the original caller. Both forms of control

transfer guarantee two important properties. First, to applications,

a protected control transfer is atomic: once initiated it will reach

the callee. Second, Aegis will not overwrite any application-visible

register. These two properties allow the large register sets of modem

processors to be used as a temporary message buffer [14].

Currently, our synchronous protected control transfer operation

takes 30 instructions. Roughly ten of these instructions are used to

distinguish the system call “exception” from other hardware excep-

tions on the MIPS architecture. Setting the status, co-processor, and

address-tag registers consumes the remaining 20 instructions, and

could benefit from additional optimization. Because Aegis imple-

ments the minimum functionality required for any control transfer

mechanism, applications can efficiently construct their own IPC

abstractions. Sections 6 and 7 provide examples.

Table 6 shows the performance in microseconds of a “bare-

bone” protected control transfer. This time is derived by dividing

the time to perform a call and reply in half (i.e., we measure the time

to perform a unidirectional control transfer). Since the experiment

is intended to measure the cost of protected control transfer only, no

registers are saved and restored. However, due to our measurement

code, the time includes the overhead of incrementing a counter and

performing a branch.

We attempt a crude comparison of our protected control transfer

operation to the equivalent operation on L3 [33]. The L3 imple-

mentation is the fastest published result, but it runs on an Intel 486

DX-50 (50 MHz). For Table 6, we scaled the published L3 results

(5 microseconds) by the SPECint92 rating of Aegis’s DEC5000

and L3’s 486 (16.1 vs. 30.1). Aegis’s trusted control transfer

mechanism is 6.6 times faster than the scaled time for L3’s RPC

mechanism.

259

Filter Classification Time

MPF I 35.0

PAT”HFtNDER
!

19,0

DPF I 1,5

Table 7: Time on a DEC5000/200 to classify TCP/IP headers des-

tined for one often TCP/IP filters; times are in microseconds.

Architectural characteristics of the Intel 486 partially account

for Aegis’s better performance. L3 pays a heavy penaky to enter

and leave the kernel (71 and 36 cycles, respectively) and must flush

the TLB on a context switch.

5.6 Dynamic Packet Filter (DPF)

Aegis’s network subsystem uses aggressive dynamic code gener-

ation techniques to provide efficient message demultiplexing and

handling. We briefly discuss some key features of this system. A

complete discussion can be found in [22].

Message demultiplexing is the process of determining which

application an incoming message should be delivered to. Packet

filters are a well-known technique used to implement extensible

kernel demultiplexing [6, 56]. Traditionally, packet filters are in-

terpreted, which entails a high computational cost. Aegis uses

Dynamic Packet Filter (DPF), a new packet filter system that is

over an order of magnitude more efficient than previous systems.

The key in our approach to making filters run fast is dynamic

code generation. Dynamic code generation is the creation of exe-

cutable code at runtime. DPF exploits dynamic code generation in

two ways: (1) by using it to eliminate interpretation overhead by

compiling packet filters to executable code when they are installed

into the kernel and (2) by using filter constants to aggressively

optimize this executable code. To gain portability, DPF compiles

filters using VCODE, a portable, very fast, dynamic code genera-

tion system [20]. VCODE generates machine code in approximately

10 instructions per generated instruction and runs on a number of

machines (e.g., MIPS, Alpha and SPARC).

We measured DPF’s time to classify packets destined for one

of ten TCP/IP filters, and compare its times to times for MPF [56]

(a widely used packet filter engine) and PATHFINDER [6] (the

fastest packet filter engine in the literature). To ensure meaningful

comparisons between the systems, we ran our DPF experiments on

the same hardware (a DECstation 5000/200) in user space. Table 7

presents the time to perform this message classification; it was de-

rived from the average of one million trials. This experiment and the

numbers for both MPF and PATHFINDER are taken from [6]. On

this experiment DPF is 20 times faster than MPF and 10 times faster

than PATHFINDER. The bulk of this performance improvement is

due to the use of dynamic code generation,

5.7 Summary

The main conclusion we draw from these experiments is that an

exokemel can be implemented efficiently. The reasons for Aegis’s

good performance are the following. One, keeping track of owner-

ship is a simple task and can therefore be implemented efficiently,

‘IWO, since the kernel provides very little functionality beyond low-

level multiplexing, it is small and lean: for instance, it keeps its

data structures in physical memory. Three, by caching secure bind-

ings in a software TLB, most hardware TLB misses can be handled

efficiently. Four, by downloading packets filters and by employing

dynamic code generation, secure binding to the network can be

implemented efficiently.

Machine 0s pipe pipe’ shm Irpc

DEC21 00 Ultnx 326.0 n/a 187,0 nla

DEC21 00 ExOS 30.9 24.8 12.4 13.9

DEC31 00 Ultrix 243,0 nla 139.0 rrla

DEC3 100 ExOS 22.6 18.6 9,3 10,4

DEC5000 Ultrix 199.0 nla 118,0 nla

DEC5000 ExOS 14.2 107 5.7 6.3

Table 8: Time for IPC using pipes, shared memory, and LRPC

on ExOS and Ultrix; times are in microseconds. Pipe and shared

memory are unidirectional, while LRPC is bidirectional.

6 ExOS: a Library Operating System

The most unusual aspect of ExOS is that it manages fundamental

operating system abstractions (e.g., virtual memory and process)

at application level, completely within the address space of the

application that is using it. This section demonstrates that basic

system abstractions can be implemented at application level in a

direct and efficient manner. Due to space constraints we focus on

IPC, virtual memory, and remote communication.

6.1 IPC Abstractions

Fast interprocess communication is crucial for building efficient and

decoupled systems [8, 27, 33], As described in Section 5, the Aegis

protected control transfer mechanism is an efficient substrate for

implementing IPC abstractions. This section describes experiments

used to measure the performance of ExOS’s IPC abstractions on

top of the Aegis primitives. The results of these experiments are

summarized in Table 8. The experiments are:

pipe: measures the latency of sending a word-sized message

from one process to another using pipes by “ping-ponging” a counter

between two processes. The Ultrix pipe implementation uses stan-

dard UNIX pipes. The ExOS pipe implementation uses a shared-

memory circular buffer. Writes to full buffers and reads from empty

ones cause the current time slice to be yielded by the current process

to the reader or writer of the buffer, respectively. We use two pipe

implementations: the first is a naive implementation (pipe), while

the second (pipe’) exploits the fact that this library exists in appli-

cation space by simply inlining the read and write calls. ExOS’S

unoptimized pipe implementation is an order of magnitude more

efficient than the equivalent operation under Ultrix.

shin: measures the time for two processes to “ping-pong” using

a shared counter. ExOS uses Aegis’s yield system call to switch

between partners. Ukrix does not provide a yield primitive, so

we synthesized it using signals. ExOS’s shm is 15 to 20 times faster

than Ultrix’s shin. ExOS’S shm is about twice as fast as its pipe

implementation, which must manipulate circular buffers.

lrpc: this experiment measures the time to perform an LRPC

into another address space, increment a counter and return its value.

ExOS’S LRPC is built on top of Aegis’s protected control transfer

mechanism. lrpc saves all general-purpose callee-saved registers.

The lrpc implementation assumes that only a single function is of

interest (e.g., it does not use the RPC number to index into a table)

and it does not check permissions. The implementation is also

single-threaded.

Because Ultrix is built around a set of fixed high-level abstrac-

tions, new primitives can be added only by emulating them on top of

existing ones. Specifically, implementations of lrpc must use pipes

or signals to transfer control. The cost of such emulation is high:

on Ultrix, lrpc using pipes costs 46 to 60 more than on ExOS and

using signals costs 26 to 37 more than on ExOS. These experiments

260

DEC3100] ExOS 5.2

DEC5000 I Uhrix I 3,8

lDEc50001i3x0sl 3,71, ,

Table 9: Time to perform a 150x150 matrix multiplication; time in

seconds.

indicate that an Ultrix user either pays substantially in performance

for new functionality, or is forced to modify the kernel.

6.2 Application-level Virtual Memory

ExOS provides a rudimentary virtual memory system (approxi-

mately 1000 lines of heavily commented code). Its two main limi-

tations are that it does not handle swapping and that page-tables are

implemented as a linear vector (address translations are looked up

in this structure using binary search). Barring these two limitations,

its interface is richer than other virtual memory systems we know

of. It provides flexible support for aliasing, sharing, disabling and

enabling of caching on a per-page basis, specific page-allocation,

and DMA.

The overhead of application-level memory is measured by per-

forming a 150 by 150 integer matrix multiplication. Because this

naive version of matrix multiply does not use any of the special

abilities of ExOS or Aegis (e.g., page-coloring to reduce cache

conflicts), we expect it to perform equivalently on both operating

systems. The times in Table 9 indicate that application-level virtual

memory does not add noticeable overhead to operations that have

reasonable virtual memory footprints. Of course, this is hardly a

conclusive proof.

Table 10 compares Aegis and ExOS to Ultrix on seven virtual

memory experiments based on those used by Appel and LI [5].

These experiments are of particular interest, since they measure

the cost of VM operations that are crucial for the construction of

ambitious systems, such as page-based distributed shared memory

systems and garbage collectors. Note that Ultrix’s VM perfor-

mance is quite good compared to other systems [5]. The operations

measured are the following:

dirty: time to query whether a page is “dirty.” Since it does not

require examination of the TLB, this experiment measures the base

cost of looking up a virtual address in ExOS’s page-table structure.

This operation is not provided by Ultrix.

protl: time to change the protection of a single page,

prot100: time to “read-protect” 100 pages.

unprot100: time to remove read-protections on 100 pages,

trap: time to handle a page-protection trap.

appell: time to access a random protected page and, in the

fault handler, protect some other page and unprotect the faulting

page (this benchmark is “protl +trap+unprot” in Appel and Li [5]).

appe12: time to protect 100 pages, then access each page in a

random sequence and, in the fault-handler, unprotect the faulting

page (this benchmark is “protN+trap+unprot” in Appel and Li [5]).

Note that appe12 requires less time than appell since appell must

both unprotect and protect different pages in the fault handler.

The dirty benchmark measures the average time to parse the

page-table for a random entry. This operation illustrates two con-

sequences of the exokernel architecture. First, kernel transitions

can be eliminated by implementing abstractions at application level.

Second, application-level software can implement functionality that

is frequently not provided by traditional operating systems.

If we compare the time for dirty to the time for protl, we see

that over half the time spent in protl is due to the overhead of

parsing the page table. As we show in Section 7.2, this overhead

can be reduced through the use of a data structure more tuned to

efficient lookup (e.g., a hash table). Even with this penalty, ExOS

performs protl almost twice as fast as Ultrix. The likely reason for

this difference is that. as shown in Table 4, Aegis dispatches system

calls an order of magnitude more efficiently than Ultrix.

In general, our exokemel-based system performs well on this

set of benchmarks. The exceptions are prot100 and unprot100.

Ultrix is extremely efficient in protecting and unprotesting contigu-

ous ranges of virtual addresses: it performs these operations 1.1

to 1.6 times faster than Aegis. One reason for this difference is

the immaturity of our implementation. Another is that changing

page protections in ExOS requires access to two data structures

(Aegis’s STLB and ExOS’S page-table). However, even with poor

performance on these two operations, the benchmark that uses this

operation (appe12)is close to an order of magnitude more efficient

on ExOS than on Ultrix. In fact, we can expect further improve-

ments in performance from more sophisticated page-table structures

and hand-coded assembly language for some operations. The use

of a high-level language(C) to handle exceptions adds overhead for

saving and restoring all caller-saved registers when a trap handler

starts and returns.

6.3 Application-Specific Safe Handlers (ASH)

ExOS operates efficiently in spite of executing at application level

in part because the cost of crossing between kernel and user space is

extremely low in our prototype(18 instructions). Most application-

specific optimizations can therefore be implemented in libraries at

application level. However, in the context of networking, there are

two reasons for ExOS to download code: the first is technology

driven, while the second is more fundamental. First, the network

buffers on our machines cannot be easily mapped into application

space in a secure way. Therefore, by downloading code into the

kernel, applications can integrate operations such as checksum-

ming during the copy of the message from these buffers to user

space. Such integration can improve performance on a DECsta-

tion5000/200 by almost a factor of two [22]. Second, if the runtime

of downloaded code is bounded, it can be run in situations when

performing a full context switch to an unscheduled application is

impractical. Downloading code thus allows applications to decou-

ple latency-critical operations such as message reply from process

scheduling.

We examine these issues using application-specific handlers

(ASHS). ASHS are untrusted application-level message-handlers

that are downloaded into the kernel, made safe by a combination

of code inspection [18] and sandboxing [52], and executed upon

message arrival. The issues in other contexts (e.g., disk I/0) are

similar.

An ASH can perform general computation. We have augmented

this ability with a set of message primitives that enable the following

four useful abilities:

1.

2.

Direct, dynamic message vectoring. An ASH controls where

messages are copied in memory, and can therefore eliminate

all intermediate copies, which are the bane of fast networking

systems.

Dynamic integrated layer processing (ILP) [1, 16]. ASHS

can integrate data manipulations such as checksumming and

261

Machine 0s dirty protl prot100 unprot100 trap appell appe12

DEC21 00 Ultrix nla 51.6 1750 175.0 2400 383.0 335.0

DEC21OO ExOS 17.5 32.5 213.0 275.0 13.9 74.4 45,9

DEC3 100 Ukrix ala 39.0 1330 133.0 185.0 3020 267,0

DEC31 00 ExOS 13.1 24.4 156.0 206.0 10.1 55.0 34.0

DEC5000 Ultrix ala 32.0 102.0 102.0 161.0 262.0 232,0

DEC5000 ExOS 9.8 16.9 1090 143.0 48 34.0 22.0

Table 10: Time to perform virtual memory operations on ExOS and Ultrix; times are in microseconds. The times for appell and appe12 are

per page.

n

Table 11: Roundtrip latency of a 60-byte packet over Ethernet using

ExOS with ASHS, ExOS without ASHS, Ultrix, and FRPC; times

are in microseconds.

3.

4.

It

conversion into the data transfer engine itself. This integra-

tion is done at the level of pipes. A pipe is a computation

that acts on streaming data. Pipes contain sufficient semantic

information for the ASH compiler to integrate several pipes

into the message transfer engine at runtime, providing a large

degree of flexibility and modularity. Pipe integration allows

message traversals to be modularly aggregated to a single

point in time. To the best of our knowledge, ASH-based

ILP is the first to allow either dynamic pipe composition or

application-extended in-kernel ILP.

Message initiation. ASHS can initiate message sends, allow-

ing for low-latency message replies.

Control initiation. ASHS perform general computation. This

ability allows them to perform control operations at message

reception time, implementing such computational actions as

traditional active messages [5 1] or remote lock acquisition.

is important to note the power of the ASH computational

model. It allows the vectoring process to be completely dynamic:

the application does not have to pre-specify that it is waiting for

a particular message, nor does it have to pre-bind buffer locations

for the message. Instead, it can defer these decisions until message

reception and use application-level data structures, system state,

and/or the message itself to determine whereto place the message.

Capturing the same expressiveness within a statically defined pro-

tocol is difficult.

Table 11 shows the roundtrip latency over Ethernet of ASH-

based network messaging and compares it to ExOS without ASHS,

Ultrix, and FRPC [49] (the fastest RPC in the literature on compara-

ble hardware). Roundtrip latency for Aegis and Ultrix was measured

by ping-ponging a counter in a 60-byte UDP/IP packet 4096 times

between two processes in user-spaceon DECstation5000/l 25s. The

FRPC numbers are taken from the literature [49]. They were mea-

sured on a DECstation5000/200, which is approximately 1.2 times

faster than a DECstation5000/l 25 on SPECint92.

The message processing at each node consisted of reading the

60-byte message, incrementing the counter, copying the new value

and a precomputed message header into a transmission buffer, and

then sending the reply message. In comparison to a complete

application-level implementation, ASHS save 61 microseconds.

3500

Q 3250

g 3W3

~ 2750

~ 2500

.k 2250

Ew 2030

i? 1750

$
I 500

~ 1250 !

~ ExOS with ASH

~ ExOS without ASH

‘~
1 2 3 4 5 67 8 9 10

Number of Processes

Figure 2: Average roundtrip latency with increasing number of

active processes on receiver.

Despite being measured on a slower machine, ExOS/ASH is

81 microseconds faster than a high-performance implementation of

RPC for Ultnx (FRPC) running on DECstation5000/200s and using

a specialized transport protocol [49]. In fact, ExOS/ASH is only 6

microseconds slower than the lower bound for cross-machine com-

munication on Ethernet, measured on DECstation5000/200s [49].

ASHS can be used to decouple latency-critical operations such

as message reply from the scheduling of processes. To measure

the impact of this decoupling on average message roundtrip latency

we performed the same experiment as above while increasing the

number of active processes on the receiving host (see Figure 2).

With ASHS, the roundtrip latency stays constant. Without them,

the latency increases, since the reply can be sent only when the ap-

plication is scheduled. As the number of active processes increases,

it becomes less likely that the process is scheduled, Since processes

are scheduledin “round-robin” order, latency increases linearly. On

Ultrix, the increase in latency was more erratic, ranging from .5 to

4.5 milliseconds with 10 active processes. While the exact rate that

latency increases will vary depending on algorithm used to sched-

ule processes, the implication is clear: decoupling actions such as

message reception from scheduling of a process can dramatically

improve performance.

7 Extensibility with ExOS

Library operating systems, which work above the exokemel inter-

face, implement higher-level abstractions and can define special-

purpose implementations that best meet the performance and func-

tionality goals of applications. We demonstrate the flexibility of the

262

Table 12: Time to perform untrusted (lrpc) and trusted (tlrpc)

LRPC extensions; times are in microseconds.

exokemel architecture by showing how fundamental operating sys-

tem abstractions can be redefined by simply changing application-

level libraries. We show that these extensions can have dramatic

performance benefits. These different versions of ExOS can co-

exist on the same machine and are fully protected by Aegis.

7.1 Extensible RPC

Most RPC systems do not trust the server to save and restore

registers [27]. We implemented a version of Irpc (see Section 6.1)

that trusts the server to save and restore callee-saved registers. We

call this version tlrpc (trusted LRPC). Table 12 compares tlrpc to

ExOS’s more general IPC mechanism,lrpc, which saves all general-

purpose callee-saved registers. Both implementations assume that

only a single function is of interest (e.g., neither uses the RPC

number to index into a table) and do not check permissions. Both

implementations are also single-threaded. The measurements show

that this simple optimization can improve performance by up to a

factor of two.

7.2 Extensible Page-table Structures

We made a new version of ExOS that supports inverted page

tables. Applications that have a dense address space can use linear

page tables, while applications with a sparse address space can use

inverted ones. Table 13 shows the performance for this new version

of ExOS. The inverted page-table trades the performance of mod-

ifying protection on memory regions for the performance of faster

lookup. On the virtual memory benchmarks of Section 6.2, it is

over a factor of two more efficient on dirty, 3790 faster on appell,

and 17~o faster on appe12. Because VM is implemented at appli-

cation level, applications can make such tradeoffs as appropriate.

This experiment emphasizes the degree of flexibility offered by an

exokemel architecture.

7.3 Extensible Schedulers

Aegis includes a yield primitive to donate the remainder of a pro-

cess’ current time slice to another (specific) process. Applications

can use this simple mechanism to implement their own scheduling

algorithms. To demonstrate this, we have built an application-level

scheduler that implements stride scheduling [54], a deterministic,

proportional-share scheduling mechanism that improves on recent

work [53]. The ExOS implementation maintains a list of processes

for which it is responsible, along with the proportional share they

are to receive of its time slice(s). On every time slice wakeup, the

scheduler calculates which process is to be scheduled and yields to

it directly.

We measure the effectiveness of this scheduler by creating three

processes that increment counters in shared memory. The processes

are assigned a 3:2:1 relative allocation of the scheduler’s time slice

quanta. By plotting the cumulative values of the shared counters,

we can determine how closely this scheduling allocation is realized.

As can be seen in Figure 3, the achieved ratios are very close to

idealized ones.

2500

~ 2250

c
~ 2000
a

g 1750

~ 1500

“~ 1250

E 1000
a I

750

500

250

0

——————Ideal

● Measured

,
I I I I I I I I I I

O 10 20 30 40 50 60 70 80 90 100

Time (quanta)

Figure 3: Application-level stride scheduler.

It is important to note that there is nothing special about this

scheduler either in terms of privileges (any application can perform

identical actions) or in its complexity (the entire implementation is

less than 100 lines of code). As a result, any application can easily

manage processes. An important use of such tine-grained control

is to enhance the modularity of application design: previously,

applications that had subtasks of different/fluctuating priorities had

to internalize them in the form of schedulable threads. As a result,

the likelihood of software errors increased, and the complexity

of the design grew. By constructing a domain-specific scheduler,

these applications can now effectively and accurately schedule sub-

processes, greatly improving fault isolation and independence.

8 Related work

Many early operating system papers discussed the need for ex-

tendible, flexible kernels [32, 42]. Lampson’s description of CAL-

TSS[31] and Brinch Hansen’s microkemel paper [24] are two clas-

sic rationales, Hydra was the most ambitious early system to have

the separation of kernel policy and mechanism as one of its central

tenets [55]. An exokemel takes the elimination of policy one step

further by removing “mechanism” wherever possible. This process

is motivated by the insight that mechanism is policy, albeit with one

less layer of indirection. For instance, a page-table is a very detailed

policy that controls how to translate, store and delete mappings and

what actions to take on invalid addresses and accesses.

VM/370 [17] exports the ideal exokemel interface: the hard-

ware interface. On top of this hardware interface, VM/370 supports

a number of virtual machines on top of which radically different

operating systems can be implemented. However, the important

difference is that VM/370 provides this flexibility by virtualizing

the entire base-machine. Since the base machine can be quite com-

plicated, virtualization can be expensive and difficult. Often, this

approach requires additional hardware support [23, 40]. Addition-

ally, since much of the actual machine is intentionally hidden from

application-level software, such software has little control over tbe

actual resources and may manage the virtual resources in a counter-

productive way, For instance, the LRU policy of pagers on top of

the virtual machine can conflict with the paging strategy used by

the virtual machine monitor [23]. In short, while a virtual machine

can provide more control than many other operating systems, appli-

cation performance can suffer and actual control is lacking in key

areas.

263

Machine Method dkty protl prot100 unprot100 trap appell appe12 =

DEC21 00 Originat page-table 17,5 32.5 213, 275, 13.9 74.4 459

DEC21 00 Inverted page-table 8.0 23.1 253. 325. 13.9 54,4 38.8

DEC3 100 Orrginal page-table 13.1 24.4 156, 206 101 55.0 34.0

DEC3 100 Inverted page-table 59 17.7 189. 243. 10.1 40.4 28.9

Table 13: Time to perform virtual memory operations on ExOS using two different page-table structures; times are in microseconds.

Modem revisitations of microkemels have argued for kernel ex-

tensibility [2, 43, 48]. Like microkemels, exokemels are designed

to increase extensibility. Unlike traditional microkemels, an exok-

emel pushes the kernel interface much closer to the hardware, which

allows for greater flexibility. An exokemel allows application-level

libraries to define virtual memory and IPC abstractions. In addition,

the exokemel architecture attempts to avoid shared servers (espe-

cially trusted shared servers), since they often limit extensibility.

For example, it is difficult to change the buffer management policy

of a shared file server. In many ways, servers can be viewed as fixed

kernel subsystems that run in user-space. Some newer microker-

nels push the kernel interface closer to the hardware [34], obtaining

better performance than previous microkemels. However, since

these systems do not employ secure bindings, visible resource re-

vocation, and abort protocols, they give less control of resources to

application-level software.

The SPIN project is building a microkemel system that allows

applications to make policy decisions [9] by safely downloading

extensions into the kernel. Unlike SPIN, the focus in the exoker-

nel architecture is to obtain flexibility and performance by securely

exposing low-level hardware primitives rather than extending a tra-

ditional operating system in a secure way. Because the exokemel

low-level primitives are simple compared to traditional kernel in-

terfaces, they can be made very fast. Therefore, the exokemel has

less use for kernel extensions.

Scout [25] and Vlno [46] are other current extensible operating

systems. These systems are just beginning to be constructed, so it

is difficult to determine their relationship to exokemels in general

and Aegis in particular.

SPACE is a “submicro-kemel” that provides only low-level ker-

nel abstractions defined by the trap and architecture interface [41].

Its close coupling to the architecture makes it similar in many ways

to an exokemel, but we have not been able to make detailed com-

parisons because its design methodology and performance have not

yet been published,

Anderson [3] makes a clear argument for application-specific

library operating systems and proposes that the kernel concentrate

solely on the adjudication of hardware resources. The exokemel

design addresses how to provide secure multiplexing of physical

resources in such a system, and moves the kernel interface to a lower

level of abstraction. In addition, Aegis and ExOS demonstrate that

low-level secure multiplexing and library operating systems can

offer excellent performance.

Like Aegis. the Cache Kernel [13] provides a low-level kernel

that can support multiple application-level operating systems. To

the best of our knowledge ExOS and the Cache Kernel are the

first general-purpose library operating systems implemented in a

multiprogramming environment. The difference between the Cache

Kernel and Aegis is mainly one of high-level philosophy. The

Cache Kernel focuses primarily on reliability, rather than securely

exporting hardware resources to applications. As result, it is biased

towards a server-based system structure, For example, it supports

only 16 “application-level” kernels concurrently.

9 Conclusion

In the exokemel architecture, an exokemel securely multiplexes

available hardware resources among applications. Library operat-

ing systems, which work above the low-level exokemel interface,

implement higher-level abstractions and can define special-purpose

implementations that best meet the performance and functional-

ity goals of applications. The exokemel architecture is motivated

by a simple observation: the lower the level of a primitive, the

more efficiently it can be implemented, and the more latitude it

grants to implementors of higher-level abstractions. To achieve

a low-level interface, the exokemel separates management from

protection. To make this separation efficient it uses secure bind-

ings, implemented using hardware mechanisms, software caches,

or downloading code.

Experiments using our Aegis and ExOS prototypes demonstrate

our four hypotheses. First, the simplicity and limited number of ex-

okemel primitives allows them to be implemented very efficiently,

Measurements of Aegis show that its basic primitives are substan-

tially more efficient than the general primitives provided by Ukrix.

In addition, Aegis’s performance is better than or on par with re-

cent high-performance implementations of exceptions dispatch and

control transfer primitives.

Second. because exokemel primitives are fast, low-level secure

multiplexing of hardware resources can be implemented efficiently.

For example, Aegis multiplexes resources such as the processor,

memory, and the network more efficiently than state-of-the-art im-

plementations.

Third, traditional operating system abstractions can be im-

plemented efficiently at application level. For instance, ExOS’s

application-level VM and IPC primitives are much faster than Ul-

trix’s corresponding primitives and than state-of-the-art implemen-

tations reported in the literature.

Fourth, applications can create special-purpose implementa-

tions of abstractions by merely modifying a library. We imple-

mented several variations of fundamental operating system abstrac-

tions such as interprocess communication, virtual memory, and

schedulers with substantial improvements in functionality and per-

formance. Many of these variations would require substantial kernel

alternations on today’s systems.

Based on the results of these experiments, we conclude that the

exokemel architecture is a viable structure for high-performance,

extensible operating systems.

Acknowledgments

We thank Henri Bal, Robert Bedichek, Matthew Frank, Greg Ganger,

Bob Gruber, Sandeep Gupta, Wilson Hsieh, Kirk Johnson, But-

ler Lampson, Ulana Legedza, Hank Levy (our shepherd), David

Mosberger-Tang, Massimiliano Poletto, Robbert van Renesse, Satya

(M. Satyanarayanan), Raymie Stata, Carl Waldspurger, and Debo-

rah Wallach for insightful discussions and careful reading of earlier

versions of this paper. We also thank the anonymous referees for

their valuable feedback. We thank Jochen Lietdke for his aid in

264

comparing the IPC mechanisms of Aegis and L3. We thank Ken

Mackenzie for many insights and discussions. In addition, we thank

Hector Briceno for porting NFS and SUN RPC; Sandeep Gupta for

developing an inverted page-table; Robert Grimm for porting a

disk drive~ and Tom Pinckney for porting gdb and developing an

application-level file system. Finally, we thank Deborah Wallach

for her input on the design of ASHS, the software she developed to

evaluate them, and porting Aegis to the DECstation5000. Her help

was invaluable.

References

[1] M. B. Abbot and L. L. Peterson. Increasing network through-

put by integrating protocol layers. IEEIYACM Transactions

on Networking, 1(5):600-610, October 1993.

[2] M. Accetta, R. Baron, W. Bolosky, D. Gohrb, R. Rashid,

A. Tevanian, and M. Young. Mach: a new kernel foundation

for UNIX development. In Proceedings of the Summer 1986

USENIX Conference, pages 93-112, July 1986.

[3] T.E. Anderson. The case for application-specific operating

systems. In Third Workshop on Workstation Operating Sys-

tems, pages 92-94, 1992.

[4] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy.

Scheduler activations: Effective kernel support for the user-

level management of parallelism. In Proceedings of the Thir-

teenth ACM Symposium on Operating Systems Principles,

pages 95-109, October 1991.

[5] A.W. Appel and K. Li. Virtual memory primitives for user

programs, In Fourth International Conference on Architecture

Support for Programming Languages and Operating Systems,

pages 96-107, Santa Clara, CA, April 1991.

[61 M. L. Bailey, B. GoPal, M. A. Pa~els, L. L. Peterson, and

[7]

[8]

[9]

[10]

[11]

[12]

P. Sarkar. PATHFINDER: A patte~-based packet classifier.

In Proceedings of the First Symposium on Operating Systems

Design and Implementation, pages 115-123, November 1994.

K. Bala, M.F. Kaashoek, and W.E. Weihl. Software prefetch-

ing and caching for translation lookaside buffers. In Proceed-

ings of the First Symposium on Operating Systems Design and

Implementation, pages 243–253, November 1994.

B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.

Levy. Lightweight remote procedure call. ACM Transactions

on Computer Systems, 8(1):37-55, February 1990.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczyn-

ski, D. Becker, S. Eggers, and C. Chambers. Extensibility,

safety and performance in the SPIN operating system. In

Proceedings of the F@eenth ACM Symposium on Operating

Systems Principles, December 1995.

P. Cao, E. W. Felten, and K. Li. Implementation and perfor-

mance of application-controlled file caching. In Proceedings

of the First Symposium on Operating Systems Design and

Implementation, pages 165–1 78, November 1994.

J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska,

Sharing and protection in a single-address-space operating

system. ACM Transactions on Computer Systems, 12(4):27 1-

308, November 1994.

D. L. Chaum and R. S. Fabry. Implementing capability-based

protection using encryption. Technical Report UCB/ERL

M78/46, University of California at Berkeley, July 1978.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

D. Cheriton and K. Duda. A caching model of operating

system kernel functionality. In Proceedings of the First Sym-

posium on Operating Systems Design and Implementation,

pages 179-193, November 1994.

D. R. Chenton. An experiment using registers for fast

message-based interprocess communication. Operating Sys-

tems Review, 18: 12–20, October 1984.

D. R. Cheriton. The V kernel: A software base for distributed

systems. IEEE Software, 1(2): 19-42, April 1984.

D. D. Clark and D. L. Tennenhouse. Architectural considera-

tions for a new generation of protocols. In ACM Communica-

tion Architectures, Protocols, and Applications (SIGCOMM)

1990, September 1990.

R. J. Creasy. The origin of the VM/370 time-sharing system.

IBM J. Research and Development, 25(5):483-490, Septem-

ber 1981.

P. Deutsch and C. A. Grant. A flexible measurement tool for

software systems. Information Processing 71, 1971.

P. Druschel, L. L. Peterson, and B. S. Davie. Experiences

with a high-speed network adaptor A software perspective.

In ACM Communication Architectures, Protocols, and Appli-

cations (SIGCOMM) 1994, pages 2-13, October 1994.

D. R. Engler. VCODE: a very fast, retargetable, and extensible

dynamic code generation substrate. Technical Memorandum

MIT/Lt2S~534, MIT, July 1995.

D. R. Engler, M. F. Kaashoek, and J. O’Toole. The operating

system kernel as a secure programmable machine. In Proceed-

ings of the Sixth SIGOPS European Workshop, pages 62-67,

September 1994.

D. R. Engler, D. Wallach, and M. F. Kaashoek. Efficient, safe,

application-specific message processing. Technical Memo-

randum MIT/LCSITM533, MIT, March 1995.

R. P. Goldberg. Survey of virtual machine research. IEEE

Computer, pages 34-45, June 1974.

P. Brinch Hansen. The nucleus of a multiprogramming system,

Communications of the ACM, 13(4):238-241, April 1970.

J.H. Hartman, A.B. Montz, D. Mosberger, S.W. O’Malley,

L.L. Peterson, and T.A. Proebsting. Scout: A communication-

oriented operating system. Technical Report TR 94-20, Uni-

versity of Arizona, Tucson, AZ, June 1994.

K. Harty and D.R. Cheriton. Application-controlled physi-

cal memory using external page-cache management. In Ftfth

International Conference on Architecture Support for Pro-

gramming Lunguages and Operating Systems, pages 187-199,

October 1992.

W.C. Hsieh, M.F. Kaashoek, and W.E. Weihl. The persistent

relevance of IPC performance: New techniques for reducing

the IPC penalty. In Fourth Workshop on Workstation Operat-

ing Systems, pages 186-190, October 1993.

J. Huck and J. Hays. Architectural support for translation

table management in large address space machines. In Pro-

ceedings of the 19th International Symposium on Computer

Architecture, pages 39–51, May 1992.

[29] R. E, Kessler and M. D. Hill. Page placement algorithms

for large real-index caches. ACM Transactions on Computer

Systems, 10(4):338-359, November 1992.

265

[30] K. Krueger, D. Loftesness, A. Vahdat, and T. Anderson. Tools

for development of application-specific virtual memory man-

agement. In Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA) 1993, pages

48-64, October 1993.

[31] B.W. Lampson. On reliable and extendable operating systems.

State of the Art Report, Infotech, 1, 1971.

[32] B,W. Lampson and R.F. Sproull. An open operating system

for a single-user machine. Proceedings of the Seventh ACM

Symposium on Operating Systems Principles, pages 98-105,

December 1979.

[33] J. Liedtke. Improving IPC by kernel design. In Proceedings of

the Fourteenth ACM Symposium on Operating Systems Prin-

ciples, pages 175–188, December 1993.

[34] J. Liedtke. On micro-kernel construction. In Proceedings of

the Ftfteenth ACM Symposium on Operating Systems Princi-

ples, December 1995.

[35] K. Mackenzie, J. Kubiatowicz, A. Agarwal, and M. F.

Kaashoek. FUGU: Implementing translation and protection

in a multiuser, multimodal multiprocessor. Technical Memo-

randum MIT/LCS~M503, MIT, October 1994.

[36] H. Massalin and C. Pu. Threads and input/output in the Syn-

thesis kernel. In Proceedings of the Twelfth ACM Symposium

on Operating Systems Principles, pages 191-201, 1989.

[37] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet fil-

ter An efficient mechanism for user-level network code. In

Proceedings of the Eleventh ACM Symposium on Operating

Systems Principles, pages 39–5 1, November 1987.

[38] D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, and

R. Brown. Design tradeoffs for software-managed TLBs. In

20tlz Annual International Symposium on ComputerArchitec-

ture, pages 27–38, May 1993.

[39] J. K. Ousterhout. Why aren’t operating systems getting faster

as fast as hardware? In Proceedings of the Summer 1990

USENIX Conference, pages 247-256, June 1990.

[40] G. J. Popek and C. S. Kline. The PDP-11 virtual machine

architecture. In Proceedings of the Fljlh ACM Symposium

on Operating Systems Principles, pages 97–1 05, November

1975.

[41] D. Probert, J.L. Bruno, and M. Karzaorman. SPACE: A new

approach to operating system abstraction. In International

Workshop on Object Orientation in Operating Systems, pages

133-137, October 1991.

[42] D.D. Redell, Y.K. Dalal, T.R. Horsley, H.C. Lauer, W.C.

Lynch, P.R. McJones, H.G. Murray, and S.C. Purcell. Pilot:

An operating system for a personal computer. Communica-

tions of the ACM, 23(2):8 1–92, Febma~ 1980.

[43] M. Rozier, V. Abrossimov, F. Armand, 1. Boule, M. Gien,

M. Guillemot, F. Herrrnann, C. Kaiser, S. Langlois,

P. Leonard, and W. Neuhauser. Chorus distributed operating

system. Computing Systems, 1(4):305-370, 1988.

[44] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments

in system design. ACM Transactions on Computer Systems,

2(4):277-288, November 1984.

[45] R. L. Sites. Alpha AXP architecture. Communications of the

ACM, 36(2), February 1993.

[46] C. Small and M. Seltzer. Vine: an integrated platform for

operating systems and database research. Technical Report

TR-30-94, Harvard, 1994.

[47] M, Stonebraker. Operating system support for database man-

agement. Communications of the ACM, 24(7):412-418, July

1981.

[48] A.S, Tanenbaum, R. van Renesse, H. van Staveren, G. Sharp,

S.J. Mullender, A. Jansen, and G. van Rossum. Experiences

with the Amoeba distributed operating system. Communica-

tions of the ACM, 33(12):46-63, December 1990.

[49] C. A. Thekkath and H. M. Levy. Limits to low-latency com-

munication on high-speed networks. ACM Transactions on

Computer Systems, 11(2): 179-203, May 1993.

[50] C. A. Thekkath and H. M. Levy. Hardware and software

support for efficient exception handling. In Sixth Interna-

tional Conference on Architecture Support for Programming

Lmrguages and Operating Systems, pages 110-121, October

1994.

[51] T. von Eicken, D.E. CttlIer, S.C. Goldstein, and K.E. Schauser.

Active messages: a mechanism for integrated communication

and computation. In Proceedings of the 19th International

Symposium on Computer Architecture, pages 256–267, May

1992.

[52] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-

cient software-based fault isolation. In Proceedings of the

Fourteenth ACM Symposium on Operating Systems Princi-

ples, pages 203–216, December 1993.

[53] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flex-

ible proportional-share resource management. In Proceedings

of the First Symposium on Operating Systems Design and

Implementation, pages 1-11, November 1994,

[54] C. A. Waldspurger and W. E. Weihl. Stride scheduling: deter-

ministic proportional-share resource management. Technical

Memorandum MIT/LCSflM528, MIT, June 1995.

[55] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson,

and F. Pollack. HYDRA: The kernel of a multiprocessing

operating system. Communications of the ACM, 17(6):337-

345, July 1974.

[56] M. Yahara, B. Bershad, C. Maeda, and E. Moss. Efficient

packet demultiplexing for multiple endpoints and large mes-

sages. In Proceedings of the Winter 1994 USENIX Conference,

1994.

266

