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Abstract

Next-generation sequencing has catapulted healthcare into a revolutionary genomics era. One such technology, whole-

exome sequencing, which targets the protein-coding regions of the genome, has proven success in identifying new causal

mutations for diseases of previously unknown etiology. With a successful diagnostic rate approaching 25% for rare disease

in recent studies, its clinical utility is becoming increasingly popular. However, the interpretation of whole-exome sequenc-

ing data requires expertise in genomic informatics and clinical medicine to ensure the accurate and safe reporting of find-

ings back to the bedside. This is challenged by vast amounts of sequencing data harbouring approximately 25 000 variants

per sequenced individual. Computational strategies and fastidious filtering frameworks are thus required to extricate candi-

date variants in a sea of common polymorphisms. Once prioritized, identified variants require intensive scrutiny at a biolo-

gical level, and require judicious assessment alongside the clinical phenotype. In the final step, all evidence is collated and

documented alongside pathogenicity guidelines to produce an exome report that returns to the clinic. This review provides

a practical guide for clinicians and genomic informaticians on the clinical application of whole-exome sequencing. We

address sequencing capture and methodology, quality control parameters at different stages of sequencing analysis and

propose an exome data filtering strategy that includes primary filtering (for the removal of probable benign variants) and

secondary filtering for the prioritization of remaining candidates.
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Introduction

Since the completion of the Human Genome Project in 2003 [1],

an innovative genomic era of next-generation sequencing (NGS)

technologies has begun to revolutionize medical practice [2].

NGS is thriving where conventional genetic tests (i.e. candidate

gene sequencing, array-based comparative genomic hybridiza-

tion and karyotyping) have failed to elucidate a cause for

Mendelian diseases [3]. With the power to detect novel variants

from only a small number of individuals (including a singleton),

NGS is proving invaluable for modern geneticists, boasting a pu-

tative diagnosis rate that ranges from 21 to 25% for rare disease

of unknown etiology [4, 5]. Its application is not limited to rare

diseases, and includes cancers, complex diseases and RNA

sequencing; however, discussion of these is beyond the scope of

this review.

NGS uses massively parallel nucleic acid sequencing tech-

nologies capable of providing a cost-effective approach to large-

scale resequencing of human samples for both medical and

population genetics [6, 7], so much so that the annotation and

interpretation of sequencing data is now the rate limiting step

[6]. Since the transition from Sanger sequencing to NGS,

sequencing costs have declined exponentially [8], increasing

the application of NGS in research domains and clinical

diagnostics. The human genome comprises 3 billion base pairs;
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yet, only 1–2% code for protein (the exome). Most known dis-

ease-causing variants alter the protein-coding sequence, and

relatively little is known about the function of non-coding

DNA, although more is being elucidated by the encyclopedia

of DNA elements (ENCODE) project [9, 10]. Because it is esti-

mated that �85% of disease-causing mutations reside in the

exome [6, 11, 12], a cheaper alternative to whole-genome

sequencing, whole-exome sequencing (WES) has become

increasing popular owing to its compromise between cost, gen-

ome coverage, diagnostic yield and interpretability [7, 13].

Therefore, this article aims to review and outline the funda-

mental basis of WES applied to clinical medicine, providing a

guide for both genomic informaticians and clinicians.

WESMethods

DNA sources and extraction

The first step of WES involves the acquisition of high-quality

genomic DNA (gDNA) from biological samples, most commonly

extracted from peripheral blood leukocytes. Common extraction

methods include the traditional ‘salting out’ technique and spin

column-based methods. Noteworthy, gDNA can also be ex-

tracted from saliva, which provides a non-invasive alternative

to venesection, but at the expense of quantity and quality, par-

ticularly pertaining to risk of DNA contamination from oral

microflora and food remnants [14]. Formalin-fixed paraffin-

embedded (FFPE) samples are another viable source, i.e. in arch-

ival histopathology specimens and also in cancers (assessed

alongside germ line samples from the same individual to differ-

entiate somatic from germ line variants) [15]. However, FFPE

tissue yields far poorer DNA quality, with discordant reports

concerning the viable standard of sequencing output derived

from FFPE-extracted DNA. Some studies report comparable ana-

lytical output [16–18], while Genomics England report substand-

ard sequencing quality in 50% of FFPE samples used in the

100000 Genomes Project [19].

Exome library preparation

The preparation of an exome enrichment library follows DNA ex-

traction. Agilent, Illumina and NimbleGen are three commonly

used exome capture kits, and are compared and summarized in

Table 1. Product selection should be influenced by platform-spe-

cific strengths and weaknesses. Despite differences, all capture

technologies obey the same three basic principles: (1) DNA frag-

mentation, (2) adaptor ligation and (3) target enrichment.

1. gDNA is sheared into random fragments either mechanic-

ally by ultrasonication methods, or biologically by enzymatic

digestion [24].

2. Fragment ends are subsequently blunted and ligated with

adaptors. Agilent’s SureSelectQXT and the Illumina Nextera

platforms used a shearing-free transposase-based library

preparation.

3. Targeted enrichment of exonic regions follows library prep-

aration, and methods vary between capture platforms.

Agilent’s SureSelect Human All Exon, Nimblegen’s SeqCap

EZ Exome Library and Illumina’s TruSeq use a hybridization

method with complementary baits and magnetic bead pull-

down, while Agilent’s Haloplex platform uses an amplicon-

based capture [25]. Non-targeted sequences are washed away,

Table 1. Comparison of exome capture kits

Agilent HaloPlex

Exome

Agilent SureSelect All

Exon V5.0

NimbleGen SeqCap EZ

Human Exome V3.0

Illumina Nextera Rapid

Capture Expanded

Exome

Illumina TruSeq

Exome Enrichment

Target size 37 MB 50 MB 64 MB 62 MB 64 MB

Probe size (bases) 161675 120 55–105 95 95

Number of probes 2.49 million 789 000 2.1 million 347 517 340 427

Number of targeted

exons

557 999 335 765 �300 000 201 121 201 121

Reads on target (%) �80 �80 >70 �60 >65

(%) target bases

covered at �10x

>90 >90 >95 >97 >97

Recommended DNA

input

200 nanograms 3 micrograms 3 micrograms 50 nanograms 500 nanograms

Fragmentation

method

Transposomes Ultrasonication Ultrasonication Transposomes Ultrasonication

Strengths Smallest amounts of

DNA required

Fewer duplicated reads More uniform coverage Best coverage of UTRs

and micro RNAs

Best coverage of

UTRs and micro

RNAs

Better sensitivity for

indels

Most reads on target Fast

High alignment rate

Weaknesses Variable length tar-

get regions

Most affected by high

GC content

Alignment rate less

than Agilent

High proportion of off

target reads

High proportion of

off-target reads

Variable length target

regions

Coverage bias in GC-rich

regions

Variable length tar-

get regions

Fewer reads on target

compared with

NimbleGen

Poorest for reads on

target

Note. A tabulated comparison of Agilent’s SureSelect and Haloplex capture kits, Illumina’s Nextera and TruSeq kits and NimbleGen’s SeqCap kit.

UTR¼untranslated region [20–23].
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hybridized fragments are eluted and the resultant enriched li-

brary is amplified [20].

Exome sequencing

Following exon enrichment, the resultant captured library is sub-

ject to high-throughput, massively parallel sequencing to produce

millions of short reads. The exome-sequencing methodological

workflow is visualized in Figure 1. Current sequencing platforms

include Life Technologies SOLiD, Roche’s 454 Genome Sequencer,

Pacific Bioscience’s RS, Life Technologies Ion Proton and the cur-

rent market leader, Illumina’s HiSeq range of sequencers, which

use a sequencing by synthesis approach [35, 38]. Sequencing of

both the forward and reverse strands allows for creation of

paired-end reads. These provide longer-range information than

single reads, yielding greater alignment accuracy when computa-

tionally mapped to the human genome reference sequence [6,

20]. This target-mapping process allows for the identification of

coding nucleotide and splice site changes in the patient’s DNA

that vary from the reference sequence (variants).

Clinical application of WES

The application of WES has proven successful in the discovery

of novel disease genes and pathogenic mutations across a wide

range of disciplines, resulting in new diagnoses with consider-

able prognostic impact (Table 2). In 2009, Choi et al. reported the

first diagnosis resolved by WES in a patient misdiagnosed with

Bartter syndrome; WES revealed a novel homozygous mutation

in SLC26A3, a gene in which previous mutations were causal for

congenital chloride-losing diarrhoea (CLD). Re-evaluation of the

clinical phenotype confirmed the diagnosis of CLD [43].

Worthey et al. published the first clinical case using exome

sequencing to diagnose and cure a rare form of inflammatory

bowel disease [39].

With the growing published successes of WES, there has

been increased demand for novel informatics and analytical

strategies to compute vast sequencing data into high-quality

calls with sufficient sensitivity and specificity for clinical appli-

cation. However, WES data are limited by current WES method-

ology; competing chemistries differ in their capture efficiency

and probe design, with 5–15% of targeted regions suboptimally

covered for sufficient variant detection [34, 47], and some re-

gions are not amenable to the mapping of short reads [48]. In

designing the ideal exome capture platform, the three following

conditions would need to be met: (1) 100% coverage of all the

coding regions at sufficiently high read depth to sensitively de-

tect all variants, (2) all regions enriched by capture probes would

correctly map to target and (3) the allelic biases of capture

would be minimized to capture all indels and copy number vari-

ants (CNVs) with 100% sensitivity. Despite continual develop-

ment, current capture platforms cannot meet such criteria.

Many of these issues can be resolved using whole-genome

sequencing (particularly for indels and CNV detection) by virtue

of its continuous coverage; however, cost continues to be a bar-

rier to the uptake of this in many settings [49].

Capture kits are vulnerable to off-target enrichment, particu-

larly when enrichment probes share sequence similarity with

non-coding sequences [20, 50]. Furthermore, there is difficulty in

uniquely mapping to regions with high sequence identity, e.g.

gene families or repeated domains, and in calling genotypes at

the end of short reads. Additionally, sequencing platforms have

systematic errors, which should be considered during data pro-

cessing [51]. Nonetheless, sequencing data are usually of

sufficient quality to undergo next-step data processing (Figure 2),

subject tomeeting quality control standards assessed continually

throughout data analysis. Quality control procedures must (at

the least) control for poor genotype call quality, sample mislabel-

ling [53], exogenous DNA contamination and alignment errors.

Variant filtering

Annotated WES data typically identify �25 000 coding variants,

requiring high-throughput in silico methods to prioritize candi-

date variants amongst a sea of background noise. The differen-

tiation of common single nucleotide variants (SNVs) that

represent benign inter-individual variation from disease-

causing variants is analogous to finding a needle in a pile of

needles [54]. The difficulty lies when one of 25 000 variants is

sufficient to cause a devastating disease, as is the case for many

monogenic, Mendelian-inherited diseases. This challenge is fur-

ther complicated when the mutant allele is completely novel,

and there is no prior or established literature regarding patho-

genicity of the variant. The most commonly called variants are

synonymous SNVs, followed by non-synonymous SNVs and

splice site variants; however, the less common frameshift and

stopgain/stoploss variants are more likely to have deleterious

effects at the protein level, and this provides a good starting

place for variant prioritization [55]. There is an obvious demand

to apply a filtering framework to reduce the vast number of vari-

ants to a manageable list of candidates. Strategies for extricat-

ing disease-causing alleles depend on multiple factors such as:

phenotype segregation within families (where available), pre-

sumed mode of inheritance, extent of locus heterogeneity and

computational predictive tools based on evolutionary conserva-

tion and impact of protein change [6]. Filtering strategies are

discussed below in further detail and divided into primary and

secondary filtering (Figure 3).

Primary filtering

The main objective of primary filtering is the exclusion of be-

nign variants. Although relatively crude, primary filtering

should be accepted as a semi-rigid strategy and not preclude

the revisiting of disregarded variants.

Quality control

Quality control comprises a mandatory component of variant

annotation and analysis. Variant calling can be prone to error,

and where evident, low-quality variants should be immediately

excluded. Sufficient read depth (>20) is crucial to the sensitivity

and specificity of variant calling, particularly for heterozygous

calls and in assessing allelic balance. Sequencing depth should

be set much higher where somatic variation is to be evaluated

because of the lower proportion of chromosomes that will har-

bour the variant [15].

False-positive (type I) errors can be minimized by paying at-

tention to poor alignment around processed pseudogenes,

alignment artefacts and variants occurring in homopolymer

tracts. Strand bias, whereby called genotypes disagree between

the forward and reverse strands, usually reflects an error and

should have a low threshold for exclusion [56]. Certain genes

from large gene families with increased homology between

members, e.g. olfactory receptors, harbour a higher rate of mut-

ability than others. These ‘polymorphic’ genes are enriched for

type I errors with regards to true pathogenic potential, and are

reflected by either true gene mutability or alignment artefacts

376 | Seaby et al.
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Figure 1. Workflow example of WES. (A) A blood sample is collected containing peripheral lymphocytes. (B) gDNA is extracted from white blood cells using extraction

kits or the salting-out method, and the quality and quantity is assessed. (C) DNA is fragmented either by sonication or enzymatic methods, which vary between library

preparations. (D) Fragment ends are repaired by removing overhanging nucleotides, and the ends are ligated to adaptors (stars). Rectangular regions within fragments

represent exons present in DNA fragments. (E) Aqueous-phase hybridization capture enriches exonic sequences (rectangular regions) by ligation of fragments to bioti-

nylated baits (probes) as used by most enrichment platforms. Hybridized fragments are recovered by biotin-streptavidin-based magnetic bead pulldown. Uncaptured

regions are washed away. The enriched library of exonic fragments are eluted and amplified. (F) The resultant exome library is sequenced using massively parallel

sequencing technologies, producing millions of sequenced reads. (G) Raw data are aligned to the human genome reference sequence and downstream in silico tools

analyse output data. (A colour version of this figure is available online at: http://bfg.oxfordjournals.org)
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[51]. Although tempting to disregard these variants, evidence

has shown that laboratories underdiagnose because they dis-

miss pathogenic variants found in particularly polymorphic

genes [57, 58].

Candidate gene analysis

Gene-specific filtering involves targeting variants in candidate

genes associated with the clinical phenotype, and is somewhat

analogous to a targeted gene panel. Of course, this raises the

question of why an exome may be performed in preference, or

even before a gene panel? For one, the cost of exome sequenc-

ing is often equivalent to a single gene panel and yields data

from all known genes (but at lower read depth). Secondly, WES

is capable of greater data throughput than that of a gene panel,

and if no variants of interest are identified initially, the gene list

can be revised with the option of expanding data interrogation

across the entire exome. Thirdly, having access to raw data en-

ables interrogation of call quality and alignment, allowing

for more informed variant scrutiny. Furthermore, genes

selected for candidate gene analysis are typically obtained from

up-to-date curated databases in addition to the most current

published literature; this minimizes the risk of missing a new

disease-associated gene unavailable on a gene panel. The

unbiased data capture of WES allows for in silico revision of can-

didate gene lists on the description of new candidate genes

without cost duplication from ordering further gene panels.

However, cost duplication should be weighed against data stor-

age costs.

Exclusion of synonymous variants

Owing to the redundancy of the genetic code, synonymous vari-

ants are SNVs that do not cause an amino-acid change at that

codon. Their removal forms an integral part of most down-

stream informatics pipelines and reduces variant lists by ap-

proximately 50% [6]. Although generally assumed benign and

appropriately excluded, synonymous variants have been

acknowledged to harbour pathogenic properties, particularly

concerning changes in protein expression and splicing [59]. The

difficulty lies in excluding a large repository of probably benign

synonymous noise, at the expense of a small number of false

negatives (type II errors). There is currently an unmet balance

between minimizing type II errors and the lack of availability of

affordable, high-throughput functional assays to assess the true

effects of synonymous variants. The majority of downstream

in silico prediction tools do not assess synonymous SNVs, and

therefore our understanding of the functional consequences of

these variants is limited by insufficient interpretation. Yet since

2014, there are three predictive algorithms capable of predicting

the functional consequences of non-coding variants by using

nucleotide-sequence conservation metrics: FATHMM-MKL [60],

GWAVA [61] and CADD [62]. It is envisaged that as we accrue

functional data on synonymous variants, analytical tools will

continue to develop, providing improved predictive accuracy.

Filtering by minor allele frequency

Minor allele frequency (MAF) is the reported allelic frequency of

a given variant in a given population. MAFs are available from

publicly available repositories and can be used to differentiate

‘rare’ variants from polymorphisms using a cut-off value of

<0.01. Although this somewhat arbitrary value can select for

rare alleles, there are issues to consider. Certain databases,

such as the single nucleotide polymorphism database (dbSNP),

are contaminated with pathogenic variants (albeit in modest

number). Some alleles that are inherited in an autosomal reces-

sive manner may segregate at appreciable frequencies greater

than a MAF of 1% [63], and some rare variants may segregate at

higher frequencies in populations with an appreciable founder

effect. Therefore, when using MAF to assess rare variants, it is

prudent to consider the presumed mode of inheritance and eth-

nicity of the sequenced individuals, and the ethnic diversity

Table 2. Small subset of causal genes identified by WES

Causal gene Disease OMIM ref Reference

XIAP X-linked inhibitor of apoptosis deficiency 300079 Worthey et al. [39]

WDR62 Severe cerebral cortical malformations 613583 Bilgüvar et al. [40]

ANGPTL3 Familial combined hyperlipaemia 604774 Musunuru et al. [41]

TGM6 Spinocerebellar ataxia 613900 Wang et al. [42]

SLC26A3 Congenital chloride diarrhoea 126650 Choi et al. [43]

MLL2 Kabuki syndrome 147920 Ng et al. [44]

ATP1A3 Alternating hemiplegia of childhood 182350 Rosewich et al. [45]

PRRT2 Paroxysmal kinesigenic dyskinesia 614386 Chen et al. [46]

Note. A sample of genes and associated diseases discovered byWES, illustrating the breadth of research areas using the technology.

OMIM ref—reference entry of gene and associated diseases in the Online Mendelian Inheritance in Man (OMIM) database.

• Sequencing

• Alignment

• Variant Calling

• Annota�on

• Filtering

Figure 2. Data processing workflow of NGS data. Following (1) sequencing, the

initial computational step involves the (2) alignment of sequencing data to the

human genome reference sequence [2]. Following alignment and target map-

ping, in silico tools are used in (3) variant calling. SNV genotypes are called most

reliably, and the two best used SNV discovery algorithms are SAMtools [26] and

GATK [27], which use the principle of Bayesian detection. The challenge for

these SNV detection algorithms is the differentiation of a true variant from a

sequencing error, particularly given the high error per base rate of NGS [28].

Software are available for large indel calling, e.g. Pindel [29] and Softsearch [30],

but these have suboptimal sensitivity and specificity [31, 32]. Small indels can be

detected in SAMtools [26]. Calling CNVs poses a great challenge in WES analysis

because of a non-uniform depth of coverage across regions of the exome [33]. (4)

Annotation of called variants provides the essential information required for

downstream analysis and interpretation. A commonly used tool is ANNOVAR

[34]. The final step involves a (5) filtering process for the identification of causal

genes.

378 | Seaby et al.
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Figure 3. Suggested exome data filtering strategy. The suggested filtering strategy begins with quality control, and the removal of low-quality variants. Deep phenotyp-

ing and sharing of accurate clinical information best inform the selection of candidate gene lists from curated databases and published literature. If new information

becomes available, the gene list can be revised, and the data iteratively analysed over time. Evidence of new disease–gene associations will be added to the literature

and curated in disease databases, increasing the repository of candidate genes. Exome data are reduced by primary filtering, which often includes: the removal of syn-

onymous variants, a MAF cut-off that can range between 0.005 and 0.03 depending on the expected mode of inheritance and variant exclusion from control group data-

bases curated from in-house sequencing data. Variants that meet segregation criteria based on presumed mode of inheritance (first pass candidates) can undergo

scrutiny using secondary analysis. Prioritized variants are cross-referenced with the ACMG guidelines [52] on pathogenicity and scored according to their criteria. If no

suitable candidates are identified, segregation analysis can be expanded to include non-penetrant alleles (second pass candidates) and undergo secondary filtering. An

exome report is compiled containing a list of prioritized variants. (A colour version of this figure is available online at: http://bfg.oxfordjournals.org)
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captured within the database from which the MAF is obtained.

For rare, dominant alleles, smaller MAFs tend to be used (0.01–

0.05). For presumed recessive diseases, more conservative fre-

quencies are used (i.e. >0.01–0.03), which provide a compromise

between unwanted noise and minimizing type 2 errors from al-

leles segregating at >0.01 [64]. Where available, variants should

be cross checked with in-house non-disease variant databases

to minimize population-specific effects and remove errors re-

sulting from technical artefacts specific to the in-house

pipeline.

Filtering by segregation

Filtering by variant segregation in families can powerfully re-

duce the number of potential causal variants to a manageable

list of candidates. However, it relies heavily on the optimal se-

lection of individuals for sequencing informed by the apparent

mode of inheritance. It is important that all available and rele-

vant clinical information transitions from the clinic to the gen-

omic informatics laboratory and are completed maintaining

patient anonymity. A comprehensive family history, excellent

pedigree documentation and deep phenotyping are essential.

Pedigree information concerning ethnicity and consanguinity

should always be provided where available. Excellent multidis-

ciplinary communication ensures the most appropriate individ-

uals are sequenced to maximize segregation filtering power.

One way to achieve this is by minimizing the probability that al-

leles of sequenced individuals are shared by chance. Where

possible, more distantly related affected individuals should be

sequenced preferentially (i.e. first cousins). Of course, this relies

on affected individuals being phenotypically identical, further

justifying the need for accurate phenotyping with minimal bias.

For presumed de novo inheritance, trio analysis (parents/child) is

preferred where funding permits, as it can powerfully identify

new causal variants in the offspring. Segregation analysis is not

without caveats, particularly concerning late onset diseases,

non-paternity, mosaicism and incomplete penetrance.

Incomplete penetrance

Segregation analysis relies on complete disease penetrance,

and therefore pathogenic variants segregating in healthy indi-

viduals are filtered out. Where variants are known to display

variable penetrance, a multidisciplinary team must judiciously

agree on the likely variant status, particularly if the variant seg-

regates in a pedigree with disparate phenotypes. In suspected

incomplete penetrance, it is important not to falsely label non-

specific symptoms in an unaffected individual as mild pheno-

typic characteristics in support of a diagnosis. For example,

where a variable penetrant genotype can cause severe respira-

tory disease, an unaffected individual may report ‘lots of

coughs’ when questioned about their respiratory history, and

these may be entirely benign. Functional verification provides

the only definitive conclusion; yet, this is costly and unfeasible,

given the sheer volume of potential variants.

Compound heterozygosity

In homozygous recessive disease patterns, both alleles harbour

the identical mutation at the same locus. Compound heterozy-

gosity should be considered where heterozygous variants are

called in the same gene and reside proximally to one another,

or may functionally interact. Because these variants are not

homozygotes in segregation analysis, it is prudent not to miss

inheritance of proximal variants in trans (with one variant from

each parent), even if the alleles alone are insufficient to cause

disease. Trio analysis is advantageous in this regard, and can

offer discovery of compound heterozygosity by observing segre-

gation of alleles inherited from each parent. Unfortunately, NGS

is limited with regards to determining phase of alleles from a

single sample, therefore necessitating parental or long-range

sequencing. For compound heterozygotes occurring in proximal

regions where reads overlap, it is sometimes possible to scruti-

nize and predict cis/trans inheritance when the heterozygotes

occur on different reads.

Secondary filtering

Distinct from primary filtering, which removes probable benign

variants, second filtering uses strategies to prioritize remaining

candidate variants by consideration of a conglomeration of fac-

tors. These include in silico prediction tools, re-evaluation of

variants occurring in mutable genes, CNVs and multiallelic hits.

The end result of secondary filtering is the cross-reference of

best candidate variants with consensus pathogenicity guidance

for reporting back to the clinic.

In silico prediction

Variant pathogenicity can be predicted using computational

tools that consider the effects of a variant at the nucleotide,

amino-acid and protein levels. Frameshift, nonsense and ca-

nonical splice site variants are considered most likely to disrupt

gene function and are thus assigned greater pathogenic poten-

tial. This underpins much of the framework behind laboratory

reporting (as discussed later). However, the more frequent mis-

sense variants require aggregation of a greater body of evidence

in support of pathogenicity and should at least include: evolu-

tionary conservation metrics; the biochemical consequence of

an amino acid change; and for splicing variants, splicing predic-

tion software (Table 3) [52, 75]. However, in silico tools have limi-

tations, their sensitivity and specificity do not meet diagnostic

standards and most annotation algorithms currently ignore

gene-specific domains and multivariant interactions [76].

Copy number variants

CNVs comprise an integral part of genome analysis and have

roles in both common and rare diseases, but WES has been trad-

itionally poor at resolving them [77, 78]. CNVs in candidate

genes warrant consideration, particularly when a patient is het-

erozygous for a recessive mutant allele.

Although considered poor at detecting CNVs because of the

punctate nature of sequenced data, WES technologies are begin-

ning to make headway; Agilent’s OneSeq target enrichment

assay promises huge improvements in the detection of CNVs,

as well as copy neutral loss of heterozygosity and indels. Read

depth software are also available to crudely assess changes in

copy number; these software use read depth as a measure of

the amount of DNA present at a given locus to predict copy

number variations in the test sample compared with the given

reference. Software examples include ExomeCNV [79] and

ExomeDepth [80], but these are not highly sensitive nor specific

and are prone to upstream errors occurring in the capture pro-

cedure [81]. Additionally, statistical in silico tools exist, which

claim good sensitivity for CNVs, but input data are noisy be-

cause of non-uniform capture across non-contiguous sequence

data from discrete exons [78].
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Reporting on prioritized variants

Application of the aforementioned filtering methodology will

typically streamline �25 000 variants to a manageable list of pri-

oritized candidates (and occasionally a single candidate vari-

ant). To accurately assess candidate pathogenicity in a clinical

context, an extensive literature search is required. Previous re-

porting of the variant (as either pathogenic or benign) is of huge

importance, especially when backed up by functional studies.

Where literature is sparse, assessment of protein function and

the domains affected can help assign importance to variants,

e.g. if a variant alters the protein sequence of a functional phos-

phorylation domain, this would be more salient than a variant

altering an innocuous repeat region. Gene expression studies,

animal models of gene knock outs or in vitro functional effects

of stop gains and alternative splicing are all further sources that

can help assess variant significance. Because the accurate inter-

pretation of sequence variants is critical in influencing clinical

outcomes, there has been a need for a standardized classifica-

tion framework for variant pathogenicity, for example, as rec-

ommended by the American College of Genetics and Genomics

(ACMG) in the USA and the Association for Clinical Genetic

Science in the UK [52, 75, 82].

Assignment of pathogenicity

Application of American and UK guidelines is useful, but many

prioritized variants fall into the category of ‘variant of unknown

significance’; a massive bottleneck effect is incurred by the

sheer number of these variants that require a step-change in

functional assessment to reliably predict clinical relevance.

Most often, there are insufficient funds and resources to follow-

up multiple variants; consequently, variant interpretation ne-

cessitates the convergence of relevant clinical disciplines and

genomic informaticians to judiciously consider all available evi-

dence and make the most informed decisions regarding diagno-

sis and/or treatment where applicable. Furthermore, bridging

communication between genomic informatics and clinicians

should not cease after the initial exome report. New clinical in-

formation can entirely revise analytical methodology and delin-

eate a new list of candidate genes. One the biggest advantages

of obtaining genomic data is the ability to return to it should

new clinical information, disease–gene associations or im-

proved analytical strategies become available.

Ethical considerations and incidental findings

WES raises ethical issues, most notably concerning consent,

data sharing and return of information. There are concerns that

informed consent is insufficient in educating patients about the

scope of potential results identified, particularly in relation to

the return of incidental findings.

When presented with data from an entire exome or genome,

there is always the possibility of incidentally discovering patho-

genic mutations unrelated to the presenting phenotype. This is

a particularly topical and contentious issue, and there is much

debate around whether ‘actionable’ incidental findings should

be reported back to patients [82–84]. Current guidelines by the

American College of Medical Genetics and Genomics recom-

mend that constitutional mutations from a list of 56 genes

should be reported back to the referring clinician, regardless of

the initial indication for exome or genome sequencing [52].

These guidelines have been subject to heavy criticism within

the literature, and alternative position statements exist from

other organizations. The rationale behind reporting incidental

findings ultimately concerns the sharing of medically valuable

information to patients, providing them with the opportunity

for medical interventions that carry substantial prognostic

benefit. Although commendable, there are obvious flaws: some

known pathogenic mutations will not be fully penetrant, vari-

ants of unknown significance in disease-associated genes may

be entirely benign but cause undue concern and there are issues

surrounding patient consent [85]. With an estimated frequency

of 1–3% [86], incidental findings are not to be taken lightly,

Table 3. In silico prediction tools

Category Algorithm Source Principle

Non-synonymous

SNV prediction

*SIFT [65] http://sift.jcvi.org Evolutionary conservation

*PolyPhen-2 [66] http://genetics.bwh.harvard.edu/pph2 Evolutionary conservation and protein

structure/function

*MutationTaster [67] http://www.mutationtaster.org Evolutionary conservation and protein

structure/function

*Grantham [68] Grantham et al. Science. Biological consequence of amino-acid

change

Synonymous

SNV prediction

FATHMM-MKL http://fathmm.biocompute.org.uk/

fathmmMKL.htm

Sequence conservation within hidden

Markov models

GWAVA https://www.sanger.ac.uk/sanger/

StatGen_Gwava

Integration of various genomic and epi-

genomic annotations

CADD http://cadd.gs.washington.edu/ Multiple genomic annotations

Splicing prediction *MaxEnt [69] http://genes.mit.edu/burgelab/maxent/

Xmaxentscan_scoreseq.html

Maximum entropy model

GeneSplicer [70] https://ccb.jhu.edu/software/

genesplicer/

Markov model

Human Splicing Finder [71] http://www.umd.be/HSF/ Position dependent logic

MutPred Splice [72] http://mutdb.org/mutpredsplice/

about.htm

Machine learning prediction of exonic

variants

Conservation

prediction

*PhyloP [73] http://compgen.bscb.cornell.edu/phast/ Conservation scoring

*GERPþþ [74] http://mendel.stanford.edu/SidowLab/

downloads/gerp/

Conservation scoring

Note. Predictive in silico algorithms available to aid in the interpretation of variants of unknown significance.
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particularly considering the financial burden they may have on

the healthcare system. Furthermore, it is unknown how the re-

porting of such findings will materialize as NGS forms a ubiqui-

tous component of modern-day diagnostics.

Limitations

WES has substantial diagnostic potential capable of uncovering

causal mutations in rare monogenic diseases; but, it is not with-

out limitations. Its limited target capture of only 1–2% of the

genome completely disregards clinically relevant alleles occur-

ring outside of these regions, missing deep intronic variants

[87, 88]. Cost remains a substantial issue, although this may be

offset by the unnecessary financial burden of ‘reflex testing’.

Other limitations include: the disregard for epigenetic modifica-

tions, variability in in silico sequence capture by different plat-

forms, read depth and alignment errors, small CNVs and cryptic

indels (poorly resolved and aligned) and the subjectivity of sec-

ondary filtering during data analysis—different laboratories will

have their own methodology for variant prioritization and may

use different thresholds for the inclusion or exclusion of vari-

ants [69].

In a wider context, WES is a disruptive technology that chal-

lenges the traditional practice of clinical genetics. The inevit-

able move away from traditional methods in favour of WES may

threaten the jobs of cytogeneticists, technicians and other pro-

fessionals trained in the pre-NGS era, unless appropriate re-

training schemes are established. Nonetheless, training medical

professionals in genomics will help to improve some of the poor

communication between clinical and research disciplines that

currently exist; interpretation of exome data requires analysis

by genomic informaticians with limited clinical knowledge, and

many clinicians are unfamiliar with this rapidly evolving

technological discipline and require continued education. There

is an obvious demand to train clinicians in genomic informatics

to be able to close the gap between the two different disciplines

and truly demonstrate personalized, translational medicine.

Future

There is no doubt that exome and genome sequencing will be-

come increasingly prevalent. Concomitant with media interest,

curiosity is rising amongst the lay population who are begin-

ning to use commercially available personalized genomic ser-

vices. But as it stands today, variants solely identified by NGS

technologies do not meet clinical diagnostic standards, and this

is often underappreciated. There is thus temptation to infer

causation from unverified data, which is particularly problem-

atic without genomic and clinical expertise. This necessitates

the convergence of genomic informatics with multidisciplinary

clinical medicine to nurture a new field of clinical genomics for

the safe and accurate reporting of clinical variants. In England,

this is being driven by the Department of Health, who are fund-

ing the 100000 Genomes Project [89], which aims to sequence

100000 genomes by 2017 by recruiting patients from the

National Health Service (NHS) through Genomic Medicine

Centres focusing particularly on rare disease and cancers.

Similarly in the USA, a Precision Medicine Initiative has recently

been announced [90]. These projects aim to combine genomic

data with clinical medicine, advance medical research, develop

new therapies and accelerate the genomic industry. This will ul-

timately catapult clinical medicine into the genomics era,

requiring genomic literacy of many clinicians to ensure the best

possible outcomes for patient-centred healthcare.

Key Points

• A practical guide to whole-exome sequencing that is

relevant to both genomic informaticians and

clinicians.
• A suggested filtering strategy for the extrication of

causal variants.
• The value of next-generation sequencing technology

in clinical medicine.
• Ethical issues and incidental findings.
• The challenges and limitations of whole exome

sequencing.
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