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Abstract
Background: Studies have shown that genetic and sex differences strongly influence gene
expression in mice. Given the diversity and complexity of transcripts produced by alternative
splicing, we sought to use microarrays to establish the extent of variation found in mouse strains
and genders. Here, we surveyed the effect of strain and sex on liver gene and exon expression using
male and female mice from three different inbred strains.

Results: 71 liver RNA samples from three mouse strains – DBA/2J, C57BL/6J and C3H/HeJ – were
profiled using a custom-designed microarray monitoring exon and exon-junction expression of
1,020 genes representing 9,406 exons. Gene expression was calculated via two different methods,
using the 3'-most exon probe ("3' gene expression profiling") and using all probes associated with
the gene ("whole-transcript gene expression profiling"), while exon expression was determined
using exon probes and flanking junction probes that spanned across the neighboring exons ("exon
expression profiling"). Widespread strain and sex influences were detected using a two-way
Analysis of Variance (ANOVA) regardless of the profiling method used. However, over 90% of the
genes identified in 3' gene expression profiling or whole transcript profiling were identified in exon
profiling, along with 75% and 38% more genes, respectively, showing evidence of differential
isoform expression. Overall, 55% and 32% of genes, respectively, exhibited strain- and sex-bias
differential gene or exon expression.

Conclusion: Exon expression profiling identifies significantly more variation than both 3' gene
expression profiling and whole-transcript gene expression profiling. A large percentage of genes
that are not differentially expressed at the gene level demonstrate exon expression variation
suggesting an influence of strain and sex on alternative splicing and a need to profile expression
changes at sub-gene resolution.
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Background
Variation in mammalian mRNA expression is signifi-
cantly affected by both strain and sex. In mice, widespread
sex differences have been observed in adipose, kidney,
liver, muscle, and brain tissue [1-3]. Given the heteroge-
neity of brain tissues, extensive studies have also been per-
formed in various parts of the brain, highlighting the
extent of sexual dimorphism in the hypothalamus, pitui-
tary gland, and the cortex [1]. In mice, the estimate of
inter-strain variation in various regions of the brain is as
high as 30% [4].

While alternative splicing has been acknowledged to play
an important role in genetic diversity, few large-scale stud-
ies have investigated the effects of strain, sex and tissue on
exon expression or other alternative splicing mechanisms.
Such studies have, for example, identified splicing events
involved in cancer and tissue definition [5,6]. In Dro-
sophila, where sex-specific splicing has long been shown to
be involved in sex determination, 22% of alternatively
spliced genes demonstrated sexual dimorphism [7]. Fur-
ther studies on alternative splicing have demonstrated
that some single nucleotide polymorphisms (SNPs) are
responsible for variations in the ratios of alternative
spliced transcripts [8-11]. Given that at least 8 million
SNPs exist in the mouse population [12], we decided to
investigate the effects of differing genetic backgrounds
and sex on alternative splicing patterns in a mammalian
system.

In this study we present a broad survey of the role of nat-
urally occurring genetic variations and sex differences
upon gene expression and splicing in liver, a key tissue
regulating many disease conditions such as metabolic dis-
orders and cardiovascular disease. We profiled the expres-
sion of 9406 exons representing 1020 genes in 71 female
and male mouse livers from strains DBA/2J, C57BL/6J,
and C3H/HeJ. Genes were selected for involvement in
obesity, diabetes, cardiovascular diseases, and bone traits
[13-19] and strains were chosen based on their distinct
genealogy [20]. We selected a single representative tran-
script for each gene (see methods for details) and
designed a custom microarray with exon and exon-junc-
tion probes for each exon, enabling us to investigate
expression changes at both the gene and exon levels. In
addition, we examined the differences between profiling
gene expression using a single probe at the 3' end vs. using
multiple probes spaced along the gene.

Our results indicate a degree of concurrence between 3'
gene and whole-transcript gene expression profiling: over
64% of the genes identified as significantly differentially
expressed using 3' gene expression profiling methods are
also identified through whole-transcript gene expression
profiling. Moreover, whole-transcript gene expression

profiling identified 13% to 20% more differential expres-
sion than 3' gene expression profiling. Exon expression
profiling, however, identified at least 38% or more genes
with at least one differentially expressed exon. 55% and
32% of genes showed differential exon expression by
strain and sex, respectively. Finally, by examining gene
expression at the sub-gene resolution, we found 205 genes
to exhibit differences in exon expression for both strain
and sex.

Results
We profiled 9406 exons representing 1020 genes using
male and female liver samples from three strains, ana-
lyzed the results at three distinct levels: 3' gene expression,
whole-transcript gene expression, and exon expression.
Microarray data were deposited at GEO under GSE10736.

Sex differences are larger than strain differences
With each dataset described in Figure 1, we performed
hierarchical clustering using Pearson correlation as a
measure of similarity. Similar dendrograms are observed
for all three datasets indicating that the relative magnitude
of variation within groups and between groups is similar
within each dataset (see Figure 2 and Additional file 1).
Among the strains, sex differences were larger than strain
differences (Figure 2). Within each sex, the samples clus-
tered by strains with DBA/2J samples being closer to C3H/
HeJ samples than to C57BL/6J. We then computed an
averaged gene expression profile for each strain-sex com-
bination using all probes and computed the correlation
between groups. On average, gene expression within
males are more closely correlated than in females (r = 0.83
in males vs. r = 0.67 in females). The correlation coeffi-
cient between males and females within the same strain
ranges from r = 0.56 to 0.64 (see Additional file 2).

Similarly, using the differentially expressed genes between
sexes as markers, principal component analysis is able to
completely separate tissues into six distinct groups repre-
senting each strain-sex population (Figure 3). Similar
results are obtained using differentially expressed exons.
Using the mean log10 expression values from exon
expression profiling, the sum of the first two principal
components account for 51% of the total variance
observed for sex-biased genes.

SNPs affect probe intensities
We were able to map 97% of all the probes to the Mouse
Genome NCBI Build 36. Using recent genotype data [12],
we identified over 1.5 million SNPs present within
C57BL/6J, DBA/2J, and C3H/HeJ mice. Only 3% of all
probes overlap a SNP from one of these strains. To test the
effects of the presence of SNPs in probes, we performed a
two-way factorial ANOVA designed using strain and sex as
factors. Of the 3421 probes that were differentially
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Cartoon illustrationFigure 1
Cartoon illustration. Description and cartoon illustration of the datasets modeled. See Materials and Methods for a detailed 
explanation of each set.
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expressed, 194 (6%) had at least one SNP within the
probe region. Conversely, only 339 out of 14510 non-dif-
ferentially expressed probes contained at least one SNP.
Hence the enrichment for SNPs within differentially
expressed probes is very significant at a Fisher's exact test
p-value of 1.3 × 10-21 and an odds ratio of 2.51. Further-
more, junction probes overlapping SNPs have a higher
odds ratio (2.83 vs. 2.31) of being differentially expressed
compared to exon probes overlapping SNPs (see Addi-
tional file 3). Because a change in probe intensity could
reflect either a change in alternative splicing or a change
in the binding affinity, due to the SNP, we decided to dis-
card probes overlapping SNPs from these strains.

Exon profiling identifies more differences
We tested genes and exons for differential expression
using a two-way factorial ANOVA design using strain and
sex as factors (Table 1). Using 3' gene expression profiling
techniques, 22% and 17% of the genes showed significant
strain and sex effects. At the same false positive rate (Bon-
ferroni corrected p-value < 0.01), whole-transcript gene
expression profiling identified 25% and 20% of the genes
to be differentially expressed between strain and sex,
respectively. Examining the overlap between methods,
64% and 73% of strain- and sex-biased genes identified
via 3' gene profiling were detected by whole-transcript
profiling and whole-transcript profiling identified 13%
and 20% more genes than 3' gene profiling (Figure 4).

Principal component analysis of whole-transcript gene expressionFigure 3
Principal component analysis of whole-transcript gene expression. Principal component analysis using the whole-tran-
script gene expression values that are differentially expressed between sexes.

Table 1: Number and percentage of differentially expressed genes in each dataset (Bonferroni corrected p-value < 0.01).

Exon profiling

Effects 3' profiling (n = 941) Whole-transcript gene profiling (n = 941) Exons (n = 9055) Associated Genes (n = 941)

Strain 210 (22%) 238 (25%) 1751 (19%) 520 (55%)
Sex 163 (17%) 195 (20%) 1261 (14%) 303 (32%)

*Note that the right column under exon expression profiling is the number of unique genes represented by the set of differentially expressed exons 
for each effect. The numbers in parentheses in the first row represents the total number of genes or exons profiled.
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When analyzed at the exon level, we found 19% and 14%
of exons are differentially expressed across strain and sex,
respectively, using the same Bonferroni-corrected p-value
threshold of 0.01. In terms of genes associated with these
differentially expressed exons, 55% and 32% of genes
have at least one differentially expressed exon across strain
and sex, respectively. Overall, 3014 exons (33%), repre-
senting 823 genes (87%), showed significant strain- or
sex-specific biases in expression. Surprisingly, when we
tested each gene for sex-strain interaction effects, we
found only 1% to 2% of genes (depending on the datasets
used) have significant interaction effects at a Bonferroni-
corrected p-value threshold of 0.01, close to the level
expected by chance.

We then analyzed the overlap between genes identified as
differentially expressed using gene profiling analysis and
exon profiling analysis. 95% and 93% of strain-bias and
sex-bias genes identified by 3' gene profiling were identi-
fied in exon profiling. Similarly, 96% and 93% of strain-

bias and sex-bias genes identified via whole-transcript
gene profiling were detected via exon profiling. However,
234 and 90 genes containing an exon showing strain-bias
and sex-bias effects, respectively, from exon profiling were
not detected as differentially expressed by either gene
expression profiling method. Thus, 75% and 38% of the
genes with differences were identified only by exon profil-
ing.

Variation across strain and sex
Strain- and sex-bias genes detected via exon expression
profiling comprise genes differentially expressed at the
gene level and differential alternative splicing. For exam-
ple, 2310008M10Rik (aDC2-like protein, NM_025509)
and adh4 (NM_011996, alcohol dehydrogenase 4 (class
II) pi polypeptide) both show differential expression at
the gene level. In the case of 2310008M10Rik, each exon
demonstrates strain-biased expression (Figure 5A).
2310008M10Rik is down-regulated at the gene level in
C57BL/6J relative to DBA/2J and C3H/HeJ and this phe-

Comparison of 3' gene expression profiling, whole-transcript gene expression profiling and exon expression profilingFigure 4
Comparison of 3' gene expression profiling, whole-transcript gene expression profiling and exon expression 
profiling. Venn diagram illustrating the overlap between genes identified using 3' gene expression profiling, whole-transcript 
gene expression profiling and genes associated with an exon identified using exon expression profiling for strain- and sex-bias 
expression.
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nomenon is consistent across both males and females.
Similarly, each exon in adh4 shows sex-biased expression
and is up-regulated in males across all strains (Figure 5B).
In both cases (2310008M10Rik and adh4), all exons were
identified as differentially expressed between strains and
sexes respectively in the exon expression profiling dataset.

234 and 90 genes showed strain- and sex-bias effects,
respectively, for differences in exon expression in genes
not identified as differentially expressed using 3' gene
expression or whole-transcript gene expression profiling.
For example, exon 4 in rhoQ, which encodes ras homolog
gene family, member Q protein, showed significantly
lower mean log10 ratios in DBA/2J and C57BL/6J while
demonstrating elevated expressions in C3H/HeJ relative

Examples of differentially expressed genes and splice formsFigure 5
Examples of differentially expressed genes and splice forms. Box plots of the mean log ratio obtained from multiple 
probes in each strain-sex group for a single gene. The solid horizontal line across the length of the graph represents the aver-
age gene expression. The two dashed horizontal lines mark plus and minus two standard deviations from the average gene 
expression, respectively. For the boxes, from bottom to top, the solid horizontal lines represent the minimum mean log10 
expression ratios excluding outliers, the lower quartile, the median, the upper quartile and the maximum mean log10 expres-
sion ratios excluding outliers. The dashed vertical lines represent the range of mean log10 expression ratios excluding outliers. 
Outliers are defined as any data-points having values extending beyond 1.5 times the interquartile range from either ends of the 
box. A) Box plots of 2310008M10Rik showing strain effect (p-value < 1 × 10-16); B) Box plot of adh4 showing sex effect (p-
value < 1 × 10-16). C) Boxplots of rhoQ, exon 4 showing strain effect (p-value < 1 × 10-16); D) Boxplots of pitpnm1, exon 21 
showing sex effect (p-value < 1 × 10-16)
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to the pool of control samples suggesting that different
ratios of alternatively spliced isoforms are present among
the three strains (Figure 5C). Similarly, exon 21 in pitpnm1
(phosphatidylinositol membrane-associated 1) showed
higher expression levels in males relative to females in all
three strains (Figure 5D) strongly suggesting that at least
two different forms or isoform ratios of pitpnm1 are
expressed between males and females.

We found many expression changes associated with sex
and thus investigated if the X chromosome was enriched
for differentially expressed genes or splicing events. Using
a Fisher's exact test, we found no enrichment for differen-
tially expressed genes or differential splicing on the X
chromosome (p-value > 0.9, see Additional file 4).

As strain and sex are major factors influencing gene
expression, we next asked how many genes showed both
strain- and sex-bias effects via differential exon expression
of the same or different exons within a gene. 17% of dif-
ferentially expressed exons (448 exons) exhibit both
strain and sex biases (Figure 6A) and were found in 137
genes. We then examined the number of genes with mul-
tiple exons showing differential expression, where an
exon demonstrating strain-bias expression is distinct from
those showing sex-bias expression. 22% of differentially
expressed genes (205 genes) demonstrated both strain-
and sex-biases at the exon level (Figure 6B).

Discussion
Messenger RNA gene expression variation can be divided
into two broad categories: differences in the overall
mRNA level (due to transcriptional changes or mRNA sta-
bility) and alterations in the ratios of alternative tran-
scripts. Variations in gene expression can be due to a
number of different factors, including genetic variation,
epigenetic variation, environment variation (which could
include, for example, the hormonal differences between
males and females) and interactions between these fac-
tors. In this paper, we first quantified the contributions to
differential expression from two sources of variation –
strain and sex – and secondly, provided evidence suggest-
ing that variation in transcript structure contributes signif-
icantly to mRNA expression variation.

When we clustered the dataset using hierarchical meth-
ods, we found that the mice of the same sex, but different
strains, were more similar in terms of gene expression
than mice in the same strain but of different sex. Further-
more, after this initial subdivision into males and females,
the phylogenetic tree obtained matches that shown in pre-
vious SNP-based genealogy studies[19,20]. Thus, we con-
clude that (a) the natural variation of gene and exon
expression is smaller between mouse populations of sim-
ilar sex than that of the same strains but differing sexes,
and (b) to the extent we have examined, gene and exon
expression captures the differences identified by geneal-
ogy. Based on genealogy of mouse strains, we believe
more differences in gene expression and splicing could

Genes showing both strain- and sex-biased effectsFigure 6
Genes showing both strain- and sex-biased effects. Venn diagrams showing A) the overlap between exons showing 
strain effects and those with sex effects and B) the overlap between genes with differentially expressed exons showing strain 
effects and those with sex effects. For the diagram shown in (B), we restrict the analysis to genes that utilizes different exons 
for strain- and sex-bias expression (see text).
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have been observed if the strain selection had been even
more diverse, such as the inclusion of strains 129S1/Svlm,
and SWR/J [19,21].

If we compare our estimates of strain-bias genes from 3'
gene expression profiling to those found in the literature,
our estimates of 23% fall within the range that has been
documented by others. For example, Nadler et al. (2006)
found 57% of genes exhibited strain-biases at the level of
gene expression whereas Pavlidis and Noble (2001) and
Sandberg et al. (2000) found only 1% to 2% of genes
show inter-strain variation [4,22,23]. As pointed out by
Nadler et al. (2006), the higher estimates are likely due to
the inclusion of a larger more diverse set of strains, i.e., 10
strains in Nadler et al. (2006) study vs. 2 strains in Sand-
berg et al. (2000) [4,23]. In addition, differences in the tis-
sues examined are also likely to significantly influence
variance estimates, since the studies mentioned above
used brain tissue while our study was performed using
liver. In terms of sex estimates, we find that our estimate,
at 17%, is markedly smaller than Yang et al. [3]. This dif-
ference likely reflects the dramatic differences in power
between the two studies to detect expression differences,
given only 11 or 12 animals were profiled from each sex
for each strain in or study, versus the more than 150 indi-
viduals per sex profiled in the study by Yang et al.

We detected significant variation in exon expression with
regards to the genetic background and sex. While the
probes used for exon expression profiling may be more
susceptible to cross-hybridization and higher background
levels given the smaller target regions, the use of cDNA
amplification products partially mitigates this effect [24].
Furthermore, by averaging multiple exon and junction
probes, we increased the reliability of each measurement
and reduce the impact of individual SNPs. However, aver-
aging exon and junction probes makes it more difficult to
distinguish different types of splicing events. Neverthe-
less, through the use of exon expression profiling technol-
ogies, we were able to detect 234 and 90 genes with strain-
and sex-bias effects, respectively, that were not detected in
the 3' gene expression or whole-transcript gene expression
profiling analysis. These numbers suggest that many alter-
native splicing events are differentially expressed but go
undetected by current gene expression profiling technolo-
gies.

Splicing differences between groups can be attributed to
genetic or epigenetic variation. For example, variations in
cis-acting regulatory elements, such as SNPs within pro-
moter sequences, splicing enhancers or splicing silencers
can alter transcriptional initiation rates and splicing pat-
terns. Structural variations in trans-acting splice regulatory
proteins may affect global splicing patterns and nucle-
otide variation in mRNA transcripts can influence transla-

tional efficiency (as shown with apolipoprotein A-II in
mice [25]) and/or mRNA decay rates. Expression and
splicing differences observed between different sexes,
however, showcase the amount of underlying biological
mechanisms that have yet to be elucidated. With the
exception of the sex chromosomes, the genome is essen-
tially identical between the males and females of an
inbred mice strain, hence the possible mechanisms that
give rise to gene expression and/or splicing variation
include trans-acting factors on the sex chromosomes
(such as SRY or the Sox proteins), epigenetic variations,
and/or hormonal differences.

Oligonucleotide probes overlapping SNPs are biased
towards differential expression, leading to overestimation
of differential expression. A study using probes from the
Affymetrix platform recently demonstrated the suscepti-
bility of single probes to SNPs and highlights the impact
of natural variation on hybridization based methods [26].
We found similar findings in longer 36 nt and 60 nt
probes. For example, we found that 36 nt junction probes
overlapping a SNP show higher sensitivity towards differ-
ential expression, possibly due to alternative splicing
brought about by SNPs within splice sites or due to differ-
ences in probe binding affinities due to the SNP.

We have confirmed that gene expression is significantly
affected by strain and sex and provided evidence suggest-
ing that this effect extends to alternative splicing which, to
our knowledge, had not been shown in mammals. Given
that variations in alternative splicing patterns lead to a
wide variety of downstream biological effects, our results
provides further justification for investigations on alterna-
tive splicing variations in genetically segregating popula-
tions.

Conclusion
A large degree of strain- and sex-bias variation is observed
in mouse liver tissue. Differences are observed both at the
overall mRNA levels and in the expression of individual
exons. We estimate 55% and 32% of genes demonstrate
differential expression between strains and sex, respec-
tively, at the level of gene or exon expression. Exon expres-
sion profiling captures the majority of genes identified by
3' gene expression profiling (93%), and identifies many
more genes containing differential exon expression –
changes invisible to 3' gene expression profiling. In these
samples, by profiling only the 3' end of each gene and not
exons, more than half the biological information present
in the mRNA variation is lost.

To our knowledge this is the first study reporting a broad
survey of the strain and sex effects upon individual exon
expression. Genetic variation of gene expression has been
used by several groups, including ours, in studying the
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genetic causes of complex disease and the identification of
causative genes for such diseases [14,15,19,27,28].
Recently, Kwan et al. (2007) identified significant associ-
ation between alternative splicing patterns and cis-regula-
tory regions in humans demonstrating the heritability of
alternative splicing events [29]. These studies along with
our finding that changes in exon expression is widespread
between mice of difference strains demonstrate the
importance of monitoring variations in splice forms and
that splicing is affected broadly by natural genetic varia-
tions.

Methods
Mice background and RNA collection
C57BL/6J, C3H/HeJ, and DBA/2J mice were reared at JAX
in Bar Harbor, Maine and shipped to JAX in Sacramento,
California at 7 weeks of age. A total of 12 mice for each
strain and each sex were placed on a standard chow diet
for 12 weeks. Mice were kept in similar environmental
conditions to minimize environmental effects. Female
mice were not synchronized with respect to estrogen cycle.
At 20 weeks of age, all mice were euthanized and liver tis-
sue was collected at necropsy and flash frozen in liquid
nitrogen. One liver sample failed quality control, resulting
in a total of 71 mouse livers profiled.

Array design
From previous studies in our lab and information found
in the published studies, we selected 1,312 mouse genes.
For each gene, a representative transcript was selected,
with priority to longer RefSeq NM transcripts, followed by
Genbank mRNAs, and lastly dbEST ESTs. Each transcript
was aligned to the Celera mouse genome sequenced to
define the exon structure [30]. Probes were selected as in
Johnson et al. (2003) [31], where 36 nt junction probes
were placed across exon-exon junctions with 18 nt in each
exon, and synthesized on 26 nt stilts (60 nt total) and an
optimal 60 nt probe was selected for each exon. Custom-
designed exon and junction microarray, containing
25760 probes representing 1312 genes, were transmitted
to and printed by Agilent Technologies (California).

Preparation of labeled cDNA, array hybridization, 
experimental design, and image processing
Hybridization material was generated through a random-
priming amplification of poly [A]+ purified RNA using
primers with a random sequence at the 3' end and a fixed
motif at the 5' end that was optimized to generate strand-
specific cDNA copies of full-length mRNA transcripts
[32]. Since the region used for exon and junction probe
selection is constrained to a smaller region, more probes
contain sequence with suboptimal characteristics (e.g.
high GC content or higher homology to other genes). The
hybridization of cDNA, rather than cRNA as commonly

done, partially mitigates this issue due to higher specifi-
city and lower background levels [24].

Hybridization conditions were as previously described
[33]. All 71 samples were hybridized in a two-channel
experiment, where one channel was a common reference,
generated by pooling all 71 samples in equal mass. Array
hybridizations were done in duplicate with fluor reversal
to systematically correct for Cy3/Cy5 dye bias. Array
images were processed as described to obtain background
noise, single channel intensity and associated measure-
ment error estimates [34]. Expression changes between
samples and pool were quantified as mean log10 (expres-
sion ratio), and associated error.

Gene and exon expression
The expression dataset was first filtered to exclude probes
with saturated intensities or those below background lev-
els. Based on previous experiments with the ink-jet micro-
array platform and Agilent scanner, we flagged probe
intensities that fell outside of the linear range, either near
saturation or background levels. The filtered dataset con-
tained expression ratios for 1020 genes represented by
9406 exons. We calculated gene expression in two ways;
using a single 3' probe to mimic commonly used 3' based
microarray profiling and using the mean of all probes
measurements associated with the gene. Standard micro-
array experiment utilizes an oligo-dT based amplification
protocol that amplifies only the region immediately 5' of
the poly adenylation site. Probes on standard arrays are
thus situated near the genes' 3' terminus. As a surrogate for
standard 3' gene expression profiling, we selected the exon
probe located closest to the 3' end on our custom-design
arrays and extracted the mean log10 ratio to the reference
pool; forming a "3' gene expression profiling" dataset. We
also calculated a "whole-transcript" gene expression data-
set using all exon and junction probes along the entire
length of the gene. The mean log10 ratios for all probes
associated with a given gene were then averaged forming
a single measurement for the transcript. For exon expres-
sion profiling, we again used the average of the mean
log10 ratios of each exon probe and the two flanking junc-
tion probes. In the case of the first or last exon, only the
exon probe and a single flanking junction probe was used
(Figure 1).

Subsequent analysis performed required the removal of
probes with SNPs within the probe body. Hence, for the
3' gene expression profiling dataset, if the exon probe clos-
est to the 3' end overlapped SNPs, we discarded the gene.
For whole transcript gene expression profiling, we com-
puted the average measurement of all probes with no
SNPs and used only exons and flanking junction probes
containing no SNPs for exon expression profiling.
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Statistical analysis
Genes and exons were clustered in 1-dimension using
agglomerative methods with Pearson correlation being
used as a measure of similarity. Correlation values
between groups were computed by first averaging the
mean log10 expression values from all individuals in each
group, and then calculating the Pearson correlation using
all complete pairwise values for each gene between all
possible group pairs. In terms of differential expression,
each dataset was analyzed using the following two-way
analysis of variance (ANOVA) model:

Yijk = μk + Sik + Gjk + εijk

where Yijk is the value for strain i, sex j and gene k; μ is the
overall mean; Si, and Gj represent the strain effects for
strain i and sex effects for sex j respectively; and ε ijk is the
error term. The results were then adjusted for multiple
hypothesis testing using Bonferroni correction (see Addi-
tional files 5, 6, 7). For each main effect, genes and exons
with a Bonferroni corrected p-values of less than 0.01
were identified as differentially expressed. Initially, we
specified a sex-strain interaction term. However, only 1%
to 2% of genes have significant sex-strain interaction
effects at a Bonferroni-corrected p-value threshold of 0.01.
Since this is either slightly higher or exactly what we
would expect by chance alone, we discarded the term in
favor of a more precise model.

SNP analysis
A set of 1,533,914 SNPs were obtained from the mouse
resequencing project by Perlegen-US National Institute of
Environmental Health Sciences [12]. These SNPs repre-
sented the complete set of polymorphisms between
C57BL/6J, DBA/2J and C3H/HeJ where at least one pair
was polymorphic for each SNP. No missing data was per-
mitted in the SNP set. Probes with at least one SNP were
then identified. Using the same ANOVA model described
above, we identified probes that were differentially
expressed between strains, again using a Bonferroni-cor-
rected p-value threshold of 0.01. Fisher's exact test was
then used to determine if differentially expressed probes
were significantly enriched for probes containing SNPs.
This analysis was repeated for our 3' gene expression pro-
filing dataset. A similar analysis was performed for the
whole-transcript gene expression profiling dataset using
all probes associated with the transcript. For exon profil-
ing, because a junction probe often overlaps with both a
differentially expressed exon and a non-differentially
expressed exon, we associated each exon with the number
of SNPs within the exon probe and its flanking junction
probe. Results of the above analysis are summarized in
Additional files 3, 4 and 8.
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