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Abstract

Background: Some splicing isoform-specific transcriptional regulations are related to disease.

Therefore, detection of disease specific splice variations is the first step for finding disease specific

transcriptional regulations. Affymetrix Human Exon 1.0 ST Array can measure exon-level

expression profiles that are suitable to find differentially expressed exons in genome-wide scale.

However, exon array produces massive datasets that are more than we can handle and analyze on

personal computer.

Results: We have developed ExonMiner that is the first all-in-one web service for analysis of exon

array data to detect transcripts that have significantly different splicing patterns in two cells, e.g.

normal and cancer cells. ExonMiner can perform the following analyses: (1) data normalization, (2)

statistical analysis based on two-way ANOVA, (3) finding transcripts with significantly different

splice patterns, (4) efficient visualization based on heatmaps and barplots, and (5) meta-analysis to

detect exon level biomarkers. We implemented ExonMiner on a supercomputer system in order

to perform genome-wide analysis for more than 300,000 transcripts in exon array data, which has

the potential to reveal the aberrant splice variations in cancer cells as exon level biomarkers.

Conclusion: ExonMiner is well suited for analysis of exon array data and does not require any

installation of software except for internet browsers. What all users need to do is to access the

ExonMiner URL http://ae.hgc.jp/exonminer. Users can analyze full dataset of exon array data within

hours by high-level statistical analysis with sound theoretical basis that finds aberrant splice variants

as biomarkers.

Background
It is reported that some splicing isoform-specific transcrip-
tional regulations are related to disease [1,2]. To find dis-
ease specific transcriptional regulations, detection of
disease specific splice variations is the first step. However,

conventional microarrays that produce gene-level infor-
mation are not suitable for this purpose. On the other
hand, Affymetrix Human Exon 1.0 ST Array can measure
exon-level expression profiles that are suitable to find dif-
ferentially expressed exons in genome-wide scale. Affyme-
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trix exon array can measure the transcript levels of more
than 1,000,000 exons with 300,000 transcripts by about
6,500,000 probes.

We have developed a supercomputer-based web service
named ExonMiner to analyze exon array datasets for
detecting genes that are spliced into different isoforms in
two types of cells in comparison, e.g. normal and cancer
cells. There are some noncommercial standalone applica-
tions for analyzing exon array data: IGB [3] is an applica-
tion for visualizing exon array data and ExACT [4] and
Affymetrix Expression Console [5] are mainly focusing on
normalizing exon array data. Also, Bioconductor [6]
(exonmap [7]) focuses on annotation as well as normali-
zation. The advantage of exonmap is that users can use
other statistical tools implemented on R. These are well
organized applications, however, these applications focus
on data normalizations and we need to use other software
for further analysis. Since ExonMiner is, however, an all-
in-one web service on a supercomputer system, users can
analyze more than 300,000 transcripts spotted on exon
array by data normalization, two-way ANOVA analysis,
visualization of the results, and detection of exon-level
biomarkers. Based on our experiments, which used colon
cancer exon array data that contains 20 exon arrays, on
various situations of our system usages, the minimal com-
putational time is four hours and the longest was finished
in one day. We also observed that the average computa-
tional time of colon cancer example is about eight hours.

We have implemented ExonMiner on our Super Compu-
ter System https://supcom.hgc.jp/english/ in Human
Genome Center, Institute of Medical Science, University
of Tokyo and created GUI to use the all analysis tools of
ExonMiner easily. An illustrative example of colon cancer
exon array data analysis [8] is shown in the web site. Exon-
Miner has five advantages: (1) a statistical analysis frame-
work, (2) analysis for all transcripts completed, (3)
effective visualization with heatmap and barplot images,
(4) sophisticated and easy-to-use web interface, and (5)
useful hyperlinks to major public databases, e.g. PubMed
and NetAffx.

As shown in latter sections, the method implemented in
ExonMiner requires more computational time than other
software, due to the nonparametric test based on boot-
strapping. For example, we need to repeat bootstrap sam-
pling more than 1,000 times for computing accurate p-
values of statistical tests finding aberrant splice variations,
it requires 1,000 times computation of usual statistical
test of ANOVA with Gaussian error model. Therefore, we
need high-performance parallel computing on Super
Computer System. Also, more advanced methods imple-
mented on ExonMiner in future possibly requires more

computational resources, therefore, the use of Super Com-
puter System can give flexible computational basis and is
suitable for our purpose.

Data normalization

Before performing statistical analysis, we apply normali-
zation method to raw exon array data. ExonMiner can
remove a bias related to GC-content in each probe. The
probes are categorized according to their GC-contents and
GC-content specific bias will be removed from the probes
in each category. ExonMiner uses two types of control for
data normalization: One is the median value for each GC
category and the other is based on antigenomic back-
ground probes. The antigenomic background probes are
also categorized into GC categories and we compute their
median values. The median value of the probe intensities
in each GC category will be transformed by subtracting
corresponding control value. In case that user chooses the
median values of GC categories for control, the median of
probe intensities in a GC category will be equal to one.

Two-way Analysis of Variance

Concept and Model

For using ExonMiner to detect aberrant splice variations,
user needs to prepare at least two exon array data from a
pair of cells. For example, in our illustrative example, one
exon array is prepared for measuring exon profiles in
colon cancer cell and the other exon array is used for nor-
mal cell. In this case, we can find aberrant splice variants
in colon cancer by comparing with normal cells. In this
purpose, we use two-way analysis of variance (ANOVA).
Suppose that a gene (transcript cluster) is composed of the
m exonic regions (exon clusters), and that xijk is the back-
ground corrected probe intensity for the k th probe (k = 1,
<, nij) on the i th exon (i = 1, <, m) of a transcript, i.e. this
transcript has m exonic regions and each exonic region is
spanned by nij probes. Here the index j denotes the type of
cells, e.g. j = 1 denotes normal cell and j = 2 for cancer cell.
If we observe xijk ≈ c for any i, j and k, the transcript does
not show any transcriptional changes and splicing varia-
tions across cell types (j = 1, 2). If we observe that xi1k ≈ c1

and xi2k ≈ c2 (c1 ≠ c2) for any i and k, it indicates that this
transcript was differentially expressed between two cells
and this information is equivalent to usual microarray
expression data like cDNA microarray, GeneChip and so
on. On the other hand, xijk ≈ c1 and xi'jk ≈ c2 for any j, k and
i ≠ i' hold where c1 ≠ c2 and c1, c2 > 0, it means that this
transcript has splice variations but these splice variations
are commonly occurred between cell types. Finally, if we
observe that two cells show different splice patterns, we
define them aberrant splice variations. We will capture
this information by two-way ANOVA model. For ANOVA
in exon array data analysis, see also [8-10].

https://supcom.hgc.jp/english/
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For detecting transcripts that show aberrant splice varia-
tions, we use two-way ANOVA model defined by

xijk = μ + αi + βj + γij + δijk,

where αi, βj and γij are parameters, εijk denotes the observa-
tional noise having zero mean and variance σ2, and μ rep-
resents an overall mean of the probe intensities. The
parameter αi represents the baseline intensities in the i th
exonic region (i = 1, <, m), this parameter captures exon
effect. The parameters βj (j = 1, 2) capture difference in the
overall means between two cells, this difference is called
overall gene effect. The γij s represent interaction effects for
each combination of m exons and cell types, which is
called effect of specific splice variations. The effects of
these parameters are shown in Figure 1. A given statistical
evidence that one or more γij s are different with the others
suggests that alternative splicing is present in a particular
cell, but absent in the other. We should note that MIDAS
[11] is a similar method that uses ANOVA model to ana-
lyze exon array data, but MIDAS uses exon-level summa-
rized data, while our model uses probe-level data. Also
nonparametric test based on bootstrap method can be
considered our advantage.

Statistical tests for detecting alternative splicing, differentially 

expression, and aberrant splice variations

The estimates of γij s could capture presence of aberrant
splice variations. By the ANOVA model, the probe fluctu-
ations are decomposed into three orthogonal effects, i.e.
exon effect (αi), overall gene effect (βj) and effect of spe-
cific splice variations (γij). The statistical significance of
each effect can be evaluated by the following three tests:

Test 1 (Detection for exon effect):

H0: αi = 0 for all i.

Ha: αi ≠ 0 at least one i.

Test 2 (Detection for overall gene effect):

H0: β1 = β2

Ha: β1 ≠ β2

Test 3 (Detection for effect of specific splice variations):

H0: γij = 0 for all i and j.

Ha: γij ≠ 0 for one or more pairs of (i, j).

Here H0 and Ha represent null and alternative hypotheses,

respectively. Repeating these hypothesis tests for all tran-

script clusters, one can obtain the statistical evidences of

aberrant splice variations which are scored by the com-

puted p-values from Test 3. In ExonMiner, in addition to

the usual F-test for test of parameter significance, the per-

mutation method that is a nonparametric approach is

developed to calculate the null distribution of the F-statis-

tics; Fexon, Fgene and Fsas, for assessing significance of exon

effect, gene effect and effect of specific splice variations,

respectively. In order to evaluate the null distributions, we

first generate a permutation set of samples by bootstrap-

ping n = Σijnij samples from xijk s. Repeating this process B

times, we can approximately evaluate the null distribution

of each F* with the Q permutation statistics , q = 1, <,

Q . Note that * can be replaced by exon, gene and sas. Sub-

sequently, the p-value for a given test statistic F* = f*

obtained from the original data set is calculated by
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The effects of two-way ANOVA parametersFigure 1
The effects of two-way ANOVA parameters.  
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for each effect. In ExonMiner, users can choose parametric
or nonparametric test for assessing significance of each
parameter.

Meta Analysis

To detect aberrant splice variants as biomarkers, we need

to check whether the detected aberrant splice variants are

common in the targeted disease or not. In this purpose,

we establish a statistical testing procedure based on meta-

analysis [8]. Suppose that we have G pair of exon array

datasets, i.e. normal and tumor exon expression data are

measured from G patients. By performing the whole tran-

script analysis based on two-way ANOVA to G paired exon

array datasets, one obtains a set of p-values for each effect,

e.g. effect of specific splice variations (γij), ,

across patients, g = 1, <, G. Here the total number of tran-

scripts analyzed is denoted by r. Intuitively, a transcript

having a small p-value is strongly associated with tumor

formation. However, it is possible that some observed

aberrant splice variants could be caused by the inter-indi-

vidual differences of the analyzed samples. Our goal is to

discover the "universal biomarkers", i.e. aberrant splice

variations which are shared by most individuals with a

particular diagnostic category.

Following this direction, we develop the statistical tech-
nique within the framework of meta-analysis based on the
normal inversion method.

Let  denote the observed probe intensities of the k th

probe which spans the i th exonic region for normal cell (j

= 1) or target cell (j = 2) isolated from the g th individual.

We assume that the probe intensities  of each individ-

ual can be modeled by the two-way ANOVA defined by

for g = 1, <, G. Given these models, the statistical hypoth-
esis testing of each effect, for example, effect of specific
splice variations, is formulated by

Test 4 (Detection for universal specific splice variations):

H0:  = 0 for all i, j and k.

Ha:  ≠ 0 for one or more tuple (i, j, g).

In order to assess the H0, we propose use of the normal

inversion metric as a test statistic. Suppose that we have a

set of p-values, , for occurrence of the aberrant

splice variations in the h th transcript cluster. The method

first converts these p-values into the z-scores as

, where Φ-1 is the inversion of the stand-

ard normal cumulative distribution function, and then

computed integrated z-score as

The significance of Ha can be assessed based on the inte-
grated p-value which is computed by transforming the z-
score with the standard normal cumulative distribution
function Φ as

We would like to show an actual example of meta-anlay-
sis. In Yoshida et al. [8], colon cancer exon array dataset
was analyzed by primary version of ExonMiner. In this
anlaysis, based on the Test 3 of ANOVA, gene MUC17
(Accession ID: NM_001040105) has p-values for ten
patients:

ph
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The integrated z-score is 4.023 and the integrated p-value
is obtained as 2.86 × 10-5.

In the colon cancer example, we compute q-values from
integrated p-values of meta-analysis, the list of the genes
identified as having aberrant splice variations including
exon skipping/retaining has 10% False Discovery Rate
(FDR) that corresponds to q-value < 0.1. In the above
MUC17, the q-value is 0.0345 and it is determined as sig-
nificant. The computation of q-value is shown in Yoshida
et al. [8].

By using exon array data with ExonMiner, it is possible to
detect alternative splicing like exon skipping/retaining,
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alternative usage of donor and acceptor splice sites and so
on. However, since exon array does not have junction
probes, custom array with junction probes or PCR
method are needed for further analysis of detecting exact
patterns of splice isoforms.

Implementation
Data upload

The users are required to upload their exon array data. We
prepared an FTP service for data upload. A reason for
choosing FTP service for our system is that a large dataset
can easily be uploaded. To increase the security level, we
prepare one time account and password for FTP service.
Note that one time account and password are different
from the pair for login account and password of Exon-
Miner.

Statistical analysis engine

ExonMiner performs ANOVA for each transcript. To test
the significance of each effect in ANOVA described in pre-
vious section, we implemented two types of tests: one is
based on Gaussian noise model and it performs F-test, the
other is based on nonparametric approach using boot-
strap method. In the nonparametric approach, we need to
compute test statistics repeatedly and it needs enormous
computation. Therefore we implemented the ANOVA
program by Fortran and optimized for high performance
computing described in the latter section.

Visualization engine

The information of exon expression pattern for each tran-
script needs to be shown visually. We have developed two
types of image generators and can make heatmap and bar-
plot images optimized for exon array data. These images
are generated by using R. The graphics library is originally
developed.

Database

For the management of user information and probe anno-
tation information, we use MySQL database server. For
constructing a highly secure system, user login informa-
tion is encrypted and stored in MySQL database. By keep-
ing probe annotation information into MySQL database,
users are not necessary to explore other databases. Thus
ExonMiner is an all-in-one web service.

High performance computing on supercomputers

Since ANOVA for the full set of transcripts needs high per-
formance computing, we perform each ANOVA computa-
tion in parallel on our supercomputer system. Our
supercomputer system has eight Sun Fire 15 k and at most
700 CPUs can be used for parallel statistical computation
by using Sun Grid Engine.

Web interface

In ExonMiner, PHP scripts deal with connections between
front end users and our supercomputer system and
dynamically generate images by executing visualization
engine described above based on user input. PHP scripts
generate HTML web pages with a uniformed style that
increases usability.

Results and discussions
Overview of ExonMiner

Create user account

Figure 2 shows a flowchart of ExonMiner. First, a user
account will be created by request to ExonMiner. Figure 3
shows the web page for user account registration. By fill-
ing the registration form, an e-mail with (1) ID (user-
name), (2) login password and (3) confirmation URL will
be sent to the user. Accessing the confirmation URL, the
user ID will be activated and the personal page for the user
is dynamically created.

FTP for data upload

For the upload of your data, you need to use FTP. For
using FTP service in ExonMiner, user needs to get one time
password and account for FTP.

Note that the account of FTP is different from login
account. Using the one time password, the user can

A flowchart for an analysis in ExonMinerFigure 2
A flowchart for an analysis in ExonMiner.  
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A snapshot of the account registration screenFigure 3
A snapshot of the account registration screen.
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upload CEL (TEXT) files archived by ZIP via FTP. Exon-
Miner supports CEL files as TEXT format (this CEL file is
recognized as version 4), usual CEL files are, however,
BINARY format (this CEL file is recognized as version 3).
To convert BINARY CEL files (version 3) in TEXT format
(version 4), "CEL File Conversion Tool" provided by
Affymetrix Inc. is available [12].

Analysis options

User should fill up all of the analysis options. Then user
will start the analysis. User must select all (A) – (I) options
in Figure 4 to start a statistical analysis by two-way
ANOVA and meta-analysis.

(A) Description: you can add a brief description of your
analysis. It may be convenient that you put a name of this
analysis to organize your analyses.

(B) Select probe levels: you can select the level of expres-
sion information in exon array. Transcript Level: For tran-
scripts, there are three levels, core, extended and full
transcripts, according to their information quality based
on their information sources. Like transcript level, user
can choose Probe Level and Exon Resolution.

(C) Select GFF: you can select chromosomes. Transcripts
on the selected chromosomes will be analyzed. This selec-
tion can reduce computational time.

(D) Select which CEL file is a patient or a control: user
adds the outcome information to each CEL file you have
uploaded by FTP.

(E) Preprocessing data (background correction): user
selects the type of normalization method. GC-content: the
median values in the same GC-content probe groups are
used as control values. Antigenomic background: the
median values in the same GC-content antigenomic back-
ground probes are used as control values.

(F) Preprocessing data (GC-content threshold): it is a pos-
sible case that probes with high GC-content work as noise.
So you can remove such probes. In default, the probes
with 20 or more GC-content are removed. If you want to
use the all probes for analysis, you choose 26 as the cut-
off.

(G) Analysis type (model): user selects the analysis type
from the following three types – Don't analyze: Exon-
Miner does not perform ANOVA. Only visualization and
sequence information are available. Parametric analysis:
Gaussian distribution is assumed as the noise model.
Nonparametric analysis: ExonMiner does not assume any
distributions for the noise model. Bootstrap test will be
applied for computing p-values.

(H) Analysis type (threshold for the number of probes):
ExonMiner ignores probesets or exon clusters with small
number of probes for stabilizing the results of ANOVA.
You can choose this cut-off by this option.

(I) Nonparametric analysis options: the number of boot-
straps in nonparametric ANOVA is specified by this
option.

Visualization of the results

Setting the all options, user can start the analysis. When
the analysis is completed, ExonMiner sends an e-mail to
the user to announce that the calculation is finished. After
that, the user can view result pages of the analysis with
heatmaps, barplots, sequence information and calculated
p-values of two-way ANOVA and results of meta-analysis.
A screen shot of ExonMiner is given in Figure 5. In this fig-
ure, you can see the results of LGR5. LGR5 is one of the
most significant genes in colon cancer exon arrays
reported by Yoshida et al. [8]. The colon cancer exon array
data are provided by Affymetrix. We can reach the infor-
mation for each transcript by either gene symbol or tran-
scription cluster ID. The heatmap (A) represents the exon
profiles of LGR5. The user can download the heatmap
image as bitmap or postscript file. Sequence information
(B) for the transcript is shown with hyperlinks to the
external web sites, Entrez [13] and NetAffx [14]. The table
(C) shows calculated ANOVA p-values. User can view the
barplot image of normalized exon expression for a pair of
cells from the View hyperlinks. The p-values for parame-
ters calculated in meta-analysis are shown in the bottom
table. The user can download results in one Excel file.

Instead of the heatmap image, ExonMiner can produce
barplot images. Figure 6 is a barplot image for LGR5. A
barplot image has three bar-graphs. Red bar-graph shows
probe intensities in exon array of colon cancer cell and
green bar-graph shows probe intensities in exon array of
normal cell. We show the bars with lower intensities in
dark color. If the color of the bar on a dark bar is red, the
cell type of the dark bar is normal (green) and vice versa.
By using dark bar-graph, the users easily find the differ-
ences of exon expressions between two cells. For example,
from Figure 6, we can find that the exon expression levels
of colon cancer cell are higher than those of normal cell in
many exonic regions.

Availability and requirements
• Project name: ExonMiner

• Project home page: http://ae.hgc.jp/exonminer/

• Anonymous accounts (no e-mail address for registration
is needed): http://ae.hgc.jp/exonminer/anonymous.html

http://ae.hgc.jp/exonminer/
http://ae.hgc.jp/exonminer/anonymous.html
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A snapshot of the analysis option selection screenFigure 4
A snapshot of the analysis option selection screen.
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A snapshot of the analysis result viewerFigure 5
A snapshot of the analysis result viewer.  
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• Operating systems: any OS (that has an internet browser
application)

• Programming language: PHP, R, Fortran, Perl, Ruby,
MySQL

Conclusion
ExonMiner is an all-in-one web service well suited for
analysis of exon array data. Since it does not require any
installation of software except for internet browsers, what
all users need to do is to access the ExonMiner URL http:/
/ae.hgc.jp/exonminer. ExonMiner can perform not only
visualization of exon array data, but also can perform data
normalization and user customized statistical analysis
that is hard to run on a single computer. With the support
of supercomputers in Human Genome Center, Institute of
Medical Science, University of Tokyo, users can analyze
full dataset of exon array data within hours with results of
meta-analysis that finds aberrant splice variants as
biomarkers.
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