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Abstract
Despite recent discoveries in genome-wide association studies (GWAS) of genomic variants associated with Alzheimer’s

disease (AD), its underlying biological mechanisms are still elusive. The discovery of novel AD-associated genetic

variants, particularly in coding regions and from APOE ε4 non-carriers, is critical for understanding the pathology of AD.

In this study, we carried out an exome-wide association analysis of age-of-onset of AD with ~20,000 subjects and placed

more emphasis on APOE ε4 non-carriers. Using Cox mixed-effects models, we find that age-of-onset shows a stronger

genetic signal than AD case-control status, capturing many known variants with stronger significance, and also

revealing new variants. We identified two novel variants, rs56201815, a rare synonymous variant in ERN1, and

rs12373123, a common missense variant in SPPL2C in the MAPT region in APOE ε4 non-carriers. Besides, a rare missense

variant rs144292455 in TACR3 showed the consistent direction of effect sizes across all studies with a suggestive

significant level. In an attempt to unravel their regulatory and biological functions, we found that the minor allele of

rs56201815 was associated with lower average FDG uptake across five brain regions in ADNI. Our eQTL analyses based

on 6198 gene expression samples from ROSMAP and GTEx revealed that the minor allele of rs56201815 was potentially

associated with elevated expression of ERN1, a key gene triggering unfolded protein response (UPR), in multiple brain

regions, including the posterior cingulate cortex and nucleus accumbens. Our cell-type-specific eQTL analysis using

~80,000 single nuclei in the prefrontal cortex revealed that the protective minor allele of rs12373123 significantly

increased the expression of GRN in microglia, and was associated with MAPT expression in astrocytes. These findings

provide novel evidence supporting the hypothesis of the potential involvement of the UPR to ER stress in the

pathological pathway of AD, and also give more insights into underlying regulatory mechanisms behind the pleiotropic

effects of rs12373123 in multiple degenerative diseases including AD and Parkinson’s disease.

Introduction
Late-onset sporadic Alzheimer’s disease (AD) is a pro-

gressive neurodegenerative disorder accounting for

50–70% of all dementia cases in the elderly population1.

Amyloid β-peptide (Aβ) is the primary component found in

the neuritic plaques of AD patient brain, and multiple

mutations in the APP gene and its related genes (PSEN1

and PSEN2) promoting Aβ production have been identified

in familial (early-onset) AD2–6. These observations support

a causal role of Aβ deposition in the etiology of AD.

Familial AD is, however, much rarer than sporadic AD,

which is highly prevalent after age 65. Recent genome-wide

association studies (GWAS) have identified a large number

of genetic variants associated with the risk of late-onset
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AD7–13, most of which are located in genes exclusively

expressed in microglia (e.g., TREM2). These insights sug-

gest the involvement of microglia in the pathology of AD.

Despite recent progress in understanding the biological

mechanisms underlying AD, the cellular and molecular

activities and causation in the late-onset AD of most com-

mon variants discovered in GWAS, including those in

APOE, remain unclear. Functional links between most of

these AD-related loci and genes are still to be determined,

although some microglia-related single nucleotide poly-

morphisms (SNPs) in, e.g., CD33, and the MS4A gene

cluster, are shown to be mediated through TREM2

(refs. 14,15). The functional mechanisms of TREM2 in Aβ

uptake by microglia are also complicated, and contradictory

biological consequences are observed in mouse models (see,

e.g. ref. 16, for a review on this topic). Moreover, adding up

the APOE variant and other nine identified top SNPs

accounts for a small portion (5%) of variation of age-of-

onset17, suggesting that missing genetic mechanisms con-

tribute to this complex disease. We expect that the discovery

of additional AD-associated genetic variants will provide

more insights into the understanding of AD pathology.

In this study, we performed an exome-wide associa-

tion analysis of age-of-onset of AD, in which most

genetic variants are rare or low frequency, using an

Alzheimer’s Disease Sequencing Project (ADSP) sample

of 10,216 subjects in the discovery phase. Rare coding

variants often show larger effect sizes, and their biolo-

gical consequences are more explicable, but its asso-

ciation analysis is complicated by insufficient statistical

power. Although the exome-wide association of AD has

recently been explored using AD status18–20, our ratio-

nale is that more AD-related rare variants can be

identified using analysis of age-of-onset of AD with a

Cox model given emerging evidence from a previous

study showing its potential advantage in terms of sta-

tistical power21. We attempted to replicate significant

findings in five other studies, with a meta-analysis

sample size of about 20,000 subjects. To understand the

biological consequences of the identified SNPs, we

explored their influence on regulatory activities and

gene expression at tissue and single-cell levels.

We further performed a separate exome-wide asso-

ciation analysis of the age-of-onset of AD by excluding

the APOE ε4 carriers. The overarching goal is to identify

novel variants contributing to AD independently of the

APOE ε4 allele, the strongest single genetic risk factor

for AD. Despite quarter Century research on the func-

tion of the APOE gene22, the primary biological role of

this gene in AD pathogenesis remains elusive as the gene

and its protein are probably involved in many pathways

related to Aβ deposition, Aβ clearance, tau pathology,

and neuroinflammation23. Our analysis is designed to

provide more insights into AD-related APOE biology.

Results
Description of the study sample in the discovery phase

In the discovery phase, we carried out an exome-wide

association analysis of the age-of-onset of AD using a

whole-exome sequencing (WES) sample from the

ADSP24. We included 10,216 non-Hispanic white subjects

(54.86% cases, 58.03% women) after filtering subjects with

missing information about sex, AD status, or age-of-onset.

The average age-of-onset of AD was 75.4 years (Table S1).

We interrogated 108,509 biallelic SNPs with a missing

rate <2% across the subjects and a minor allele count

(MAC) >10. To identify genetic variants associated with

the hazards of AD, we conducted three separate analyses.

In the first and second analyses, we included all subjects

and performed ε4 allele (coded by the minor allele of

rs429358) unconditional (first) and conditional (second)

analyses as APOE ε4 is a well-known strong predictor of

AD. That is, we tested two models, differing as to whether

the copy of the APOE ε4 SNP rs429358 was included as a

covariate. In the third analysis, we only included 7185

APOE ε4 non-carriers. Despite this reduction of the

sample size, we expect better statistical power by lever-

aging the age-of-onset analysis than logistic regression. In

all analyses, we included as covariates sex and three

principal components (PCs) (PC2, PC8, and PC10) that

were significantly associated with AD (p < 0.005) among

the top ten PCs. We built a genetic relatedness matrix

(GRM) using the ADSP WES data and found that the

ADSP sample contains a small number of family members

or cryptic relatedness (120 subjects had a maximum

genetic relatedness coefficient >0.25). All age-of-onset

analyses were performed using Cox mixed-effects models

implemented in the coxmeg R package21 to correct for the

relatedness of the subjects. We found that the genomic

inflation was controlled in all three analyses (λ= 1.028,

1.073, and 1.023) (Fig. S1), comparable to those in ref. 18

using logistic regression models (λ= 1.006–1.087).

Exome-wide analysis of age-of-onset of AD in the

discovery phase

In the first analysis (using all subjects without the

adjustment for APOE ε4), we detected four independent

signals passing the exome-wide threshold (p= 5E−07)

(Fig. 1A, Table S2, and Model 1). The most significant

SNP was the APOE ε4-coding variant rs429358, having a

hazard ratio (HR) of 3.32 (p= 4.39E−497). The p-value is

much more significant than that reported in the largest

meta-analysis so far based on AD status (p= 5.79E

−276)10. This result confirms previous findings25–27 that

APOE ε4 is not only associated with AD status but also

substantially decreases its age at onset (Fig. 2A). The three

signals outside the APOE region were rs75932628 (the

R47H mutation) in TREM2 (HR= 2.76, p= 8.16E−17),

rs7982 in CLU (HR= 0.890, p= 1.1E−07), and rs2405442
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Fig. 1 Results of exome-wide association analyses of age-of-onset of AD in the ADSP sample. A Model 1: a Cox model with all subjects

adjusted for three significant PCs and sex; B Model 2: a Cox model with all subjects adjusted for the copies of APOE ε4, three significant PCs and sex;

C Model 3: a Cox model with APOE ε4 non-carriers adjusted for three significant PCs and sex. Three top SNPs identified in the APOE region using

Model 1 were highlighted in the regional plot due to their extremely significant p-values. The red horizontal line is a threshold based on the

Bonferroni correction (0.05/100,000=5E−07). D Comparison of p-values between a Cox model and a logistic model for well-known AD-related SNPs

and newly identified SNPs in this study in Model 1 (left), Model 2 (middle), and Model 3 (right). The same ADSP data and covariates were used to fit

the Cox and logistic models.
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in PILRA (HR= 0.879, p= 6.35E−08) (Fig. 1A, Table S2,

and Model 1). The beneficial association of the missense

variant rs7982 in CLU was not reported in the previous

study of AD status using the same ADSP sample18. We

observed that the minor allele carriers of rs7982 had lower

hazards consistently across a wide age interval (Fig. 2B).
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Fig. 2 Probability of remaining free of AD (survival probability) and risk tables in the ADSP sample for genotype groups. A APOE ε4;

B rs7982; C rs144292455; D rs12373123; E rs56201815 in all subjects; F rs56201815 in the APOE ε4 non-carriers.

He et al. Translational Psychiatry          (2021) 11:146 Page 4 of 18



Although the R47H mutation in TREM2 and rs2405442 in

PILRA were identified in the previous analysis18, our

analysis achieved increased significance for the R47H

mutation (p= 8.16E−16 vs. 4.8E−12). In addition, we

observed well-known AD-associated SNPs among the top

hits, including rs12453 in MS4A6A (p= 1.52E−06),

rs2296160 in CR1 (p= 6.50E−06), and rs592297 in

PICALM (p= 5.26E−05) (Table S2 and Model 1).

In the second analysis (using all subjects with the

adjustment for APOE ε4), we identified six independent

SNPs (p < 5E−07) (Fig. 1B, Table S2, and Model 2),

including three aforementioned variants in TREM2,

CLU, and PILRA. Three additional variants include

rs144292455 in TACR3 on 4q24 (HR= 5.15, p= 2.16E

−07, MAC= 17), rs111033333 in USH2A on 1q41 (HR=

4.65, p= 1.99E−07, MAC= 19), and rs199533 in NSF on

17q21.31 (HR= 0.87, p= 1.57E−07, minor allele fre-

quency (MAF)= 20.2%). The SNP rs199533 in NSF is

previously reported in ref. 18 but does not reach the

genome-wide significance in a follow-up meta-analysis

incorporating replication studies18. The other two var-

iants are novel. This analysis also identified two variants in

CST9 and CDKL1 genes at the suggestive level of sig-

nificance p < 5E−06 (Table 1).

In the third analysis (using only APOE ε4 non-carriers),

we identified three independent significant SNPs (p < 5E

−07) (Fig. 1C, Table S2, and Model 3) including the R47H

mutation in TREM2 (HR= 2.99, p= 1.11E−14), and

rs111033333 in USH2A (HR= 5.13, p= 1.70E−08) found

in the second analysis. One novel SNP was the rare variant

rs56201815 in ERN1 within 17q23.3 locus (HR= 4.22, p=

7.99E−08, MAC= 29). The HR of the minor allele of this

SNP was substantial and comparable to that of APOE,

which is not surprising because rare coding variants tend

to show more significant biological effects, and the MAF of

this SNP in the ADSP sample is merely ~0.13%, much

lower than that of the R47H mutation in TREM2.

We found that the p-values of the newly identified SNPs

from the Cox models were more significant, particularly

for the rare variants, than those from a logistic model

using the same ADSP sample and covariates (Fig. 1D),

explaining why these SNPs were not detected in the

previous study. We compared the p-values of well-

established AD-related coding-variants in the ADSP

WES data between the two models. We found that the

Cox model produced more significant p-values for almost

all SNPs except for the two SNPs in MS4A6A (Fig. 1D).

Replication analyses confirm SNPs in ERN1 and the MAPT

region

The variants in TREM2, CLU, and PILRA, identified

using the full sample in the first analysis, were reported by

previous larger studies10–12. Accordingly, we focused on

replication of the novel findings identified in the analyses T
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conditional on APOE ε4, and using the ε4-free sample.

We attempted to replicate associations of ten candidate

SNPs with a p-value <5E−06 in at least one of the models

in the discovery phase (Table 1), including five common

variants (MAF ≥5%) and five rare variants (MAF <1%). All

these SNPs passed a test for the assumption of propor-

tional hazards in the discovery phase (Table 1). We fur-

ther included rs2732703, an intronic variant of ARL17B in

the MAPT region reported being associated with AD in a

previous study of APOE ε4 non-carriers28. This SNP is in

high linkage disequilibrium (LD) with our identified

coding variants rs199533 (r2= 0.90) in NSF and

rs12373123 (r2= 0.93) in SPPL2C. We examined these

SNPs in non-Hispanic white populations of LOADFS

(3473 subjects, 43.4% cases, imputed genotypes), CHS

(3262 subjects, 6.2% cases, imputed genotypes), GenADA

(1588 subjects, 50% cases, imputed genotypes), the Reli-

gious Orders Study (ROS) and the Rush Memory and

Aging Project (MAP) cohort (1195 subjects, 45% cases,

whole-genome sequencing (WGS) genotypes29), and the

ADSP extension study (1147 subjects, 45.8% cases, WGS

genotypes) (Table S1). We removed ~400 subjects from

the ROSMAP WGS cohort, 572 from CHS, 318 from

LOADFS, who were already included in the ADSP sample,

resulting in 681, 2690, 3155 non-Hispanic whites,

respectively. The coxmeg R package21 was used to analyze

the LOADFS dataset with a GRM estimated from its

genotype array, and the coxph function in the survival R

package30 was used to analyze the CHS, GenADA, ROS-

MAP, and ADSP extension datasets.

The meta-analysis of the summary statistics from the

conditional model adjusted for APOE ε4 showed that

rs199533 in NSF reached the exome-wide significance of

5E−07 (meta-analysis p= 3.77E−07) (Table 1). Besides,

rs144292455 in TACR3 (MAF= 0.083% in ADSP) showed

the consistent direction of effect sizes across all studies

(The model did not converge in CHS as there was only one

carrier.) with a p-value close to the exome-wide sig-

nificance (p= 9.92E−07). Rs144292455 is a coding variant

of TACR3 resulting in a premature stop codon and, thus a

shortened transcript. The minor allele of rs144292455

increased the risk of AD in ADSP (17 carriers, 16 cases),

ROSMAP (2 carriers, 1 case), LOADFS (10 carriers, 4

cases), GenADA (2 carriers, 2 cases), and the ADSP

extension study (2 carriers, 1 case). The vast majority of

the minor allele carriers in ADSP (16 of 17; 3 of 16 also

carry APOE ε4 allele) had AD with an average age-of-onset

of 71.03 (Fig. 2C). This age was substantially younger than

the average age-of-onset of 75.4 years based on all AD

cases. Two carriers in ROSMAP were both APOE ε4 non-

carriers and the AD case carried APOE ε2/ε4 genotype.

In the analysis using APOE ε4 non-carriers, three SNPs

(rs56201815, rs12373123, and rs199533) showed exome-

wide meta-analysis p-values (p < 5E−07) more significant

than those from the ADSP sample alone. Association for

rs111033333 in USH2A and rs79782048 in NOTCH1

remained at the exome-wide significance. Replication of

these two rare variants was, however, less robust because

≤1 minor allele carrier was observed in most of the

replication cohorts and thus the significance of the meta-

analysis p-value was dominantly attributed to the signal

from the discovery phase. The novel AD-associated SNP

rs56201815 (meta-analysis p= 2.35E−12) is a synon-

ymous variant in ERN1. rs12373123, a missense variant of

SPPL2C (Table 1), is located in a large LD block spanning

the MAPT region and it is in complete LD with multiple

synonymous, nonsense, or missense variants in CRHR1

and MAPT. In APOE ε4 non-carriers, the hazards of AD

were consistently lower in the carriers of the minor allele

of rs12373123 after age 70 (Fig. 2D). It had a more sig-

nificant p-value (meta-analysis p= 6.67E−08) than the

previously reported SNP rs2732703 (meta-analysis p=

2.74E−06) and rs199533 (meta-analysis p= 1.11E−07)

among APOE ε4 non-carriers, while rs199533 was more

significant in the full sample. The minor allele of

rs12373123 was consistently associated with decreased

risk of AD in all studies except for LOADFS.

The minor allele of rs56201815 in ERN1 increases the risk

of AD and lowers glucose metabolism

Among the aforementioned replicated SNPs,

rs56201815 in ERN1 yielded the most significant meta-

analysis p-value, and its minor allele (G) (MAF= 0.15% in

a non-Finnish European sample)31 increased the risk of

AD consistently across all studies and independently of

the APOE ε4 allele. The HRs were nominally significant in

LOADFS (p= 3.54E−03) and CHS (p= 2.19E−02). In

GenADA, no carriers of the minor allele were observed.

We analyzed the minor allele carriers in these studies in

more detail. Twenty-seven (16 males) rs56201815-G

carriers in ADSP (a total of 29 carriers in which two

were excluded from the analyses because they trans-

formed from control to mild cognitive impairment (MCI)

during the follow-up in ADSP, and their AD status was

unknown) were sampled from 11 cohorts including ACT,

ADC, CHAP, MAYO, MIA, MIR, ROSMAP, VAN, ERF,

FHS, and RS (Table 2). The genotypes of these

rs56201815-G carriers passed the quality control and had

high sequencing depth. Of them, 23 subjects were diag-

nosed with AD and their average age-of-onset (73.5 years)

was lower than the average age-of-onset (75.4 years) of all

AD cases in ADSP (Fig. 2E). Interestingly, three of the

four rs56201815-G carriers in the control group carried

APOE ε4 allele that explained why this SNP was only

identified in the analysis of APOE ε4 non-carriers. Indeed,

we observed that rs56201815-G had a stronger effect on

the risk of AD in APOE ε4 non-carriers (Fig. 2F and Table

S2). In the ROSMAP WGS cohort (after excluding the
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duplicated subjects examined in the ADSP sample), we

observed three rs56201815-G carriers, including one APOE

ε4 carrier (Table 2). Two of the three carriers were diag-

nosed with AD, which, albeit from a small sample size, is

much higher than the incidence of 36.7% in the non-

carriers. The genotypes of all carriers had high sequencing

quality. In the LOADFS cohort, we observed ten

rs56201815-G carriers (all with a dosage >0.98) (Table 2).

Three out of the four APOE ε4 non-carriers among these

subjects had both AD and dementia (Table 2). This inci-

dence (75%) was higher than that in rs56201815-G non-

carriers (43%). In the CHS cohort, we observed nine

rs56201815-G carriers (all with a dosage >0.98) (Table 2).

One out of the six APOE ε4 non-carriers among these

subjects (16.7%) had AD during the follow-up, higher than

the incidence (6.16%) in rs56201815-G non-carriers. In the

ADSP extension WGS study, we observed two rs56201815-

G carriers in non-Hispanic whites, and both were APOE ε4

non-carriers. One of the carriers was diagnosed with AD at

age 69, and the other converted to dementia during the

follow-up with unknown status of AD.

The ADNI project was not included in the replication

analysis because the age-of-onset of AD was not available.

Moreover, the vast majority of the ADNI WGS sample

(738 subjects) was MCI or control subjects, and AD cases

accounted for merely 5.8%. Instead, we investigated the

association between rs56201815 and average FDG-PET

intensity, one of the most accurate biomarkers to predict

conversion from MCI to AD and to distinguish between

control, early MCI (EMCI), late MCI (LMCI), and AD

subjects32–36, across five brain regions of interest (ROIs)

(left/right angular gyrus, bilateral posterior cingulate gyrus,

and left/right inferior temporal gyrus). We observed that

the average FDG uptake of the five rs56201815-G carriers

(two LMCI subjects, one EMCI subject, and two controls)

adjusted for within-subject variability, age at measure-

ment, sex, and diagnosis groups (control, EMCI, LMCI,

and AD) was significantly lower than that of the homo-

zygous subjects (Fig. 3A), suggesting that the rs56201815-

G carriers had lower cerebral glucose metabolism and will

more likely convert to advanced stages.

rs56201815 is a synonymous variant and potential brain-

specific expression quantitative trait locus (eQTL) of ERN1

As rs56201815 in ERN1 was the most significant SNP

identified from the discovery and replication phases, we

next sought to examine its biological and regulatory func-

tions. rs56201815 is a synonymous coding variant, indi-

cating that it unlikely alters the amino acid sequence of

ERN1. However, rs56201815 is located in a CTCF binding

site, an open chromatin region in multiple cell types, and an

evolutionarily conserved region (Fig. 3B). Moreover, a

recent mouse study reports that inhibition of ERN1

expression reduces amyloid precursor protein (APP) in

cortical and hippocampal areas, and restores the learning

and memory capacity of AD mice37. We, therefore, hypo-

thesized that rs56201815 is a cis-eQTL of ERN1 in the

brain, and the detrimental effect of rs56201815

on AD is mediated by upregulating the expression of ERN1.

To test this hypothesis, we examined the effect of

rs56201815 on the expression of ERN1 using RNA-seq data

in ROSMAP and GTEx, and microarray data in ADNI.

We collected 2213 RNA-seq samples from 838 subjects

in the ROSMAP cohort in three brain regions including

the dorsolateral prefrontal cortex (PFC), posterior cingu-

late cortex (PCC), and anterior caudate nucleus, among

which four subjects were rs56201815-G carriers. Our

differential expression (DE) analysis revealed that the

minor allele of rs56201815 was associated with increased

expression of ERN1 (log(fold-change (FC))= 0.204,

p= 0.0285) in PCC (Fig. 3C). We then analyzed a WGS

dataset of 838 healthy subjects from the GTEx project.

The WGS data included two rs56201815-G carriers, one

of which had RNA-seq data in nine brain tissues including

the amygdala, anterior cingulate cortex (ACC), hypotha-

lamus, caudate, nucleus accumbens, putamen, cerebellar

hemisphere, cerebellum, and spinal cord. Despite the

small sample size, our DE analyses indicated that

rs56201815 was a potential eQTL of ERN1 in several

regions in the cerebrum, particularly the nucleus

accumbens (log(FC)= 1.28, p= 1E−4), and the putamen

(log(FC)= 0.734, p= 0.05) (Fig. 3D). In line with the

result from the ROSMAP data in PCC, rs56201815-G

was correlated, albeit not significant (log(FC)= 0.35, p=

0.437), with the expression in ACC, leading to a sig-

nificant meta-analysis p-value of 0.0213 for cingulate

cortex. In almost all regions in the cerebrum, the

rs56201815-G carrier had uniformly higher expression of

ERN1 than the average (Figs. 3D and S2A).

We then investigated the effects of rs56201815 on ERN1

expression in other brain regions, and in four non-brain

tissues including the sigmoid colon, lung, spleen, and whole

blood. The RNA-seq data in the sigmoid colon had two

rs56201815-G carriers, and one rs56201815-G carrier was

available in the other tissues. The DE results showed no

evidence of an association between rs56201815 and the

gene expression in any of these tissues (Fig. S2A). As the

number of rs56201815-G carriers in the GTEx project is

small, we further analyzed a peripheral whole blood sample

from the ADNI project, comprising 733 subjects having

both a WGS dataset and a microarray gene expression

dataset, three of whom were rs56201815-G carriers with

high sequencing quality. Our DE analyses of two probes in

ERN1 showed that the minor allele rs56201815-G was not

associated with either probe (Fig. S2B).

These results suggested that rs56201815 was associated

with elevated expression of ERN1 in cerebral regions (most

predominantly in PCC and several regions in the basal
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ganglia), but not likely in other tissues. To examine whether

its regulatory effects in the brain are mediated by a change

of chromatin activity, we further carried out association

analyses of epigenetic markers including DNA methylation

and histone modifications in PFC. We collected an Illumina

450k array DNA methylation dataset of 721 subjects

(four rs56201815-G carriers) from a ROSMAP sample38,39.

Among 11 probes located in the region of ERN1, we found

no evidence of significant association after adjustment for

multiple testing (Table S3). The most significant probe

(chr17:62134117), also the probe closest to rs56201815, was

located in an enhancer with a p-value of 0.012. For histone

modifications, we interrogated histone 3 lysine 9 acetylation

(H3K9ac) peaks using a ChIP-seq dataset of 632 subjects

(four rs56201815-G carriers) from a ROSMAP sample38,40.

We conducted differential analyses of 26,384 broad peaks

adjusted for fraction of reads in peaks (FRiPs), GC bias, and

ten remove unwanted variation (RUV) components. No

significant association was found among nine broad

peaks within a ±200 kb flanking region of ERN1 after

adjustment of multiple testing although eight peaks showed

slightly increased intensity in the carriers (Table S4).

The most significant association was in an enhancer at

chr17:62,337,374-62,342,372 with a p-value of 0.043.

Rs12373123 is a neural cell type-specific eQTL of MAPT and

GRN

Previous studies show that rs12373123 is a cis-eQTL of

multiple nearby genes (e.g., MAPT, CRHR1, and LRRC37A)

in multiple tissues including the brain28,41–43, and shows

chromatin interactions with these genes (Fig. 4A). But it is

not clear which cell type and genes mediate its effect on AD.

We then explored the regulatory effects of rs12373123 at a

cell-type level using a single-nucleus RNA-seq (snRNA-seq)

dataset. Cell type-specific analysis can also reduce the

potential confounding effects originating from unobserved

heterogeneous cell type proportion across subjects in the

tissue-level analysis, and therefore produces more accurate

and refined estimates. We performed cell type-specific

eQTL analyses using 44 subjects having both genotype data

p=0.0001 p=0.05

B)A)

C) D)

ADNI FDG-PET

GTEx ERN1 RNA-seq
ROSMAP ERN1 RNA-seq

rs56201815

(ERN1)

Fig. 3 Biological effects of the ERN1 variant rs56201815. A Normalized longitudinal FDG-PET measurements between the rs56201815-G carriers

and non-carriers in ADNI. The p-value was calculated using a linear mixed-effects model in which individual-level random effects and three covariates

(age at the measurement, sex, and diagnosis) were adjusted. B Annotation of histone modifications, transcriptional factor binding, and evolutionary

conservation in the genomic region of rs56201815. C Normalized expression of ERN1 between the rs56201815-G carriers and non-carriers in three brain

tissues in the cerebrum (dorsolateral PFC, PCC, and anterior caudate nucleus) from a ROSMAP RNA-seq sample. D Normalized expression of ERN1

between the rs56201815-G carriers and non-carriers in the anterior cingulate cortex, nucleus accumbens, and putamen from GTEx RNA-seq samples.
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(39 subjects from WGS and five subjects from a SNP array)

and snRNA-seq data from ~80,000 cells in PFC from a

ROSMAP sample. We classified cells into excitatory neu-

rons, inhibitory neurons, astrocytes, microglia, oligoden-

drocytes, and oligodendrocyte progenitor cells (OPCs)

based on previous clustering results44. We then aggregated

cells within each cell type and each subject.

In each cell type, we interrogated 11 protein-coding genes

(10 genes within a ±500 kb flanking region and GRN, a

nearby gene linked to frontotemporal lobar degeneration

(FTD), a type of dementia). The cell type-specific eQTL

analyses revealed that one or more copies of rs12373123-C

were associated with elevated expression of ARL17B in all

six brain cell types (p < 1E−11) (Fig. 4B and Table S5).

rs12373123 was also an eQTL of LRRC37A2, LRRC37A3,

and KANSL1 in most cell types except for microglia (Fig. S3

and Table S5). The protective allele rs12373123-C was

associated with elevated MAPT expression in astrocytes

(p= 0.01) while a decreasing trend in OPCs (p= 0.09)

(Fig. 4B and Table S5). We further found that rs12373123-

C, particularly its homozygous protective genotype, was

significantly associated with increased expression of GRN in

microglia (p= 3.65E−06) (Fig. 4B and Table S5), which is a

protective gene against dementia and is important for

lysosome homeostasis in the brain45,46.

We also assessed the cell type-specific association

between rs56201815 and the expression of ERN1. We

observed that ERN1 was ubiquitously expressed in all brain

cell types, most abundantly in microglia, followed by

astrocytes and OPCs. As there was only one rs56201815-G

carrier among the 39 WGS subjects, and, unfortunately, its

total sequencing depth was much lower than that of the

other subjects (~10% of the average library size), we

investigated three major abundant cell types (excitatory

neurons, astrocytes, and oligodendrocytes), for which the

carrier had a library size >50,000. We observed that

rs56201815-G was slightly correlated with increased

expression of ERN1 in excitatory neurons, but not sig-

nificant (Fig. S4).

Gene-set analysis identifies astrocyte, microglia, and

amyloid-beta-related pathways

As aggregating signals within a gene can often increase

the statistical power, in particular, for detecting rare

coding variants, we carried out gene-based analyses using

the summary statistics of all examined SNPs estimated

from the ADSP sample. Our gene-based analyses using

MAGMA47 showed that TREM2 was the most significant

gene associated with AD in all individuals (p= 5.0E−10)

and APOE ε4 non-carriers (p= 1.62E−10) (Fig. S5A),

consistent with previous results18. Indeed, all six exonic

SNPs (rs2234256, rs2234255, rs2234253, rs142232675,

rs143332484, rs75932628) in TREM2 were at least nom-

inally associated with AD (Table S2). Its significance in

APOE ε4 non-carriers was higher, suggesting that the

effects of TREM2 on AD were independent of APOE.

Besides, multiple genes in the MAPT region including

MAPT, KANSL1, NSF, and SPPL2C were associated with

the risk of AD in both analyses (Fig. S5A, B). We also

observed that CLU, PILRA, EXO5, and ERN1 were among

the top associated genes.

Our gene-set analysis using FUMA48 based on the

summary statistics from the exome-wide association

analysis conditional on APOE ε4 revealed that Gene

Ontology (GO) gene sets related to the regulation of

astrocytes, amyloid-beta, endoplasmic reticulum (ER)

stress, and unfolded protein response (UPR) were among

the top enriched gene sets associated with AD (Fig. 5A).

In contrast, the gene sets related to astrocyte activation,

microglia migration, and lipoprotein metabolic process

were among the top in the gene-set analysis using APOE

ε4 non-carriers (Fig. 5B). Our cell-type association ana-

lysis using FUMA49 (Watanabe et al., 2019) showed that

microglia were associated with AD among nine major cell

types in the brain (p < 0.05) in the analysis of APOE ε4

non-carriers (Fig. 5D). No cell type was associated with

AD based on the summary statistics from the association

analysis conditional on APOE ε4 (Fig. 5C).

Discussion
In this study, we interrogated the associations between

108,509 exome-wide SNPs and age-of-onset of late-onset

AD using Cox models with a sample consisting of ~20,000

AD patients and controls. We also attempted to identify

SNPs contributing to earlier onset in APOE ε4 non-

carriers alone. Most of these SNPs are rare variants. Our

results not only confirm previously reported AD-related

SNPs with much higher significance but also reveal novel

(see figure on previous page)

Fig. 4 Local regulatory effects of rs12373123. A Chromatin interaction (orange links) and tissue-specific eQTLs (green links) for rs56201815 and

rs12373123 on chromosome 17 identified from the exome-wide association analysis of age-of-onset of AD in APOE ε4 non-carriers in ADSP. A gene

that is in chromatin interaction or an eGene with these SNPs is highlighted in orange or green, respectively. A gene highlighted in red indicates both

features. B Normalized cell type-specific (astrocytes, excitatory neurons, inhibitory neurons, microglia, OPCs, and oligodendrocytes) expression of

MAPT, ARL17B, and GRN across the genotype groups of rs12373123 from 44 subjects (including 13 rs12373123-T/C carriers and 2 rs12373123-C/C

carriers) in the snRNA-seq data in the prefrontal cortex. All cells in each cell type from each subject were first pooled, and the gene expression was

aggregated by subjects. The gene expression was then adjusted for age, sex, and AD status.
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p=0.05

A)

B)

C) D)

Analysis conditional on APOE4

Analysis of APOE4 non-carriers

Analysis conditional on APOE4 Analysis of APOE4 non-carriers

Fig. 5 Top ten gene sets enriched in the results of the exome-wide association analyses of age-of-onset of AD. A Enrichment using the

summary statistics from Model 2: a Cox model with all subjects in the ADSP project adjusted for the copies of APOE ε4; B Enrichment using the

summary statistics from Model 3: a Cox model with only APOE ε4 non-carriers. Cell-type enrichment analysis of major neural cell types based on

the summary statistics from the exome-wide association analyses of age-of-onset of AD using C Model 2 and D Model 3.
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genetic variants associated with age-of-onset of AD, par-

ticularly in APOE ε4 non-carriers.

One of our major findings is a synonymous rare variant,

rs56201815, in ERN1 (also known as IRE1). Our results

showed that the minor allele of this SNP was associated

with a dramatically higher risk of AD, particularly in

APOE ε4 non-carriers. Its large effect size, unanimously

replicated in three other cohorts, is not surprising as its

MAF in the population is only ~10% of the rare variant

rs75932628 in TREM2 according to ExAC (https://

gnomad.broadinstitute.org/). ERN1 encodes a key pro-

tein, containing a serine/threonine-protein kinase domain

and a ribonuclease (RNase) domain, involved in UPR to

ER stress by activating its downstream target XBP1

(refs. 50,51). Interestingly, a recent experimental study

shows that the proportion of activated ERN1 in post-

mortem brain tissue is associated with a Braak stage

of advanced AD patients37. Deactivation of the RNase

domain of ERN1 in neurons reduces all hallmarks of AD

including amyloid-beta load, cognitive impairment, and

astrogliosis in 5xFAD mice37. Moreover, the ablation of

eIF2α kinase PERK, one of the three major UPR genes,

also prevents defects in synaptic plasticity and spatial

memory in AD mice52. Our findings show that the minor

allele of rs56201815, increasing mRNA expression of

ERN1 in multiple brain regions, also significantly increa-

ses the risk of AD, which corroborate these experimental

results and provide more evidence that responses to ER

stress are probably involved in the causal pathway of AD.

Aging is the most important risk factor for late-onset AD,

indicating that certain risk factors during the aging process

might be implicated and required in the pathogenesis of

AD. The UPR is one of the mechanisms disrupted during

aging, resulting in augmented susceptibility to ER stress

and the accumulation of unfolded protein53. Previous stu-

dies show that aging leads to deficits in the systems

involved in the defense against unfolded proteins in the rat

hippocampus54. Persistent ER stress in the central nervous

system during aging can initiate apoptosis of neurons and

can trigger the innate immune response in microglia55,56.

Combined with the fact that many AD-related genes

identified by GWAS are expressed exclusively in microglia,

our findings indicate that the interaction between the UPR

and innate immune system might play a critical role in

biological mechanisms underlying AD.

As rs56201815, the variant rs12373123 in the MAPT

region was also identified in APOE ε4 non-carriers. The

minor allele of rs12373123 was associated with reduced

susceptibility to AD in ADSP, ROSMAP, CHS, and

GenADA. This SNP is located in an LD block spanning

>400 kb, and is in high LD with a large number of SNPs

including multiple missense variants in MAPT, SPPL2C,

CRHR1, and KANSL1. Previous GWAS show that

rs12373123 and two nearby missense SNPs (rs12185268

and rs12373124) in complete LD with rs12373123 exhibit

pleiotropic associations with numerous diseases and traits

including intracranial volume57, corticobasal degenera-

tion58, Parkinson’s disease (PD)59–62, primary biliary cir-

rhosis63, red blood cell count64, and androgenetic

alopecia65. On the other hand, the major allele, more

predisposed to degenerative diseases, is significantly

associated with increased bone mineral density66,67.

Because SNPs contributing to age-related degenerative

diseases are generally not subject to evolutionary selec-

tion68,69, its major allele is probably selected by evolution

due to its beneficial effect on bone mineral density. The

results of our age-of-onset analyses indicate that this

pleiotropic region might also be implicated in late-onset

AD, especially in APOE ε4 non-carriers. Our cell type-

specific analyses reveal that rs12373123 is a cis-eQTL in

different brain cells of multiple critical genes implicated in

PD and FTD (e.g., MAPT and GRN), elucidating the

regulatory mechanisms underlying its pleiotropy. Due to

the involvement of tau protein in the etiology of AD and

PD, the effect of rs12373123 on these diseases might be

mediated by MAPT. Indeed, rs12373123 is in high LD

with multiple missense SNPs (e.g., rs62056781 and

rs74496580) in MAPT, and we found in the snRNA-seq

data that rs12373123 is also an eQTL of MAPT in

astrocytes. Our finding also suggests that the effects of

rs12373123 can be mediated by increasing the expression

of GRN in microglia, which is a key gene protective

against FTD.

Also, our results demonstrated advantages in the statistical

power of using a Cox model for age-of-onset traits than a

logistic model for binary outcomes in the study of AD. The

power gain in terms of p-values is evident for many well-

known AD-related SNPs in e.g., TREM2 and CLU, which all

achieved more significant p-values than a previous study

using the same cohort18. Despite a smaller sample size, the

p-value from the Cox model for detecting APOE ε4, the

recognized true positive signal, is much more significant

than a recent large-scale meta-analysis of AD status10 and a

previous analysis using a linear model of log-transformed

age-of-onset26. Moreover, our age-of-onset analysis showed

promising results for identifying rare variants compared to

logistic regression. An advantage of a Cox model over

Poisson regression or logistic regression is that it implicitly

accounts for age-varying hazards, a characteristic in many

age-related diseases, e.g., AD70. Our results in AD suggest

that Cox models can have a power advantage for exploring

rare variant association in other age-related diseases.

Although our identified SNPs were validated in multiple

independent cohorts, we acknowledge some limitations.

The definitions and criteria of diagnosis of AD can vary

across these cohorts. AD has a certain similarity in the

clinical and biological manifestation of other common

neurodegenerative diseases such as FTD, which makes the
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clinical diagnosis of AD more complicated. Also, one of

our findings rs56201815 in ERN1 is a rare variant

(MAF= ~0.13%), which had slightly lower imputation

quality compared to common variants. Although this SNP

showed solid associations in our meta-analyses, as the

sample sizes of our WGS replication cohorts are small for

rare variants, more GWAS using large-scale WGS or WES

data are preferable to further validate this SNP and other

candidate SNPs identified in the discovery phase.

In conclusion, we identified two novel SNPs in ERN1

and SPPL2C/MAPT-AS1 that exhibit strong associations

with the age-of-onset of AD. We also explored their

regulatory consequences at the tissue and single-cell levels

in the brain. These findings support the hypothesis of the

potential involvement of the UPR to ER stress and tau

protein in the pathological pathway of AD, contributing to

the understanding of the biological mechanisms under-

lying AD. Our findings are useful for guiding follow-up

studies and provide more insight into the molecular

mechanisms and implications of the relevant genes in AD.

Methods
Phenotypes in age-of-onset GWAS

A total of 10,913 European-American participants used

in the discovery phase of the exome-wide age-of-onset

association analyses of AD were collected from the ADSP

project. These subjects were sampled from 24 cohorts,

among which >3000 subjects were sampled from the ADC

project (Table S6). The AD status of individuals used in

the analyses was defined by clinical assessment based on

NINCDS-ADRDA criteria of AD. All controls were cog-

nitively normal individuals aged 60+. Details about study

design and sample selection were described in ref. 71. The

AD status variable in the ADSP dataset was constructed

based on information on prevalent and incident AD status

from the updated dataset (Version 7 with the release date

on June 09, 2016) if available. Otherwise, information on

prevalent and incident AD status as given in Version 5

(release date on July 13, 2015) was used. More specifically,

a subject was treated as AD if either prevalent or incident

AD status during the ADSP follow-up was observed. The

age-of-onset variable was based on the same datasets as

the AD status. In both versions (Version 5 and 7), all data

for age-of-onset, which we received from dbGaP, were

censored by age 90.

Five cohorts (ROSMAP, LOADFS, CHS, GenADA, the

ADSP extension study) were included in the replication

phase of the age-of-onset GWAS. To be consistent with the

AD status in ADSP, AD status in ROSMAP was based on

the clinical diagnosis of AD at the last visit. For AD cases,

the age at first Alzheimer’s dementia diagnosis variable was

used as age-of-onset, which was also censored by age 90 if

it was 90+. For controls, age-of-onset was calculated as age

at the last visit or age at death if age at the last visit was not

available. In LOADFS, some subjects had missing infor-

mation about the age-of-onset of AD. For these subjects,

we treated them as censored and set its age-of-onset as the

age at the recruitment. In CHS and GenADA, the AD

status and age-of-onset variables in phenotype files pro-

vided in dbGaP were used. In the ADSP extension study,

the “AD” and “Age” variables in phenotype files were used

as the AD status and the age-of-onset. We included defi-

nitive AD and control subjects, and subjects diagnosed

with probable AD, possible AD, family AD, non-family AD,

or unknown were not included in the analysis.

Genotyping, imputation, and quality control

In the discovery study, WES genotypes of bi-allelic SNPs

mapped to hg19 from 10,913 ADSP participants were called

using the quality-controlled Atlas-only pipeline at Baylor

College of Medicine (We did not use the data from the

GATK pipeline at the Broad institute due to known quality

issues (https://www.niagads.org/adsp/data-notices)). More

details about the production of the WES data in ADSP can

be found in ref. 18. Variants with a missing rate >2% or

MAC ≤10 were excluded from the age-of-onset association

analyses. After the filtering, 110,450 and 98,334 variants

remained in the analysis using all subjects and APOE ε4

non-carriers, respectively. In the replication study, VCF files

of recalibrated WGS data from 1196 participants in ROS-

MAP were downloaded from the synapse website (https://

www.synapse.org/). A total of 681 subjects were included in

the replication phase after removing 16 discordant WGS

samples, 17 duplicates, and 477 subjects overlapping the

ADSP sample. WGS project level genotype VCF files (hg38)

called by GATK in the ADSP extension study were

downloaded from NIAGADS (https://dss.niagads.org/

datasets/ng00067/), from which the genotypes of 1147

non-Hispanic whites were extracted. Genotyping of 3043

participants in CHS was performed using an Illumina

HumanCNV370v1 array (~370 K SNPs). Genotyping of

3456 non-Hispanic Caucasian participants in NIA-

LOADFS was performed using a Human610-Quad Illu-

mina array (~600 K SNPs). Genotyping of 1588 non-

Hispanic Caucasian participants in GenADA was per-

formed using two Affymetrix 250K arrays (a total of ~500 K

SNPs). More information about these cohorts can be found

in refs. 72–74. We phased and imputed the genotypes in the

three array-based cohorts using the TOPMED imputation

server75 with the TOPMed reference panel (Version R2 on

GRC38)76.

Exome-wide age-of-onset association analysis

The association analyses of the age-of-onset of AD in the

discovery phase of ADSP was conducted using a Cox

mixed-effects model implemented in the coxmeg R pack-

age21, which accounted for the clustering structure using a

GRM. A dense GRM was first estimated from the original
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WES data based on the GCTAmodel77 implemented in the

SNPRelate R package78. In the discovery phase of ADSP,

we built a sparse GRM by setting any entry below 0.03 to

zero. We evaluated ten top PCs (PC1 to PC10) calculated

from the dense GRM, and included the only significant

PC2, PC8, and PC10 in the analyses. We first estimated a

variance component in the null model, which was then

used to estimated HRs and p-values for all SNPs. We

performed two analyses, (a) including all subjects with the

three PCs, sex and the number of copies of APOE ε4

included as covariates, (b) including only APOE ε4 non-

carriers with the three PCs and sex included as covariates.

We found that the estimated variance component was zero

in the analysis (b), suggesting no evidence of random

effects, and therefore we instead used a simple Cox model.

The threshold to declare significant associations was cal-

culated as 0.05 divided by the total number of tested SNPs.

For comparison with the analysis of AD status, we per-

formed association analysis by fitting a logistic regression

using the glm R function adjusting for the same covariates

with the same sample.

We performed age-of-onset association analyses in

LOADFS, CHS, ROSMAP, GenADA, and the ADSP

extension study for the top SNPs passing the suggestive

threshold (p < 5E−06) in the discovery phase. The same

model and estimation procedures as in ADSP were used

in LOADFS, which is also a family-based cohort. In

LOADFS, the GRM was estimated from the genotype

array data. The association analyses were conducted in the

other four cohorts (i.e., CHS, ROSMAP, GenADA and the

ADSP extension study) using a Cox model implemented

in the survival R package30 because these cohorts con-

sisted of unrelated subjects. We also included sex and the

number of copies of APOE ε4 as covariates. Meta-analysis

effect sizes and standard errors were computed using the

summary statistics from all six studies based on the fol-

lowing fixed-effects model, β= ∑iβiwi/∑iwi and sd(β)= 1/
ffiffiffiffiffiffiffiffiffiffiffiffi
P

i wi

p

, where wi is the weight for the study i. To

compare age-of-onset analysis with case-control analysis,

we also performed association analyses of AD status in

ADSP using logistic regression.

Gene-based association analysis

The gene-based analysis was performed based on the

summary statistics obtained from the age-of-onset asso-

ciation analyses. We only included SNPs with MAC >10

and a missing rate <2% in the gene-based analyses. Each

SNP was first annotated to a gene using its SNP ID

according to a gene location file obtained in the MAGMA

website (https://ctg.cncr.nl/software/magma). We only

included SNPs within the boundary of a gene body. Gene-

based p-values were then computed using MAGMA

(v1.08b) with a SNP-wise mean model47. LD between the

SNPs was estimated using the raw WES data in ADSP.

Gene-set and cell-type association analysis

The gene-set analysis was performed for curated gene

sets and GO terms using the procedure SNP2GENE in

FUMA48 based on the summary statistics obtained from

the age-of-onset association analyses. The 1000 Genomes

Project (phase 3) for the European population was used as

a reference panel in the analysis. The cell-type association

analysis was also performed using FUMA79 following

the SNP2GENE procedure. We selected a human

brain single-cell RNA-seq dataset provided in ref. 80 as a

reference for cell type-specific gene expression.

Analysis of FDG-PET data

The longitudinal FDG-PET average intensity scores

across five ROIs (left/right angular gyrus, bilateral pos-

terior cingulate gyrus, and left/right inferior temporal

gyrus) for 738 subjects in ADNI having the WGS data

were downloaded from the ADNI website (https://ida.

loni.usc.edu). Details about sample preparation and data

generation were described in refs. 33,34. The association

analysis between average FDG-ROI and the genotype of

rs56201815 was performed by fitting a linear mixed-

effects model using lme4 R package81 including a random

effect accounting for within-subject variability and three

covariates (age, sex, and diagnosis group).

Analysis of tissue-specific RNA-seq and microarray data

BAM files of aligned reads from a total of 2213 RNA-seq

samples in three brain regions (dorsolateral PFC, PCC,

and anterior caudate nucleus) in the ROSMAP project

were downloaded from the synapse website (https://www.

synapse.org/). Raw counts of 57,905 coding and non-

coding genes were called using featureCounts82 according

to the GENCODE annotations GRCh37(r87). Samples

with the RNA integrity number (RIN) < 5 were excluded

before the analysis. We first removed low-expressed genes

(those genes for which fewer than three individuals had

counts-per-million >1) before normalization. We then

normalized the RNA-seq raw counts using the trimmed

mean ofM-values (TMM) normalization method83. In the

analysis of PFC, 761 non-Hispanic Caucasian subjects

(including four rs56201815-G carriers) having both gene

expression and genotype of rs56201815 from the WGS

data with RIN ≥4.5 were included. Differential eQTL

analysis was performed using edgeR84,85 adjusted for RIN,

age at death, sex, AD status, and RNA extraction methods

(polyA selection or rRNA depletion). In the analysis of

PCC and anterior caudate nucleus, 371 (including three

rs56201815-G carriers) and 585 (including four

rs56201815-G carriers) non-Hispanic Caucasian subjects

having both genotypes and gene expression with RIN ≥4.5

and rRNA depletion were included, respectively. To

minimize technical noise resulted from sample prepara-

tion, we did not include polyA selection samples
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(accounting for merely 10% and 15% of all samples)

because different RNA extraction methods have a large

impact on measured expression in postmortem samples86,

and the samples of all rs56201815-G carriers were gen-

erated using rRNA depletion. Differential eQTL analysis

was performed using edgeR adjusted for RIN, age at death,

sex, and AD status.

The raw count data of 3252 RNA-seq samples in nine

brain tissues (i.e., amygdala, ACC, hypothalamus, caudate

(basal ganglia), nucleus accumbens (basal ganglia), puta-

men (basal ganglia), cerebellar hemisphere, cerebellum,

and spinal cord (cervical c1)) and four non-brain tissues

(i.e., sigmoid colon, lung, spleen, and whole blood) from

the GTEx project (version 8) were downloaded from

the GTEx portal (https://gtexportal.org/home/datasets).

Gene-level quantification was conducted by RSEM87. All

GTEx raw count data were normalized using the same

pipeline as in the analysis of ROSMAP. Differential eQTL

analysis was then performed using edgeR with age, sex,

and RIN as adjusted covariates.

The gene expression microarray data in peripheral blood

from 742 ADNI subjects were profiled using the Affyme-

trix Human Genome U219 Array. Raw expression values

were pre-processed using the robust multiarray average

normalization method. More details about sample collec-

tion and data pre-processing can be found in ref. 88. Dif-

ferential gene expression analyses were performed using

linear regression adjusted for RIN and plate number.

Analysis of DNA methylation data

The DNA methylation data in PFC were collected from

740 individuals in ROSMAP using the Illumina Human-

Methylation450 BeadChip. Eighteen samples lying beyond

±3 standard deviations for the top three PCs were

removed as outliers. We converted methylation beta-

value to M-value using a logistic transformation. Differ-

ential methylation analysis was carried out using a linear

regression adjusted for the top ten PCs.

Analysis of H3K9ac ChIP-seq data

H3K9ac ChIP-seq raw count data were downloaded

from the synapse website (https://www.synapse.org/).

This dataset is previously described in detail in ref. 40.

Briefly, the sample comprising 26,384 H3K9ac peaks (nine

peaks in the ERN1 region) across the genome was col-

lected from dorsolateral PFC of 669 subjects from the

ROSMAP project, among which 625 subjects had also the

WGS genotype data of rs56201815. The raw count data

were normalized using the TMM method83. Estimation of

common and tagwise dispersions and the analysis of dif-

ferential peaks for rs56201815 were carried out using

edgeR84,85 adjusted for FRiPs and GC bias. A sensitivity

analysis was performed by further adjusting for ten RUV

components estimated using RUVSeq89.

Analysis of snRNA-seq data

We collected snRNA-seq raw count data generated by

ref. 44 using the 10X Genomics Cell ranger pipeline in

human PFC from 48 subjects (50% AD cases) including

17,926 genes profiled in 75,060 nuclei. We assigned cell

identity and divided all cells into six subtypes (excitatory

neurons, inhibitory neurons, astrocytes, oligodendrocytes,

microglia, and OPCs) according to the previous clustering

results44 using the scanpy package90. The clustering of the

cells is described in more detail in ref. 44. We excluded

endothelial cells or pericytes because of the lack of

abundant cell counts in these two cell types.

To perform cell type-specific eQTL analysis, we first

merged cells in each cell type and in each subject to

obtain a raw count matrix of 17,926 genes and 39 subjects

(six subjects were excluded due to lack of WGS data). We

then followed the preprocessing and normalization pro-

cedures in the previous eQTL analysis of the bulk RNA-

seq data. Differential eQTL analyses were then performed

using edgeR84,85 with age, sex, and AD status as covari-

ates. RIN was not available for most of the subjects.

Functional annotation

The epigenetic and regulatory annotation of the identified

SNPs and its nearby SNPs in high LD (r2 > 0.8) was per-

formed using Haploreg v4 (ref. 91), in which its tissue-specific

epigenetic markers (H3K27ac), regulatory regions (enhan-

cers and promoters), motif changes, and eQTL information

were annotated based on the ENCODE92, Roadmap93, and

GTEx42 projects. GWAS catalog93 and GRASP94 were used

to annotate whether a SNP is an existing QTL.
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