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Abstract

Background: Targeted capture of genomic regions reduces sequencing cost while generating higher coverage by

allowing biomedical researchers to focus on specific loci of interest, such as exons. Targeted capture also has the

potential to facilitate the generation of genomic data from DNA collected via saliva or buccal cells. DNA samples

derived from these cell types tend to have a lower human DNA yield, may be degraded from age and/or have

contamination from bacteria or other ambient oral microbiota. However, thousands of samples have been previously

collected from these cell types, and saliva collection has the advantage that it is a non-invasive and appropriate for a

wide variety of research.

Results: We demonstrate successful enrichment and sequencing of 15 South African KhoeSan exomes and 2 full

genomes with samples initially derived from saliva. The expanded exome dataset enables us to characterize genetic

diversity free from ascertainment bias for multiple KhoeSan populations, including new exome data from six HGDP

Namibian San, revealing substantial population structure across the Kalahari Desert region. Additionally, we discover

and independently verify thirty-one previously unknown KIR alleles using methods we developed to accurately map

and call the highly polymorphic HLA and KIR loci from exome capture data. Finally, we show that exome capture of

saliva-derived DNA yields sufficient non-human sequences to characterize oral microbial communities, including

detection of bacteria linked to oral disease (e.g. Prevotella melaninogenica). For comparison, two samples were

sequenced using standard full genome library preparation without exome capture and we found no systematic

bias of metagenomic information between exome-captured and non-captured data.

Conclusions: DNA from human saliva samples, collected and extracted using standard procedures, can be used to

successfully sequence high quality human exomes, and metagenomic data can be derived from non-human reads.

We find that individuals from the Kalahari carry a higher oral pathogenic microbial load than samples surveyed in

the Human Microbiome Project. Additionally, rare variants present in the exomes suggest strong population structure

across different KhoeSan populations.
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Background
Sampling of saliva or via buccal cell extractions is a

widely employed, non-invasive method of collecting hu-

man DNA for both biomedical and ancestry experiments.

DNA extracted from saliva fluid has been used on single

nucleotide polymorphism chip arrays, methylation arrays,

targeted resequencing, exome, and whole genome sequen-

cing [1-7]. However, the low total yield of DNA from a

single sample and the presence of many non-human DNA

fragments make next-generation sequencing of saliva sam-

ples impractical for some applications. Targeted enrich-

ment strategies, such as hybridization methods designed

to capture the exons of annotated genes (the ‘exome’)

prior to sequencing, offer a way to circumvent some of

the limitations posed by saliva-derived DNA samples. We

demonstrate the successful sequencing of multiple human

exomes from saliva-derived samples using commercially

available reagents for exome capture.

Exome sequencing and other capture methods permit

the high-coverage sequencing of a small portion of the

genome. This approach represents a trade off between

depth of coverage vs. breadth of the genome that is in-

terrogated, and has the potential to revolutionize gen-

omic medicine [8,9]. In addition to direct applications to

human disease, exome sequencing of a modest number

of individuals can reveal important aspects of human

evolution [10-12]. The capability to apply these approaches

to DNA derived from saliva, which is more easily obtained

and less invasive than blood or other tissue collection, will

greatly facilitate the detailed examination of genetic vari-

ants that may be associated with specific traits or have ex-

perienced adaptive evolution [13,14].

We focus on a unique set of DNA samples from the

≠Khomani KhoeSan of South Africa to illustrate the util-

ity of exome sequencing via saliva. African genetic diver-

sity remains poorly understood, in part because many

regions of the continent lack adequate healthcare infra-

structure, which can make blood collection impractical.

The indigenous KhoeSan peoples of southern Africa are

a collection of hunter-gatherer and pastoralist groups

who speak “click languages”, classified into three distinct

language families. The genetic diversity of these, and

related populations, remains under-ascertained. The

genome of one Tuu-speaking San (“!Gubi”) has been

fully sequenced and found to contain over 700,000

novel polymorphisms [15]. Gronau et al. showed that this

San genome was highly divergent among known genomes,

even compared to other African individuals [16]. They esti-

mated the population divergence between western African

individuals and the San to be about 110,000-130,000 years

ago, over twice as old as the divergence between western

Africans and Eurasians. Additionally, single nucleotide

polymorphism (SNP) array data demonstrated that the

≠Khomani San population had the lowest levels of linkage

disequilbrium (LD) of any population surveyed and thus

the largest effective population size [2]. However, in order

to test hypotheses regarding population sub-structure, nat-

ural selection and biomedically relevant variants in Africa,

it is essential to have both large sample sizes and genomic

data that are un-biased with regard to ascertainment

schemes.

Results
Fifteen human saliva samples were selected for exome

sequencing. Samples were split into two batches (“Pilot 1”

and “Pilot 2”), representing samples enriched using the

Agilent SureSelect 50 Mb human All-Exon design and se-

quenced with the Illumina GAII machine and a replication

batch enriched using the Agilent SureSelect 44 Mb human

All-Exon design and sequenced using Illumina HiSeq. We

included a familial quartet with two daughters (Family 1),

an extended pedigree of first cousins and half-siblings

(Family 2), and eight purportedly unrelated individuals

(Additional file 1: Figure S1). Family 1 displayed com-

plex ancestry from KhoeSan, European and both eastern

and western African populations (see [2]). Family 2 and the

un-related individuals self-reported their ancestry as being

from only KhoeSan populations (Nama- or N|u-speakers).

We obtained 3-25 ug total DNA from each saliva sample.

Each aliquot was processed using the Agilent SureSelectXT

library preparation kit followed by enrichment with the

SureSelect 44 Mb or SureSelect 50 Mb human All-Exon

capture probes. Using standard Illumina post capture bar-

codes, libraries were sequenced on either an Illumina GAII

or HiSeq machine. Aliquots from two samples (SA1000

and SA1025) were also sequenced without exome capture,

using the Illumina TruSeq library preparation kit (SA1000)

and the Illumina Nextera library preparation kit (SA1025).

The whole genome sequence (WGS) libraries were then

sequenced on two lanes of an Illumina HiSeq.

Sequencing statistics

An average of 76.5 million 75 bp paired reads and 84.3

million 100 bp paired reads were obtained for each indi-

vidual in the Pilot 1 GAII and Pilot 2 HiSeq exome ex-

periments (Table 1). Across all samples, 86.8%-98.1%

of the reads mapped to the human genome reference

(GRCh37) (Figure 1). On average, ~70-75% of non-

duplicate, mapped reads fell in the specified target re-

gions. This on-target percentage is similar to previous

on-target percentages (70-87%) for standard blood or

cell line-derived human DNA with Agilent SureSelect

exon designs [17,18].

Two samples (SA006 and SA035) displayed a high per-

centage of duplicate reads (54% and 78%) (Additional

file 1: Figure S2, Table 1). To understand whether SA006

and SA035 had high duplicate rates due to low human

DNA input or whether there were other issues with
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Table 1 Summary statistics for KhoeSan exomes

Total
readsa

Unmapped
reads

% Un-mapped
reads

% PCR
duplicates

% Mapped on
target

Median target
coverageb

% of variants
coveredc

Autosomal
SNV

Autosomal
singletons

Non-ref.
concordanced

Pilot 1 SA006 69,272,282 9,122,731 13.2% 54.2% 63.5% 12 94.9% 25,225 657 0.9897

SA008 113,888,276 2,143,408 1.9% 19.8% 78.2% 73 99.5% 26,408 955 0.9947

SA011 78,006,472 1,664,959 2.1% 33.7% 77.4% 40 99.0% 26,365 67 NA

SA012 67,209,032 1,353,187 2.0% 20.5% 75.7% 42 99.3% 26,722 86 NA

SA035 85,142,498 5,812,851 6.8% 78.0% 79.4% 10 92.1% 24,692 1,726 0.9884

SA051 76,076,464 3,102,819 4.1% 27.8% 76.5% 37 98.8% 27,674 1,239 NA

SA052 60,375,472 1,247,951 2.1% 12.9% 78.2% 41 98.8% 27,779 755 0.9968

SA054 62,358,148 1,959,032 3.1% 27.9% 73.9% 31 99.3% 28,024 817 0.9956

Pilot 1 mean 76,541,081 3,300,867 4.4% 34.4% 75.4% 35.75 97.7% 26,611 788e 0.9930

Pilot 2 SA1000 77,069,730 8,387,491 10.9% 9.5% 57.3% 44 98.4% 27,921 2,483 0.9915

SA1001 85,479,934 3,551,500 4.2% 11.4% 74.2% 67 98.7% 27,694 2,318 0.9939

SA1002 92,542,846 4,674,919 5.1% 15.5% 70.1% 65 98.8% 27,886 3,286 0.9941

SA1006 83,545,692 4,002,665 4.8% 18.1% 74.5% 59 98.4% 27,446 2,442 0.9927

SA1010 87,939,484 4,445,502 5.1% 14.5% 71.0% 62 98.6% 27,295 1,782 0.9935

SA1011 82,377,158 7,810,714 9.5% 11.6% 49.2% 40 98.5% 27,484 2,717 0.9887

SA1025 81,405,650 2,498,412 3.1% 10.0% 87.8% 63 99.3% 28,696 2,676 0.9934

Pilot 2 mean 84,337,213 5,053,029 6.1% 12.9% 69.2% 57.14 98.7% 27,775 2,529 0.9925

aTotal number of DNA fragments including: mapped, unmapped and duplicate reads.
bLimited to non-duplicate reads on autosomes, as calculated by GATK Unified Genotype.
cLimited to XX autosomal SNPs identified at the 99% VQSR threshold.
dConcordance at heterozygous and homozygous non-reference positions as compared to Illumina OmniExpress or 550K.v2 SNP arrays.
eFewer average singletons as a result of including closely related individuals in Pilot 1. See Additional file 1: Table S1 for individual data.
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read data, we examined the distribution of mapping

quality for all uniquely mapped reads for each sample.

These two samples had the lowest numbers of mapped

reads and the lowest proportion of reads with mapping

qualities ≥ 30 (35.2% and 68.6%, respectively, Additional

file 1: Figure S3). The remaining Pilot 1 samples had higher

effective coverage and ~80% of reads with mapping

qualities ≥30. This difference is unlikely to be due to di-

vergence from the reference because we observed no sys-

tematic differences in mapping quality metrics between

the European- and Bantu- admixed Family 1 and the

KhoeSan Family 2. Due to lower mapping rates, SA006

Figure 1 Schematic of mapping and calling pipelines. Each box summarizes the data and data format used for each step of the human

exome and microbiome mapping/calling pipelines. The pipeline begins with next-generation sequencing raw reads obtained from exome

sequencing of saliva-derived DNA and ends in finalized exome variant calls and microbiome taxonomic abundances. Arrows indicate analysis

methods used to process the human and saliva microbiome data (see Methods).
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and SA035 displayed overall lower mapped coverage than

the other samples. However, 90% of target sites were cov-

ered at a depth of at least 10x for all individuals except

SA006 and SA035 (Additional file 1: Figure S2). The

average percent of unmapped reads was higher for saliva-

derived exomes compared to six HGDP San samples se-

quenced using DNA obtained from cell lines (Additional

file 1: Table S1). However, the primary difference in se-

quencing efficiency between saliva- and cell-line derived

DNA results from differences in the mean rate of dupli-

cate reads: Pilot 1, 34.4%; Pilot 2, 12.9%; HGDP, 9.8%.

Pilot 1 likely has a higher duplicate rate due to lower

DNA quality (see below).

Read quality

We hypothesized that the difference in mapping quality

among samples could be due to different levels of DNA

damage. To test this hypothesis, we analyzed the distri-

bution of mismatches along the reads by comparing each

read to the human reference sequence after mapping. If

the genomic DNA had been degraded before shearing,

for example due to variable storage conditions, one

would expect an increase in mismatches at the ends of

the reads; specifically, an excess of thymines at the 5′

end of the read and an excess of cytosines at the 3′ end

of the read, similar to what is seen in ancient DNA

[19-21]. However, for SA006 and SA035 we observe an

increased rate for all types of substitutions at the begin-

ning of the reads, with the highest rates for those to-

wards the purines G and A (Figure 2). Reads from

SA006 in particular show a pronounced increase, for ex-

ample a ~10 fold increase in the rate of A - > G substitu-

tions in the first position compared to positions further

along the read. This pattern is absent from all other

samples in Pilot 1, with the exception of SA051, which

also shows a slight increase at the first base (Additional

file 1: Figure S4). We also observe an overall increase in

substitution rates towards the end of the reads, which is

shared across all samples and consistent with the in-

creased rate in sequencing error with increasing number

of sequencing cycles. The pattern of mismatch rates

does not support a hypothesis of simple degradation.

Genotype and variant statistics

Variants were called using the Genome Analysis Tool

Kit (GATK) and selected using the Variant Quality Score

Recalibration (VQSR) procedure with cutoffs set such

that 99% of variants also found in the 1000 Genomes

Omni2.5 and HapMap3 SNP training set were retained

[22-24]. We identified 82,093 variants, with a transition/

transversion ratio of 3.14. On average, within the target

regions, each individual had a genotype call at 98% of

sites variable in the 15 sample dataset (Table 1). Single-

ton counts varied from 657 to 3,286 autosomal sites,

excluding the two daughters in Family 1 (Table 1). We

computed genotype concordance for 12 individuals

(sufficient DNA was not available for SA011, SA012,

SA051) based on data from the Illumina OmniExpress

or 550 K.v2 SNP arrays [2]. Non-reference (NR) con-

cordance, that is concordance only at heterozygous or

non-reference homozygous genotypes, was calculated

using GATK [24,25] and concordance exceeded 98%

for all individuals genotyped.

Novelty compared to 1000 genomes project

We compared 13 KhoeSan exomes from our study

(excluding children SA011 and SA012), to exomes se-

quenced as part of the 1000 Genomes Project (1000G)

[23], HGDP Namibian San, and San Nimblegen exomes

from Schuster et al. [15]. We chose three populations

of African ancestry for comparison: ASW, African-

Americans from the Southwestern United States; LWK,

Luhya from Kenya; YRI, Yoruba from Nigeria; and GBR,

from Great Britain to represent European ancestry. Since

the 1000G dataset contained many more individuals than

our KhoeSan dataset, these populations were randomly

down-sampled to 13 individuals for comparison. We note

that these disparate datasets were processed using differ-

ent pipelines, in some cases involving multiple-sample

calling and imputation with a large number of other

exomes, with varying degrees of coverage and sample re-

latedness. Between 28,000-29,000 variants appear to be

common to all 5 populations (i.e. between 38%-53% are

shared in each three-way comparison) (Figure 3). The

South African ≠Khomani San appear comparable to the

Yoruba and Luhya populations in terms of the number of

private SNPs yet share slightly more variants with GBR

than either other sub-Saharan African population. This

reflects the degree of recent European admixture in

the ≠Khomani. In order to compare two KhoeSan popu-

lations, we used 6 Namibian HGDP San exomes se-

quenced on the same Agilent Platform to >70x coverage

[Martin et al, in preparation] and included African-

Americans in an attempt to control for recent gene flow

from Bantu-speaking and European groups (Figure 3C).

The Namibian and South African populations share

only 4,692 unique variants that are not also found in the

ASW. This may reflect the small sample size, or that the

KhoeSan populations in the north vs. south Kalahari re-

main highly differentiated [26,27]. Given the high con-

cordance between our exome sequence data and the

Illumina SNP array, we believe that the high genetic diver-

sity of the South African exomes is not an artifact caused

by high false positive rates.

Population differentiation of the KhoeSan

We performed principal component analysis (PCA) on

the unrelated ≠Khomani KhoeSan (Additional file 1:
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Figure 2 (See legend on next page.)
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Figure S1), Schuster et al. [15] Namibian San, and HGDP

Namibian San exomes, along with several different popu-

lations from the 1000 Genomes Project using smartpca

from the EIGENSOFT software package [28] (Figure 4,

Additional file 1: Figure S6). PCA clearly differentiates

the populations included in this study. PC1 separates

the African populations from the European population

(GBR). PC2 separates the populations of western African

ancestry (LWK and YRI) from the southern African pop-

ulations (SSAN, NSAN, and HGDP San). PC3 sepa-

rates the northern from the southern Kalahari KhoeSan

populations, suggesting there is substantial substructure

among these groups. PC4 separates a single SSAN indi-

vidual from both the HGDP San and the rest of the

≠Khomani KhoeSan individuals. This individual belongs

to Family 2, so the PCA was revised to include the

remaining two Family 2 individuals (1st cousin/half-

sibling relationships, Additional file 1: Figure S1) in order

to assess whether SA051 was an outlier, however PC4 still

strongly separated all Family 2 individuals from other

≠Khomani (Additional file 1: Figure S6).

HLA and KIR

The HLA and KIR loci include some of the most poly-

morphic genes in the human genome and are function-

ally involved in the immune system and reproduction

[29,30]. Contributing to HLA and KIR polymorphism are

inter-locus recombination and gene duplication, factors

rendering these loci difficult to analyze with genomic-

scale data, but among the most stringent for assessing its

validity. We analyzed the three highly polymorphic HLA

class I genes, HLA-A, -B and -C (6p21), and the KIR locus

(19q13.4), which has variable content of four to thirteen

polymorphic genes. Despite using a highly conservative

strategy to remove read-pairs that did not map exclusively

to one of the targeted loci, genotypes were obtained for

4,070 HLA class I and KIR SNPs for the fifteen indi-

viduals studied (Tables 2 and 3, Additional file 1: Table S2,

Additional file 1: Table S3). Sufficient read-depth (at least

20 for homozygous positions and 10 for heterozygous

positions) was obtained for determination of all the HLA

class I and KIR alleles present, with exception of HLA-A

and -B from individual SA006. Fourteen of the individuals

Figure 3 Novelty compared to 1000 genomes project. We compared the number of nonreference variants in the South African KhoeSan

[SSAN] with (A) 1000 Genomes Yoruba samples [YRI], (B) eastern African Luhya [LWK], and (C) Namibian San from HGDP and African-Americans

[ASW]. Sites that were included in this analysis required the presence of genotype information for at least 95% of the individuals in the joint dataset.

The exome data from ASW and LWK was derived from 1000 Genomes Project, Phase 1 – March 17, 2012 release, from which 13 individuals were

randomly sampled. The Venn diagram illustrates the number of shared and unique nonreference variants among populations. The Vennerable package

in R was utilized for plotting purposes.

(See figure on previous page.)

Figure 2 Assessment of base substitutions from mapped reads. Each mapped read was compared to the genome reference sequence

to assess patterns consistent with DNA degradation. At each of the 75 positions along a read, we plot the frequency of substitution types,

for both the forward (left) and reverse (right) reads from each read-pair. Analysis was limited to 1 million reads from chromosome 1; all raw

reads are plotted. Three individuals with varying levels of substitution errors are shown: (A) SA006 with overall higher substitution rate and

an excess of purines at the start of the first read, (B) SA035 with a slightly elevated substitution rate and excess of purines at the start of

the first read, and (C) SA054 with a low substitution rate and no bias at the beginning of the first read. The additional five Pilot 1 individuals

tended to resemble SA054 (Additional file 1: Figure S4). Removal of reads with any soft-clipping substantively reduced the mis-incorporation

rate for SA006 and SA035.
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were genotyped using standard methods for HLA class I

and eight for all of the KIR. When comparison of the

methods was restricted to the individuals with high

genome-wide coverage, all but ten SNPs were con-

cordant with standard genotyping from these samples

(Tables 2 and 3), validating the sensitivity and specifi-

city of our analytical approach (Methods). Moreover,

all 39 discordant SNP genotypes from the two low-

coverage individuals (SA006 and SA0035) occurred in

clusters of low read depth where only one or neither

allele was represented. Thus, following stringent filter-

ing there were no false positive genotypes for any of the

HLA class I or KIR SNPs. In total, there were 36 dis-

tinct HLA class I and 91 KIR alleles present, including

thirty-one previously unknown KIR alleles that were

discovered by analysis of the exome-sequencing data

and independently verified by standard cloning, sequencing

and family study.

Saliva metagenomes

Although exome capture proved an efficient method of

sequencing primarily human DNA, each sample also

contained more than a million unmapped reads (Table 1).

We hypothesized that these unmapped reads might rep-

resent non-human DNA carried through the saliva ex-

traction. Although we obtained useful results, with high

concordance to SNP genotyping arrays, such microbial

contamination may contribute to lower effective cover-

age levels. We therefore subjected these unmapped reads

to an independent quality control procedure and used

a fragment recruitment approach described by Rusch

et al. [31] to identify homologs of non-human reference

genomes among a combined pool of 24,139,131 high-

quality unmapped reads (Figure 1). To estimate the num-

ber of species that are detected, we applied a recruitment

threshold based on the 95% average nucleotide iden-

tity threshold that is commonly used to define microbial

species [32].

Across all 15 sequenced exomes, we identified 1,835,400

high-quality reads (7.6%) that map to the genomes of 1,153

non-human species. The distribution of the number of re-

cruited reads per genome indicates that a small number of

genomes recruit a large number of reads with most ge-

nomes recruiting an insignificant fraction of the reads.

For example, after normalizing the number of reads re-

cruited per genome by reference genome size, the 100

Table 2 HLA and KIR validation

Exome sequencing Standard genotyping Standard genotyping (excluding SA006 & SA035)

SNPs vs
HG19a

Allelesb Present SNPs vs
HG19

Concordance
rate (%)

SNPs vs
HG19

Concordance
rate (%)

Known Novel

KIR (13 genes) 1469 91 31 955 99.99 670 99.99

HLA class 1 A 690 16 690 99.98 619 100.00

HLA class 1 B 925 12 925 99.99 745 99.99

HLA class 2 C 986 8 986 100.00 814 100.00

aNon-reference single nucleotide polymorphisms.
bUnique coding sequences.

−0.2 −0.1 0.0 0.1

−
0

.2
0

−
0

.1
0

0
.0

0
0

.0
5

0
.1

0

PC1 [5.76%]

P
C

2
 [

3
.7

4
%

]

ASW

GBR

LWK

YRI

SSAN

NSAN

HGDP

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2

PC3 [1.27%]

P
C

4
 [

1
.1

2
%

]

ASW

GBR

LWK

YRI

SSAN

NSAN

HGDP

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10
−

0
.3

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

0
.3

PC2 [3.74%]

P
C

3
 [

1
.2

7
%

]

ASW

GBR

LWK

YRI

SSAN

NSAN

HGDP

A CB

Figure 4 Principal components analysis of 61,000 exonic SNPs in the ≠Khomani San and other African populations. Exomes from 1000

Genomes Phase 1, Schuster et al. [15], and HGDP San were combined with the ≠Khomani San (related samples from Families 1 and 2 were removed).

5.76% of the variance is explained by PC1, 3.74% by PC2, 1.27% by PC3, and 1.12% by PC4. PC1 and PC2 separate Africans from Europeans, and

western Africans from southern Africans, respectively (A). The three KhoeSan populations drive PC3 and PC4 (B and C), supporting prior descriptions of

strong differentiation among Kalahari KhoeSan groups [27], and indicating even sub-structure within the ≠Khomani San samples.
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most abundant genomes recruit 98.3% of the reads.

Generally, the genomes that recruit the most reads are

well-described oral commensal microbiota (Table 4),

such as Neisseria subflava, Rothia mucilaginosa, Neisseria

flavescens,Veillonella dispar, and Prevotella veroralis. The

recruitment of reads across the length of these genomes

suggests that their detection is not an artifact of a genomic

subsequence that shares similarity with the human gen-

ome (e.g. Additional file 1: Figure S7.) We verified this by

comparing the per genome relative abundance distribution

estimated through analysis of these exome-captured meta-

genomes to the corresponding distribution estimated

through analysis of non-capture metagenomes for two

of the samples subjected to additional sequencing with-

out exome capture (SA1000 and SA1025). Specifically,

we find a significant, positive correlation (Spearman’s

rho > 0.65; p-value < 2.2e-16) between the relative abun-

dance estimates calculated with the two sequencing

approaches for both samples (Figure 5), indicating

that analysis of exome-captured metagenomes produces

saliva community structure and abundance estimates that

are surprisingly consistent with estimates from traditional

shotgun metagenomic sequencing of saliva communities.

Some of the abundant KhoeSan saliva microbiota are

known contributors to oral disease. For example, Prevo-

tella melaninogencia (recruits 5.9% of unmapped reads

after correcting for genome length) is associated with

rapidly progressing periodontitis lesions [33]. Similarly,

Streptococcus parasanguinis (6.3%) is a primary colonizer

of human teeth and contributes to dental plaque forma-

tion [34]. Granulicatella elegans (2.7%), an oral com-

mensal associated with infective endocarditis [35], is also

found in high abundance among the KhoeSan. We also

specifically ascertained the presence of several biomedi-

cally important organisms, some of which may exist at

relatively low abundance. For example, the Porphyromo-

nas gingivalis genome, which represents organisms im-

plicated in periodontal disease and has been linked to

rheumatoid arthritis [36] and heart disease [37], recruits

a relatively large fraction of reads from all individuals

(1.68%). Conversely the Campylobacter rectus genome,

which is also associated with periodontitis [38], recruits

a relatively small fraction of reads (0.24%). Only 8 reads

(2.3 × 10-4% of genome length-corrected recruitments)

were recruited with high fidelity to the genome of Myco-

bacterium tuberculosis, the causative agent of tubercu-

losis, a disease that is common in the Northern Cape

region of South Africa [39]. These reads map with equally

high fidelity to the genomes of other Actinobacteria, sug-

gesting that they may be homologs of ancient and highly

conserved Actinobacteria sequences and are not necessar-

ily representatives of the M. tuberculosis genome. Robust

detection of M. tuberculosis from saliva-derived exome

capture sequence data requires additional experimentation

and validation.

The predominant saliva microbiota differ in their rela-

tive abundance across the KhoeSan (Figure 6). To assess

whether population structure based on saliva micro-

biome diversity exists among the KhoeSan, we clustered

individuals based on their phylum-, genus-, or species-

level relative abundances. We find only moderate sup-

port for the existence of discrete clusters among the

KhoeSan, with a maximum average silhouette width of

0.46 (genus-level clustering). Following [40], this sug-

gests that saliva microbiome diversity varies among the

KhoeSan along a gradient. We subjected the microbiome

abundances of the KhoeSan samples to Principal Com-

ponents Analysis (PCA) to identify those taxonomic

groups that most strongly differentiate the samples along

this gradient (i.e., maximum PCA loadings). At the

phylum-level, KhoeSan saliva samples are principally

separated by their relative composition of Proteobac-

teria, Firmicutes and Bacteroidetes (Additional file 1:

Figure S9). The relative abundance of Neisseria, Strepto-

coccus, Prevotella, and Veillonella primarily differentiate

Table 4 KhoeSan saliva microbiome abundance by read

threshold

No coverage1 75% Read coverage2

Genome 50% Identity 80% Identity 95% Identity

Neisseria subflava 0.062 0.077 0.13

Rothia mucilaginosa 0.051 0.062 0.076

Neisseria flavescens 0.031 0.039 0.063

Streptococcus
parasanguinis

0.038 0.046 0.063

Prevotella melaninogenica 0.047 0.054 0.059

Veillonella dispar 0.041 0.049 0.056

Prevotella veroralis 0.027 0.031 0.029

Streptococcus salivarius 0.016 0.019 0.028

Granulicatella elegans 0.02 0.025 0.027

Fusobacterium
periodonticum

0.015 0.012 0.024

1The genome-length-corrected relative abundance calculated using a 50%

identity fragment recruitment threshold.
2The genome-length-corrected relative abundance calculated using fragment

recruitment thresholds of 80% or 95% identity across at least 75% of the read.

Table 3 HLA and KIR validation for SA006 and SA035

Non-reference SNPS

SA006a SA035

HG19 ref Present Correct Present Correct

A*03:01 37 12 19 19

B*07:02 71 58 34 34

C*07:02 40 39 50 50

aIt was not possible to obtain the HLA-A and -B genotypes from exome data

of SA006.
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C

Figure 6 Differences in taxon ranks between South African samples and human microbiome project. A, B) Oral microbiome structure

varies among the KhoeSan. Each of the above stacked bar plots illustrates the relative abundance (y-axis) of the most abundant oral microbiota at

the A) genus, and B) species levels for each of the 15 KhoeSan individuals (x-axis). Relative abundance was measured as the fraction of high-quality

reads that were recruited to a microbial genome of a particular taxonomic rank using conservative recruitment settings (Methods). Only the nine

most abundant groups for each taxonomic level are illustrated for visualization purposes, with the remaining taxa being grouped into the ‘Other’

category. C) KhoeSan (red) and healthy North American (blue) saliva microbiomes differ in their community structure. In this bar plot, the normalized

relative abundance, which is a taxon’s median relative abundance detected within a population divided by the maximum relative abundance detected

within a population, is shown for bacterial genera that are detected in either of the two populations. Genera are ordered by their median

relative abundance across the KhoeSan. Notable differences between the populations are those where the taxon is abundant in the KhoeSan

and effectively undetected in the North Americans, especially Rothia.

Figure 5 Comparison of saliva microbiome frequencies from full genome and exome-capture sequencing. Estimates of the relative

abundance of saliva microbiota obtained via exome capture (x-axis) strongly correlate with those obtained from shotgun metagenomes

produced from the same sample (y-axis). The above dot plots illustrate this result for two KhoeSan individuals involved in our study: A) SA1000

and B) SA1025. Each dot represents a genome. A linear model representing the relationship between exome-capture and non-capture estimates

of relative abundance is shown in blue; the variance in the predictions from the model are shaded in grey. A Spearman correlation test indicates

that this relationship is very strong (rho > 0.65; p < 2.2e-16).
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samples at the genus-level (Figure 6A), while Rothia muci-

laginosa, Neisseria subflava, Veillonella spp., and Strepto-

coccus mitis are some of the most variable species

amongst the KhoeSan (Figure 6B).

North American versus south African oral microbiomes

We then compared the diversity of the KhoeSan oral

microbiome to the diversity observed in a recent and

extensive survey of healthy North Americans in the

Human Microbiome Project (N = 294) [41]. This prior

HMP work was conducted through analysis of small

subunit ribosomal RNA (i.e., 16S rRNA) gene sequences

that were taxonomically annotated to the genus level.

We used these sequences to calculate genus-level, gen-

ome length-normalized relative abundances for each

North American microbiome. We used the taxonomy as-

sociated with each genome in our fragment recruitment

database to calculate genus-level, length-normalized rela-

tive abundances for each KhoeSan microbiome. Compar-

ing each population’s median relative abundance for each

genus, we find that most taxa exist at similar abundance

levels in the two populations (Spearman’s rho = 0.91,

p-value < 2.2e-16). However, there are five genera that

are present in relatively high abundance (Bonferroni-

corrected Wilcoxon rank sum test p < 0.01) in the KhoeSan

and effectively undetected among the North Americans

given the level of discovery in the HMP (Figure 6C):

Rothia, Granulicatella, Haemophilus, Eubacterium, and

Filifactor. Most notable among these is Rothia, which is

the third most abundant genus in the KhoeSan and con-

tains Rothia mucilaginosa, a known oral opportunistic

pathogen that has been linked to systemic diseases [42,43].

Discussion
Population history

The extremely high genetic diversity in the KhoeSan, esti-

mated from genome-wide SNP arrays and the “Bushman”

genome, has renewed interest in understanding the popu-

lation history of southern Africans [2,15,26,27]. Com-

paratively few genomic sequences are publicly available

(6 individuals total) from the KhoeSan, and ascertain-

ment bias on many of the standard SNP arrays may

strongly skew estimates of genetic diversity in these pop-

ulations. We have generated 15 exomes and 2 genomes

from the South African ≠Khomani San greatly expanding

the number of genomic sequences available. Estimates of

genetic diversity from these South African individuals are

comparable to genetic diversity from the Yoruba from

Nigeria or Luhya from Kenya (Figure 3). While we do not

find a higher number of private SNPs in the KhoeSan, this

may be biased due to endogamy among the ≠Khomani San

and differences in coverage or SNP calling/imputation

pipelines between 1000 Genomes and our procedure

(Figure 1). Heterozygosity and singleton identification

remain highly sensitive to coverage and calling pipe-

lines thus making direct cross-study comparisons diffi-

cult. However, for common SNPs, we show that the

KhoeSan strongly differentiate from all other human

populations in structure analyses; the KhoeSan and

Europeans fall at opposite ends of the 1st principal compo-

nent, while western and eastern Africans fall at intermedi-

ate points on this axis. Furthermore, we find substantial

sub-structure among the South African and Namibian

KhoeSan, despite recent gene flow from Bantu-speaking

groups and Europeans into the ≠Khomani, !Kung and Tuu

populations.

Sample quality

Two of our samples had demonstrably lower mapping

quality and coverage, SA006 and SA035. We consider

three possibilities for these characteristics. First, it is dif-

ficult to identify the proportion of human DNA versus

microbial or other non-human DNA in a saliva aliquot.

If these two samples had by chance a lower volume of

human DNA input for the exome capture reaction, then

there would be fewer opportunities for human DNA to

bind to the specific probes and the library would likely

result in a higher number of duplicate read pairs. SA006

and SA035 do display an increased duplicate rate (54%,

78% respectively), but SA008 also displays high duplicate

rate with minimal effect on mapping quality. Addition-

ally, poorer mapping quality might be expected if the

microbial reads map to the human genome, perhaps due

to near sequence identity between some portion of the

human and microbial genomes [44].

A second possibility is that the total amount and qual-

ity of the human DNA input initially may have been suf-

ficient, but the presence of non-human substances such

as residual tobacco or bacterial DNA may have acted as

inhibitors, preventing normal binding to human probes.

Third, the DNA in these two samples may have been

more degraded than the other six Pilot 1 samples. How-

ever, although we do observe an increase in substitutions

at the start of the reads for SA006 and SA0035, we find

no evidence of an ancient DNA degradation pattern in

the post-capture sequence data. While the listed possi-

bilities appear unlikely, it is possible other patterns of

degradation occur, in relatively young DNA extractions,

which have not been reported in the literature.

Oral microbiome from exome sequencing

Approximately 5.1% of the sequence data generated did

not map to the human genome. Using a phylogenetically

diverse set of reference genomes and a fragment recruit-

ment approach, we identified those unmapped reads

that are homologs of regions in non-human genomes.

We find that most of the reads map to genomes of well-

described commensal microorganisms of the human
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mouth, suggesting that this sequencing platform produces

relevant information about the human oral microbiome.

We also find that analysis of exome-capture metagenomes

produces microbiome diversity estimates consistent with

those obtained from non-exome-capture metagenomes,

indicating that this platform can be used to reliably quan-

tify microbiome diversity and abundance. We note that

other capture technologies or probe designs may result in

fewer off-target reads, and a corresponding reduction in

the ability to analyze the microbiome [45,46]. Additionally,

different saliva collection kits or the use of pre-collection

mouth washes may effect the yield of microbial-derived

sequences.

The large fraction of non-human sequences that do

not map to our reference genomes are likely low quality

and degraded sequences or are reads from organisms

that are outside of the bounds of the phylogenetic diver-

sity sampled in our reference database, such as viral ge-

nomes. The size of this fraction may be exacerbated by

the relatively conservative alignment thresholds applied

during our analysis. Our ability to detect oral commen-

sals indicates that this human exome sequencing plat-

form provides the added benefit of being able to assay

biogeographic patters of oral microbiome diversity. Given

that many of the non-human reads can be mapped with

high stringency to genomes of known pathogens, we

hypothesize that this sequencing platform may be useful

as a diagnostic tool for the detection of disease and that

the data obtained may be used for inferring cryptic phe-

notypes of the sampled individuals (e.g., periodontitis

status). Future studies that focus on the sensitivity and

specificity of pathogen detection will be required to test

this hypothesis.

As a cautionary note, one genome that recruits a

substantial number of reads (9.4% of total reads) is

Beggiatoa sp. PS. Beggiatoa have been found in sulphur

springs, sewage contaminated water, and hydrothermal

vents [47]; to date, no one has described the presence

of Beggiatoa in the human mouth. We found that the

Beggiatoa-recruited reads map to short, unassembled con-

tigs that exhibit significant similarity to clone libraries of

the human genome. Thus, we suspect that our detection

of Beggiatoa is the result of low quality human reads that

fail to align to the human genome reference sequence but

do align to regions of the Beggiatoa genome. This observa-

tion highlights the importance of considering the effect of

human genome contamination when using fragment re-

cruitment to study the human microbiome.

KhoeSan microbiome diversity

Understanding KhoeSan microbiome diversity and struc-

ture provides insight into the co-evolution of the human

microbiome, given the ancient divergence of KhoeSan

from other African populations. It additionally clarifies

the effect of lifestyle on microbiome composition as

most studies focus on individuals living contemporary

Western lifestyles. Similar to studies conducted in Western

populations [48,49], we find that the KhoeSan salivary

microbiome is dominated by a small number of taxa, with

the Firmicutes or Proteobacteria predominating, and ex-

hibits high diversity within and between individuals. These

observations suggest that the general structure of the

KhoeSan salivary microbiome is generally similar to that

found in Western individuals.

However, when evaluating differences in the relative

abundance of genera associated with the KhoeSan and a

population of healthy Americans, we identified several

abundant taxa in the KhoeSan that were at very low

abundance or undetected among the Americans. These

differences in microbiome structure may be due to dif-

ferences in (1) the evolutionary history of the popula-

tions, (2) demographics, or (3) host environment or

lifestyle, including diet and access to health care. Given

that we find many known pathogens among the most

abundant members of the KhoeSan microbiome and that

many of the differentially detected genera contain known

oral pathogens (e.g., Rothia, Granulicatella, Filifactor),

we speculate that the relatively limited access to dental

care, antibiotics and/or absence of water fluoridation

among the KhoeSan is driving most of the observed dif-

ferences between populations. However, the biology of

several of the differentially abundant genera is not well

understood, especially in the context of the commensal

oral microbiome (e.g., Mobiluncus), or is principally lim-

ited to the pathogenic members of the genus; such gen-

era may contain species that played an important role in

the coevolution between the KhoeSan and their salivary

microbiome. This may include pathogenic organisms,

such as Aggregatibacter actinomycetemcomitans, the causa-

tive agent of adolescent periodontal disease, which is com-

mon in those of African descent [50] and a member of a

relatively abundant genus in the KhoeSan. Further study of

the microbiomes associated with the KhoeSan and other

diverse human populations (e.g., [51]), the microbiomic

differences between these populations (e.g., [52,53]), espe-

cially across a variety of host physiological conditions, and

the biology of commensal microbiota that are under-

represented in Western populations is needed to compre-

hensively differentiate the sources of variations observed

between populations and to understand the coevolution

between humans and their microbiome.

Conclusions
We have demonstrated the ability to obtain high quality

exome sequence data from saliva-derived human DNA.

We show that even samples with low human DNA pres-

ence can be successfully captured using exome in-solution

target probes. Additionally, after examining some of the
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most diverse human loci, we find that exon-capture is able

to enrich and facilitate high-resolution analysis of highly

polymorphic HLA and KIR genes from DNA extracted

from human saliva. We also demonstrated that exon-

captured DNA sequencing of saliva reveals insight into the

structure and diversity of the oral microbiome.

Methods
Samples

Sampling of the ≠Khomani KhoeSan in Upington, South

Africa and neighboring villages occurred in 2006. Insti-

tution Review Board (IRB) approval was obtained from

Stanford University. Individuals who were still living in

2011 were re-consented under a modified protocol (IRB

approved from Stanford University and Stellenbosch

University, South Africa). ≠Khomani N|u-speaking in-

dividuals, local community leaders, traditional leaders,

non-profit organizations and a legal counselor were all

consulted regarding the aims of this research, prior to col-

lection of DNA. All individuals consented orally to partici-

pation, with a second, local native speaker witnessing and

were re-consented with written consent. DNA via saliva

(Oragene® kits) and ethnographic information regarding

self-identified ancestry (N|u, Nama, or ‘Coloured’), lan-

guage and parental place of birth were collected for all

participants.

Exome capture

Library preparation and exome enrichment were per-

formed as described in the Agilent SureSelectXT Target

Enrichment System for Illumina Paired-End Sequencing

Library (Version 1.1.1, January 2011). First, purified DNA

from saliva samples was concentrated to a volume com-

patible with the library preparation protocol. 3 μg of con-

centrated genomic DNA was fragmented to a median size

of 200 bp using the Covaris-S2 instrument with the fol-

lowing settings: duty cycle 10%, intensity 5, cycles per

burst 200, and mode frequency sweeping for 180 s at 4°C.

The fragmentation efficiency was evaluated on the Agilent

Bioanalyzer using DNA1000 chips. After end-repair and

A-tailing, sequencing adapters were ligated onto the

DNA fragments, followed by size-selection using SPRI

beads (Agencourt AmPure XP) and PCR amplification.

The amplification product was purified with SPRI beads

and the quantity and quality was assessed using the

Bioanalyzer DNA1000 chip. Five hundred nanograms

of the adapter-ligated DNA library were concentrated

to 3.4 ml, mixed with hybridization buffer and DNA

blocker mix, and added to the SureSelect 50 Mb All-

Exon capture probe library. The mixture was incubated for

24 hours at 65°C in a thermal cycler. The hybridization

mixture was added to streptavidin-coated M-280 Dyna-

beads (Invitrogen) and incubated for 30 min at room

temperature, with mixing. The beads were washed with

500 ml SureSelect wash buffer #1 for 15 min. at room

temperature, and three times with 500 ml SureSelect wash

buffer #2 for 10 min at 65°C. DNA was eluted with 50 ml

SureSelect elution buffer for 10 min at room temperature

and neutralized with 50 ml of SureSelect neutralization

buffer. The captured product was purified with SPRI beads

and amplified by PCR. The quality and concentration of

the sequencing libraries was verified by the Bioanalyzer

High Sensitivity DNA kit (Agilent). Indexed samples were

pooled in an equimolar ratio and sequenced on the Illu-

mina HiSeq2000 according to standard protocols. A similar

procedure was followed for the Pilot 2 samples with the

SureSelect 44 Mb All-Exon capture probe library.

Read mapping and SNP calling

Illumina sequencing reads were mapped to the human

genome reference sequence (GRCh37) following a stand-

ard pipeline informed by the best-practices as described

by the 1000 Genomes project [24,54] (Figure 1). Pilot 1

reads were trimmed to be 75 bp in length; Pilot 2 reads

were 101 bp in length. Reads were mapped and paired

using bwa version 0.6.2 [55]. Unmapped reads were identi-

fied at this stage and processed via the metagenomic pipe-

line. Duplicate read pairs were identified using Picard

(http://picard.sourceforge.net/). Base qualities were empir-

ically recalibrated and indel realignment was performed

jointly across all samples using the Genome Analysis Tool

Kit (GATK) v1.6 [25]. BAM files containing only uniquely

mapped reads with duplicates removed were analyzed by

the program SAMStat [56]. Fraction of reads on target was

determined using snpEff.

Sequencing reads from the samples described in

Schuster et al. [15] were obtained from the short read

archive and remapped to the GRCh37 assembly. The

exome capture data from Schuster et al. was single end

sequences obtained from the 454 pyrosequencing tech-

nology. Reads were mapped using the bwasw option in

bwa version 0.5.9. Processing was performed as described

above, with the exception of omitting the ‘homopolymer’

recalibration covariate and skipping the indel realign-

ment step which is not supported for 454 reads.

Read substitution bias

For Pilot 1, rates of nucleotide substitutions at each pos-

ition along the reads were determined by comparing the

mapped reads to their aligned human genome reference

sequence. We analyzed the first 1 million reads mapped

to chr1 for each sample, using only reads without any

alignment indels or clipping (with a CIGAR string of

‘75 M’ in the BAM file). For each read, we retrieved the

corresponding aligned reference sequence using its

mapped chromosomal position in the BAM file. The

rates for each nucleotide substitution type were then cal-

culated as the ratio of the total number of observed
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changes of that type and the total number of reads, for

each position along the reads. Because reads mapping to

the reverse strand of the reference are reverse comple-

mented in the BAM files, we performed the analysis sep-

arately for forward and reverse strand mapping reads.

Reverse mapping reads therefore show the complemen-

tary substitution patterns at the 3′ end to the forward

mapping reads at the 5′ end.

Population differentiation

To perform principal component analysis we used SNP

genotypes for individuals from several populations and

the EIGENSOFT software [28]. We used 11 KhoeSan in-

dividuals from our dataset (excluding SA011 and SA012

from Family 1 and SA052 and SA054 from Family 2), 4

Namibian KhoeSan individuals from Schuster et al., 6

Namibian San (Ju|’hoansi) from the Human Genome

Diversity Project (Martin et al, in prep. SRP036155) [57],

and 13 individuals from each of the ASW, GBR, LWK, and

YRI populations from the 1000 Genomes Project [23].

Closely related individuals were excluded from all data-

sets. Sample ‘ABT’ was excluded from Schuster et al.’s

dataset since it clustered with the Bantu-speaking pop-

ulations in their analyses. Individuals selected from the

1000 Genomes Project all had more than 20x coverage

for at least 70% of exome targets. To account for differ-

ences in coverage and target regions, variants included

in this analysis had genotype information for at least

95% of the individuals for a given analysis. VCFtools

[58] was used to count the number of shared and pri-

vate SNPs between populations.

HLA/KIR calling

To analyze the whole-exome data, all read-pairs that

mapped within hg19 coordinates, chr6:28702021-33392022,

chr19:55228188-55383188 and chr19_gl000209_random,

were extracted using SAMtools 0.1.18 [59] and split

into separate fastq files for each individual. Read-pairs

having more than five bases of quality score ≤3 were

removed (FASTX Toolkit 0.0.13 [http://hannonlab.

cshl.edu/fastx_toolkit/]). The analysis pipeline was de-

signed to detect all known and any novel HLA class I

and KIR SNP variants. Using Bowtie (version 0.12.7)

[60] read-pairs were harvested by mapping with low-

stringency to a given HLA or KIR gene (positive filter).

To ensure specificity, pairs that mapped to any homolo-

gous gene or pseudogene were removed (negative filter).

The remaining reads were then aligned to a final refer-

ence sequence and the SNP variants ascertained using

SAMtools/bcf. Data used to generate filters and reference

sequences was obtained from the ImmunoPolymorphism

Database and a set of fully-sequenced KIR haplotypes

[61-63]. To accommodate the high divergence of

HLA exons 2 and 3, the final alignments were made

to reference sequences matching individual HLA-A, -B

and -C genotypes. HLA-A, -B and -C reference alleles

were determined using bead-based sequence specific

oligonucleotide probe hybridization and were described

in [2]. The “-phase” function of SAMtools was used to

attribute phase for local alignments where possible due

to the close proximity of exons and/or presence of

highly heterozygous sequence (e.g. exons 2 and 3 of

HLA class I). Post-filtered read depth was used to de-

termine presence or absence of the variable-content

KIR genes. The KIR genes present and their alleles were

determined for comparison of eight of the individuals

using pyrosequencing methods as previously described

[64]. Individual SNP genotypes were confirmed visually

from independent alignments of the filtered reads,

which were created using MIRA 3 [65,66]. All newly-

discovered variants were confirmed for sequence and

phase using standard Sanger sequencing plus one or

more of pyrosequencing, DNA cloning or segregation

in families.

Metagenomic pipeline

We searched for genetic signatures of non-human or-

ganisms by adopting the fragment recruitment approach

outlined by Rusch et al. [31] (Figure 1). We first

trimmed reads and removed low-quality (i.e., reads that

meet any of the following conditions: mean quality score

less than 25, length less than 50 bp, presence of ambigu-

ous bases) and exact duplicate reads from the set of

those that did not map to the human genome using

prinseq [67]. We then compared the remaining high-

quality reads that did not map to the human genome to

1,285 genomes (Additional file 2: Table S4) obtained

from the Joint Genomes Institute’s Integrated Microbial

Genomes (IMG) database [44]. In the case of species

that have multiple genome-sequenced individuals, we

randomly selected a single individual genome to repre-

sent the species group. Each read was aligned to each

genome using blast (blastall -p blastn -z 16300000000 -e

0.01 -m 8) and the resulting alignment summary statistics

were used to infer each read’s taxonomy [45]. We explored

several classification thresholds, including alignment

e-value, alignment percent identity, and the ratio between

the alignment length and the read length (i.e., coverage).

We adopted several levels of threshold stringency to recruit

reads to genomes for the purposes of inferring taxonomic

diversity. Our thresholds were similar to those used in

Rusch et al. [31], with modifications to account for the

short length of our sequences.

In the lenient case (i.e., distant homology), a read was

recruited to a genome if the two sequences shared a

local alignment having at least 50% sequence identity.

Using these parameters we identified 5,060,454 un-

mapped sequences (20.9% of total unmapped reads) that

Kidd et al. BMC Genomics 2014, 15:262 Page 14 of 17

http://www.biomedcentral.com/1471-2164/15/262

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/


exhibit significant similarity to the collection of reference

genomes. In the stringent case (i.e., recent homology), a

read was recruited to a genome if the alignment covered at

least 75% of the read and the sequences had at least 80%

identity. Applying these thresholds found that 16.8% of the

reads (N = 4,064,899) can be recruited by non-human

genomes.

To conduct species-level binning, we applied the

aforementioned coverage thresholds, but required that

the read and target genome share at least 95% identity.

In all cases of classification, we applied an e-value

threshold of 10-3. We inferred a read’s taxonomy by

transferring the taxonomic annotation of the genome se-

quence that produced the best alignment score while

also passing the classification thresholds. If a read could

not be placed into a species group based on the refer-

ence genomes, it was discarded from the subsequent

diversity analyses. The IMG taxonomic annotations as-

sociated with the reference database genomes were used

to assign species-level binned reads into genera and

phyla.

To quantify genus-level saliva microbiome abundances

among healthy Americans, we downloaded high-quality,

taxonomically annotated V35 16S rRNA Roche amplicon

sequences associated with 294 saliva samples from the

Human Micorbiome Project (HMP) Data Analysis and

Coordination Center (http://www.hmpdacc.org/). A prior

study used the Ribosomal Database Project classifier (v2.2)

with the default 032010 training set and taxonomy to an-

notate these sequences [49]. Genus-level taxonomic assign-

ments were extracted for each sequence having a bootstrap

statistic greater than 80%.

Availability of supporting data
VCF files are available at http://ecoevo.stonybrook.edu/

hennlab/data/. Raw read data can be downloaded from

the short-read archive (SRP038015 for saliva derived

exomes and genomes, and SRP036155 for HGDP San

exomes). SNP variants have been deposited in dbSNP

(SS 974432427-SS974514519) Novel KIR alleles have

been deposited in Genbank and assigned Immuno Poly-

morphism Database nomenclature as follows:

JX523651 (3DL3*057), GQ924778 (3DL3*037),

GQ924779 (3DL3*038), GQ924781 (3DL3*040),

HM235773 (3DL3*041), JX523631 (2DL2*012),

JX523638 (2DL5B*00803), JX523639 (2DL5B*018),

JX523640 (2DS3*007), JX523642 (2DS5*012),

HM358896 (2DS5*0502), JX523648 (2DP1*00103),

JX523646 (2DP1*00202), JX523647 (2DP1*011),

JX523644 (2DP1*012), JX523645 (2DP1*013),

JX523643 (2DP1*014), JX523630 (2DL1*026 N),

GU323355 (2DL1*022), JX523652 (3DP1*011),

JX523655 (3DP1*012), JX523653 (3DP1*013),

JX523654 (3DP1*014), JX523634 (2DL4*024),

JX523637 (2DL4*027), GQ890695 (3DL1*070),

GQ890697 (3DL1*071), GU323347 (3DL2*052),

GU323348 (3DL2*053), GU323349 (3DL2*054),

JX523649 (3DL2*063)

Additional files

Additional file 1: Table S1. Summary Statistics for HGDP San Exomes.

Table S2: HLA alleles. Table S3: KIR alleles. Figure S1: Pedigree structure

for sequenced individuals. Figure S2. Cumulative coverage across the

Agilent target regions for Pilot 1 (A) and Pilot 2 (B) samples. Figure S3:

Mapping quality for all reads. Figure S4: Assessment of base substitutions

from mapped reads. Figure S5: Venn Diagram comparing≠ Khomani San

with Namibian exome samples. Figure S6: PCA with two relatives included.

Figure S7: Distribution of mapped reads along the N. subflava genome.

Figure S8: The phylogenetic distribution of three non-human exome

capture sequences that map with high fidelity to Mycobacterium

tuberculosis. Figure S9: The phylum-level structure of the oral microbiome

structure varies among the KhoeSan.

Additional file 2: Table S4. Species included in the microbial genome

database.
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