
Exome sequencing and the genetic basis of complex traits

Adam Kiezun1,2,14, Kiran Garimella2,14, Ron Do2,3,14, Nathan O. Stitziel4,2,14, Benjamin M.
Neale2,3,13, Paul J. McLaren1,2, Namrata Gupta2, Pamela Sklar5, Patrick F. Sullivan6,
Jennifer L. Moran2, Christina M. Hultman7, Paul Lichtenstein7, Patrik Magnusson7, Thomas
Lehner8, Yin Yao Shugart9, Alkes L. Price2,10,11,15, Paul I.W. de Bakker1,2,12,15, Shaun M.
Purcell13,15, and Shamil R. Sunyaev1,2,15,16

1Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical
School, Boston, MA, USA 2The Broad Institute of MIT and Harvard, Cambridge, MA, USA 3The
Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
4Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School,
Boston, MA, USA 5Department of Psychiatry, Friedman Brain Institute & Institute for Genomics
and Multi- scale Biology, Mount Sinai School of Medicine, New York, NY, USA 6Department of
Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA 7Department of
Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden 8Division of
Neuroscience and Basic Behavioral Science, National Institute of Mental Health, Bethesda, MD,
USA 9Division of Intramural Research Program, National Institute of Mental Health, Bethesda,
MD, USA 10Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
11Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA 12Department of

16Correspondence Correspondence should be addressed to S.R.S. (ssunyaev@rics.bwh.harvard.edu).
14These authors contributed equally to this work
15These authors jointly supervised this work

URLs

• http://www.completegenomics.com/sequence-data/download-data (Complete Genomics dataset)

• http://genetics.bwh.harvard.edu/rare_variants (R script used for all association analyses in this Perspective. Contains T1,
T5, WSS and VT tests, optionally weighted PolyPhen-2 predictions)

• http://www.hsph.harvard.edu/faculty/alkes-price/software (EIGEN-SOFT software)

• http://picard.sourceforge.net/index.shtml (Picard utilities for manipulation of Sequence Alignment/Map, or SAM, files)

• http://bio-bwa.sourceforge.net (Burrows-Wheeler Aligner, or BWA)

• http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit (GATK suite)

• http://atgu.mgh.harvard.edu/plinkseq (PLINK/SEQ library helps with management, QC, and analysis of exome sequencing
data, including several statistical tests mentioned in the text)

Competing Interests: The authors declare that they have no competing financial interests.

Author contributions: A.K. developed the computational analysis pipeline and analyzed data, K.G. performed upstream quality
control and analysis of sequencing data, R.D. performed the power analysis, N.O.S. performed the assessment of rare variants in
empirical data, B.M.N. contributed to statistical analyses, P.J.M. assisted with data analysis. T.L. participated in designing the study.
P.S., P.F.S., J.L.M., C.M.H., P.L., P.M., P.I.W.D.B., N.G. and S.M.P. contributed data. A.L.P., P.I.W.D.B., and S.R.S. conceived and
designed the study. A.L.P., P.I.W.D.B., S.M.P., and S.R.S. supervised the work. A.K., K.G., R.D., N.O.S., B.N.M., Y.Y.S., A.L.P.,
P.I.W.D.B., and S.R.S. wrote the manuscript. All authors approved the manuscript.

Data access. The SCZ control data can be accessed via the Database of Genotypes and Phenotypes (dbGAP), accession code
phs000473.v1.p1. To access the HIV data, investigators can submit a brief concept sheet detailing their study design, research
questions and other needs. The concept sheet with detailed instructions can be downloaded from: http://cfar.globalhealth.harvard.edu/
fs/docs/icb.topic938249.files/Harvard%20CFAR%20Concept%20Sheet%20Template%20.docx

Please e-mail completed forms to Pamela Richtmyer (prichtmyer@partners.org). Requests will be reviewed on the basis of scientific
merit, feasibility and overlap with ongoing concept sheets/investigations.

NIH Public Access
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2013 July 30.

Published in final edited form as:
Nat Genet. ; 44(6): 623–630. doi:10.1038/ng.2303.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.completegenomics.com/sequence-data/download-data
http://genetics.bwh.harvard.edu/rare_variants
http://www.hsph.harvard.edu/faculty/alkes-price/software
http://picard.sourceforge.net/index.shtml
http://bio-bwa.sourceforge.net
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit
http://atgu.mgh.harvard.edu/plinkseq
http://cfar.globalhealth.harvard.edu/fs/docs/icb.topic938249.files/Harvard%20CFAR%20Concept%20Sheet%20Template%20.docx
http://cfar.globalhealth.harvard.edu/fs/docs/icb.topic938249.files/Harvard%20CFAR%20Concept%20Sheet%20Template%20.docx


Medical Genetics and Julius Center for Health Sciences and Primary Care, University Medical
Center Utrecht, Utrecht, The Netherlands 13Analytic and Translational Genetics Unit,
Massachusetts General Hospital, Boston, MA, USA

Abstract
Exome sequencing is emerging as a popular approach to study the effect of rare coding variants on
complex phenotypes. The promise of exome sequencing is grounded in theoretical population
genetics and in empirical successes of candidate gene sequencing studies. Many projects aimed at
common diseases are underway, and their results are eagerly anticipated. In this Perspective, using
exome sequencing data from 438 individuals, we discuss several aspects of exome sequencing
studies that we view as particularly important. We review processing and quality control of raw
sequence data, evaluate the statistical properties of exome sequencing studies, discuss rare variant
burden tests to detect association to phenotypes, and demonstrate the importance of accounting for
population stratification in the analysis of rare variants. We conclude that enthusiasm for exome
sequencing studies of complex traits should be combined with the caution that thousands of
samples may be required to reach sufficient statistical power.

The promise of exome sequencing
Next-generation sequencing1–5 coupled with efficient DNA capture6–8 enable exome
sequencing as a new approach to study the genetic basis of human phenotypes. A number of
genes underlying Mendelian diseases have been mapped using this approach6, 9–15. Exome
sequencing has also been applied to tumors16–20, where sample purity, read-mapping, and
chromosomal rearrangements are critical and form a very distinctive set of issues. In this
Perspective, we restrict our attention to complex traits. In complex trait genetics, exome
sequencing studies bring to light rare coding variants that are undetected by microarray-
based genome-wide association studies (GWAS). The promise of exome sequencing studies
of complex traits is based on the success of candidate gene studies21–26 and has firm roots in
population genetic theory27–35.

Large-scale GWAS of complex traits have consistently demonstrated that, with few
exceptions, common variants have modest effects, often requiring tens of thousands of
samples for their detection. Exome sequencing provides a complementary approach by
comprehensively assessing the role of all coding variation, both common and rare. With
incessant mutations occurring in each protein-coding gene (at a rate of ∼10−5 per gene for
non-synonymous variants36–39) and fitness loss of less than 1% 29–31, 34 for most novel non-
synonymous mutations, almost every gene is expected to harbor functionally important
variants that can be tested through sequencing, even if these variants are rare. Therefore, the
strong interest in exome sequencing stems from three factors: the potential to identify many
genes underlying complex traits, straightforward functional annotation of coding variation,
and cost being substantially lower (around 5 times) than whole-genome sequencing.

In this Perspective, we evaluate the extent of rare coding variation in empirical data, discuss
data processing and quality control of raw sequence data, review analytical methods for
detecting genotype-phenotype associations, their expected statistical power, and the
potential for confounding due to population stratification. To illustrate our arguments, we
used empirical whole-exome sequence data from 184 individuals from the International HIV
Controllers Study40 and 254 control individuals from Schizophrenia (SCZ) exome
sequencing study.
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Assessment of rare coding variation in empirical data
Exome sequencing data contain an abundance of rare coding variation and indicate that a
large fraction of this variation is functional. Not only are there many more rare variants than
common ones, but sequencing additional samples continues to uncover additional rare
variants. In fact, as sample size increases, the number of observed variants grows much
faster than predicted by the neutral model of constant population size41, 42 (Figure 1). This
relative excess of rare variants can be, in part, attributed to recent population
expansion43–45, but is also likely due to purifying selection. As a consequence, rare variation
is enriched for evolutionarily deleterious, and thus functional, variants. Additionally, the
proportion of non-synonymous variants is higher among rare than among common
variants45. Finally, among rare variants, missense variants predicted46 to be damaging are
more prevalent than variants predicted to be benign (Figure 1). These findings are consistent
with studies that demonstrated that rare variants in protein-coding regions are under
purifying selection35, 47–51. Because sequencing larger samples continuously uncovers
functionally relevant variants, exome sequencing studies enable direct identification of
causal variants (in contrast to GWAS that use linkage-disequilibrium patterns between
common markers).

Variant calling and Quality Control filtering of exome sequencing datasets
An exome sequencing study starts with exome capture and sequencing of DNA samples
followed by the identification of sequence variants. Exome capture may be realized on many
platforms (e.g., Illumina HiSeq, Roche 454, ABI SOLiD) and through a variety of probe
definitions (e.g., Agilent SureSelect, Nimblegen SeqCap EZ). Recent advances have enabled
sequencing an entire exome or even several exomes at deep coverage in a single run of the
sequencing instrument. However, exome capture technologies differ in what they target,
how much they capture, and how consistently they do so8. Moreover, only 80-90% of the
targeted regions are covered above 10×, which may leave 4–8Mb (or 1000–2000 genes)
without sufficient coverage for variant detection.

Exome sequencing coverage has tremendous regional variation8. Some regions may be over-
covered, representing true structural variation (e.g., segmental duplications for which only
one copy of the region exists in the reference genome), or technical artifacts (e.g., greater
abundance of capture probes, or overlapping probe definitions resulting in “double-
capturing”). Similarly, some areas may be under-covered for biological reasons (e.g.,
segmental duplications where more than one copy exists in the reference sequence,
preventing the aligner from placing the read uniquely) or for technical reasons (e.g., high
GC content or density of variation, which impairs hybridization of probes). Furthermore,
some “near-target” regions within 50 bp of the target boundary can have sufficient coverage
to warrant inclusion in variant calling. Critically, whichever capture technology is used,
either all samples should be processed using the same technology or the variability should
be accounted for, e.g., by stratifying the study by technology (see section on population
stratification).

For this Perspective, we generated whole-exome data (targeting 28 Mbp) from 438 samples
(see Methods section) using a two-stage approach52, 53. First, we applied the data processing
and variant calling protocol described previously54. Second, we applied post-SNP-calling
Quality Control (QC) filters.

For quality control of the resulting SNPs, we used population-genetic statistics and
properties of human genetic variation. Using those statistics helps to identify true variants
because the properties of the mutational process37, 55 are different from errors of the
sequencing technology.
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We compared statistics computed in the 438-sample data set and in 37 whole-genome data
sets released by Complete Genomics Inc. (CGI, see URLs), focusing only on the same
genomic regions as the exome data. The CGI whole-genome dataset serves as a good
comparison because whole-genome sequencing is not dependent on exome-capture
technology. We further stratified these per-sample statistics into classes that are biologically
interesting (functional class and CpG status) but may also exhibit different rates of technical
artifacts. Table 1 shows that filtering is critical for achieving high-quality calls. Before
filtering, the metrics show significant deviations from their expected values, which may
indicate a high false-positive rate. After filtering, the statistics converge to those in the CGI
dataset. The effectiveness of the filters is evident also from the comparison with human-
chimpanzee divergence55.

The number of novel variant sites (defined here as not present in dbSNP 129) is another
metric of SNP-call quality (Supplementary Table 1). Most novel variants have low
frequency, and are especially enriched in the singletons and doubletons. Singletons and
doubletons are particularly important to distinguish from false positives because technical
artifacts or errors in data processing can easily manifest themselves as novel variation.

Statistics such as transition/transversion ratio (Ti/Tv) and the number of novel variants are
useful as gross guides to the quality of the dataset and enable comparison of two sets of calls
from the same dataset. However, precise expectations of these statistics are unknown
because they depend on many factors, including uneven coverage, variability in DNA
quality, or other sources of technical bias such as machine error. Therefore, interpreting
small differences from expectation in these statistics is nontrivial. Genotyping validation
provides an additional measure of callset quality, independent of the population-genetics
statistics. Comparing genotyping data to sequencing data enables directly measuring callset
quality by calculating the non-reference sensitivity (“NRS” — the rate at which non-
reference sites in the genotyping data are recovered in the sequencing data) and non-
reference discrepancy rate (“NRD” — the rate at which genotypes from sequencing and
genotyping data differ). A genotyping assay should include sites at various allele
frequencies, especially low frequencies (∼1%). When available, family data, particularly
trios, can also be useful to assess callset quality.

Comparing our callset with GWAS data in the same samples at overlapping sites suggested
high sensitivity for common variants (98.6% NRS). To assess quality of low frequency
variant calls in a comparable sequencing dataset we compared CGI data to Omni chip from
the 1000 Genomes project (Supplementary Table 2). This comparison resulted in 95.65%
NRS, 1.79% NRD and 1.12% NRD for novel variants.

Despite stringent QC, genotyping and sequencing errors are still present. Unfortunately,
when stratifying variants based on putative functional consequences, the class of variation
that is annotated to be most deleterious is also more heavily enriched for errors56. This
underscores the importance of rigorous quality control.

It is critical that great care is taken to prevent technical biases and confounding in
sequencing to avoid distorting association results. For instance, differences in how (rare and
precious) case samples are handled compared to control samples may lead to systematic
false-positives that masquerade as interesting associations. Likewise, simultaneous multi-
sample variant calling on only cases or only controls may lead to differential detection of
variants across batches, negatively impacting the accuracy of the allele frequency estimates
and association analyses. Many other, often poorly understood or hidden, technical
confounders (e.g., DNA preparation, exome-capture technology, machine type, read length,
depth of coverage, SNP calling algorithm, QC filters) may influence the properties of
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exome-sequencing data. Therefore, although the use of shared controls (e.g., from the 1000
Genomes project) has been helpful in “filtering” approaches applied to Mendelian
disorders6, 9, it is not likely to be applicable to association analysis of complex diseases.

Statistical methods for the analysis of rare variants
Analysis of rare variants requires statistical methods that are fundamentally different from
association statistics used for testing common variants. There are two reasons for this. First,
rare variants have to be combined in a gene (or pathway) for an association test to reach
sufficient power57. For example, a causal SNP at a frequency of 1 in 500 and genotype
relative risk of 10 in a sample of 200 cases and 200 controls, has 0.2% power to be detected
at a conventional significance threshold for GWAS (P < 5 × 10−8). Second, functional and
population genetics information can be added to the testing approach because exome
sequencing comprehensively captures variation that can be annotated with such information.

Early candidate-gene sequencing studies for complex traits were based on the comparison of
numbers of non-synonymous alleles exclusive to cases or controls (or samples at the
extremes of the trait distribution)21, 26. This approach has limited power because it ignores
common and low-frequency polymorphisms, as most such variants would be present in
cases and controls. Recently, a number of statistical tests have been designed for rare-variant
analysis. The Combined Multivariate and Collapsing (CMC) test58 jointly assesses the role
of rare and common variation. For the common variants, traditional regression-based
association is applied. For rare variation, an individual's predictor in a regression model is
defined as 1 if the individual possesses at least one rare variant in the region (e.g., gene) and
0 otherwise. The Weighted-Sum Statistic (WSS) test59, creates a composite genotype score
for all individuals. This score is the sum of alternate alleles weighted by the inverse of the
binomial variance. A rank sum test is then performed on the genotype scores between
phenotypic groups. The Kernel-Based Adaptive Cluster (KBAC) test60 also uses a weighting
scheme that reflects apparent effect sizes of individual variants. An alternative approach to
combine rare variants into a single test is to select an allele frequency threshold based on the
observed data. This variable threshold (VT) approach61 was motivated by population genetic
simulations that showed that there is no single optimal weighting scheme or allele frequency
threshold. There are numerous other statistical tests for rare variants in complex traits
(reviewed in refs.62–65).

In simulation studies64, most tests behave similarly in many situations. However, the results
may depend on assumptions used in simulated data. The relative power to detect association
depends on factors such as the number and proportion of causal variants, their population
frequency, and their effect sizes, as well as directionality of effects, the number of genes
contributing to the trait, and fraction of causal genetic variation located in the exome.
Statistical tests were developed with various combinations of these factors in mind and
therefore are likely to be sensitive to different disease architectures. For example, the
simulation framework used in development of the WSS test assumes effect size proportional
to 1/x(1 − x) (where x is the population frequency of the causal allele), while Sequence
Kernel Association Test (SKAT)66 simulation framework uses effect size proportional to
−log(x), and the VT test simulations uses a demographic history model with a range of
possible values of strength of selection leading to different relationships between effect size
and x. These simulations were designed to demonstrate the strengths of each methods under
different effect-size distributions: the WSS is designed for effect sizes proportional to 1/x(1
− x), SKAT is designed for effect sizes proportional to beta density β(x; a1, a2) for
prespecified a1 and a2, the C-alpha67 test is designed for effects going in opposite directions
in the same region, while the VT test makes no assumptions about effect-size distributions.

Kiezun et al. Page 5

Nat Genet. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



When combining rare variants, all functional variants may either be assumed to influence
the trait in the same direction, or some may be allowed to have opposite directions of
effects. A biochemical argument can be made that most of non-synonymous variants are
loss-of-function hypomorphs, while gain-of-function variants are infrequent. However, some
genes (e.g., PCSK968) have variants of both kinds. Several tests allow for rare variants to
have opposite effects on the trait (e.g., Step-up69, C-alpha, replication-based test70, SKAT).
These tests are based either on the analysis of over-dispersion or on explicit linear models
that determine the contribution of a variant to a score based on the direction of effect
observed in the data.

Rare-variant tests can benefit from stratifying or weighting rare alleles by functional
significance, as evidenced by simulations and sequencing studies of candidate
genes61,64, 71–73. The power of rare-variant tests is strongly influenced by the fraction of
causal variants among all variants analyzed and using functional information is an effective
way to give greater weight to likely causal variants. For example, nonsense variants should
be prioritized higher than nonconserved missense variants. Similarly, missense variants
should be prioritized higher than synonymous variants. Functional consequences of variants
can be predicted by examining effects of amino-acid changes using comparative sequence
analysis and protein structure analysis. Many computational prediction and
conservation74, 75 methods are available (reviewed in refs.76–79). The accuracy of those
methods is around 80%80 and it is likely highest for rare variants (truly functional variants
are most likely deleterious and kept at low frequencies by purifying selection, and so
common variants are most likely neutral and nonfunctional). Therefore, using prediction
methods enriches for functional variants and thus boosts the power of association tests.
Because such predictions are not perfect, however, they should be used quantitatively by
weighing variants, rather than qualitatively by filtering out variants. A number of tests allow
including prediction scores into test statistics, e.g., VT test, KBAC, SKAT, Rare variant
Weighted Aggregate Statistic (RWAS)72, Likelihood Ratio Test (LRT)73. The PLINK/SEQ
suite includes precomputed PolyPhen-246 prediction scores for all possible missense
changes in humans, which makes these scores readily applicable.

An important consideration for exome sequencing studies is selecting the significance
threshold that accounts for multiple testing. A simple way is to adopt a Bonferroni
correction for 20,000 independent tests (one test per each gene), which, for an experiment-
wide significance of 0.05 gives a p-value threshold of 2.5 × 10−6 per gene. However, such a
threshold may be overly conservative because it assumes that each tested gene has sufficient
variation to achieve the asymptotic properties for the test statistic. For example, if only 2
individuals carry non-synonymous variants in a given gene, the difference between cases
and controls never exceeds 2 total observations, and so the most significant p-value that can
be achieved is around 0.25 assuming that these 2 variants are independent. Therefore, unless
the study is large, association p-values will be generally less significant than expected under
the null hypothesis. Figure 2a demonstrates this effect on the 438 whole exomes. The
PLINK/SEQ suite computes from data the so-called i-stat, which is an estimate of the
minimal achievable p-value for a gene. The i-stat can be used by setting a threshold (e.g.,
10−3) and only correcting for the number of genes that have the i-stat below the threshold
following the idea that for the genes with i-stat above the threshold there is no power to find
an association. Another way to correct for multiple testing is to compute an experiment-wide
significance threshold by permutations of phenotype labels, create the empirical distribution
of minimal p-values for all genes across permutations, and compare the minimal p-value
from the real data to that distribution (Figure 2b). This approach efficiently controls Type-I
error and is less conservative than the Bonferroni correction. Importantly, the p-value
threshold computed by permutations is dependent on both the study and on the statistical
test. However, the experiment-wide correction via permutation is not robust to confounding
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and it is essential to assess the quality of the distribution of test statistics, for those genes
that have i-stats less than the threshold, to ensure appropriate calibration of the distribution.
Nevertheless, with increasing sample sizes, the dimensionality of the tests will also increase,
and studies will be assessing close to 20,000 tests. Therefore, for large studies we consider
the Bonferroni threshold to be preferable.

Statistical power of exome sequencing studies
Power of an exome-sequencing study is limited by the amount of variation in a gene.
Therefore, power is higher for genes with more variants, for example longer genes or genes
in regions of elevated mutation rate. Additionally, genes in which most variants are causal
are easier to identify than those in which few variants are causal. In individual candidate
gene sequencing studies estimates of this proportion ranged from 30% to 70%21, 22, 26.

Consequently, the effect size is not only a property of an individual variant, but rather a
reflection of the distribution of effects coupled with how those effects are interpreted via the
test. Some statistical tests explicitly account for differences in power when evaluating
evidence of association81.

Given the sample sizes, the likely effect sizes and frequencies of causal variants, and the
proportion of causal variants in a gene, do current exome sequencing studies have sufficient
power to detect genes underlying complex phenotypes? The enthusiasm about exome
sequencing studies stems, in part, from successful candidate gene sequencing studies, and so
we sought to test whether exome sequencing would be expected to have sufficient power to
detect genes discovered by the candidate gene approach. So far, no published candidate gene
study reported p-values that would be significant on the background of the complete exome
(Table 2). This is particularly striking because some candidate gene studies used much
larger sample sizes (thousands of individuals) than ongoing exome sequencing studies
(hundreds of individuals). This demonstrates that current exome sequencing studies are
underpowered to detect genes with the allelic distribution and effect sizes similar to the
published examples. Indeed, extrapolation of effect sizes and frequencies from published
studies shows (Figure 3) that thousands of individuals are required to reach acceptable
statistical power. This analysis is consistent with an earlier study based on population
genetic simulations that concluded that as many as 10,000 individuals at phenotypic
extremes would be needed to achieve satisfactory power30. The very first GWAS82–84 were
also highly underpowered but the combination of falling costs and combining studies in
meta-analyses enabled rapid creation of well-powered studies and many discoveries.
Similarly, with the falling cost of sequencing and targeted enrichment85, exome sequencing
will soon be affordable to many research groups, and we expect that consortia will form to
facilitate pooling of exome sequencing data, thus enabling better powered studies and a new
wave of discoveries.

Replication to confirm association
To discover robust associations, replication in exome sequencing studies will be critical.
Because small early studies will be inevitably underpowered, no gene may achieve exome-
wide statistical significance. In such cases, unless strict correction for multiple tests is
performed, researchers should resist the temptation to apply a battery of statistical tests, each
with various weighing schemes and variant selection. We strongly argue that an association
can only be considered real if it has been replicated. A reasonable replication strategy is to
select a few genes (e.g., 10), based on the strength of association86 from the discovery stage
and prior biological plausibility. Sequencing and rare-variant associations must then be
performed on new samples, using multiple-test correction threshold applied only to the
(smaller) set of candidate genes.
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Population stratification
Population stratification—systematic ancestry differences between cases and controls—is a
well-studied confounder in genetic association studies87. In GWAS, commonly used
approaches to correct for stratification include stratifying by population cluster (Structured
Association), principal components analysis (PCA) and mixed models87–90. Genomic
Control may also be applied, but it is generally more useful for assessing stratification than
correcting for stratification87, 91.

An important question is whether population stratification can confound exome sequencing
studies, and if so, how to correct for stratification in this context. Although excess-of-rare-
variant tests are fundamentally different than single-variant tests, the possibility of
stratification still exists because different ancestries within a structured population sample
(e.g., African and European ancestry in African Americans, or northern European and
southern European ancestry in European Americans) may have different allele frequency
spectra due to their different demographic histories. For example, in an exome sequencing
study in African Americans in which disease cases have more African ancestry than
controls, one expects to see an excess of rare variants in cases, because African
chromosomes carry more rare variants92.

We created a hypothetical case-control exome sequencing study involving real sequencing
data and simulated phenotype data using 438 individuals, split in two populations (see
Methods). To induce population stratification, we assigned case-control status to each
sample randomly with a bias to take more cases from one population, and more controls
from the other population. Association tests indicated inflated rates of spurious statistically
significant p-values. We corrected for population stratification by modifying the permutation
scheme to account for subpopulations. This correction was effective at controlling Type-I
errors in all association tests.

Our simulations demonstrate that exome-sequencing studies can be affected by population
stratification, which may produce spurious associations. We have shown that a simple
permutation scheme is sufficient to correct for population stratification when discrete
clusters corresponding to genome-wide ancestry are known or can be inferred by applying
standard methods to GWAS chip data88, 89, 93. The permutation scheme is appealing in that
it generalizes most burden of multiple rare variants tests, however, some tests may also be
amenable to the use of PCA covariates in instances in which population structure is best
described by continuous clines rather than discrete clusters89.

Conclusion
Exome sequencing studies bring the promise of comprehensive testing of coding variation in
an unbiased manner. However, we expect that initial studies will be underpowered, and we
have highlighted a number of technical issues that could bias the interpretation and analysis
of rare variant data, especially novel variants. We expect that thousands of exomes are going
to be required to achieve sufficient statistical power to robustly detect associations of rare
variation with complex traits. Issues we discussed in this Perspective are also relevant to
future whole-genome sequencing studies, in which the analysis of protein-coding variation
will remain the same as in the case of exomes.

Focusing exclusively on exome is an especially serious limitation in complex trait genetics,
where noncoding genetic variation is believed to play a larger role than in Mendelian
genetics or in somatic cancer genetics. However, there are clear reasons to start with
exomes. First, statistical approaches combining multiple rare variants are problematic in
non-coding regions because there is no easily identifiable set of sites harboring variants with
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unidirectional phenotypic effects. Second, variants in regulatory regions are likely to have
smaller effect sizes. In contrast, protein coding genes provide a well-defined and
interpretable target for mutations in the locus. These mutations create variants that, in a
well-powered study, highlight association of the locus with the trait. Thus, although focusing
on the exome is unlikely to explain all of heritability, it has the potential to highlight genes
involved in complex traits.

Despite challenges discussed in this Perspective, the observation that a large trove of
functionally significant coding variants exists in the human population brings hope that the
exome sequencing approach will ultimately help identify many loci important for complex
traits and diseases.

Methods
Simulating discovery of novel variants

To calculate the discovery rate of novel variants for increasing numbers of samples, first all
exome samples are arranged in a random order. Then, samples are analyzed sequentially,
starting with the first sample, and the cumulative set of identified variants is computed. For
every subsequent sample, a variant site is considered novel if that site has not been identified
as variant in the cumulative set of preceding samples. The fold-increase over baseline
(where the baseline for each class is the number of variants discovered in the first sample) is
plotted in Figure 1. To avoid sampling bias, random resampling is performed and the overall
mean is calculated. Nonsense, Missense, and Synonymous classes are based on RefSeq
annotations. The Missense class is further divided into “Probably damaging”, “Possibly
damaging”, and “Benign” subclasses according to PolyPhen-2 predictions46. The
“Theoretical” line plots the expected number of segregating sites under a neutral model of
evolution in a population of constant size41.

Data generation
Reads were aligned to the reference genome using Burrows-Wheeler Aligner (BWA)94,
PCR duplicate reads were removed using Picard (see Web Resources), base quality scores
were recalibrated using the Genome Analysis Toolkit (GATK), and alignments near putative
indels were refined using GATK. The resulting data was run through the GATK to discover
and genotype SNP candidates.

QC filters
We used the following QC filters: a (1) quality-score-vs.-depth filter, which excludes
variants whose depth-normalized discovery confidence does not exceed 2.0; (2) a
homopolymer-run filter, which excludes variants that have an alternate allele that matches
the allele in an immediately adjacent homopolymer-run of length greater than 5; (3) a
strand-bias filter, which excludes variants whose alternate allele is preferentially found on
one of the two available read orientations at the site, and (4) an indel-mask filter, which
excludes variants discovered at sites that overlap with indels.

Association analysis
Case/control status was assigned randomly and a T5 test for burden of rare variants was
executed on all genes (T5 is a variant of the CMC test58 that considers only non-
synonymous variants with minor allele frequencies below 5%, uses the total count of
alternative minor alleles in cases as the test statistic, and assigns significance by permuting
phenotype labels). The overall deflation in significant p-values (i.e., there are fewer genes
associated at any significance level than expected by chance, is due to low counts of variants
in genes. Results were similar for T1 version of CMC, as well as for WSS59, and VT tests61.
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This pattern is expected in studies with small sample sizes (below around 1000 individuals).
Whole-exome permutations can be used to establish exome-wide significance in such cases.

Whole-exome permutations
Phenotype labels of full exomes were permuted 1,000,000 times, i.e., permuted phenotype
affected all genes in an individual. In each permutation, the lowest exome-wide p-value was
computed. It took fewer than 1000 computing hours to run 8 statistical tests on the 1 million
whole-exome permutations of 15,122 genes in 438 individuals. The computation is very
easy to parallelize and thus quite affordable using cluster or cloud computing.

Power calculations
Data was extrapolated from results from five candidate-genes and one obesity gene set from
published studies (Table 2). Fisher's exact test was used to calculate p-values after sample
size extrapolations.

Population stratification
We induced population stratification in a hypothetical exome sequencing study involving
real sequencing data and simulated phenotype data using 184 individuals from the HIV and
254 individuals from Schizophrenia (SCZ) exome sequencing studies. We observed that
there were exome-wide differences in allele frequencies between the populations, which we
quantified by estimating the FST between HIV and SCZ samples using exome sequencing
data95. FST was estimated using the EIGENSOFT software. Using variants with minor allele
frequencies at least 5%, we observed an FST value of 0.003, which is consistent with the
different European ancestries of the HIV (European-American) and SCZ (Swedish) samples
and with previous estimates of genetics distances between European populations96. We
considered the possibility that the observed differences between HIV and SCZ samples
could be due to differential bias resulting from differences in sample collection, sequencing,
or data processing97, but view this as unlikely because we applied identical data processing
and QC procedures to both sample sets and because QC metrics revealed no systematic
differences between the sample sets.

To induce population stratification, we randomly assigned 80% of samples from HIV
samples and 20% of SCZ samples as cases, and remaining samples as controls. We then
used case-control labels to run four association tests: fixed-threshold approach (T1 and T5
versions of the CMC test58), WSS59, and VT test61. We quantified the evidence of
population stratification by considering the most significant p-value (of 15,122 genes) and
the proportion of p-values < 0.05, and < 0.01. As seen in the null distribution (Figure 2), it is
expected that, due to low counts, p-values will have a deficiency of statistically significant
signals. Before correction for population stratification, however, our metrics indicate an
excess of statistically significant signals. For example, for T5, the most significant p-value
was <0.000001, and the proportions of p-values were 0.0595 at level 0.05, and 0.0136 at
level 0.01. Results were similar for the other statistical tests, and for other proportions of
HIV samples assigned as cases (we experimented with 90%, 80%, and 70%, as well as 30%,
20%, and 10%). We note that when the proportion of HIV individuals assigned as cases was
above 50% the induced inflation was higher than when the proportion was below 50%,
which could be due to a population genetic excess of rare variants in Swiss and European-
American samples as compared to Swedish samples.

To correct for stratification, we modified the script that implements association tests (see
Web resources) to employ a permutation scheme in which case/control status was permuted
within each population (HIV and SCZ), assuming known population labels. This
permutation scheme does not change the computational cost of the study. The results show
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that the permutation procedure adequately controlled for population stratification, removing
the excess of significant signals. For example, for T5, the most significant p-value after
correction was 0.0001 and the proportions of p-values were 0.0340 at level 0.05, and 0.0060
at level 0.01. As mentioned previously, the deficiency of statistically significant signals is
due to low counts and is consistent with the null distribution (Figure 2). Results were similar
for the other statistical tests, and for other proportions of HIV samples assigned as cases.
These results show that the permutation-based correction was effective at controlling Type-I
errors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Discovery of novel variants for increasing numbers of samples. For each functional class,
the fold-increase over the number of variants in one sample for that class is plotted as a
function of the number of samples in a sequencing experiment. For example, the number of
nonsense variants discovered in 300 samples is 40 times greater than the average number
discovered in a single sample while the number of synonymous variants is only 10 times
greater (although the absolute number of nonsense variants is a relatively minor proportion
of the total variation discovered); this effect is due to purifying selection. All classes of
variants are discovered at rates exceeding what would be predicted under a neutral model of
evolution in a population of constant size, an effect of population growth. The crossing
between curves for synonymous variants and the theoretical prediction most likely is a
signature of the out-of-Africa bottleneck. See Methods for additional details.
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Figure 2.
Association analysis. (a) Q-Q plot of association p-values under the null hypothesis. (b)
Distributions of lowest p-values under whole-exome permutations. The histograms show the
distributions of the lowest p-values across permutations for the T5 test. The red vertical line
indicates the 0.05 exome-wide significance level for the most significant gene (i.e., the most
significant gene is exome-wide significant if its p-value is lower that the level indicated by
the red line).

Kiezun et al. Page 18

Nat Genet. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Extrapolation of gene burden results. Horizontal solid red line shows Bonferroni genome-
wide significance threshold of P = 2.5 × 10−6. Horizontal dashed line shows the threshold
derived from whole-exome permutations (Figure 2b). For larger sample sizes, the
permutation threshold would be closer to the Bonferroni threshold, asymptotically
approaching it as the sample sizes increase.
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