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Exome sequencing and analysis of 454,787 
UK Biobank participants
  

Joshua D. Backman1, Alexander H. Li1, Anthony Marcketta1, Dylan Sun1, Joelle Mbatchou1, 

Michael D. Kessler1, Christian Benner1, Daren Liu1, Adam E. Locke1, 

Suganthi Balasubramanian1, Ashish Yadav1, Nilanjana Banerjee1, Christopher Gillies1, 

Amy Damask1, Simon Liu1, Xiaodong Bai1, Alicia Hawes1, Evan Maxwell1, Lauren Gurski1, 

Kyoko Watanabe1, Jack A. Kosmicki1, Veera Rajagopal1, Jason Mighty1, Regeneron Genetics 

Center*, DiscovEHR*, Marcus Jones1, Lyndon Mitnaul1, Eli Stahl1, Giovanni Coppola1, 

Eric Jorgenson1, Lukas Habegger1, William J. Salerno1, Alan R. Shuldiner1, Luca A. Lotta1, 

John D. Overton1, Michael N. Cantor1, Jeffrey G. Reid1, George Yancopoulos1, Hyun M. Kang1, 

Jonathan Marchini1,2, Aris Baras1,2, Gonçalo R. Abecasis1,2 ✉ & Manuel A. Ferreira1,2 ✉

A major goal in human genetics is to use natural variation to understand the 

phenotypic consequences of altering each protein-coding gene in the genome. Here 

we used exome sequencing1 to explore protein altering variants and their 

consequences in 454,787 UK Biobank study participants2. We identi�ed 12 million 

coding variants, including ~1 million loss-of-function and ~1.8 million deleterious 

missense variants. When these were tested for association with 3,994 health-related 

traits, we found 564 genes with trait associations at P≤2.18x10-11. Rare variant 

associations were enriched in GWAS loci, but most (91%) were independent of 

common variant signals. We discover several risk-increasing associations with traits 

related to liver disease, eye disease and cancer, among others, as well as novel 

risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, 

FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging 

phenotypes, including two involved in neural development (GBE1, PLD1). 81% of 

signals available and powered for replication were con�rmed in an independent 

cohort; furthermore, association signals were generally consistent across European, 

Asian and African ancestry individuals. We illustrate the ability of exome sequencing 

to identify novel gene-trait associations, elucidate gene function, and pinpoint 

e�ector genes underlying GWAS signals at scale.

A major goal in human genetics is to use natural variation to under-

stand the consequences of altering each protein-coding gene in the 

genome. Towards that goal, the UK Biobank (UKB) Exome Sequenc-

ing Consortium1 sequenced the exomes of 454,787 UKB participants 

(Supplementary Table 1), with 95.8% of targeted bases covered at a 

depth of 20X or greater, as previously described1,3. We identified 12.3 

million variants in 39 million base pairs across the coding regions of 

18,893 genes (Table 1), of which 99.6% were rare variants (minor allele 

frequency [MAF] <1% across all ancestries). This catalog exceeds by 

about 1.3-fold the coding variation contained in the combined TOPMed4 

and gnomAD5 datasets (9.5 million autosomal variants), and by about 

8-fold the coding variation accessible in the UKB through imputation 

(1.6 million autosomal variants with info score >0.3; Supplementary 

Table 2). Among the variants identified were 3,457,173 (median of 

10,273 per individual) synonymous, 7,878,586 (9,292 per individual) 

missense and 915,289 (214 per individual) putative loss-of-function 

(pLOF) variants (Table 1), of which about half were observed only once 

in this dataset (singleton variants; Supplementary Figure 1). About 23% 

(1,789,828) of missense variants were predicted to be deleterious by five 

prediction algorithms (see Methods; henceforth ‘deleterious missense 

variants’). This unique catalog of coding variation, combined with the 

large sample size and thousands of available phenotypes, provides a 

unique opportunity to assess gene function at unprecedented scale.

Association studies of rare variants

GWAS often do not elucidate gene function per se because (i) most 

protein-coding variants are not accessible through imputation (Sup-

plementary Table 3); and (ii) it is not straightforward to identify the 

specific genes and mechanisms underlying associations with common 

non-coding variants6. To illustrate the potential to elucidate gene func-

tion through analysis of WES data, we tested the association between 

rare pLOF and deleterious missense variants and 3,994 health-related 

traits measured in UKB study participants (Supplementary Data 1). 

This included 3,702 binary traits with at least 100 cases and 292 quan-

titative traits from a variety of domains, including anthropometry, 

biochemistry and hematology (Supplementary Table 4). About half 

of the binary traits were uncommon, with a population prevalence 
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between 0.1% and 1% (Supplementary Figure 2). Association analy-

ses were performed using the whole-genome regression approach 

implemented in REGENIE7, which accounts for relatedness, population 

structure and polygenicity and uses a fast, approximate Firth regression 

approach for binary outcomes. Variants were tested individually and 

on aggregate, through gene burden tests that group protein-altering 

variants within each gene.

We first analyzed WES data from individuals of European ancestry 

(N=430,998; ~95% of the total sample size), focusing on pLOF (including 

stop-gain, frameshift, stop-lost, start-lost and essential splice variants) 

and deleterious missense variants with a MAF≤1%. We tested for associa-

tion between each trait and individual variants in 18,811 genes, as well as 

with aggregations of variants in each gene, considering either pLOF or 

pLOF and deleterious missense variants jointly. Overall, we performed 

a total of ~2.3 billion association tests (Supplementary Table 5), with no 

evidence for a substantial impact of population structure or unmod-

eled relatedness on the results (Supplementary Figures 3 and 4). We 

found 8,865 significant associations – involving 564 genes, 492 traits 

and 2,283 gene-trait pairs (Extended Data Figure 1) – at a P≤2.18x10-11, 

which corresponds to a Bonferroni correction for multiple testing (i.e. 

P≤0.05/2.3 billion tests; at this threshold, <0.05 association signals 

expected by chance across the full result set). As we show later, 8,059 

(91%) of these associations could not be explained by linkage disequi-

librium (LD) with nearby common variants and, furthermore, 81% of 

associations available and powered for replication were confirmed in an 

independent but smaller cohort of N=133,370 individuals (DiscovEHR 

cohort). All 8,865 associations are provided in Supplementary Data 2, 

as well as two non-redundant sets obtained by retaining only the most 

significant signals: (i) per gene-trait pair (2,283 signals; filtered view in 

Supplementary Data 2); or (ii) per gene (564 signals; Supplementary 

Table 6). Of the 564 lead gene associations, 415 were due to a burden 

signal (which typically aggregated SNPs and indels) and 149 were due 

to an individual rare variant. Of these 149, 20 represented association 

with an indel variant and 129 represented association with an SNV (Sup-

plementary Table 6). Gene targets of drugs approved by the Food and 

Drug Administration were 3.6-fold more common among the associated 

genes (36 of 564, or 6.4%; Supplementary Table 6) than in the remaining 

genes (345 of 18,317, or 1.9%; Fisher’s exact test P=1.7x10-9).

The large number of associations identified provides a unique oppor-

tunity to understand the phenotypic consequences of protein-altering 

variation in humans and identify novel therapeutic targets. As it is 

not possible to exhaustively describe all novel gene associations, we 

instead highlight examples selected from four broad groups of variants:  

(i) singleton variants; (ii) risk lowering variants; (iii) variants with a 

beneficial effect on a quantitative trait; and (iv) variants of likely somatic 

origin. These groupings illustrate the value of the UKB exome resource 

and the potential of our data to power further discovery and analyses.

Associations with singleton variants

We first focused on 69 signals discovered when considering a burden 

of singleton variants, which represent the rarest class of variation and 

remain well beyond the reach of genotyping arrays and imputation 

using existing reference panels. Association of a phenotype with the 

burden of singletons in a gene represents one of the most compelling 

ways for human genetics to implicate a gene in disease8. Each of the 69 

genes was associated with an average of 5.7 (mostly correlated) traits, 

resulting in a total of 393 associations (4.4% of the total; Supplemen-

tary Data 2). To our knowledge, 15 of these 69 gene associations have 

not been previously described (Extended Data Table 1), of which we 

highlight two. First, carriers of singleton pLOF variants in the chro-

matin remodeler EP400 had lower hand grip strength (96 carriers; 

effect=-0.55 SD units, 95% CI -0.68 to -0.42, P=8x10-16), consistent with 

findings from knock-out mice, which also present peripheral neuropa-

thy and severe hypomyelination of the central nervous system9. Second, 

singleton pLOF variants in RRBP1, which encodes an ER-membrane 

protein, were associated with lower apolipoprotein B levels (92 carriers; 

effect=-0.83 SD units, 95% CI -1.0 to -0.64, P=3x10-18), as well as similar 

reductions in LDL and total cholesterol levels. Consistent with this, 

silencing of Rrbp1 in mice altered hepatic lipid homeostasis, resulting 

in reduced VLDL biogenesis10.

Protective associations with disease outcomes

A major impetus to perform association analyses with rare variants 

is the identification of genes for which loss-of-function variants are 

associated with lower disease risk, as these may represent attractive 

targets for blocking antibodies or other inhibitory modalities. How-

ever, power to identify protective associations with rare variants at 

P≤2.18x10-11 was low (Extended Data Figure 2). Consistent with this, we 

found only five genes associated with lower risk of disease outcomes 

at P≤2.18x10-11, all previously reported: PCSK9, APOB, and APOC3 and 

protection from hyperlipidemia; ABCG5 and cholelithiasis; IL33 and 

allergic diseases (Supplementary Table 7).

Of note, however, an additional 11 protective associations were 

observed at a more liberal significance threshold of P≤10-7, including six 

previously reported (involving ANGPTL3, IFIH1, DBH, PDE3B, SLC22A12 

and ZNF229) and four that are potentially novel and remain highly asso-

ciated after accounting for common variant signals (Supplementary 

Table 7). The first was between SLC9A3R2 and lower risk of hypertension 

(5,873 carriers; OR=0.81, 95% CI 0.76 to 0.87, P=2.2x10-10). SLC9A3R2 

encodes NHERF-2, a kidney-expressed scaffolding protein that is 

functionally linked to sodium absorption via interaction with sodium/

hydrogen exchanger 311. A low-frequency missense variant in SLC9A3R2 

(rs139491786, Arg171Trp, MAF=0.7%) was previously identified in a 

GWAS of blood pressure12, but the signal was attributed to a nearby vari-

ant in PKD1 (rs140869992, Arg2200Cys). We demonstrate that a burden 

of rare pLOFs and deleterious missense variants in SLC9A3R2, as well as 

Arg171Trp, remain highly associated with systolic blood pressure (SBP), 

diastolic blood pressure (DBP) and hypertension after conditioning on 

Arg2200Cys in PKD1 (Supplementary Table 8). In addition, we note that 

there were strong associations when SBP (effect=-1.85 mmHg, 95% CI 

-2.22 to -1.48, P=2.0x10-19) and DBP (effect=-1.01 mmHg, 95% CI -1.31 to 

-0.80, P=4.8x10-18; Supplementary Data 2) were analyzed as quantitative 

traits, with the SBP association replicating in the DiscovEHR cohort 

(P=2.6x10-4; Supplementary Table 6). Overall, the signal is consistent 

with the well-established role of sodium balance in regulating blood 

pressure and suggests that blocking SLC9A3R2 could provide an attrac-

tive means for managing blood pressure. Functional and clinical studies 

that evaluate this possibility are warranted.

The second novel association was between lower risk of childhood 

asthma and a burden of rare pLOFs and deleterious missense variants in 

SLC27A3 (3,787 carriers; OR=0.65, 95% CI 0.55 to 0.76, P=8.2x10-8), which 

was supported by the following additional observations. First, a burden 

of rare pLOF and deleterious missense variants was also associated with 

lower blood eosinophil counts (5,227 carriers; effect=-0.045 SD units, 

95% CI -0.070 to -0.020, P=4.4x10-4), a cell type with critical effector 

functions in allergic asthma. Second, there were consistent protective 

associations in the DiscovEHR cohort with both asthma (1,354 carriers; 

OR=0.87, 95% CI 0.75 to 1.01, P=0.060) and eosinophil counts (1,755 

carriers; effect=-0.052 SD units, 95% CI -0.096 to -0.008, P=0.021). 

SLC27A3 encodes an acyl-CoA synthetase that activates long-chain fatty 

acids13, is most highly expressed in artery, adipose and lung tissue14, 

and is up-regulated in lung cancer15.

The third novel association was between a missense variant in PIEZO1 

(rs61745086, Pro2510Leu, MAF=0.98%) and reduced risk of varicose 

veins (7,454 carriers; OR=0.69, 95% CI 0.61 to 0.79, P=2.61x10-8). PIEZO1 

encodes a mechanosensitive cation channel with a key role in venous 

and lymphatic valve formation16. We had previously shown that rare 

pLOFs in this gene increase the risk of asymptomatic varicose veins of 
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lower extremities by 4.9-fold (162 carriers; 95% CI 2.8 to 8.6, P=3.2x10-8) 

in the first 50K exomes from the UKB3, an association that is now esti-

mated at 2-fold with ~8 times more data (1,355 carriers; OR=2.08, 95% 

CI 1.62 to 2.67, P=7.4x10-9). The new protective association with Pro-

2510Leu, which replicated in the DiscovEHR cohort (2,243 carriers; 

OR=0.66, 95% CI 0.47 to 0.93, P=0.017), suggests that this missense vari-

ant likely has a gain-of-function effect. This is important because it sug-

gests that activation of PIEZO1 may provide a therapeutic pathway for 

a common condition with no available pharmacological interventions.

Lastly, the fourth novel association was between MAP3K15 and 

protection from type-2 diabetes, which is discussed in greater detail 

below. Among these four novel protective associations, only two (with 

SLC9AR2 and PIEZO1) were observed at P<10-7 when analyzing TOPMed 

imputed data (Supplementary Table 9 and 10).

Protective associations with quantitative traits

The low yield of protective associations with disease traits contrasts 

with that observed for disease-relevant quantitative traits, such as body 

mass index, which often provide greater power for genetic studies. 

Specifically, we found 131 genes for which the direction of effect on 

a quantitative trait was consistent with a beneficial effect on disease 

risk (Supplementary Table 11). For example, we found low-frequency 

protein-altering variants in ASGR1 associated with lower apolipo-

protein B levels (759 carriers; effect=-0.29 SD units, 95% CI -0.35 to 

-0.22, P=6.5x10-18). ASGR1 haploinsufficiency was previously reported 

to reduce risk of cardiovascular disease17, an observation that sup-

ported clinical development of an anti-ASGR1 monoclonal antibody 

as a lipid-lowering therapeutic18.

As another example, we found an association between lower 

serum glucose levels and pLOF variants in FAM234A (2,439 carriers; 

effect=-0.14 SD units, 95% CI -0.18 to -0.099, P=2.0x10-12), which was 

independent of associations with common variants (Supplementary 

Table 11 and Supplementary Figure 5). There was a consistent associa-

tion in the DiscovEHR cohort with fasting glucose levels (1,132 carriers; 

effect=-0.046 SD units, 95% CI -0.099 to 0.007, P=0.09), albeit not statis-

tically significant. Of note, a common intronic variant in FAM234A was 

previously reported to associate with lower risk of type-2 diabetes (T2D; 

rs9940149:A, MAF=18%, OR=0.95) and to co-localize with a regulatory 

variant that lowers FAM234A expression in multiple tissues19. Consist-

ent with this, we found that rare pLOFs in FAM234A were associated 

with a 36% reduction in risk of self-reported diabetes (2,104 carriers; 

OR=0.64, 95% CI 0.52 to 0.80, P=10-4). Collectively, results from both 

rare and common variants implicate FAM234A, a gene of unknown 

function, in the etiology of diabetes.

We then determined if there were other examples of genes with 

both a favorable effect on a quantitative trait and a protective (even 

if sub-threshold) association with a relevant disease, as observed for 

FAM234A. To this end, for 131 quantitative trait association signals, 

we estimated the genetic correlation (rg) between the trait and all 

diseases tested, and then selected the disease with the most signifi-

cant rg. We only considered diseases for which the rg was significant 

after correcting for multiple testing, if any. For example, eosinophil 

count was matched to asthma (rg=0.37), while intra-ocular pressure 

was matched to glaucoma (rg=0.66); in total, we found a matching 

disease for 129 traits (Supplementary Table 12). Using this approach, 

we found that 13 genes had a protective association with a genetically 

correlated disease that was significant after correcting for multiple 

testing (P<0.05/129 tests=3.8x10-4; Extended Data Figure 3). Of these, 

we highlight the association between a burden of protein-altering vari-

ants in MAP3K15 and both lower levels of hemoglobin A1c (7,551 carri-

ers; effect=-0.085 SD units, 95% CI -0.100 to -0.073, P=7.8x10-30), lower 

serum glucose (6,885 carriers; effect=-0.090 SD units, 95% CI -0.110 to 

-0.073, P=1.7x10-25) and protection from T2D (7,085 carriers; OR=0.85, 

95% CI 0.79 to 0.91, P=2.8x10-6). Furthermore, there was supporting 

evidence in the DiscovEHR cohort for all three phenotypes: hemo-

globin A1c (1,304 carriers; effect=-0.040 SD units, 95% CI -0.079 to 

-0.002, P=0.038), glucose (1,754 carriers; effect=-0.097 SD units, 95% 

CI -0.130 to -0.064, P=1.3x10-8) and T2D (2,455 carriers; OR=0.91, 95% CI 

0.84 to 0.98, P=0.018). MAP3K15 encodes an ubiquitously expressed, 

mitogen-activated protein kinase involved in apoptotic cell-death20, 

not previously implicated in type-2 diabetes.

Associations with somatic mutations

Among the 492 traits with at least one significant rare variant associa-

tion, 20 were noteworthy because they involved two or more genes 

with rare variant signals but no common variant signals from GWAS 

(Extended Data Figure 4a and 4b). Remarkably, for 7 of these 20 traits 

– myeloid leukemia (seven genes; Supplementary Figure 6), sepsis 

(four genes) and five additional blood related traits – the majority of 

associated genes were previously implicated in clonal hematopoie-

sis of indeterminate potential (CHIP21; Supplementary Table 13). The 

associated variants in these CHIP genes were strongly correlated with 

age, and the proportion of reads supporting the variant in putative 

heterozygotes was often <35% (Supplementary Table 14), consistent 

with these associations being driven by somatic mutations identified 

through exome sequencing of blood-derived DNA.

Associations in non-European ancestries

We next investigated the extent to which associations identified in 

the European cohort were shared across other ancestries. To do so, 

we performed association analyses using WES data for 10,348 indi-

viduals of South Asian (SAS), 9,089 of African (AFR) and 2,217 of East 

Asian (EAS) ancestry from the UKB cohort. When we focused on the 

564 non-redundant associations (i.e. strongest association per gene, 

484 with a quantitative trait and 80 with a binary trait; Supplementary 

Table 6), we found that a large fraction of associations was shared across 

ancestries for quantitative traits but less so for binary traits, likely due 

to low power. For quantitative traits, effect sizes were directionally 

concordant for 83% of associations in individuals of SAS, 73% of AFR and 

74% of EAS ancestry, increasing to >92% when considering associations 

with a P≤0.05 (Extended Data Figure 5a). For binary traits, consistent 

effects were observed for 61% of associations in SAS, 61% in AFR and 

64% in EAS (Extended Data Figure 5b). A similar pattern was observed 

when considering the full set of 8,865 associations (Supplementary 

Figure 7). We then asked if any new associations were discovered in 

non-European ancestries (Supplementary Data 3); we found four genes 

not discovered in the European-only analysis (G6PD, HBQ1, OR51V1, 

RGS11), all explained by previous established associations (Supple-

mentary Table 15).

Replication of rare variant associations

We sought to replicate associations using exome sequencing data from 

the Geisinger DiscovEHR cohort22 (N=133,370 individuals of European 

ancestry). As above, to facilitate interpretation of results, we focused 

on the non-redundant set of 564 gene-trait associations discovered in 

UKB Europeans (Supplementary Table 6) and determined if a matching 

trait could be identified in DiscovEHR. Of the 279 gene-trait associations 

for which we attempted replication, 193 (69%; 28 with a binary trait, 

165 with a quantitative trait) were nominally significant (P≤0.05) and 

directionally consistent (Supplementary Table 6), versus ~7 expected 

by chance (279 x 0.05 x 0.5). When considering only a subset of 212 

gene-trait associations with at least 80% power for replication, the 

replication rate was 81% (172 of 212). Supplementary Data 2 provides 

replication results for all associations available in DiscovEHR (4,083 

of 8,865), of which 70% were nominally significant and directionally 

consistent.
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Impact of burden test composition

As noted above, association of a phenotype with the burden of rare cod-

ing variants in a gene is a compelling way for human genetics to connect 

genes and disease8. As we show in the Supplementary Note, when we dis-

sected burden associations in greater detail, we found that: (i) most (77% 

of 7,449) associations could not be detected in single-variant analyses 

(Supplementary Data 2), demonstrating that they were generally sup-

ported by multiple variants; (ii) burden tests that aggregated variants 

with a MAF up to 1% identified a larger number of significant associa-

tions overall (Supplementary Table 16), but most of these remained 

significant after excluding variants with a MAF between 0.1% and 1% 

(Extended Data Figure 6a), indicating that the greater yield is likely 

explained by the ability to capture in a single test association signals 

across a wide range of allele frequencies; and (iii) combining pLOFs 

and deleterious missense variants in the same test became progres-

sively more valuable at more permissive MAF thresholds (Extended 

Data Figure 6b). These results demonstrate the utility of performing 

a variety of burden tests for discovery of genetic associations.

Enrichment of associations in GWAS loci

A major challenge for genetic association studies of complex traits is 

the identification of effector genes for the thousands of loci identified 

through GWAS6. To address the possibility that rare variant associa-

tions might help pinpoint effector genes, we performed a GWAS for 

each of the 492 traits with a rare variant association (see Methods, 

Supplementary Data 1 and Supplementary Figure 4), identifying a total 

of 107,276 independent associations with common variants (hereafter 

“GWAS sentinel variants”). As described in greater detail in the Supple-

mentary Note, by combining results from the GWAS and the WES data, 

we found that: (i) rare variant associations were often within 1Mb of a 

GWAS sentinel variant for the same trait (6,564 of 8,865, 74%; Extended 

Data Figure 4a); (ii) most rare variant associations (8,059 of 8,865, 91%) 

remained significant at P≤2.18x10-11 when we conditioned on GWAS 

common variant signals (Extended Data Figure 4c, Supplementary 

Table 17 and Supplementary Data 2); (iii) significant rare variant associa-

tions (after conditioning on GWAS signals) were 11.4-fold (95% CI 10.1 

to 13.0, P<10-300) more common in genes located within 1 Mb of a GWAS 

peak, with enrichment reaching 59.4-fold (95% CI 51.8 to 68.2) when we 

focused only on genes nearest to GWAS sentinel variants (Figure 1). 

These results show strong overlap between common variant signals 

from GWAS and rare variant signals from exome-wide association stud-

ies, suggesting that rare variant burden signals will identify effector 

genes for thousands of GWAS loci.

Likely effector genes of GWAS signals

To illustrate the relevance of the findings described above, we high-

light 168 genes where a significant RV association (P≤2.18x10-11 after 

conditioning on common variants) was observed in the gene nearest 

to the GWAS sentinel variant (Supplementary Table 18), indicating 

that these are very likely effector genes underlying the GWAS signal. 

As an example, we found 82 GWAS signals for serum levels of vitamin 

D (Extended Data Figure 7a), and for five of these the burden of rare 

protein-altering variants in the gene nearest the GWAS peak (DHCR7, 

FLG, GC, ANGPTL3 and HAL) was also associated with vitamin D levels 

(Extended Data Figure 7b). Of these, we highlight the association with 

HAL, which has not been previously reported. The first step of vitamin 

D synthesis occurs in the skin and requires ultraviolet (UV) light. HAL 

is likely to play a role in this step because it encodes an enzyme that 

converts histidine into trans-urocanic acid, a major UV-absorbing 

chromophore that accumulates in the stratum corneum23. Inac-

tivation of HAL is therefore expected to decrease the ability of the 

outermost layer of the epidermis to block UV light. Consistent with 

this possibility, we found that a burden of rare pLOF and deleterious 

missense variants in HAL was associated with higher vitamin D levels, 

greater ease of skin tanning and higher risks of actinic keratosis and 

non-melanoma skin cancer (Supplementary Table 19). These findings 

were supported by trait-lowering associations with a common variant 

(rs10859995:C, 58% frequency) that co-localizes (LD r2=0.97) with an 

expression quantitative trait locus (rs3819817:T) that increases HAL 

expression in skin tissue14 (Extended Data Figure 7c). These results 

implicate HAL in both vitamin D levels and skin cancer and highlight 

an allelic series that includes rare loss-of-function protein-altering 

variants (trait-increasing) as well as common expression-increasing 

non-coding variants (trait-lowering).

Associations with brain imaging traits

The brain imaging component of UKB currently includes 2,077 phe-

notypes derived from magnetic resonance imaging (MRI) for 36,968 

individuals. We analyzed these data separately given the large number 

of traits and the relatively smaller sample size, testing the association 

with rare variants conditional upon GWAS signals as described above. 

We found 84 associations at P≤2.18x10-11 with six genes (Supplementary 

Table 20): AMPD3, GBE1, PLD1, PLEKHG3, STAB1 and TF. Of these, we 

highlight the association between lower grey/white matter contrast 

(GWC) measures across a diffuse set of brain regions and a deleteri-

ous missense variant in PLD1 (rs149535568, Gly237Cys, 196 carriers; 

effect=-0.49 SD units, 95% CI -0.62 to -0.35, P=1.4x10-12), an enzyme 

that catalyzes the hydrolysis of phosphatidylcholine to phosphatidic 

acid and choline, which has been shown to play a role in synaptogen-

esis24. GWC is a measure of blurring between the boundaries of grey/

white matter brain compartments and is thought to be an indicator of 

local variations in tissue integrity and myelin degradation, increasing 

water content in the white matter, or iron deposition25. Lower GWC 

is associated with aging and lower indices of cognition26, as well as 

an increased rate of conversion from mild cognitive impairment to 

dementia27. Related to this finding, among an additional 46 genes with 

sub-threshold associations with brain imaging phenotypes (P≤10-7; 

Supplementary Table 21), four genes had large trait-lowering effects 

on GWC, including two that have clear roles in the formation and main-

tenance of myelin – GJC228 and UGT829 – consistent with the association 

between variants that disrupt the function of these genes and lower 

GWC. In contrast, the strongest trait-increasing and putatively protec-

tive association with GWC was with a deleterious missense variant in 

ST6GALNAC5 (rs756654226, Val135Ala, 9 carriers; effect=1.7 SD units, 

95% CI 1.1 to 2.4, P=8.2x10-8), a gene that catalyzes the biosynthesis of 

ganglioside GD1alpha from GM1b in the brain30. This aligns with current 

evidence that the relative abundance of specific gangliosides in the 

brain changes with age and in common neurological conditions31. We 

discuss notable associations with other genes (GBE1, PLEKHG3, STAB1 

and TF) in the Supplementary Note.

Beyond 500,000 exomes

In our evaluation of the first 49,960 exomes sequenced from UKB par-

ticipants3, we used a beta-binomial model to predict the number of 

genes that would harbor heterozygous pLOF variants when consider-

ing exome data for all 500,000 study participants. At current sample 

sizes, the observed and predicted numbers match closely (e.g. 15,289 

observed vs. 15,613 predicted genes with at least 50 heterozygous pLOF 

carriers; Supplementary Table 22). Using our current dataset as a base-

line (including all ancestries), we extended our projections to estimate 

the number of genes harboring rare pLOFs (MAF≤1%) when exome 

sequence data become available for five million individuals: we predict 

that 18,035, 17,853 and 8,376 genes will have at least 50, 100, and 500 

heterozygous pLOF carriers, respectively (Supplementary Table 22 

and Extended Data Figure 8a). Similarly, we predict that 2,630, 997 and 

4 | Nature | www.nature.com

Article



A
C
C
E
L
E
R
A
T
E
D
 A

R
T
IC

L
E
 P

R
E
V
IE

W

P
R
E
V
IE

W

529 genes will have at least 10, 50 and 100 homozygous pLOF carriers, 

respectively, when considering five million sequenced individuals.

The UKB cohort consists primarily of individuals of European ances-

try, and so an important question is whether these projections also 

apply to populations that are more ancestrally diverse. To address 

this, we predicted the number of pLOF carriers expected in five mil-

lion individuals based on (i) 46K individuals of European ancestry 

from the UKB; and (ii) 46K individuals from the UKB, including 23K of 

European ancestry and all 23K individuals of non-European ancestry 

(10K of South Asian, 9K of African, 2K of East Asian ancestry and 2K 

of admixed ancestry). We found that projections based on the more 

diverse set of samples were slightly higher than the estimates from 

the European-only dataset (Extended Data Figure 8b).

Whole-genome sequencing and imputation

In the coming years, we expect whole-genome sequence data to be 

available for all UKB participants, enabling analyses of rare variation to 

be extended to the remainder of the genome. Our data enables an early 

assessment of the value of that upcoming resource for genotype impu-

tation, a widely used strategy for increasing the power, completeness 

and interpretability of array-based association studies32. We phased 

exome variants onto genotyping array haplotypes for 400,000 indi-

viduals, and then used this reference panel to impute exome variants 

into an array-only target dataset of 50,000 individuals. When reference 

and target datasets were well matched in ancestry, imputation accuracy 

remained high (r2≥0.5) for alleles present in at least 5 reference-panel 

haplotypes, enabling imputation down to allele frequency of ~0.025%, 

~0.005% and ~0.0005% in panels with ~10,000, ~50,000 or ~400,000 

sequenced individuals (Supplementary Table 23 and Figure 2). As 

expected, imputation accuracy was lower, but still very good, when 

reference panel and target samples were less well matched in ancestry 

(Supplementary Table 23). Using reference panels of different sizes, 

we observed rapid increases in the ability to impute rare variants with 

larger panels and thus expect that even rarer variants will be imput-

able as reference panel sizes grow to 400,000 individuals and beyond 

(Extended Data Figure 9 and Supplementary Figure 9).

Discussion

We report the completion of exome sequencing for 454,787 UKB par-

ticipants. Our dataset now includes an average of >600 coding variants 

per gene (including ~50 pLOFs per gene on average). In addition to 

enabling studies of mutation patterns and human demography33, our 

dataset represents a major advance towards the goal of understanding 

the health consequences of modifying each gene in the genome. In our 

preliminary analyses, we identify associations with health outcomes 

for pLOF and likely deleterious variation in 564 genes. These findings 

suggest new biological functions for many genes and potential thera-

peutic strategies, whether through enzyme replacement, therapeutic 

blockade or other modalities. All the data we generated are being made 

available to the UKB scientific community – and their combined creativ-

ity and efforts will surely expand on these initial analyses.

The following caveats (expanded in the Supplementary Discussion) 

should be considered when interpreting our results. First, a small num-

ber of potentially low-quality variants may be included in the analysis, 

but our stringent significant thresholds and demonstrated replicability 

of most results suggest that is not a widespread phenomenon. Second, 

disentangling mechanism in genes associated with multiple traits will 

require careful follow-up analyses to distinguish situations where a 

gene affects multiple traits directly from those where additional signals 

are shadows of association with one trait. Third, while we focused on 

burden tests that could identify genes were all pLOF or deleterious 

missense variants have a similar effect direction, additional association 

signals may be identified in genes that harbor both trait-increasing 

and trait-lowering rare variants using alternative approaches such as 

SKAT34. In addition to these limitations, there are additional challenges 

that must be addressed with new samples and data: (i) there is limited 

genetic diversity among UKB participants and we expect that additional 

insights will become possible as more diverse samples are sequenced, 

particularly including insights that are relevant to the genetic disease 

burden specific to non-Europeans; (ii) although self-report question-

naires and electronic health records provide a very scalable way to 

phenotype 100,000s of individuals, they naturally entail some mis-

classification – particularly when compared to more laborious and 

targeted phenotyping protocols; and (iii) given very limited availability 

of complete nuclear families, it is not practical to carry out focused 

analyses of de novo variation which has been shown to be especially 

important for several neurodevelopmental traits.

Accomplishing our original goal of understanding the health con-

sequences of genetic variation in each human gene will likely require 

sequencing millions of well characterized and diverse individuals. In our 

view, our results not only show this goal is within reach but also suggest 

that sequencing five million individuals would enable the identifica-

tion of 500+ heterozygous LOF carriers for ~15,000 genes – that is, for 

the great majority of human protein-coding genes. It is our hope that 

these results and dataset will help provide the impetus and urgency 

for generating these new datasets which combine health and variation 

data on millions of individuals.
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Fig. 1 | Enrichment of rare variant (RV) associations among genes located in 

GWAS loci. We tested if genes located in GWAS loci were more likely to have 

significant associations with a burden of RVs when compared to genes 

elsewhere in the genome. We considered four different significance thresholds 

to define significant burden associations (P≤0.05, P≤10-4, P≤10-7 and 

P≤2.18x10-11) and considered 13 different gene-sets, from all genes located 

within 10 Mb of, to only the nearest gene to, the GWAS sentinel variants. The 

enrichment of significant associations was greatest when considering the 

nearest gene to GWAS sentinel variants, reaching 59.3-fold (95% CI 51.8 to 68.2, 

P<10-300) when considering a significance threshold of P≤2.18x10-11. Results 

based on the analysis of a pruned set of 188 traits (101 binary traits and 87 

quantitative traits, see Methods for details).
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Fig. 2 | Imputation of rare variants from exome sequencing. Imputation 

accuracy (r2, y-axis) is shown as a function of the variant allele frequency (x-axis; 

minor allele count [MAC] for ultra-rare variants, minor allele frequency [MAF] 

for variants with MAF>10-4) and the number of individuals (N) included in the 

reference panel (different lines). Full results are provided in Supplementary 

Table 23.
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Table 1 | Number of coding variants discovered in exome 
sequencing data from 454,787 participants of the UK 
Biobank

Variant category N variants (% with 
MAC=1)

Median number 
of variants per 
participant (IQR)

Coding regionsa 12,326,144 (46.86) 19,895 (247)

Predicted function

In-frame indels 75,096 (40.33) 115 (11)

Synonymous 3,457,173 (43.12) 10,273 (141)

Missense 7,878,586 (47.28) 9,292 (143)

Likely benign 1,532,129 (44.11) 6,561 (104)

Possibly deleterious 4,556,629 (47.23) 2,610 (70)

Likely deleterious 1,789,828 (50.1) 121 (16)

pLOF (any transcript) 915,289 (57.88) 214 (16)

Start lost 26,453 (47.94) 13 (4)

Stop gain 279,913 (54.02) 52 (8)

Stop lost 12,843 (56.51) 6 (3)

Splice donor 104,328 (58.67) 17 (5)

Frameshift 405,669 (60.41) 90 (10)

Splice acceptor 86,083 (60.79) 20 (5)

a Includes all coding variants: synonymous, in-frame indels, missense and pLOF variants. 

Abbreviations: pLOF – putative loss-of-function. MAC – minor allele count. IQR – inter quartile 

range.
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Methods

Exome sequencing

Sample preparation and sequencing. We have previously described 

in detail the approach used at the Regeneron Genetics Center to per-

form exome sequencing in DNA samples from the UK Biobank study3. 

Briefly, genomic DNA samples were transferred to the Regeneron Ge-

netics Center from the UK Biobank and stored in an automated sample 

biobank at -80 °C prior to sample preparation. DNA libraries were then 

created by enzymatically shearing DNA to a mean fragment size of 200 

base pairs, and a common Y-shaped adapter was ligated to all DNA 

libraries. Unique, asymmetric 10 base pair barcodes were added to the 

DNA fragment during library amplification to facilitate multiplexed 

exome capture and sequencing. Equal amounts of sample were pooled 

prior to overnight exome capture, with a slightly modified version of 

IDT’s xGen probe library. The initial 50,000 samples were processed 

with IDT “lot 1” and all other samples with “lot 2”. The captured DNA was 

PCR amplified and quantified by qPCR. The multiplexed samples were 

pooled and then sequenced using 75 base pair paired-end reads with 

two 10 base pair index reads on the Illumina NovaSeq 6000 platform 

using S2 (first 50,000 samples) or S4 (all other samples) flow cells.

Variant calling and quality control. Sample read mapping and vari-

ant calling, aggregation and quality control were performed via the 

SPB protocol described in Van Hout et al3. Briefly, for each sample, 

NovaSeq WES reads are mapped with BWA MEM to the hg38 reference 

genome. Small variants are identified with WeCall and reported as 

per-sample gVCFs. These gVCFs are aggregated with GLnexus into a 

joint-genotyped, multi-sample VCF (pVCF). SNV genotypes with read 

depth (DP) less than seven and indel genotypes with read depth less than 

ten are changed to no-call genotypes. After the application of the DP 

genotype filter, a variant-level allele balance filter is applied, retaining 

only variants that meet either of the following criteria: (i) at least one 

homozygous variant carrier or (ii) at least one heterozygous variant 

carrier with an allele balance (AB) greater than the cutoff (AB >= 0.15 

for SNVs and AB >= 0.20 for indels). Samples showing disagreement 

between genetically-determined and reported sex (n=279), high rates of 

heterozygosity/contamination (VBID > 5%) (n=287), low sequence cov-

erage (less than 80% of targeted bases achieving 20X coverage) (n=2), or 

genetically-identified sample duplicates (n=721 total samples), and WES 

variants discordant with genotyping chip (n=449) were excluded. 633 

samples failed quality control in multiple categories, resulting in 1,105 

individuals being excluded. An additional 16 samples were removed for 

patients that withdrew from the study. The remaining 454,787 samples 

were then used to compile a project-level VCF (PVCF) for downstream 

analysis, using the GLnexus joint genotyping tool.

Ancestry assignment. We used array data released by the UK Biobank 

study to determine continental ancestral super-groups (African [AFR], 

Admixed American [AMR], East Asian [EAS], European [EUR] and South 

Asian [SAS]) by projecting each sample onto reference principal com-

ponents calculated from the HapMap3 reference panel. Briefly, we 

merged our samples with HapMap3 samples and kept only SNPs in 

common between the two datasets. We further excluded SNPs with 

MAF<10%, genotype missingness >5% or Hardy-Weinberg Equilib-

rium test p-value < 10-5. We calculated PCs for the HapMap3 samples 

and projected each of our samples onto those PCs. To assign a con-

tinental ancestry group to each non-HapMap3 sample, we trained 

a kernel density estimator (KDE) using the HapMap3 PCs and used 

the KDEs to calculate the likelihood of a given sample belonging to 

each of the five continental ancestry groups. When the likelihood 

for a given ancestry group was >0.3, the sample was assigned to that 

ancestry group. When two ancestry groups had a likelihood >0.3, we 

arbitrarily assigned AFR over EUR, AMR over EUR, AMR over EAS, SAS 

over EUR, and AMR over AFR. Samples were excluded from analysis 

if no ancestry likelihoods were >0.3, or if more than three ancestry 

likelihoods were > 0.3 (n=1,205).

Generation of analysis-ready files. The following steps were then 

taken to generate an analysis-ready Plink2 fileset. First, we split exome 

data sample-wise into ancestral groups, defined as described above. 

Second, within ancestral groups, we excluded variants with: (i) missing-

ness rate >0.1; (ii) Hardy-Weinberg equilibrium test p-value <10-15; or 

(iii) monomorphic. We also excluded samples with missingness rate 

>0.1. After applying these filters, we generated ancestry-specific files 

in Plink2 PGEN format which were then used for association analyses.

Identification of low-quality variants from exome-sequencing us-

ing machine learning. Briefly, we defined a set of positive control 

and negative control variants based on: (i) concordance in genotype 

calls between array and exome sequencing data; (ii) Mendelian in-

consistencies in the exome sequencing data; (iii) differences in allele 

frequencies between exome sequencing batches; (iv) variant loadings 

on 20 principal components derived from the analysis of variants with 

a MAF<1%; (v) transmitted singletons. The model was then trained on 

up to 30 available WeCall/GLnexus site quality metrics, including, for 

example, allele balance and depth of coverage. We split the data into 

training (80%) and test (20%) sets. We performed a grid search with 

5-fold cross-validation on the training set to identify the hyperparam-

eters that return the highest accuracy during cross-validation, which 

are then applied to the test set to confirm accuracy. This approach 

identified as low-quality a total of 447,533 coding variants (3.7% of the 

12 million total coding variants). These variants were flagged in (not 

removed from) downstream analyses.

Variant annotation

Variants from WES were annotated as previously described3. Briefly, 

variants were annotated using SnpEff, with the most severe conse-

quence for each variant chosen across all protein coding transcripts. 

Gene regions were defined using Ensembl Release 85. Variants anno-

tated as stop gained, start lost, splice donor, splice acceptor, stop lost or 

frameshift, for which the allele of interest is not the ancestral allele, are 

considered predicted LOF variants. Five annotation resources were uti-

lized to assign deleteriousness to missense variants: SIFT35; PolyPhen2 

HDIV and PolyPhen2 HVAR36; LRT37; and MutationTaster38. Missense 

variants were considered “likely deleterious” if predicted deleterious 

by all five algorithms, “possibly deleterious” if predicted deleterious 

by at least one algorithm, and “likely benign” if not predicted deleteri-

ous by any algorithm.

Generation of gene burden masks

We aggregated rare variants for gene burden testing as previously 

described39. Briefly, rare variants were collapsed by gene region, such 

that individuals who are homozygous reference for all variants are 

considered homozygous reference, heterozygous carriers of any 

aggregated variant are considered heterozygous, and only minor allele 

homozygotes for an aggregated variant are considered as minor allele 

homozygotes. Genotypes were not phased to consider compound 

heterozygotes in burden testing. For each gene, we considered two 

categories of masks: a strict burden of rare pLOFs (M1) and a more per-

missive burden of rare pLOFs and likely deleterious missense variants 

(M3). Four each of these groups, we considered five separate burden 

masks per gene, based on the frequency of the alternative allele of the 

variants that were screened in that group: MAF ≤ 1%, MAF ≤ 0.1%, MAF 

≤ 0.01%, MAF ≤ 0.001%, and singletons only. Thus, overall, up to ten 

burden tests were performed for each gene (although for some genes, 

the rarer burden tests may not have had enough (five) carriers across 

all samples, in which case the test was not performed). For the pur-

poses of gene burden testing, the singleton mask includes minor allele 

homozygotes if no other variant carriers are observed in the dataset.
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Comparison with other large-scale resources

We compared variant statistics from UKB WES to two large, publicly 

available resources – gnomAD5 v3.1 and TOPMed4 Freeze 8. For both 

studies, we restricted to “PASS” variants only, and annotated each data-

set as described for UKB WES data. The comparison across datasets 

was restricted to synonymous, missense and pLOF variants only. We 

considered data from all ancestries.

Imputation of unmeasured genotypes using the TOPMed 

reference panel

We used the following approach to generate imputed genotype data 

in the UKB study for variants discovered by the TOPMed consortium4. 

First, we began with the list of array variants previously used by UKB 

to perform HRC imputation. We removed all array variants that could 

not be successfully lifted over to GRCh38, leaving 655,665 variants. 

Second, we split the array data including 488,374 samples into twenty 

evenly sized, randomized batches for submission to the TOPMed impu-

tation server. Third, we merged and concatenated the resulting VCF 

files from the imputation server into one dataset containing nearly 

308 million imputed variants. We prepared this dataset for analysis by 

first splitting into batches of ancestry by continental super-groups, as 

previously described. We then filtered to variants that were predicted 

as functional, had a MAF value ≥ 0.0001 in the original TOPMed data-

set, or passed the filters of MAF ≥ 0.0001 and INFO ≥ 0.1 within the 

dataset itself.

Health- and behavior-related phenotypes

Quantitative measures, clinical outcomes, survey and touch-screen 

responses, and imaging derived phenotypes were extracted from 

phenotypes available through the UK Biobank Data Showcase on 

April 1, 2020. Phenotype definition of ICD10-based cases required 

one or more of the following: a) ≥ 1 diagnosis in inpatient Health 

Episode Statistics (HES) records, b) a cause-of-death diagnosis 

in death registry, c) ≥ 2 diagnoses in outpatient data (READ codes 

mapped to ICD10). ICD10-based excludes had 1 outpatient encoun-

ter; controls were defined as those individuals that were not cases 

or excluded. In total, data for 4,465 field IDs were downloaded from 

UKB repository. We focused primarily on biomarkers, anthropometry 

and disease outcomes. As such, we excluded from analysis (i) most 

food and drink-intake questions (except for coffee, tea, and alcohol 

intake); (ii) QC metrics (e.g. volume or sample dilution information);  

(iii) geographic and environmental questions (e.g. proximity to 

coast, pollution index); (iv) most measures pertaining to lifestyle or 

socio-economic status (e.g. number of cars owned, total household 

income); and (v) OPCS traits and any binary traits with fewer than 

100 affected individuals. Furthermore, to reduce redundancy among 

binary traits, we excluded all “No” responses from analysis (e.g. we 

analyzed “22127_DD_asthma_1_Yes” but not “22127_DD_asthma_0_No). 

In addition to HES and self-report data, we also generated custom 

phenotype definitions for a select number of diseases of interest, 

resulting in a total of 3,706 binary traits included in the study. For 

the assessment of quantitative traits, we calculated the mean value 

across all visits, and excluded from analyses any single-visit data. Only 

quantitative traits with data for >50,000 individuals, other than brain 

imaging phenotypes, were included in the analyses. We applied the 

following additional filters to systematically flag and exclude from 

analysis traits that were unlikely to be truly quantitative: (i) the mode 

for the trait was observed in ≥ 20% of samples (85 traits); (ii) the mode 

for the trait was observed in 0.5% - 20% samples, but the number of 

unique values was relatively small (< 100; 58 traits); or (iii) the mode 

for the trait was observed in 0.5% - 20% samples, but the number of 

unique values was very large (>10,000; 9 traits), suggestive of a data 

error. The remaining 292 traits that passed QC were normalized using 

a rank-based inverse-normal transformation.

Brain imaging phenotypes

We analyzed 2,158 phenotypes obtained by structural magnetic reso-

nance imaging (MRI), diffusion MRI and task fMRI, downloaded from 

the UK Biobank Data Showcase on April 1, 2020. The traits were quantile 

normalized and a matrix of confounds including age, sex, age-by-sex, 

head motion, head volume, head position, temporal imaging effects, 

imaging center and genetic PCs was regressed out of each trait before 

analysis, as described previously40.

Genetic association analyses

Association analyses were performed using the genome-wide regres-

sion test implemented in REGENIE7, separately for data derived from 

exome-sequencing and TOPMed imputation. We included in step 1 of 

REGENIE (i.e. prediction of individual trait values based on the genetic 

data) array variants with a minor allele frequency (MAF) >1%, <10% 

missingness, Hardy-Weinberg equilibrium test P-value>10-15 and link-

age disequilibrium (LD) pruning (1000 variant windows, 100 variant 

sliding windows and r2<0.9). We excluded from step 1 any SNPs with 

high inter-chromosomal LD, in the major histocompatibility (MHC) 

region, or in regions of low complexity. Of the 454,787 individuals with 

exome sequencing data, 413 did not have array data after QC, and so 

these individuals were excluded from association analyses. For each 

trait, the leave-one-chromosome-out predictors obtained with step 1 

were then included as covariates in step 2 for both the exome sequenc-

ing and TOPMed imputed data. The association model used in step 2 of 

REGENIE also included as covariates (i) age, age2, sex, and age-by-sex; 

(ii) 10 ancestry-informative principal components (PCs) derived from 

the analysis of a set of LD-pruned (50 variant windows, 5 variant sliding 

windows and r2<0.5) common variants from the array data generated 

separately for each ancestry; and (iii) for the analysis of exome data, 

we additionally included an indicator for exome sequencing batch (six 

IDT batches) and 20 PCs derived from the analysis of exome variants 

with a MAF between 2.6x10-5 (roughly corresponding to a minor allele 

count [MAC] of 20) and 1% also generated separately for each ancestry. 

We corrected for PCs built from rare variants because previous studies 

demonstrated PCs derived from common variants do not adequately 

correct for fine-scale population structure41,42. We tested associations 

with genes on chromosome X but not Y. For the non-pseudo autosomal 

regions of chromosome X, we used a dosage compensation model, with 

homozygous reference males coded 0, and hemizygous males coded 2.

Association analyses were performed separately for different conti-

nental ancestries defined based on the array data, as described above, 

analyzing variants with a minor allele count of five or greater. Analysis 

of TOPMed imputed data was only performed for 492 traits that had 

at least one significant rare variant association in the exome sequenc-

ing data.

Estimating power to identify risk-lowering and risk-increasing 

associations

Empirical power calculations. We simulate genotype and phenotype 

data without population structure/relatedness, using the same sample 

size available for individuals of European ancestry (N=430,998). Mark-

ers are simulated independently with alleles drawn from Binomial(2, 

EAF) based on a given effect allele frequency (EAF) level. We use a logistic 

model to generate the binary trait:

p μ Gβlogit( ) = +

where μ is chosen to achieve a desired prevalence level K, G is the gen-

otype vector for the causal marker and β OR= log( ) is the effect of the 

causal marker, and the trait is generated as Y|p ~ Bernoulli(p). We vary 

the EAF between 1%, 0.1%, 0.01% and 0.001%, and for each setting gen-

erate 10 marker replicates. To simulate a binary trait, we consider the 

disease prevalence K at 10%, 1%, or 0.1% and vary the OR between 1, 0.75, 
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0.5, 0.35, 0.2 and 0.01 for risk-lowering (protective) variants and 1, 1.5, 

2, 5, 10, 20, 30, 40 and 50 for risk-increasing (predisposing) variants. 

For each simulation setting with 10 marker replicates, we generate 100 

phenotypic replicates which results in 1,000 replicates, and we perform 

association testing using REGENIE-FIRTH where the p-value fallback 

threshold for Firth correction is set to 0.05. Empirical power was then 

estimated as the proportion of 1,000 simulation replicates with a 

p-value below a significance level α of 2.18x10-11.

Theoretical power. For comparison, we computed theoretical power 

based on a logistic regression score test as previously described43, 

where the non-centrality parameter η is

η
N N p p

N N p p
=

2 ( ′ − )

( + ) (1 − )
0 1

2

0 1

where N1 and N0 represent the number of cases and controls, respec-

tively, p is the EAF in controls (approximated by the EAF in the popula-

tion), p’ is the EAF in cases, and p is the EAF in the study (taken as a 

weighted average of the EAF in cases and controls).

Leveraging associations with quantitative traits to identify 

protective associations with relevant diseases

We tested the association between rare variants and 292 quantitative 

traits, and then leveraged associations with these traits to identify 

protective associations with relevant diseases. The following four steps 

were taken to do this. First, for each quantitative trait, we determined 

if higher or lower trait levels are associated with a beneficial effect on 

health. For example, higher bone mineral density is generally accepted 

to be associated with lower risks of osteoporosis and fractures and, simi-

larly, lower eosinophil counts are associated with lower risks of asthma 

and atopic dermatitis. Of the 292 quantitative traits tested, for 85 there 

was consensus among a team of experts in diverse therapeutic areas on 

the directionality that is associated with beneficial health outcomes.

Second, among all rare variant associations with each of those 85 

traits, we identified the subset for which the direction of effect on 

the trait was beneficial. For example, we identified rare variants that 

increased (not reduced) bone mineral density, and rare variants that 

reduced (not increased) eosinophil counts. We found 34 such traits 

with at least one directionally favorable rare variant association.

Third, we matched each of these 34 quantitative traits to a single 

relevant disease. We did this by estimating the genetic correlation 

between each trait and 357 disease outcomes (specifically, 3-digit ICD 

codes, expert-curated definitions, self-report and doctor-diagnosed 

diseases; we only considered diseases that had at least one rare vari-

ant association at P<10-7), using LD score regression44 and association 

results from the TOPMed-based GWAS described above. We used LD 

scores calculated for HapMap3 variants in individuals of European 

ancestry from the 1000 Genomes Project, with variant positions lifted 

over to genome build GRCh38. For each trait, we then identified any 

genetic correlations that were significant after correcting for the 357 

tests performed (P<0.05/357=1.4x10-4) and then, if any, selected the 

disease that had the most significant genetic correlation for follow-up 

analysis. In this way, we were able to match 33 of the 34 quantitative 

traits to a relevant disease.

Lastly, for each gene with a significant (P≤2.18x10-11) and direction-

ally favorable effect on one of these 33 quantitative traits (for example, 

IL33 pLOFs and association with lower eosinophil counts), we then 

determined if there was a consistent protective association with the 

matched disease (for example, IL33 pLOFs and protection from asthma).

Determining if associations were likely attributable to somatic 

mutations

We found a small number of traits with (i) two or more genes with a 

rare variant association; and (ii) no GWAS common variant signals. 

For a subset of these traits, we noticed that the associated genes have 

been implicated in clonal hematopoiesis of indeterminate potential 

(CHIP)21,45. Therefore, we addressed the possibility that the observed 

associations with this small group of traits were explained by somatic 

mutations identified through exome sequencing of blood-derived DNA. 

To address this possibility, we (i) estimated the association between 

each variant (or burden test) and age, because the frequency of somatic 

(but not germline) mutations typically increases strongly with age; and 

(ii) counted the number of variant carriers for whom the proportion 

of sequencing reads supporting the presence of the alternative allele 

(i.e. variant allele fraction) was <35% or >65%, which would be more 

consistent with the variant being of somatic than of germline origin.

Replication in the DiscovEHR cohort

The Geisinger Health System (GHS) DiscovEHR cohort has been 

described previously22. Briefly, DiscovEHR is a health system-based 

cohort from central and eastern Pennsylvania (USA) with ongoing 

recruitment since 2006. A subset of 133,370 MyCode participants 

sequenced as part of the GHS-Regeneron Genetics Center DiscovEHR 

partnership and confirmed to be of European ancestry were included 

in this study. We attempted to replicate in DiscovEHR the most signifi-

cant variant-trait association for each gene, as listed in Supplementary 

Table 6. We only considered associations for which the trait tested in 

the UKB cohort could be matched unambiguously to a trait available in 

the DiscovEHR cohort. To determine if the DiscovEHR cohort provided 

adequate power to replicate an association discovered in the UKB, we 

carried out a winner’s curse-corrected power analysis as described pre-

viously40. Briefly, power to replicate a given trait-variant association in 

the DiscovEHR cohort at a P<0.05 was estimated based on the following 

parameters: (i) effect size in the UKB cohort (beta), after adjusting for 

winner’s curse; (ii) standard error of the effect size in the DiscovEHR 

cohort; and (iii) sample size in DiscovEHR cohort. The same approach 

was used for quantitative and binary traits.

Identification of rare variant associations that were 

independent of GWAS signals

For each of the 492 traits with at least one rare variant association at 

P≤2.18x10-11, we (i) identified common variants independently asso-

ciated with the trait at P≤10-7; and (ii) determined if the rare variant 

associations remained significant after adjusting for the common 

variant signals.

To identify common variants independently associated with a given 

trait, we first performed a GWAS for that trait that included the same 

individuals used in the analysis of exome-sequencing data and common 

variants (MAF>1%) imputed from TOPMed, as described above. We then 

identified independent signals (in the autosomes and the X chromo-

some) using the approximate conditional analysis implemented in GCTA 

version 1.91.746. To estimate linkage disequilibrium, we randomly sampled 

10,000 individuals from the UK Biobank TOPMed imputed dataset, with 

dosages between 0 and 0.1 considered homozygote for the reference 

allele (genotype = 0), between 0.9 and 1.1 considered a heterozygote 

(genotype = 1), and between 1.9 and 2 considered a homozygote for the 

alternative allele (genotype = 2); all other dosages were assigned a miss-

ing genotype. We performed approximate conditional analysis using a 

window of 10Mb, collinearity = 0.9 and variants with a MAF>1%. We then 

retained all variants that had an association P≤10-7 in the GCTA-cojo joint 

model. These independently associated variants were then included as 

covariates when analyzing rare variants from exome sequencing data, 

as described below. We used a P≤10-7 to ensure that we included in the 

subsequent conditional analyses of exome sequencing data any com-

mon variant signals that were close to (but not quite surpassed) the 

more commonly used genome-wide significance threshold of P<5x10-8. 

However, when reporting the number of independent common variant 

signals for each trait, we consider only the subset that had a P≤5x10-8, to 

be consistent with previous studies. Overall, of the 492 traits for which 
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we performed a GWAS, 429 had at least one common variant with a P≤10-7 

and 421 had at least one common variant with a P<5x10-8.

Having identified independent common variant signals for a given 

trait, we then tested if rare variant associations remained significant 

after adjusting for those common variant signals. To this end, for each 

trait, we repeated the association analysis in REGENIE (step 2 only; we 

used the genome-wide predictors that were created in step 1 as part of 

the original analysis, which did not condition on any common variants) 

but now including as additional covariates the dosages for all common 

variants that were found to have an independent association with the 

trait, as described above. Associations that exceeded a P≤2.18x10-11 

in these conditional analyses were determined to be independent of 

the common variant signals. Conditional analyses were performed 

for 429 (out of 492) that had at least one GWAS signal at P≤10-7. For the 

remaining 63 traits (=492-429), there were no common variants with 

a P≤10-7 and so for these traits rare variant signals were considered to 

be independent of GWAS signals.

Number of rare variant associations expected to be found in 

GWAS loci by chance

We determined if the number of rare variant associations that were 

found to be within 1 Mb of a GWAS signal (specifically 6,564 out of 8,865 

associations) was greater than that expected by chance. The number 

expected by chance was estimated as p * k, where p is the proportion 

of significant associations among all association tests performed 

across the genome, considering all rare variants (individual variants 

and burden tests) and the 492 traits with at least one rare variant asso-

ciation; and k is the number of association tests performed across vari-

ants located within 1Mb of a GWAS signal, considering only the rare 

variant-trait pairs for the matching GWAS common variant-trait pair, as 

detailed below. Specifically, p = a / n = 0.0000285, given that a=8,865, 

that is, the total number of rare variant associations with a P≤2.18x10-11 

across the 492 traits; and n=311,080,453, that is, the total number of 

rare variant association tests performed across the 492 traits. In turn, 

k was determined as follows: (i) for each of the 107,276 independent 

GWAS signals, we identified rare variants that were located within 1 

Mb of the GWAS sentinel variant and that were tested for association 

with the same trait; (ii) for each trait, we then added the number of 

rare variants tested across all GWAS signals for that trait, removing 

duplicate entries, if any; and (iii) added the number of rare variant 

tests performed across all traits. Using this approach, we found that 

k=131,077,005 tests. Therefore, the number of significant rare variant 

associations that were expected to be found within 1Mb of a GWAS 

signal by chance was 0.0000285 * 131,077,005 = 3,736.

Determining enrichment of rare variant associations among 

genes in GWAS loci

We used the following approach to determine if genes located within  

1 Mb of GWAS signals were more likely to have a significant rare variant 

association (specifically a burden test with a P≤2.18x10-11 after control-

ling for GWAS signals, to ensure that rare and common variant signals 

were independent) when compared to other genes in the genome. First, 

for each trait, we counted the number of genes that (i) were located 

within 1 Mb of a GWAS sentinel variant and had a significant rare variant 

association [a]; (ii) were located within 1 Mb of a GWAS sentinel variant 

and did not have a significant rare variant association [b]; (iii) were not 

located within 1 Mb of a GWAS sentinel variant and had a significant rare 

variant association [c]; and (iv) were not located within 1 Mb of a GWAS 

sentinel variant and did not have a significant rare variant association 

[d]. For a given trait, the fold-enrichment of significant rare variant 

associations among genes within 1Mb of a GWAS signal was estimated 

as (a/b)/(c/d). Second, to obtain an overall measure of enrichment 

across all traits, we used the Mantel-Haenszel approach to combine the 

trait-specific enrichment results (specifically, the 2-by-2 table defined 

by values a, b, c and d), with significance of the overall estimate being 

determined by a chi-squared test. The GWAS signals considered in this 

analysis were located >10Mb apart, to ensure that a given gene could 

only be matched to a single GWAS signal. We repeated this analysis for 

different gene sets (e.g. genes located within 0.5 Mb of a GWAS signal; 

10th nearest gene to a GWAS signal; nearest gene to a GWAS signal; etc) 

and different thresholds to define significant rare variant associations 

(P≤10-7, P≤10-4 and P≤0.05). Of the 421 traits that had at least one gene 

with a significant rare variant association at P≤2.18x10-11 and also at least 

one GWAS signal at P<5x10-8, we restricted this analysis to a subset of 188 

traits (101 binary traits, 87 quantitative traits), obtained after excluding 

highly redundant traits (for example, there were 20 traits related to 

body mass, 14 traits related to bone mineral density, both absolute and 

relative blood cell counts, self-reported and ICD10-based diagnoses).

Imputation of exome variants using a reference panel with array 

and exome variants

We used SNP array and exome sequencing data from the UK Biobank on 

454,378 individuals. For SNP array data, we excluded variants that were 

not used during a previous round of phasing2, resulting in 670,423 SNP 

array sites. For exome sequencing data, we excluded variants that had a 

minor allele count of one or that were flagged has potentially having low 

quality by the machine learning approach described above, resulting 

in 15,845,171 exome variants. We then phased these array and exome 

datasets as follows. First, we built a haplotype scaffold by phasing SNP 

array data with SHAPEIT4.2.047, phasing whole chromosomes at a time. 

We then phased the exome sequencing data onto the array scaffold 

in chunks of 10,000 variants, using 500 SNPs from the array data as a 

buffer at the beginning and end of each chunk. A consequence of this 

process is that when a variant appears in both the array and exome 

datasets, it is the data from the array dataset that is used.

The phased SNP array and exome sequencing dataset was split into 

two sets: a set of 404,378 reference panel individuals and a target set 

of 50,000 individuals. To systematically study the effect of reference 

panel size on imputation accuracy, we generated reference panels by 

using 2,500, 10,000, 25,000, 50,000, 100,000, 200,000, 300,000 and 

400,000 individuals from the set of 404,378 individuals. Each reference 

panel was then used to impute exome variants using the SNP array data 

from the 50,000 sample target dataset. The imputation was carried out 

on chromosome 2 only in chunks of 20 megabases using IMPUTE548, 

which exhibits sub-linear scaling as reference panel size grows. We 

examined the sensitivity of these results to ancestry in two ways. Firstly, 

by measuring imputation accuracy in ancestry-specific subsets of the 

50,000 target dataset for the 400,00 reference panel results (e.g. only 

among individuals of South Asian ancestry). Secondly, we created a sin-

gle reference panel of 300,000 individuals with PCA-derived European 

ancestry and who self-reported as “White British”, and a separate test 

dataset of 49,926 individuals with PCA-derived European ancestry who 

did not self-identify as “White British”. This testing scenario is denoted 

300,000 WB in Supplementary Table 23.

We measured imputation accuracy by comparing the imputed dosage 

genotypes to the true (masked) genotypes at exome variants. Mark-

ers were binned according to the minor allele frequency (MAF) of the 

marker in either the reference panel or the full dataset of 454,374 indi-

viduals. In each bin, we report the squared correlation (r2) between the 

concatenated vector of all the true (masked) genotypes at markers and 

the vector of all imputed dosages at the same markers. At the ultra-rare 

end of the frequency spectrum we use individual values of minor allele 

count (MAC) for the bins, instead of MAF.

We used imputation accuracy results obtained across different sizes 

of the reference panel (shown in Supplementary Table 23) to extrapo-

late performance at larger reference panel sizes. For each MAC/MAF 

bin we fit logistic curve models to the r2 values at reference panel sizes 

N=50,000, 100,000, 200,000, 300,000 and 400,000 of the form r2 

~ c / (1 + exp(-(a + b * log(N)))). We tried two versions of this model: a 

2-parameter model with the asymptote (c) fixed at 1, and a 3-parameter 
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model which has the restriction that c£1. Allowing the logistic curve to 

be parameterized on log(N) scale was important. We then used these 

curves to extrapolate to larger reference panel sizes up to N=1,000,000. 

The resulting fitted curves from the 2 and 3 parameter models are 

shown in Extended Data Figure 9a and Supplementary Figure 9a, respec-

tively, with associated 95% confidence intervals estimated using the 

delta method. To assess the accuracy of this approach, we repeated 

the process by excluding the r2 value for N=400,000, and then used 

the logistic curve to predict r2 at N=400,000 (shown by the blue dot on 

each plot in Extended Data Figure 9a and Supplementary Figure 9a). 

We then aggregated the results into single plots (Extended Data Fig-

ure 9b and Supplementary Figure 9b) that show both the results of our 

imputation experiments together with the extrapolated values. The 

2-parameter logistic model seems to over-estimate imputation accu-

racy in some MAC/MAF bins. This is especially evident when looking at 

the N=400,000 prediction (Extended Data Figure 9b). The 3-parameter 

logistic model seems to perform better for the N=400,000 prediction 

except for the MAC=2 bin, where the predictions seem too high and 

inconsistent with predictions at higher bins.

Prediction of pLOF carriers beyond 500,000 exomes

We estimated the number of pLOF carriers expected to be observed 

in one and five million sequenced samples using a mixture model of 

beta-binomial distributions, as previously described3. Model param-

eters were estimated using heterozygous and homozygous pLOF counts 

per autosomal gene in 454,787 exomes spanning all ancestries.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

Individual-level sequence data have been deposited with UK Biobank 

and will be freely available to approved researchers, as done with other 

genetic datasets to date. Individual-level phenotype data are already 

available to approved researchers for the surveys and health-record 

datasets from which all our traits are derived. Instructions for access 

to UK Biobank data is available at https://www.ukbiobank.ac.uk/

enable-your-research. Full details for the trait associations with rare 

variants described in this study are provided in Supplementary Data 2 

and Data 3. The HapMap3 reference panel was downloaded from ftp://

ftp.ncbi.nlm.nih.gov/hapmap/. GnomAD v3.1 VCFs were obtained from 

https://gnomad.broadinstitute.org/downloads. VCFs for TOPMED 

Freeze 8 were obtained from https://bravo.sph.umich.edu/freeze8/

hg38/downloads#. LD scores from 1000 Genomes Project were down-

loaded from https://data.broadinstitute.org/alkesgroup/LDSCORE/.

Code availability

The association analysis package used to perform all genetic associa-

tions is publicly available at https://github.com/rgcgithub/regenie.
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Extended Data Fig. 1 | Lead trait associations for 564 genes with a rare 

variant association at P≤2.18x10-11. a, Associations with binary traits.  

b, Associations with quantitative traits. In red (and table): associations with 

odds ratio >100 for binary traits and |effect| > 2 for quantitative traits. 

Diamonds show associations that were no longer significant after accounting 

for nearby GWAS signals.
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Extended Data Fig. 2 | Power to identify associations with rare variants in 

the analysis of 430,998 participants of European ancestry from the UK 

Biobank. a, Protective associations (i.e. with an odds ratio <1). b, Predisposing 

associations (i.e. with an odds ratio >1). Power was estimated using asymptotic 

theory (broken lines) and also through simulations (solid lines), separately for 

variants with an effect allele frequency (EAF) of 1% (purple), 0.1% (blue), 0.01% 

(green) and 0.001% (yellow). Power to identify protective associations was low 

because identification of rare variants that reduce disease risk typically 

requires very large numbers of cases, and population cohorts like that 

ascertained by the UK Biobank study typically include many more unaffected 

than affected individuals for each disease.
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Extended Data Fig. 3 | Genes for which a rare variant had a favorable effect 

on a quantitative trait (P≤2.18x10-11) and also a protective association with 

a genetically correlated disease. a, The x- and y-axes show the effect of the 

rare variant (listed in Supplementary Table 12) on the quantitative trait and 

genetically correlated disease, respectively. b, Thirteen genes for which the 

disease association was significant after correcting for multiple testing 

(P≤0.05/129=3.8x10-4; also shown in red in panel a).
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Extended Data Fig. 4 | Associations with common and rare variants in 

individuals of European ancestry. a, Number of traits tested and genetic 

associations discovered in UKB 450K. An exome-wide association study 

(ExWAS) was performed for 3,994 traits, of which 492 had at least one gene with 

a rare variant (RV) association at P<2.18x10-11. Across all 492 traits, we identified 

8,865 significant RV associations, a list that includes redundant associations 

arising from having tested multiple (often correlated) variants and traits per 

gene. The 8,865 associations (including 6,588 or 74% located within 1 Mb of a 

GWAS signal) reduced down to (i) 2,290 associations when selecting only the 

most significant association per gene per trait (Supplementary Data 2); and (ii) 

564 associations when selecting only the most significant association per gene 

(Supplementary Table 6). For each of the 492 traits with at least one RV 

association, we performed a genome-wide association study (GWAS) using 

TOPMed data for the same individuals included in the ExWAS. Of the 492 traits, 

421 had at least one common variant (CV) signal at P<5x10-8. Independent CV 

associations were identified for each trait using approximate conditional 

analysis, and then the number of independent associations was summed across 

all traits, for a total of 107,276 associations (including 7,546 or 7% that were 

located within 1Mb of an ExWAS signal). b, Top half of the figure shows number 

of independent CV signals (MAF>1% and conditionally independent) per trait, 

from the TOPMed GWAS. Bottom half of the figure shows number of genes with 

a RV association for the same trait from ExWAS. The x-axis shows all 492 traits 

that had one or more genes with a RV association, sorted by the number of CV 

signals, with ties in turn sorted by number of genes with a RV association. Traits 

that did not have RV signals (3,994-492=3,506) are not shown on this plot. 

Twenty-one binary traits that had two or more genes with a RV association but 

no CV signals from the GWAS are highlighted by the dashed box and listed in 

Supplementary Table 13. c, This panel shows associations with RV before 

(x-axis) and after (y-axis) accounting for the effect of CV signals. Of the 8,865 RV 

associations, 796 (9%) were no longer significant at P<2.18x10-11 after 

accounting for CV signals (see also Supplementary Table 17). The highlighted 

association between HSPG2 and alkaline phosphatase is an example of an 

association that was greatly attenuated after controlling for the effect of CV 

signals (regional association plots shown in Supplementary Figure 8).
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Extended Data Fig. 5 | Comparison of effect sizes across ancestries for 564 

lead associations identified in Europeans. For each of the 564 genes with at 

least one rare variant association in individuals of European (EUR) ancestry, we 

selected the most significant association (484 with a quantitative trait, 80 with 

a binary trait; see Supplementary Table 6) and then compared the effect size 

estimated in Europeans with that estimated in individuals of South Asian (SAS), 

African (AFR) and East Asian (EAS) ancestry, if available. a, Of the 484 gene 

associations with a quantitative trait, 355 (83% directionally concordant), 347 

(73%) and 210 (74%) were available in SAS, AFR and EAS, respectively. b, Of the 

80 gene associations with a binary trait, 31 (61% directionally concordant), 31 

(61%) and 11 (64%) were available in SAS, AFR and EAS, respectively. Red circles 

represent associations with P≤0.05 in the corresponding non-European 

ancestry. Numbers in the corner of each quadrant represent the proportion of 

associations in that quadrant, out of the total number of associations in black, 

and out of the subset a P≤0.05 in red. Triangles: associations between binary 

traits and variants for which the minor allele count (MAC) was 0 in affected 

individuals.
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Extended Data Fig. 6 | Impact of burden mask composition on yield of 

significant rare-variant associations. a, Comparison of the trait association 

P-value between burden tests that included pLOF variants with a minor allele 

frequency (MAF) up to 1% (x-axis) and burden tests that included pLOF variants 

with a MAF up to 0.1% (y-axis). For a large fraction of associations (64% for 

binary traits, 79% for quantitative traits), the association P-value was the same 

between the two burden test strategies, indicating that there were no (or very 

few) variants with a MAF between 0.1% and 1% included in the burden test.  

b, Comparison of association yield between burden tests that included pLOF 

variants only and burden tests that included both pLOF and deleterious 

missense variants. This comparison was performed separately for the five 

different allele frequency thresholds used to determine which variants were 

aggregated in the burden test. The proportion of trait associations discovered 

only when considering both pLOF and deleterious missense variants increased 

steadily with increasing allele frequency, from 19.7% (47/239) when testing only 

singletons, to 42% (653/1,542) when considering variants with a MAF up to 1%.
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Extended Data Fig. 7 | Illustration of the utility of exome sequencing data 

to identify likely effector genes of common variant signals from GWAS.  

a, GWAS results for serum vitamin D levels, based on TOPMed imputed data for 

the same individuals with exome sequencing data. There were 82 independent 

common variant signals (considering only variants with a MAF>1% and P<5x10-8; 

of these, 62 were located >10 Mb apart). Analysis of exome sequencing data 

identified seven genes with a significant rare variant burden association at 

P<2.18x10-11 (shown by green circles in the Manhattan plot; up to 10 burden 

tests performed per gene) after conditioning on GWAS signals. Of these seven 

genes (highlighted by the large, green and numbered circles), five were the 

nearest gene to a GWAS signal: FLG, ANGPTL3, GC, DHCR7 and HAL. P-values 

were capped at <10-50. b, Regional association plots are shown for these five 

genes, with green circles showing results from burden tests only, and grey 

circles showing results from all other variants tested individually, from 

imputed and exome data. (c) Association between a sentinel eQTL for HAL 

(rs3819817) and gene expression in skin tissue (sun exposed – lower leg), 

estimated by GTEx14 using linear regression. This variant co-localized (r2=0.97) 

with the peak variant associated with vitamin D levels at the HAL locus 

(rs10859995).
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Extended Data Fig. 8 | Number of genes with pLOF carriers in exome 

sequencing data. a, Predicted number of genes with heterozygote (top-left 

panel) and homozygote (top-right panel) pLOF carriers in exome sequencing 

data in datasets of up to 5 million individuals. Bottom panel shows distribution 

of the observed number of heterozygote pLOF carriers per gene in exome 

sequencing of 454,787 individuals from the UK Biobank. b, Predicted number 

of genes with heterozygote pLOF carriers in 5 million individuals based on a 

reference dataset of (i) 46K individuals of European ancestry from the UKB 

(solid lines); and (ii) 46K individuals from the UKB spanning multiple ancestries 

(dashed lines), including 23K of European ancestry and all 23K individuals of 

non-European ancestry (10K of South Asian, 9K of African, 2K of East Asian 

ancestry and 2k of admixed ancestry).
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Extended Data Fig. 9 | Predicted imputation accuracy for variants from 

exome sequencing as a function of the size of the reference panel using a 

2-parameter logistic model. a, Each panel shows the imputation accuracy (r2, 

y-axis) as a function of the number of individuals included in the reference 

panel (x-axis), for a given allele frequency bin (estimated in the reference 

panel). Grey dots show the imputation accuracy that was observed when 

analyzing reference panels with up to 400,000 individuals. Red dots show the 

imputation accuracy that was predicted for reference panels with >400,000 

individuals, obtained by fitting a 2-parameter logistic curve to results from 

reference panels with ≤400,000 individuals. The fit from this logistic curve is 

shown by the solid line, with associated 95% confidence intervals shown in light 

red. The blue dot is the extrapolated value for a reference panel of 400,000 

individuals obtained by fitting the curve using only reference panels with 

<400,000 individuals. b, Imputation accuracy (r2, y-axis) is shown as a function 

of the variant allele frequency (x-axis; minor allele count [MAC] for ultra-rare 

variants, minor allele frequency [MAF] for variants with MAF>10-4) and the 

number of individuals (N) included in the reference panel (different lines). Solid 

lines show the imputation accuracy that was observed when analyzing 

reference panels with up to 400,000 individuals. Dashed lines show the 

imputation accuracy that was predicted for reference panels with >400,000 

individuals, obtained by fitting a 2-parameter logistic curve to results from 

reference panels with ≤400,000 individuals.
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Extended Data Table 1 | Novel gene associations identified through the analysis of a burden of singleton variants

a Effect allele for burden tests: individuals were considered to have 0 copies of the effect allele if they were homozygote for the reference allele for all variants included in the burden test; 1 copy 

of the effect allele if they were heterozygote for at least one variant; and 2 copies if they were homozygote for the alternate allele for at least one variant. 
b FGD1 is located on the X-chromosome; male hemizygous are included in the number of individuals with 2 copies of the effect allele. 

Abbreviations: pLOF – putative loss-of-function. CI – confidence interval. FEV1 – forced expiratory volume in 1 second. FVC – forced vital capacity.

24 | Nature | www.nature.com
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Data collection No software was used for data collection.
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topmed.nhlbi.nih.gov/topmed-whole-genome-sequencing-methods-freeze-8. LD scores from 1000 Genomes Project were downloaded from https://
data.broadinstitute.org/alkesgroup/LDSCORE/. 
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Sample size Sample size was not predetermined. Association analyses were restricted to the intersection of samples with both exome sequence and array 
genotypes available after QC. See methods section "Exome sequencing" for details on QC performed. All samples that pass genotype QC and 
with non-missing phenotype data were included in association analyses. We performed power calculations (Extended data figure 4) that 
suggest we are well-powered to detect genetic associations under a variety of scenarios, although there may be some traits for which we did 
not have adequate sample size.

Data exclusions Phenotype selection and QC was performed as described in methods section "Health- and behavior-related phenotypes." Variant level QC was 
performed as described in methods section "Exome sequencing." Variants with minor allele count less than five were excluded from 
association testing. The minor allele count threshold was pre-determined based on extensive simulations performed with REGENIE. See 
https://www.nature.com/articles/s41588-021-00870-7 for additional details. 

Replication Replication was attempted for all significant variant-trait associations available for follow-up in the DiscovEHR study. 81% of associations 
available and powered for replication were confirmed. 

Randomization Randomization was not required for the analyses completed in this study. To control for confounding, we performed association analysis with 
the following covariates included in the regression model: age, age-squared, sex, age-x-sex, 10 ancestry-informative principal components, six 
exome sequence batch indicator variables, and 20 principal components derived from exome variants with a MAF between 2.6x10-5 and 1%.

Blinding Blinding was not required for the analyses completed in this study. Participant recruitment and phenotype collection were obtained without 
prior knowledge of sample genotypes. Association analyses were performed with all available samples, without any filtering based on sample 
genotypes.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The UK Biobank is a prospective cohort study previously described in detail by Bycroft et al, Nature 2018 (https://
www.nature.com/articles/s41586-018-0579-z). Briefly, 94.7% of sequenced participants are of European ancestry, 54.2% are 
female, the average age at assessment is 58, and the mean BMI is 26. 45% of participants report a history of smoking, and 
each participant reports 8 inpatient ICD10 3D codes, on average. See supplementary table 1 for additional details.

Recruitment Please see Bycroft et al, Nature 2018.

Ethics oversight Ethical approval for the UK Biobank was previously obtained from the North West Centre for Research Ethics Committee (11/
NW/0382). The work described herein was approved by UK Biobank under application number 26041. Approval for 
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DiscovEHR analyses was provided by the Geisinger Health System Institutional Review Board under project number 
2006-0258. Informed consent was obtained for all study participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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