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Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide.
To explore the genetic origins of this cancer, we used whole exome sequencing and gene copy
number analyses to study 32 primary tumors. Tumors from patients with a history of tobacco use
had more mutations than did tumors from patients who did not use tobacco, and tumors that were
negative for human papilloma virus (HPV) had more mutations than did HPV-positive tumors. Six
of the genes that were mutated in multiple tumors were assessed in up to 88 additional HNSCCs.
In addition to previously described mutations in TP53, CDKN2A, PIK3CA and HRAS, we
identified mutations in FBXW7 and NOTCH1. Interestingly, nearly 40% of the 28 mutations
identified in NOTCH1 were predicted to truncate the gene product, suggesting that NOTCH1 may
function as a tumor suppressor gene rather than an oncogene in this tumor type.

More than half a million new cases of head and neck squamous cell carcinoma (HNSCC)
will occur in 2011, including 50,000 cases in the United States, making it the sixth most
common cancer in the world (1–3). HNSCC and its treatment can result in cosmetic
deformity and functional impairment of vital functions, including breathing, swallowing,
speech, phonation, taste, hearing and smell. These cancers are frequently lethal, with a five-
year survival of only ~50% (4). HNSCCs, like all solid tumors, are thought to be initiated
and to progress through a series of genetic alterations. Indeed several cellular signaling
pathways are dysregulated in this tumor type through genetic and epigenetic alterations,
such as those involving TP53 and CDK2NA (4). HNSCCs also exhibit many chromosomal
abnormalities, including amplifications of region 11q13 containing the cyclin D1 gene and
region 7p11 encoding EGFR (5). Tobacco use and excessive alcohol consumption are major
risk factors for HNSCC in the United States (6). More recently, human papilloma virus
(HPV) has emerged as an additional risk factor for the development of cancers of the
oropharynx (7). Patients with HPV-associated cancers have an improved overall and
disease-specific survival, suggesting that these tumors have distinct biological features (8).

To gain a comprehensive view of the genetic alterations underlying HNSCC, we sequenced
~18,000 protein-encoding genes in tumors from 32 patients. Thirty of the thirty-two patients
had not been treated with chemotherapy or radiation prior to their tumor biopsy, so the
spectrum of changes we observed largely reflects those of tumors in their naturally occurring
state. Tumor samples were carefully selected or microdissected to achieve a neoplastic
cellularity of >60%. DNA was purified from these tumors as well as matched non-neoplastic
tissue and used to generate libraries suitable for massively parallel sequencing. After capture
of the coding sequences with a SureSelect (Agilent) or CCDS (Nimblegen) Enrichment
System, the DNA was sequenced using an Illumina GAIIx/HiSeq (17 tumors) or SOLiD V3/
V4 (15 tumors) instruments. The average coverage of each base in the targeted regions was
77-fold and 44-fold for the Illumina and SOLiD instruments, and 92.6% and 90% of
targeted bases were represented by at least 10 reads in these platforms, respectively (table
S1).

Using stringent criteria for analysis of these data (9) we identified 911 candidate somatic
mutations in 725 genes among the 32 tumors. To ensure that our algorithms for identifying
mutations were reliable, we evaluated the candidate mutations by Sanger sequencing or by
454 sequencing and confirmed 609 of them (67%)(table S2). One hundred and fifty two
(17%) mutations did not confirm and 150 (16%) mutations could not be tested because of an
unusually high GC content, difficulty in the design of unique primers, or other unknown
factors preventing specific amplification and sequencing of the locus. The range of
confirmed mutations per tumor was 2 to 78, with a mean and standard deviation of 19 ± 16.5
mutations per tumor (table S1).

There were obvious differences in the genetic landscapes of HPV-associated and HPV-
negative HNSCCs. First, far fewer genes were mutated per tumor in the HPV-associated
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tumors compared to those tumors not epidemiologically related to HPV (table S3A, 4.8 ± 3
versus 20.6 ± 16.7, p < 0.05, Welch two sample t-test). The difference in the number of
mutations between HPV-associated and HPV-negative tumors was independent of smoking
status. Second, TP53 mutations were not identified in any of the HPV-associated tumors but
were found in 78% of the HPV-negative tumors. These data are consistent with previous
results on HNSCC as well as HPV-associated cervical cancers (10–12).

As expected, more mutations were identified in tumors from patients with a history of
tobacco use compared with those from patients who did not use tobacco (table S3B, 21.6 ±
17.8 versus 9.5 ± 6.5, p<0.05, Welch two sample t-test). Surprisingly, and in contrast to data
from lung cancer, the mutational spectrum was not enriched for G:C>T:A transversions in
those tumors associated with smoking (table S4). Nearly all of the HNSCC tumors analyzed
had a mutation spectrum similar to that of non-smoking related lung cancers and other non-
smoking related tumors. These data suggest that the effects of tobacco on the mutational
spectra vary among different tumor types.

We selected genes for further analysis if they or closely related genes were altered in at least
two of the 32 tumors sequenced. The genes included were PIK3AP1, RIMBP2, SI, NRXN2,
NRXN3, EPHA7, RASA1, RXFP3, PIK3CA, HRAS, TP53, CDKN2A, NOTCH1, and FBXW7
(table S2). We then analyzed the sequences of these genes in additional HNSCC and their
corresponding normal tissues (9). In total, somatic mutations in TP53, NOTCH1, CDKN2A,
PIK3CA, FBXW7, and HRAS were identified in 47%, 15%, 9%, 6%, 5% and 4% of patients,
respectively (table S5). The remaining genes were not observed to be mutated in more than
one of the additional samples analyzed. Of the 63 TP53 mutations in the 120 samples
analyzed (32 in the Discovery Set and 88 in the Prevalence set), 25 were predicted to be
inactivating mutations [ten nonsense, ten insertions or deletions (“indels”), five splice-site
mutations], and 38 were missense. Two of these were homozygous, that is, there was no
remaining normal allele, and seven tumors demonstrated two mutations in TP53, likely
representing inactivation of both alleles. In the other samples, the presence of contaminating
DNA from non-neoplastic cells may have made it difficult to reliably distinguish
heterozygous from homozygous changes. There were 11 CDKN2A mutations observed
among the 120 tumors analyzed, of which nine were definitely inactivating (3 nonsense, 4
indels, and 2 splice site) and 2 were missense. The frequency and types of mutations we
observed in TP53 and CDKN2A, as well as in HRAS and PIK3CA, were consistent with
previous studies of HNSCC (4).

A total of 28 NOTCH1 mutations were identified. Seven of 21 patients with NOTCH1
mutations had two independent mutations, presumably on different alleles. Eleven of the
NOTCH1 mutations were predicted to truncate the protein product (7 nonsense, 4 indels),
whereas 17 were missense (Tables 1 and 2). Next to TP53, NOTCH1 was the most
frequently mutated gene found in the combined Discovery and Prevalence set, with
alterations present in 15% of patients. To date, NOTCH1 has not been reported to be
mutated at a significant frequency in other solid tumor types (13).

FBXW7 mutations have not been previously observed in HNSCC, though they are frequent
in other tumor types. Of the 6 FBXW7 mutations we identified, two were indels and the
other four were missense; none were homozygous. Although both alleles of most tumor
suppressor genes are mutated in tumors in which they play a role, FBXW7 is an exception.
FBXW7 is a member of the F-box protein family and constitutes a component of the
ubiquitin protein ligase complex. It acts as a tumor suppressor in several tumors and one of
its major targets is NOTCH1, which it targets for degradation. The FBXW7 mutations we
observed were in a hotspot known to block the degradation of active NOTCH1 (14). It is
attractive to hypothesize that FBXW7 mutations are modulating the Notch pathway,
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although FBXW7 also targets other cancer related proteins for degradation, including cyclin
E and c-myc. Further studies will be necessary to elucidate the function of these FBXW7
mutations in HNSCC.

To complement the sequencing data, we performed copy number analysis with Affymetrix
SNP6.0 microarrays on 42 tumor and normal sample pairs, including 25 of the samples used
for massively parallel sequencing. We found that the most frequently mutated genes often
were affected by copy number changes. For example, loss of heterozygosity (LOH) was
observed in the tumor samples with mutations in TP53, and CDKN2A was frequently
deleted (table S6). In addition, LOH at the NOTCH1 locus was detected in two of the three
tumors with NOTCH1 mutations that were analyzed for copy number. Given that 7 other
tumors in our cohort had two NOTCH1 mutations, inactivation of both alleles likely
occurred in at least 9 of the 21 patients with NOTCH1 mutations. These data support the
idea that NOTCH1 acts as a tumor suppressor in HNSCC. Additionally, recurrent gains and
losses were observed in several specific regions of the genome (table S7 and figs. S1 to S6).
Recurrent focal changes were identified by filtering for segments with more than 3 copies or
losses of 1 or more copies in at least 3 samples. The focal changes included deletions of
9p21.3 (containing CDKN2A) and amplifications of small segments on 11q, 3q and 7p.
These regions have previously been implicated in HNSCC and contain known oncogenes
(CCND1, PIK3CA and EGFR, respectively).

Our data raise intriguing questions about the role of NOTCH1 in tumorigenesis. An
involvement of NOTCH1 in human cancers was first demonstrated through the discovery of
translocations in T-cell leukemias (15). Subsequently, more subtle mutations of NOTCH1
were identified in a variety of hematopoietic tumors. Most of the mutations in hematopoietic
tumors are clustered in two hot spots in the heterodimerization (HD) and C-terminal
polypeptide enriched proline, glutamate, serine and threonine (PEST) domain (Fig. 1A)(14).
Exogenous expression of these mutants, as well as of the translocated NOTCH1, lead to
neoplastic transformation in vitro and in vivo. In contrast, while this manuscript was under
review, Klinakis et.al. showed that reduced activity of the Notch signaling pathway is
associated with the development of chronic myelomonocytic leukemia (CMML), suggesting
a tumor suppressor role for Notch (16). Additionally, a small number of mutations, some
truncating, have been previously observed in solid tumors (Fig. 1B) (17). This pattern is
consistent with a suppressor gene rather than an oncogene function, but the mutations were
present in only a small fraction of any individual tumor type and were difficult to distinguish
from passenger mutations. In contrast, the relatively large number of mutations we observed
in HNSCC strongly implicates them as drivers (P < 10−8)(8). Moreover, the spectrum of
NOTCH1 mutations we observed in HNSCC was fundamentally different from those
identified in hematopoietic tumors, as a high fraction were in the N-terminal EGF-like
ligand binding domain and the majority of the mutations were predicted to alter the protein
N-terminal to the transmembrane region (Fig. 1C). The location and nature of these
alterations, together with the observation that two NOTCH1 mutations were found in each of
seven patients, provides strong genetic evidence that NOTCH1 often acts as a tumor
suppressor gene in HNSCC. This interpretation is consistent with functional studies of the
role of NOTCH1 in squamous epithelial cells, as NOTCH1−/− mice develop epithelial
tumors (18). The function of NOTCH1 in cancer - oncogene in some leukemias and tumor
suppressor gene in CMML, HNSCC, and perhaps other cancers - may recapitulate its dual
role in normal biology, where activation can lead to stem cell maintenance in some tissues
but terminal differentiation in others (19). These results also emphasize the importance of
assessing the functional attributes of cancer-associated mutations in a cell-type specific
fashion, either in tissue culture or in model organisms.
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The results of this study provide evidence that HNSCCs, although morphologically similar,
are comprised of distinct diseases at the molecular level. The different genetic landscapes
associated with HPV and tobacco exposure are consistent with clinical and epidemiologic
data that has suggested the importance of these environmental factors in prognosis and
response to therapeutic interventions. Another important observation is that only 18% of the
28 tumors not associated with HPV from the Discovery set had activating mutations in a
bona fide oncogene. In contrast, 89% of these tumors harbored inactivating mutations in at
least one bona fide tumor suppressor gene. This distinction is critical because the new
generation of molecularly-targeted therapies is directed toward activated oncogenes but such
drugs cannot directly target mutated tumor suppressor genes because they are already
inactivated. Tumor suppressor gene predominance is not limited to HNSCC as exomic
analysis of other tumor types, such as renal cell carcinomas and pancreatic endocrine
neoplasms, have revealed similar patterns (20, 21). Our finding that HNSCCs have few
directly targetable mutations has implications for controlling this disease in the future. In
particular, it suggests that prevention, careful surveillance of patients at risk, and early
detection are the optimal approaches for reducing morbidity and mortality from this disease.
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Fig. 1.
Schematic depiction of mutations in NOTCH1. (A) Previously observed NOTCH1 mutations
in hematopoietic malignancies. EGF = Epidermal growth factor, LNR = Lin12-Notch
repeats, TMD = trans-membrane domain, RAM = Recombination signal-binding protein 1
for J-Kappa (RBPjk) association module, NLS = nuclear localization signal, PEST = proline,
glutamic acid, serine/threonine-rich motifs. Red bars represent previously described
mutation hotspots (amino acids 1575–1630 and 2250–2550). (B) Previously observed
NOTCH1 mutations in solid tumors. Colored arrow (missense mutation) and “X” (truncating
mutation) depict mutations found in different tumor types: pink = breast cancer, black =
glioma, blue = lung cancer, green = pancreatic adenocarcinoma, red = esophageal squamous
cell carcinoma, purple = tongue squamous cell carcinoma. (C) Mutations in NOTCH1 in
HNSCC observed in this study. Black arrow = missense mutation, red “X” = truncating
mutation (13, 22–24).
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