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Individuals with acute monocytic leukemia, or AML-M5, have a 
poor prognosis associated with hyperleukocytosis and extramedul-
lary involvement1–5. The 3-year disease-free survival rate for indivi
duals with AML-M5 is ~25% (ref. 6). Two morphological entities of  
AML-M5 are recognized: the bone marrow and peripheral blood 
may be overwhelmed either by monoblasts (in acute monoblastic 
leukemia) or by more differentiated promonocytes and monocytes  
(in acute promonocytic or monocytic leukemia)1. Chromosomal 
translocations involving MLL on 11q23 are mostly found in AML-M5  
(ref. 7). Mutations in NPM1, FLT3 and NRAS have also been reported 
in this disease8–10. However, these genetic changes occur only in a 
subset of AML-M5 leukemia cases.

The development of massively parallel sequencing technologies 
makes it feasible to catalog all classes of somatically acquired 
mutations in a cancer11–13. However, a major challenge of cancer 
genome analysis is to identify ‘driver’ mutations12, and several 
recent genome studies of leukemias and solid tumors have con-
centrated analysis on coding regions (exomes) to increase the likeli
hood of identifying driver mutations14,15. To gain new insight into  
leukemogenesis and the molecular basis underlying the clinical 
heterogeneity of AML-M5, we carried out exome sequencing and 
subsequent Sanger sequencing analysis in a large series of indivi
duals with this disease.

RESULTS
Discovery of somatic mutations through exome sequencing
We captured and sequenced the exomes from nine paired samples 
of AML-M5 cases (initial sequencing set; Supplementary Table 1)  
with bone marrow samples obtained at the time of diagnosis and 
control peripheral blood specimens obtained after complete remis-
sion. The captured target in each exome was 24 Mb. The average 
coverage of each base in the targeted regions was 100-fold, and 
95.3% of these bases were covered sufficiently deeply for variant 
calling (≥10× coverage) (Supplementary Table 2). We used an  
in-house software system to identify somatic mutations by com-
paring variants identified in bone marrow exome data set against 
dbSNP and germline variants present in peripheral blood control 
samples (see Online Methods). We identified 266 potential somatic 
sequence changes including 220 single-nucleotide variations (SNVs) 
and 46 small insertions or deletions (indels; Supplementary Table 3  
and Supplementary Fig. 1).

We focused our analysis on changes predicted to affect protein-
coding sequence, including 59 non-synonymous substitutions 
and 10 indels affecting integrity of the open reading frame (ORF)  
(Supplementary Table 3). For validation, we amplified the corres
ponding genomic region directly from original samples using a PCR 
assay and carried out Sanger sequencing. Of the non-synonymous 
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SNVs, 58 (98.3%) were validated as somatic mutations, whereas 
among indels, 8 (80.0%) were confirmed. Thus, we identified  
66 somatic mutations in 63 genes, with 3 genes bearing changes in two 
cases (Supplementary Table 4). Among the alterations resulting from 
mutations, we identified the p.Gly12Ser and p.Gly12Asp alterations 
in NRAS and the p.Asp835Val mutation in FLT3 (Supplementary 
Table 4). We also detected a MLL-MLLT4 fusion gene, which was con-
firmed at RNA level. Detection of these known mutations in AML-M5 
confirmed our approach and suggested we could identify unknown 
genetic defects.

Defining mutation frequencies in AML-M5 samples
We next carried out exome sequencing in five additional AML-M5 
cases without matched normal samples (expanded sequencing set; 
Supplementary Table 1). We focused on the 63 genes found to have 
somatic mutations in our initial sequencing set. To exclude rare SNPs 

for any sequence variations detected, we ana-
lyzed 509 control samples from unrelated 
healthy individuals (control validation set). 
Then, all the sequence changes detected in 
the 63 genes were genotyped in bone mar-
row DNA samples from 98 additional cases 
of newly diagnosed (94 cases) or relapsed 
(4 cases) AML-M5 (M5 validation set) by 
Sequenom analysis. As a result, we found 
somatic mutations (confirmed by sequencing 
of paired peripheral blood control samples 
at complete remission in some cases in our 
M5 validation set) or very probable somatic 
mutations (defined as those not identified 
in 509 samples in the control validation set) 
in 14 genes, each detected in at least two 
cases, among a total of 112 AML-M5 cases 
(Supplementary Table 5).

Integration of the above data, together with 
literature searches for genes whose structure 
and/or expression are altered in cancer and 
other human diseases, led to the selection of 

six genes (DNMT3A, NSD1, GATA2, CCND3, ATP2A2 and C10orf2) 
for sequencing of their whole coding regions in our M5 validation set 
(Table 1). Because only a limited number of paired peripheral blood 
samples were available, all sequence changes discovered in unpaired 
leukemia samples were genotyped in the control validation set to rule 
out the possibility of rare SNPs.

In DNMT3A, encoding a member of the DNA methyltransferase 3 
family16, we identified three heterozygous variants in the same codon 
for Arg882, which led to three distinct substitutions, p.Arg882His, 
p.Arg882Cys and p.Arg882Ser, detected, in 13, 7 and 1 of 112 samples, 
respectively (Fig. 1a). We also detected a heterozygous p.Val897Asp 
variant and a homozygous p.Gly543Cys variant in two samples using 
exome sequencing, and one heterozygous p.Arg478Trp variant in  
a sample containing p.Arg882His. Among these sequence changes, 
p.Arg882His, p.Arg882Cys and p.Val897Asp were confirmed as 
resulting from somatic mutations, whereas p.Arg478Trp, p.Gly543Cys 

Table 1  Mutations of systematically investigated genes in AML-M5 samples
Annotated  
gene

Mutation  
type Position

Allele  
change

Amino acid  
change

Case numbers 
with mutation Frequency (%)

ATP2A2 Missense Chr12: 109,261,491 A>G p.Lys454Arga 1/112 2/112 (1.8)

Missense Chr12: 109,268,521 G>T p.Val971Leub 1/112

C10orf2 Missense Chr10: 102,738,655 A>G p.Tyr233Cysa 1/112 2/112 (1.8)

Missense Chr10: 102,739,451 A>G p.Gln435Argb 1/112

CCND3 Frameshift Chr6: 42,011,723 */+G p.Arg271fs*23a 2/112 3/112 (2.7)

Nonsense Chr6: 42,011,709 G>A p.Gln276b 1/112

DNMT3A Missense Chr2: 25,310,701 A>T p.Val897Aspa 1/112 23/112c (20.5)

Missense Chr2: 25,310,747 G>A p.Arg882Cysa 7/112

Missense Chr2: 25,310,747 G>T p.Arg882Serb 1/112

Missense Chr2: 25,310,746 C>T p.Arg882Hisa 13/112

Missense Chr2: 25,320,953 C>Ad p.Gly543Cysb 1/112

Missense Chr2: 25,322,435 G>A p.Arg478Trpb 1/112

GATA2 Missense Chr3: 129,683,410 C>T p.Arg362Glna 2/112 4/112 (3.6%)

In-frame Chr3: 129,685,454 */+AGG p.Cys319SerCysa 1/112

Missense Chr3: 129,685,499 G>T p.Pro304Hisb 1/112

NSD1 Missense Chr5: 176,627,199 C>T p.Pro1726Leua 1/112 2/112 (1.8%)

Missense Chr5: 176,654,869 T>A p.Ser2632Thrb 1/112
aConfirmed as somatic mutations. bConfirmed as most probable mutations. cOne individual had both p.Arg478Trp and 
p.Arg882His alterations. dHomozygous mutation.
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Figure 1  Locations of DNMT3A mutations and 
structure of DNMT3A protein. (a) Genomic 
organization of DNMT3A locus, alternative exons 
and protein domain structure. Locations of the 
mutations affecting Arg478 in exon 12, Gly543  
in exon 14, Arg882 and Val897 in exon 23  
of the DNMT3A gene (top) and protein (bottom)  
are indicated with arrows and red asterisks, 
respectively. (b) Structural prediction of DNMT3A 
alterations. The structure of DNMT3A dimer is 
shown in cyan, the structure of two DNMT3L 
molecules bound to both sides of the DNMT3A 
dimer (3A-3A) is shown in blue, and the DNA 
double helix is shown in orange. Purple ribbons, 
histone H3 N-peptide. Rainbow ribbons, SAM 
cofactor. Red stick residues, mutations in AML-M5  
leukemia. Mutation residues are involved in 
3A-3A dimerization or DNA binding (Arg882), 
SAM cofactor binding (Val897), protein-protein 
interaction (Arg478), and histone H3 peptide 
binding (Gly543). Arg882 is near the 3A-3A 
interface with two pairs of salt bridges formed 
between Arg885 and Asp876 (counterparts in 
mouse protein, Arg881 and Asp872, respectively) 
and very close to the DNA double helix (enlarged).
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and p.Arg882Ser were not present in the control validation set and 
are thus very probably the result of somatic mutations (Fig. 1a and 
Supplementary Fig. 2). The frequency of DNMT3A mutations in our 
entire AML-M5 series was 23 out of 112 (20.5%) (Table 1). In an effort 
to explore rare SNPs in DNMT3A, particularly the non-synonymous 
ones, we also sequenced the whole coding regions of 31 samples from 
healthy individuals but detected no such variations.

We also found sequence variations in NSD1, GATA2, CCND3, 
ATP2A2 and C10orf2. We discovered two heterozygous mutations, 
resulting in p.Pro1726Leu and p.Ser2632Thr, in NSD1, a gene encod-
ing a histone H3K36 methyltransferase17. Notably, we identified three 
variants in GATA2, mutations of which have been reported in a subset 
of acute myelomonocytic blast crisis of chronic myeloid leukemia18. 
These sequence abnormalities included two missense point muta-
tions and one in-frame insertion of three nucleotides in two zinc 
finger motifs (ZF1 and ZF2; Supplementary Fig. 3). We found two 
types of deleterious mutations in the cell cycle regulator gene CCND3 
(ref. 19); we identified a one-base (G) insertion causing frameshift in 
two cases and a nonsense mutation of codon 276 in another case. For 
ATP2A2 and C10orf2, we found two distinct missense mutations of 
each gene in two cases.

To clarify molecular abnormalities in AML-M5, we also checked 
in our series for known gene mutations present at relatively high 
frequency. In total, we identified MLL abnormalities including MLL 
translocations or MLL partial tandem duplication (MLL-PTD), 
NPM1 mutations, NRAS mutations and FLT3 abnormalities includ-
ing internal tandem duplication (ITD) and Asp835 point mutations, 
respectively, in 19.6%, 25.9%, 10.7% and 18.8% of the 112 cases 
(Supplementary Table 6). Notably, among 23 cases with various 

DNMT3A mutations and 22 cases with MLL variations, only one had 
both MLL-PTD and a DNMT3A p.Arg882His mutant and one had 
both a MLL-MLLT3 and a DNMT3A p.Val897Asp mutant. DNMT3A 
mutations were present with NPM1 mutations in the same sample 
in 16 cases, whereas mutations of NPM1 did not overlap with MLL 
abnormalities (Supplementary Fig. 4 and Supplementary Table 7).

Analysis of biological activities of DNMT3A mutants
Because of its relatively high mutation rate in AML-M5, we focused 
our attention on the impact of DNMT3A mutation. All of the 
DNMT3A mutations we identified were missense mutations and 
occurred at amino acid residues well conserved through evolution 
(Supplementary Fig. 5). Moreover, the mutant allele was tran-
scriptionally active in all 23 samples that we examined by RT-PCR, 
which was designed to eliminate genomic DNA contamination 
(Supplementary Fig. 2). Twenty-two samples also showed mRNA 
expression of the normal allele, whereas in one case with homozygous 
mutation only the p.Gly543Cys mutant allele was expressed.

We further addressed the possible structure-function relationship 
of the mutants as the crystal structure of DNMT3A was available20,21. 
DNMT3A protein has three conserved domains (Fig. 1a): two in the 
N-terminal regulatory region (a PWWP domain, which targets the 

enzyme to nucleic acids, and a cysteine-rich 
PHD zinc-finger domain, which interacts with  
unmodified histone H3) and one highly con
served catalytic domain in the C-terminal  
region16,22. By sequence alignment of 
DNMT3A and DNMT3B we found that they 
showed high identity, and Arg882 in DNMT3A 
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(a) Gene expression. Real-time PCR of mRNA 
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very high and the mutant residues are not on the binding surface 
with DNMT3L, we used the co-purified DNMT3A-DNMT3L com-
plex to carry out DNA methyltransferase activity assay in vitro. The 
interaction between DNMT3A and DNMT3L was not hampered 
by the mutations of DNMT3A (Supplementary Fig. 6). The enzy-
matic assays showed that, compared with wild-type DNMT3A, all 
Arg882 mutants consistently showed a marked reduction in their 
DNA methylation activities (Fig. 2a). In agreement with the struc-
tural prediction, p.Arg478Trp and p.Val897Asp mutants also had 
substantially reduced enzyme activities in vitro (Fig. 2a). However, 
the p.Gly543Cys mutant had no influence on DNA methylation 
activity, probably because the mutation resided in the functional 
domain interacting with histone but outside the catalytic region of 
DNMT3A. Indeed, the p.Gly543Cys mutant showed increased abil-
ity to interact with histone H3 in vitro (Fig. 2b). These biochemical 
results suggest that DNMT3A mutations observed in our sequenc-
ing study could confer abnormal function of DNA methylation or 
histone binding in vivo. To further investigate the potential role of 
DNMT3A mutations in leukemogenesis, we carried out experiments 
in 32D cells, an interleukin-3 (IL-3)-dependent mouse myeloid cell 
line. Overexpression of p.Arg882His and p.Arg882Cys mutants pro-
moted the proliferation of 32D cells even without IL-3 as compared 
with wild-type DNMT3A (Fig. 2c).

Aberrant DNA methyltransferase activity could change DNA 
methylation and alter gene expression. Thus, we determined the 
gene expression profile and DNA methylation patterns in six AML-
M5 samples with DNMT3A Arg882 mutations and four AML-M5 
samples with wild-type DNMT3A. We observed differences of 
expression level in 889 of 20,723 (4.3%) annotated genes by using 
an Affymetrix microarray (Supplementary Fig. 7a). Notably, we 
found that several HOX family genes and the IDH1 (isocitrate 
dehydrogenase 1), which are associated with acute myeloid leuke-
mia pathogenesis24,25, were upregulated in individuals with the 
DNMT3A mutant (Supplementary Fig. 7b). In validation analysis 
using RT-PCR among 21 cases, we found that the expression of 

probably corresponds to Arg823 in DNMT3B (Supplementary Fig. 5), 
which is mutated in immunodeficiency, centromeric instability, facial 
anomalies (ICF) syndrome23. We tried to assess the effect of various 
mutations on the structure and function of DNMT3A by generating 
a computational model of the complex of DNMT3A, histone H3 and 
DNA. According to structural analysis, Arg882 of DNMT3A might par-
ticipate in the homodimerization of DNMT3A or its interaction with 
DNA (Fig. 1b), whereas Arg478 is located on an α-helix of the PHD 
domain surface which probably takes part in 
the protein-protein interaction, and Gly543 in 
the PHD domain is very close to the histone 
H3K4 binding surface (Fig. 1b). Val897 in the 
catalytic region is highly conserved among 
different species (Supplementary Fig. 5), and 
should have an important role in keeping the 
enzyme in the right conformation for interact-
ing with S-adenosylmethionine (SAM) cofac-
tor (Fig. 1b).

To explore the functional consequences of 
structural alteration, we purified wild-type 
and mutant DNMT3A proteins includ-
ing the PHD and catalytic domains from 
Escherichia coli. Because the enzymatic 
activity of DNMT3A-DNMT3L complex is 

Table 2  Clinical features of AML-M5 cases with DNMT3A and MLL 
mutations

Variable WT

Mutationsa

DNMT3A MLL

Mean age at diagnosis ( years) 44.8 ± 18.9 54.9 ± 14.5 37.0 ± 17.4

P = 0.022

P = 0.001

Gender

Male (%) 43 (62.3) 13 (56.5) 14 (63.6)

Female (%) 26 (37.7) 10 (43.5) 8 (36.4)

P = 0.631

P = 0.763

WBC count

≥30 × 109/L: no. (%) 22 (32.4) 16 (69.6) 13 (59.1)

<30 × 109/L: no. (%) 46 (67.6) 7 (30.4) 9 (40.9)

P = 0.003

P = 0.542

Monoblast percentage in nonerythroid lineage

≥80%: no. (%) 29 (42.6) 5 (21.7) 13 (59.1)

<80%: no. (%) 39 (57.4) 18 (78.3) 9 (40.9)

P = 0.086

P = 0.016
WT, wild type (individuals without DNMT3A or MLL mutations). WBC, white blood 
cells. MLL mutations include MLL translocation and MLL-PTD. A one-way ANOVA test 
was used to compare the age at the diagnosis in different groups; other variables were 
analyzed by Fisher’s exact test. The P value was obtained by comparing wild-type and 
DNMT3A mutations groups or DNMT3A and MLL abnormalities groups.  
aTwo individuals had both DNMT3A and MLL mutations and were grouped into two cohorts 
with mutations.

Figure 4  Kaplan-Meier analysis of the survival 
of individuals with AML-M5. (a,b) Overall 
survival (OS) and TTF of individuals with or 
without DNMT3A mutations. Individuals with 
DNMT3A mutations had a poorer overall survival 
or TTF than those without the mutations.  
(c,d) Overall survival and TTF of individuals 
with or without MLL mutations. MLL mutations 
did not influence overall survival or TTF of 
individuals with AML-M5. Mon, months.
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these genes significantly increased in cases 
with DNMT3A mutations as compared with 
those with wild-type DNMT3A (Fig. 3a). 
Moreover, by using methyl-DNA immuno
precipitation (MeDIP)-chip analysis, we 
found that a total of 3,878 genomic regions 
had significantly different methylation  
patterns between the two groups; this might 
affect gene expression of various path-
ways (Supplementary Tables 8 and 9 and 
Supplementary Fig. 8). We validated the 
presence of hypomethylated CpG islands 
in the HOXB cluster including a region adjacent to HOXB2 by 
Sequenom assay (Fig. 3b and Supplementary Fig. 9).

Clinical relevance of DNMT3A versus MLL abnormalities
Because DNMT3A and MLL are two epigenetic regulation genes com-
monly mutated in AML-M5 and mutations of these two genes rarely 
overlapped in cases, we divided our AML-M5 cases into three groups: 
cases with DNMT3A mutations, those with MLL abnormalities and 
those without mutations of the two genes. We found that both the 
DNMT3A mutation group and the MLL rearrangement or PTD 
group were associated with hyperleukocytosis (Table 2). However, 
these two groups differed significantly in terms of bone marrow 
morphology and mean age of disease onset: 59.1% of cases with MLL 
abnormalities had ≥80% monoblasts in bone marrow, whereas only 
21.7% of cases with DNMT3A mutations showed a high percentage 
of monoblasts, and the bone marrow of most DNMT3A mutation 
cases was infiltrated with promonocytes and monocytes (Table 2). 
Moreover, the mean age of disease onset was 54.9 years in the group 
with DNMT3A mutations, but was 37.0 years in the group with MLL 
abnormalities (Table 2).

Notably, we found that individuals with DNMT3A mutations had 
a much worse prognosis as compared with individuals without muta-
tions of this gene, as reflected by the overall survival curve (Fig. 4a) 
and the time to treatment failure (TTF) (Fig. 4b). The group with 
MLL abnormalities had a slightly but not significantly inferior prog-
nosis (Fig. 4c,d). In contrast, we observed no differences in over-
all survival between cases with or without NPM1, FLT3 or NRAS 
mutations (Supplementary Fig. 10). With regard to age at disease 
onset, DNMT3A mutations were associated with a poor prognosis 
in relatively young cases, though their prognostic value in elderly 
cases deserves further analysis in a larger number of individuals 
(Supplementary Fig. 11). Furthermore, multivariate analysis showed 
that DNMT3A mutations and white blood cell count were the two 
independent prognostic variables associated with overall survival and 
TTF (Supplementary Table 10). Binary logistic regression also indi-
cated that DNMT3A mutations were associated with lower complete 
remission rate (Supplementary Table 10). These data suggested that 
DNMT3A mutations represent a poor prognostic factor and are prob-
ably involved in the pathogenesis of acute promonocytic or mono-
cytic leukemia in elderly individuals, whereas MLL abnormalities 
might be associated with acute monoblastic leukemia in relatively 
young individuals.

DNMT3A mutations in acute myelomonocytic leukemia
To determine whether the mutational status of DNMT3A shows 
lineage specificity or selectivity, we also tested for DNMT3A muta-
tions in other subtypes of leukemia (Table 3). No mutations were 
detected in acute myeloid leukemia subtypes M1 through M3 or in 
acute lymphocytic leukemia. Notably, for DNMT3A, we identified 

Arg882 mutations in 9 of 66 cases (13.6%) of AML-M4 (acute myelo-
monocytic leukemia). Analysis of bone marrow cytological features 
showed that the bone marrow of these nine cases was characterized 
by a major monocytic cell infiltration, though a smaller contingent 
of myeloblasts was distinguishable, whereas among 31 cases with-
out Arg882 mutations eligible for bone marrow cytological analysis,  
14 cases had a major component of myeloblasts. This finding indicates 
that DNMT3A mutations are relatively specific to acute leukemia with 
monocytic features and represent driver mutations with an important 
role in the pathogenesis of acute myeloid leukemia with monocytic 
lineage involvement.

DISCUSSION
Acute myeloid leukemia subtypes are clonal hematopoietic diseases 
caused by somatic alterations of genomic information26. Genome 
analysis on these distinct subtypes allows not only a better under-
standing of leukemogenesis but also the identification of new bio
markers and/or drug targets, as recently reported in individuals with 
AML-M111,27.

Here we identified recurrent mutations of DNMT3A in about one-
fifth of AML-M5 cases. Among the six different mutations in our case 
series, those of Arg882 were the most frequent, in agreement with a 
recent report describing the DNMT3A mutations in a large series of 
acute myeloid leukemia cases28. In fact, the p.Arg882His substitu-
tion has also been reported recently in an array-based sequencing 
study of CD34+ blasts of acute myeloid leukemia and myeloprolif-
erative disorder29. No non-synonymous DNMT3A SNPs were found 
in 192 healthy individuals30, similar to the observation we made in 
this study. Indeed, although we identified three DNMT3A variations 
in cases in our study without paired control samples, they were not 
identified in 509 normal samples, and sequencing coding regions of 
31 samples from healthy persons showed no SNPs causing amino acid 
substitutions, suggesting that the three variations probably represent 
somatic mutations.

DNA methylation is a crucial epigenetic modification of the genome 
that is involved in regulating many cellular processes, including gene 
expression regulation and chromatin structural remodeling16. A link 
between DNA methylation and cancer has been shown31. DNMT3A and 
DNMT3B are paralogous enzymes responsible for de novo DNA cyto-
sine methylation during development32. Mutations in DNMT3B cause 
ICF syndrome23,33. Notably, the alterations of Arg882 in DNMT3A are 
analogous to the p.Arg823Gly mutant in DNMT3B, which was discov-
ered in ICF syndrome and has reduced methylation activity23. In this 
study, we found that the enzymatic activity of the Arg882 mutant was 
significantly reduced, possibly because of interrupted homodimeriza-
tion, as Arg882 is adjacent to Val873, Asp872 and Arg881, which are 
located at the homodimer surface20, or because of inappropriate inter-
action of DNMT3A with DNA according to the structural model. We 
also found a reduced enzyme activity in p.Arg478Trp and p.Val897Asp 

Table 3 DNMT3A mutations in acute leukemia

Subtype of acute 
leukemia samples

No. samples  
analyzed

No. samples with DNMT3A mutations

R882S R882C R882H Othersa Total (%) 95% Cl

AML-M1 6 0 0 0 0 0 (0.0) 0.0–4.8

AML-M2 77 0 0 0 0 0 (0.0) 0.0–3.8

AML-M3 94 0 0 0 0 0 (0.0) 0.0–3.1

AML-M4 66 0 4 5 0 9 (13.6) 6.8–23.2

AML-M5 112 1 7 13 3 23 (20.5)b 13.7–28.6

ALL 19 0 0 0 0 0 (0.0) 0.0–13.9
AML, acute myeloid leukemia. ALL, acute lymphocytic leukemia.  
aOthers include the p.Arg478Trp, p.Gly543Cys and p.Val897Asp alterations.bOne individual had both p.Arg478Trp and 
p.Arg882His alterations.
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mutants, probably because of distinct but related biochemical mecha-
nisms. Although the homozygous mutant p.Gly543Cys had similar 
enzyme activity to wild-type DNMT3A, its increased affinity for  
histone H3 could lead to sequestration of the enzyme and subsequently 
disturbed de novo DNA methylation in relevant chromatin domains. 
Notably, these potential functional alterations of DNMT3A are con-
sistent with the three-dimensional structure of the protein, which sug-
gests a putative negative impact on the structure-function integrity 
of the proteins. In 22 of 23 cases, both normal and aberrant alleles 
of DNMT3A were expressed, suggesting possible dominant-negative 
effects of the mutants against the wild-type proteins in these hetero-
zygous cases. In addition, the expression of DNMT3A is low in AML-M4  
and AML-M5 compared with other subtypes of acute myeloid  
leukemia34. Thus, even in individuals without mutation of DNMT3A, 
decreased expression of this gene due to an unknown abnormality 
in transcriptional regulation could contribute to disease mechanism. 
Notably, we found that DNMT3A mutations enabled 32D hemopoietic 
cells to acquire growth and survival advantage even without growth 
factor, although the leukemogenic potential of these mutations remains 
to be proven at an organism level.

We also carried out experiments to explore the possible epigenetic 
consequences of DNMT3A mutations. Indeed, gene expression pro-
files and DNA methylation patterns showed some differences between 
patients with and without DNMT3A mutations. Notably, we found 
that members of HOXB genes were extensively upregulated at mRNA 
level in individuals with mutations in DNMT3A, and we detected 
hypomethylation of certain CpG islands in the HOXB locus. HOX 
family proteins have an important role in regulation of normal hemat-
opoiesis35. Substantial evidence also indicates that abnormal HOX 
protein expression is functionally important in the pathogenesis of 
acute myeloid leukemia and other cancers24,35. In leukemia, dys-
regulated HOX gene expression can occur because of chromosomal 
translocation involving upstream regulators such as MLL24. Taking 
these results into consideration, we assume that HOX family members 
might be target genes of both DNMT3A and MLL, and dysregulated 
HOX genes because abnormalities of these two driver genes might 
contribute to the pathogenesis of AML-M5. DNMT3A can facilitate 
gene transcription by methylating nonpromoter regions including 
intergenic regions and gene bodies36. Therefore, the potential mecha-
nism of aberrant DNA methylation due to DNMT3A alterations needs 
further investigation because of the complex function of this enzyme. 
Furthermore, we found increased expression of IDH1 in individuals 
with DNMT3A mutations, consistent with a gain of function of this 
enzyme caused by IDH1 mutations in malignances including acute 
myeloid leukemia25,37.

The fact that abnormalities of DNMT3A are common and are 
restricted to acute myeloid leukemia with major monocytic lineage 
involvement in both M5 and a subset of M4 suggests two concepts. 
One is that the DNMT3A mutations may be pathogenic rather than 
random events. The other is that these leukemia types may more likely 
develop as a result of aberrant epigenetic regulation. We also found 
mutations in another epigenetic regulatory gene, NSD1, a member 
of the histone methyltransferase family in AML-M5, although with a 
relatively low rate. These NSD1 mutations were different from those 
causing Sotos syndrome, a rare genetic disorder. Notably, the NSD1-
NUP98 fusion gene derived from t(5;11)(q35;p15.5) translocation 
has been found in de novo childhood acute myeloid leukemia38. This 
indicates that abnormal NSD1 is probably involved in the patho-
genesis of AML-M5. The finding of mutations of the hematopoietic 
transcription factor GATA2 is also notable because its p.Leu359Val 
mutation in ZF2 and deletion from Ala341 to Gly346 in ZF1 have been 

reported by our group to be involved in acute myelomonocytic blastic 
crisis of chronic myeloid leukemia and are molecularly involved in 
the aberrant signaling of PU.1, a transcription factor essential for the 
differentiation of monocytic lineage18.

With the discovery of new somatic mutations, the pattern of 
genomic abnormalities in AML-M5 is notable: on one hand, 
DNMT3A mutations should represent altered regulation of DNA 
methylation; on the other hand, MLL abnormalities, and probably 
also NSD1 mutations, could give rise to aberrant status of histone 
methylation with emergence of newly acquired transcriptional activi-
ties. Recently, mutations of histone methyltransferase genes, such 
as EZH2 in some hematological malignancies and MLL2 in Kabuki 
syndrome (an inherited disorder), have been reported15,39,40. These 
studies indicate that mutations in the epigenetic regulatory path-
way have an important role in the pathogenesis of human disorders, 
including malignant diseases. The identification of genes whose 
expressions are specifically modulated by DNMT3A inactivation 
and the mechanism by which mutations in DNMT3A enable the 
pathogenesis of monocytic leukemia may be the next crucial steps 
in this line of research.

Correlation between NPM1 and/or FLT3 mutations with prognosis 
has been controversial10. In our AML-M5 series, mutations of NPM1, 
FLT3 and NRAS were not statistically confirmed to be correlated with 
disease prognosis. Notably, by using DNMT3A mutations and MLL 
abnormalities as biomarkers, we identified case groups with different 
disease prognoses. These two types of variations probably have dif-
ferent characteristics in that individuals bearing DNMT3A mutations 
differed from those with MLL abnormalities in terms of median ages 
at disease onset and of differentiation stages of leukemic components 
in bone marrow. The DNMT3A mutant group was also associated with 
very poor outcome as compared to individuals without DNMT3A 
mutations. Although these findings need to be further studied in a 
larger sample size, the information obtained in this study based on 
analysis of clinical relevance could help improve the clinical manage
ment of AML-M5. To this end, the newly identified and previously 
established major genomic abnormalities together can be found in 
about three of five (60.7%) individuals with AML-M5, whereas genetic 
defects in the remaining cases remain to be identified.

URLs. EpiDesigner, http://www.epidesigner.com/.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturegenetics/.

Accession codes. NCBI Sequence Read Archive: exome sequencing 
data, SRP005624. NCBI Gene Expression Omnibus: SNP and expres-
sion microarray data, GSE27244.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
DNA sample preparation. Genomic DNA samples for exome sequencing were 
freshly obtained from mononuclear cells isolated by Ficoll gradient centrifuga-
tion from bone marrow samples at primary diagnosis and matching peripheral 
blood during complete remission after standard chemotherapy. DNA or RNA 
samples for validation were obtained from our frozen leukemia bank.

Targeted sequence capture. Genomic DNA was captured on a NimbleGen 
2.1M human exome array according to the manufacturer’s protocols (Roche/
NimbleGen). We aimed to capture most of the exome part from the DNA  
sample with NimbleGen the 2.1M chip, which contains 24 Mb CCDS (~85% 
of US National Center for Biotechnology Information CCDS Database) region 
cross ~17,000 genes in 34 Mb targeted nucleotides. DNA was sheared by sonica-
tion and adaptors were ligated to the resulting fragments. The adaptor-ligated 
templates were fractionated by agarose gel electrophoresis and fragments of the 
desired size were excised. Extracted DNA was hybridized to the capture array at 
42.0 °C using the manufacturer’s buffer. The array was washed twice at 47.5 °C  
and three more times at room temperature (20–25 °C) using the manufacturer’s 
buffers. Bound genomic DNA was eluted using 125 mM NaOH for 10 min at room  
temperature. The resulting fragments were amplified by ligation-mediated 
PCR, purified and subjected to DNA sequencing on the Illumina platform.

Massively parallel sequencing. The workflow of Cluster generation using 
the Illumina cluster station was as follows: template hybridization, isothermal 
amplification, linearization, blocking, denaturation and sequencing primer 
hybridization. Then, deep sequencing was carried out for the captured librar-
ies with the Illumina Genome Analyzer IIx platform (GAIIx), and 75–120 bp  
paired- and single-end reads were output according to the manufacturer’s 
protocols because the software and hardware were upgraded in the process.  
Image analysis and base calling were carried out by Illumina RTA versions  
1.5 and 1.6 with default parameters.

Alignment, SNV or indel calling and quality control. The software BWA41 
was used to align both single- and paired-end reads to the reference human 
genome (hg18, downloaded from http://genome.ucsc.edu/) with default 
parameters. After the alignment, only those uniquely mapped single reads 
or confidently mapped (Phred Quality ≥10) paired end reads were kept. 
Variations including SNVs and indels were called with the Samtools software 
package42 and filtered with recommended threshold (SNV quality ≥20, indel 
quality ≥50 and ≥3 reads covered) for cases. To ensure the filter power and 
minimize the false discovery rate, loose criteria were applied to filter control 
variations (SNV quality ≥10, indel quality ≥10 and ≥3 reads covered). After 
the variation calling, SNVs with ≥20% mutation rate, that is, ≥20% of the reads 
mapped to the SNV point support the variation, were kept as qualified point 
mutations (15% was set for indels because of their low sensitivity).

Genome-wide SNP genotyping and sensitivity evaluation. All the nine 
bone marrow samples in initial sequencing sets were genotyped with Illumina 
human 610 or 660W SNP array and analyzed using GenomeStudio V2010.2 
with GT module 1.6.3 (Illumina). With the SNP information, we evaluated 
the heterozygous SNVs located in the targeted region after the first round of 
quality control and a high sensitivity (99.2% on average) was observed. With 
the guidance of the pattern concluded from these positive heterozygous SNVs, 
which were the dominant form of somatic mutants27,43, we tested different 
sets of parameters and finally exerted a more strict but still sensitive (97.0%) 
criterion to filter those false positive SNVs.

Targeted exon resequencing. Genomic DNA from samples in the mutation 
discovery sets (the initial and expanded sequencing sets) were subjected to 
targeted exon, amplified by PCR and resequenced by means of Sanger sequenc-
ing. Damaging prediction of mutations was carried out by PolyPhen 2 as 
described44. To determine the mutations of six highlighted genes (DNMT3A, 
NSD1, GATA2, CCND3, ATP2A2 and C10orf2) in AML-M5, we carried out 
whole-exon sequencing in the M5 validation set. Sequenom assay was carried 
out to determine the frequency of mutations in AML-M5 and other subtypes 
of acute leukemia. Identification of MLL abnormalities and FLT3-ITD were 
subjected to targeted exon amplification and Sanger sequencing.

Computational modeling of DNMT3A wild-type and mutants. The avail-
able protein crystal structures of DNMT3L, DNMT3A, HhaI and DNMT3A-
DNMT3L complex with histone H3 peptide or DNA (PDB 2PVC, 2QRV, 
3A1B and 1MHT, respectively) were identified as the template20,21,45. A three-
dimensional model of the histone H3 peptide, DNMT3L, DNMT3A and DNA 
complex was generated using CCP4 Molecular Graphics Superimposition and 
molecular docking program AutoDock 4.0 (ref. 46). The structural images 
were drawn using PyMOL software (DeLano Scientific).

Protein purification and DNA methylation assay in vitro. DNMT3A mutant 
constructs were generated using site-directed mutagenesis with His-tagged 
DNMT3A plasmid constructed from commercial human DNMT3A gene tem-
plate purchased from ATCC (catalog no. 10436367). Wild-type DNMT3A and 
each of the six mutant constructs were co-purified with or without wild-type 
GST-tagged DNMT3L. These proteins were used to carry out the DNA methyl
transferase activity assay in vitro.

For the detection of in vitro methylation activity, a biotinylated 1,179-bp  
PCR fragment amplified from the EBNA1 region of p220.2 was used as  
substrate. The methylation reaction contained DNA fragments (100 ng) and 
DNMT3A (100 ng) with or without DNMT3L (100 ng) in 20 mM HEPES,  
pH 7.5, 30 mM NaCl, 1 mM EDTA, 0.2 mM DTT, 50 mg/ml BSA and 1.25 mM  
S-[methyl-3H]AdoMet (80 Ci/mmol) (Amersham Biosciences) in a total  
volume of 20 µl. Incorporation of methyl-3H into the substrate DNA was 
determined by liquid scintillation.

Pull-down assay. GST-histone H3 protein and wild-type or p.Gly543Cys 
mutant His-DNMT3A were purified from E. coli BL21 (DE3) carrying an 
expression construct. For GST pull-down assay, 200 µg of purified GST fusion 
protein was incubated with GST-Sepharose 4B beads (Amersham Biosciences) 
in 1× PBS buffer at 4 °C for 30 min, and then the beads were washed five times 
with 1× PBS buffer. Purified DNMT3A products (100 µg) were then added 
to the slurry and incubated at 4 °C for another 30 min. The Sepharose beads 
were washed five times with 1× PBS buffer, and bound proteins were resolved 
on an SDS-PAGE gel followed by protein blotting.

For the Ni-NTA pull-down assay, 200 µg of purified His-fusion DNMT3A 
proteins (wild-type and p.Gly543Cys mutant) were incubated with Ni-NTA 
beads (Amersham Biosciences) in binding buffer (500 mM NaCl, 20 mM Tris, 
pH 8.5, 2 mM DTT) at 4 °C for 30 min, and then the beads were washed five 
times with binding buffer. Core histones (50 µg; Roche) were then added to 
the slurry and incubated at 4 °C for another 30 min. The Sepharose beads were 
washed five times with binding buffer, and bound proteins were resolved on 
an SDS-PAGE gel followed by western blotting.

Cell proliferation analysis. 32D cells were transfected using Cell Line 
Nucleofector Kit V according to the manufacturer’s instructions. At 24 h after 
transfection, the cells with overexpression of GFP-tagged wild-type DNMT3A 
and mutant DNMT3A were analyzed by flow cytometry assay. The average 
transfection efficiency was ~50%. Transfected cells (2 × 104) were then incu-
bated with or without IL-3 in a 12-well plate for cell proliferation analysis.

Microarray expression profiling. Total RNA from bone marrow samples 
of AML-M5 cases were prepared and, after quality control, subjected to 
Affymetrix Human Genome U133 Plus 2.0 Array GeneChip microarrays 
according to the manufacturer’s instructions (Affymetrix). A series of software 
(Expression Console software, Affymetrix; Partek GS 6.5) was used for data 
analysis. Probes with fold change of >2 and significant difference (P ≤ 0.05) 
between the DNMT3A mutation group and the wild-type DNMT3A group 
were retained for further analysis.

Methylation analysis. DNA samples were extracted for the HG18 Methylation 
2.1M Deluxe Promoter Array (NimbleGen) to identify the methylated DNA 
regions. Methyl-DNA immunoprecipitation (MeDIP) was carried out using 
Biomag magnetic beads coupled to mouse monoclonal antibody to 5-methyl
cytidine. The immunoprecipitated DNA was eluted and purified by phenol- 
chloroform extraction and ethanol precipitation. The total input and immuno-
precipitated DNA were labeled with Cy3- and Cy5-labeled random nonamers, 
respectively, and hybridized to the assay chips. Scanning was carried out with 
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the Axon GenePix 4000B microarray scanner. The raw data were extracted 
as pair files by NimbleScan software and further processed through median 
centering, quantile normalization and linear smoothing by Bioconductor 
packages Ringo, limma and MEDME. After normalization, a normalized 
log2-ratio data were created for each sample. From the normalized log2-ratio 
data, a sliding-window peak-finding algorithm provided by NimbleScan v2.5 
(Roche-NimbleGen) was applied to find the enriched peaks with specified 
parameters (sliding window width, 750 bp; minimal probes per peak, 2; P value 
(after −log10 transformation) minimum cutoff, 2; maximum spacing between 
nearby probes within peak, 500 bp). Then, the identified peaks were mapped 
to genomic features including transcripts and CpG islands. Genes with sig-
nificant changes were revealed with DEP analysis using M′ method. From this 
analysis, 2,246 peaks (1,946 unique genes) were detected as hypermethylated in 
DNMT3A mutation sample as compared to samples with wild-type DNMT3A, 
whereas 1,602 peaks (1,291 unique genes) were hypomethylated.

Bisulfite conversion followed by MALDI-TOF mass spectrometry. Bisulfite 
conversion of 1 µg genomic DNA using EZ DNA methylation-Gold Kit (Zymo) 
were carried out according to manufacturer’s instructions. Hot-start PCR was 
used to amplify the region of interest from the bisulfite-converted genomic DNA. 

Bisulfite conversion followed by Sequenom MassARRAY MALDI-TOF mass 
spectrometry–based quantitative DNA methylation analysis was carried out in 
triplicate by standard protocol (Sequenom EpiTYPER DNA methylation analysis). 
Primers were designed using Sequenom’s EpiDesigner tool (see URLs). Primer 
sequences (without linker sequences) used in Sequenom analysis are listed in 
Supplementary Table 11. A T7-promoter tag was incorporated into each reverse 
PCR Page 3 amplification primer, and a decamer linker sequence was added to 
each forward primer to balance the primer length (Supplementary Table 11).
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