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ABSTRACT
Atmospheric mass-loss is known to play a leading role in sculpting the demographics of small, close-in exoplanets. Knowledge
of how such planets evolve allows one to “rewind the clock” to infer the conditions in which they formed. Here, we explore
the relationship between a planet’s core mass and its atmospheric mass after protoplanetary disc dispersal by exploiting XUV
photoevaporation as an evolutionary process. Historically, this inference problem would be computationally infeasible due to the
large number of planetmodels required; however, we use a novel atmospheric evolution emulator which utilises neural networks to
provide three orders of magnitude in speedup. First, we provide proof-of-concept for this emulator on a real problem by inferring
the initial atmospheric conditions of the TOI-270 multi-planet system. Using the emulator, we find near-indistinguishable results
when compared to the original model. We then apply the emulator to the more complex inference problem, which aims to find
the initial conditions for a sample of Kepler, K2 and TESS planets with well-constrained masses and radii. We demonstrate there
is a relationship between core masses and the atmospheric mass they retain after disc dispersal. This trend is consistent with
the ‘boil-off’ scenario, in which close-in planets undergo dramatic atmospheric escape during disc dispersal. Thus, it appears
the exoplanet population is consistent with the idea that close-in exoplanets initially acquired large massive atmospheres, the
majority of which is lost during disc dispersal; before the final population is sculpted by atmospheric loss over 100 Myr to Gyr
timescales.
Key words: planets and satellites: atmospheres - planets and satellites: physical evolution - planet star interactions

1 INTRODUCTION

The observed exoplanet population is dominated by planets with
ages of 1-10 Gyr (e.g. McDonald et al. 2019; Berger et al. 2020;
Petigura et al. 2022). Thus, it is distinctly separated in time from the
formation process that happened early, in many cases within the first
∼10 Myr of the planet’s life. In order to connect observed exoplanets
to their origins, we rely on the computation of evolutionary models
to describe their possible histories.
This issue is perhaps most pertinent for the small (1-4) R⊕ , close-

in exoplanets (periods . 100 d) that are now thought to represent
one of the dominant exoplanet populations (e.g. Howard et al. 2012;
Fressin et al. 2013; Silburt et al. 2015; Mulders et al. 2018; Zink
et al. 2019; Petigura et al. 2022). In several cases, these planets are
known to host H/He dominated atmospheres (e.g. Weiss & Marcy
2014; Jontof-Hutter et al. 2016; Benneke et al. 2019). Therefore, their
proximity to the host star means they’re vulnerable to atmospheric
mass-loss, wherein the extreme irradiation drives powerful hydro-
dynamic outflows that cause the planet’s atmosphere to lose mass
(e.g. Baraffe et al. 2005; Owen & Jackson 2012; Erkaev et al. 2016;
Owen & Alvarez 2016; Kubyshkina et al. 2018). It is now well estab-
lished that atmospheric escape is capable of sculpting the close-in
exoplanet population and is thought to play a key role in creating both
the exoplanet desert and radius gap (e.g. Owen & Wu 2013; Lopez
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& Fortney 2013; Owen & Wu 2017; Ginzburg et al. 2018; Owen &
Lai 2018; Gupta & Schlichting 2019; Wu 2019; Owen 2019; Gupta
& Schlichting 2020). However, the formation scenario for this plane-
tary population is uncertain, and strongly debated (see recent review
by Bean et al. 2021). These planets’ bulk properties (mass and ra-
dius) vary significantly over their lifetimes due to a combination of
cooling and mass-loss (e.g. Lopez et al. 2012; Owen & Wu 2013).
Thus, computation of their evolution is critical to unravelling their
formation since one can statistically constrain a planet’s formation
properties by determining which initial conditions can evolve into
the planet we observe today (Rogers & Owen 2021).
However, atmospheric-loss-driven evolution is convergent: there

are many initial planetary conditions that can evolve into an exo-
planet with observationally indistinguishable bulk properties (e.g.
Owen 2019, 2020; Kubyshkina & Vidotto 2021). This convergent
evolution arises from both cooling and mass-loss. An initially hotter,
higher entropy planet cools faster, meaning it reaches the same ther-
modynamic state as a planet that started cooler, with lower entropy.
Similarly, planets with a more massive initial atmosphere are larger
and, as such, can drive more powerful outflows, meaning it reaches
the same atmospheric mass as a planet that started with a less massive
atmosphere.
Nevertheless, this convergent evolution does not mean a planet’s

initial conditions are completely lost. In fact, evolutionary modelling
can provide important constraints that are inaccessible using only
measurements of mass and radius for an evolved planet. Specifi-
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cally, evolutionary modelling in both the photoevaporation and core-
powered mass-loss scenario has indicated the core-composition of
sub-Neptunes is an “Earth-like” iron-rock mixture (e.g. Owen &Wu
2017; Wu 2019; Gupta & Schlichting 2019; Rogers & Owen 2021).
Thus, evolutionary modelling allows one to break the well-known
degeneracies in determining the compositions of small planets (e.g.
Valencia et al. 2007; Rogers & Seager 2010a). Furthermore, the
link between planet radius, entropy and mass-loss means a planet’s
initial thermodynamic state is not completely lost. Specifically, a
lower bound on a planet’s initial cooling time (the Kelvin-Helmholtz
timescale) can be determined because a planet with an even shorter
cooling time would be larger and would have lost too much mass
(e.g. Owen 2020).

In this work, we aim to quantify the relation between core mass
and the atmospheric mass retained after protoplanetary disc disper-
sal. This relation thus encodes the physics of gaseous core accretion
during formation (e.g. Pollack et al. 1996; Lee et al. 2014; Massol
et al. 2016) as well as atmospheric mass-loss during protoplane-
tary disc dispersal (e.g. Ikoma & Hori 2012; Owen & Wu 2016;
Ginzburg et al. 2016). The inference model involves finding the pho-
toevaporative histories consistent with measured masses and radii for
an ensemble of observed close-in exoplanets from Kepler, K2 and
TESS. However, to fully and statistically characterise these plausi-
ble initial planetary conditions requires the computation of a large
number of evolutionary models, and to do this at a population level
is extremely computationally challenging. For example, to extract
population level constraints on the exoplanet population at formation
Rogers&Owen (2021) evaluated∼ 1010 planetary evolutionmodels.
As a result, this could only be applied over a narrow range of stellar
mass, and expected correlations (for example, between core-mass
and initial atmospheric mass) were not taken into account.

The desired inference problem of this work will require the same,
if not more evolutionary models to be evaluated. Therefore, we must
consider a new, more computationally efficient approach. This is all
the more pertinent as, in the end, one would like to use accurate
evolution models that include, for example, a real equation of state,
radiative transfer with atmosphere models and self-gravity. Fortu-
nately, machine-learning provides an answer and has been shown to
be a powerful tool throughout a large range of scientific applications,
particularly in the case of emulating the results complex numerical
models at a fraction of the computational expense (e.g. Verrelst et al.
2015; Gilmer et al. 2017; Brehmer et al. 2018; Baydin et al. 2019;
Tamayo et al. 2020; Himes et al. 2022). Instead of solving the plane-
tary structure and evolution equations for each planetary model one
wishes to evolve, we can use a machine-learning model to emulate
the planet’s evolution. To demonstrate the feasibility of such an ap-
proach, here, we construct an exoplanet evolution emulator which is
trained on semi-analytic models of XUV photoevaporation, testing it
on the system TOI-270 (Van Eylen et al. 2021) before using it in the
aforementioned inference problem. The success of this work high-
lights that, in the future, an emulator can be trained on considerably
more computationally expensive but accurate models.

In Section 2, we outline the emulator design and present bench-
mark tests. In Section 3, we present the statistical inference model
required to determine the correlation between core mass and atmo-
spheric mass retention post disc dispersal, with results and discussion
in Sections 4 and 5.

Input parameters 
{Mcore , ρcore , Xinit , P, M* , Z*}

Neural 
network 
classifier

Super-Earth 
(i.e. stripped core)

Sub-Neptune 
(i.e. core with 
extended H/He 
atmosphere)

 Rp = Rcore
Xfinal = 0

 and  from 
neural network 

regressor

Rp Xfinal

Figure 1. Flowchart to demonstrate the atmospheric evolution emulator. For
a given set of parameters, an initial neural network classifier determines
whether a planet will be stripped of its primordial H/He atmosphere. If so,
the standardmass-radius relation of Fortney et al. (2007) is used to provide the
final radius. If the initial classifier predicts an atmosphere is retained, a neural
network regressor predicts its final radius and atmospheric mass fraction.

2 ATMOSPHERIC EVOLUTION EMULATOR

The purpose of an emulator is to reproduce the output of a physi-
cal model accurately whilst avoiding the computational expense of
numerically solving the full problem (in our case, coupled ODEs).
Since this is a proof of concept, we choose to train the evolution
emulator with the semi-analytic model of the evolution of an exo-
planet’s H/He atmosphere from Owen & Wu (2017); Owen & Cam-
pos Estrada (2020). This model calculates the evolution of a planet’s
photospheric radius and atmospheric mass-fraction as its primor-
dial H/He atmosphere cools and experiences mass-loss due to XUV
driven photoevaporation. Whilst we provide an overview here, we
refer the interested reader to Owen & Wu (2017); Rogers & Owen
(2021) and references therein for the technical details of this model.
The photoevaporation model of Owen & Wu (2017); Owen &

Campos Estrada (2020) utilises an energy-limited mass-loss scheme,
with atmospheric mass-loss rate, ¤𝑀atm, given as:

¤𝑀atm = [
𝐿XUV
4𝑎2

𝑅3ph
𝐺𝑀p

, (1)

where [ is the mass-loss efficiency, 𝑎 is the orbital semi-major axis,
𝑅p is the planetary radius and 𝑀p is the planetary mass. As in
Rogers et al. (2021), the stellar X-ray/EUV luminosity, 𝐿XUV, which
is responsible for heating and ionising the H/He atmosphere is pa-
rameterised relative to the stellar bolometric luminosity, 𝐿bol, by:
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𝐿XUV
𝐿bol

=


(
𝐿XUV
𝐿bol

)
sat

(
𝑀∗
𝑀�

)−0.5
for 𝑡 < 𝑡sat,(

𝐿XUV
𝐿bol

)
sat

(
𝑀∗
𝑀�

)−0.5 (
𝑡
𝑡sat

)−1−𝑎0
for 𝑡 ≥ 𝑡sat,

(2)

where 𝑎0 = 0.5 and (𝐿XUV/𝐿bol)sat = 10−3.5, which is inspired by
multiple observation works (e.g. Wright et al. 2011; Jackson et al.
2012; McDonald et al. 2019; Johnstone et al. 2021). The saturation
time 𝑡sat follows:

𝑡sat = 102
(
𝑀∗
𝑀�

)−1.0
Myr. (3)

In order to calculate 𝐿XUV, we use MIST stellar evolution tracks
(Dotter 2016; Choi et al. 2016) to accurately model the pre-main
sequence and main-sequence evolution of the host star bolometric
luminosity, 𝐿bol, as a function of stellar mass, 𝑀∗, and metallicity,
𝑍∗.
Whereas in previous iterations of this model, an analytic power

law was used for the photoevaporative efficiency, [, in this work,
we interpolate a grid of efficiencies calculated from the hydrody-
namic models of Owen & Jackson (2012), which is also provided
in the updated evapmass code of Owen & Campos Estrada (2020).
This approach provides physically accurate efficiencies as a func-
tion of planet mass and size. The original power law from Owen
& Wu (2017) was focused on explaining the sub-Neptune to super-
Earth transition and neglected the efficiency drops for planets with
low escape velocities due to advection (e.g. Owen & Jackson 2012;
Caldiroli et al. 2022).
To emulate atmospheric evolution, we turn to supervised machine

learning. The goal is to predict the photospheric radius and atmo-
spheric mass fraction 𝑋 ≡ 𝑀atm/𝑀core after billions of years of
evolution without computing evolutionary tracks. We wish to predict
this “final” evolutionary state of a planet as a function of core mass
𝑀core, initial atmospheric mass fraction 𝑋init, orbital period 𝑃, host
stellar mass𝑀∗, host stellar metallicity 𝑍∗ and core density 𝜌core. We
choose to interpret this latter variable in terms of a core composition
�̃� according to the mass-radius relations of Fortney et al. (2007) in
similar manners to Owen &Morton (2016); Rogers & Owen (2021).
A composition of �̃� ≤ 0 signifies a ice-rock mixture, with �̃� = −1
implying a 100% ice core, ranging to �̃� = 0 implying a 100% rocky
core. Similarly, �̃� ≥ 0 relates to a rock-iron mixture, with �̃� = 1
resulting in a 100% iron core. This choice allows us to put plausible
bounds on the core density; however, it is important to note that the
model constrains the bulk core density, not the composition. Thus,
detailed constraints on the core composition require comparing the
constrained bulk densities to detailed structure models.

2.1 Emulator design

The design of our emulator, as shown schematically in Figure 1,
is a two step-approach with all adopted algorithms taken from
scikit-learn (Pedregosa et al. 2011). In the photoevaporation
model, the transition from a sub-Neptune (i.e. cores with extended
H/He atmospheres) to a super-Earth (i.e. stripped cores) is quick
since the mass-loss timescale drops rapidly for atmospheric mass
fractions . 1%, resulting in a runaway process (Owen & Wu 2013;
Lopez & Fortney 2013; Owen & Wu 2017; Mordasini 2020). Thus,
the outcome of exoplanetary evolution is essentially bimodal. This
bimodality motivates our two-step approach: we begin by imple-
menting a multi-layer perceptron (MLP) neural network classifier to

determinewhether a given planet will evolve to become a super-Earth
or a sub-Neptune. Since the planets that become super-Earths have
a negligible atmospheric mass fraction, the final radius for these is
simply given by the mass-radius relation of the stripped cores (e.g.
Fortney et al. 2007). For the sub-Neptunes, we employ a second
machine learning algorithm, in this case, an MLP neural network
regressor, to predict the sub-Neptune’s final radius and atmospheric
mass fraction. To determine the architecture of both MLP networks,
we utilised a grid-search over the number of hidden layers and nodes
per layer, with a maximum of 200 nodes and 5 layers respectively.
These maximum values were adopted since they provided an accept-
able trade-off between training time and emulator accuracy.We found
the optimum architecture for both networks included 4 hidden layers
consisting of (100, 100, 50, 15) nodes.Wemade use of a relu activa-
tion function with an adam optimizer (Kingma & Ba 2014), constant
learning rates of 0.001 and batch size of 200. MLP algorithms were
chosen over other “classical” machine-learning tools such as support
vector machines, nearest neighbours, and random forests due to their
superior performance in terms of accuracy and scalability with large
data sets (e.g. Goodfellow et al. 2016). Specifically, as we discuss be-
low, we foundMLP algorithms to be more accurate and efficient than
other methods. Thus, we were able to achieve the desired accuracy
with reasonable amounts of computational resources.
To train the machine learning models, 106 planets were simulated

to 5 Gyr with the semi-analytic photoevaporation model of Owen &
Wu (2017), with the input parameters {𝑃, 𝑀∗, 𝑍∗, 𝑀core, �̃�, 𝑋init}
uniformly drawn such as to sample parameter space evenly. In
this case, the bounds were as follows: 𝑃 ∈ [1, 100] days, 𝑀∗ ∈
[0.35, 1.5]𝑀� , 𝑍∗ ∈ [−1.0, 0.5], 𝑀core ∈ [0.6, 20.0]𝑀⊕ , �̃� ∈
[−1.0, 1.0] and log 𝑋init ∈ [−4, 0]. We normalise all variables to
be in the range [0, 1] using a scikit-learn MinMaxScaler rou-
tine and produce a training/validation split of 75:25. Both networks
were optimised on the training set, with final results reported for the
validation data. Figure 2 demonstrates the accuracy of the networks
as a function of training data set size on validation data. In the case
of the classifier, the network is trained via gradient descent minimi-
sation of cross-entropy loss. The classifier accuracy in Figure 2 is
represented via the fraction of cases in which a planet is misclassi-
fied as a super-Earth / sub-Neptune. For the case of the regressor, the
network is trained via gradient descent on the mean squared errors of
planetary radii and final atmospheric mass fraction between true and
predicted batch validation data. The results are compared to an al-
ternative machine learning approach using random forest algorithms
instead of neural networks. The random forests consist of 250 deci-
sion trees for the classifier and 90 decision trees for the regressor,
which were chosen as a result of a parameter grid search , trained on
cross-entropy andmean square error losses, respectively. One can see
that the neural network approach outperforms the random forest in
all cases. This behaviour is best explained in the context of network
complexity. Neural networks are better suited to reproduce arbitrary
non-linearities than decision trees, and arbitrarily deep neural net-
work architectures, trained with gradient descent, have been shown
to be universal function approximators (e.g. Goodfellow et al. 2016).
Swapping a physical model for a machine learning emulator will

substantially decrease the computational expense of calculations.
In our case, it was found that for an equivalent set of planets, the
emulator has a computational speedup factor of ∼ 1000. However,
the trade-off for an improved speed is the introduction of output error.
As shown in Figure 2, the accuracy of the classifier, if trained on 106
planets, is 99.8%, with very occasional planets being misclassified
as sub-Neptunes when they should be super-Earths. This latter point
highlights a drawback of the semi-analytic model in which planets
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Figure 2. The accuracy of the neural network emulator components is shown as a function of training set size compared to a random forest benchmark. Left:
the classifier determines whether a planet is stripped of its H/He atmosphere or not, with accuracy measured by the fraction of incorrect classifications. Right:
For those planets that maintain a significant atmosphere, the regressor calculates the final radius and atmospheric mass fraction of the planet. The accuracy is
quantified in terms of the fractional difference between the planetary radius determined by the semi-analytic model and the emulator. Uncertainties are calculated
by retraining the emulators 10 times and calculating the standard deviation in the accuracy. The neural network approach (blue) is compared to a similar emulator
consisting of random forest algorithms (orange). Note also that typical uncertainties in planet radii are ∼ 5%, which is surpassed by the neural network emulator
for training sets of ∼ 104 planets.

with low atmosphericmass fraction are inaccuratelymodelled, which
we discuss in Section 5.5. The RMS fractional error for the sub-
Neptune regressor under similar training set sizes was ∼ 1%. This
value is smaller than typical radii measurement uncertainties of∼ 5%
(Fulton & Petigura 2018; Van Eylen et al. 2018), appropriate for
current survey capabilities, implying that it is suitable for use in
comparing a large number of evolutionary models to the observed
bulk properties of exoplanets. Future surveys, such as asteroseismic
PLATO measurements (Rauer et al. 2014), will likely reach this
radii accuracy threshold of ∼ 1% however, implying that further
development may be required. Nonetheless, it is encouraging to note
that the neural network emulator achieves this accuracy threshold
with training set sizes as low as . 104. The RMS fractional error
in the final atmospheric mass fraction was found to be 0.5%, and
since the mass of a planet is dominated by the core, this introduces a
negligible error in final mass.
In Figure 3, we show a population of test planets drawn from the

underlying populations inferred in Rogers & Owen (2021) within the
period-radius plane evolved using the semi-analytic photoevapora-
tion model in orange and evolution emulator in blue. One can see that
the occurrence is very similar. We also show the errors of the emula-
tor in Figure 3, which are largest for larger planets with higher initial
atmospheric mass-fraction. Despite constructing a training sample
with uniformly drawn parameters, this does not evenly sample 𝑅p or
𝑋final- space. Since the majority of planets evolve to smaller radii,
this area of parameter space is more sparsely populated in the training
data, and hence accuracy is lower here. Despite these errors being
lower than those on real observations, we train our emulator on 106
models to ensure the highest accuracy for all planet sizes. Finally, we
show planets that are misidentified by the classifier as red crosses.
Since the design of the emulator is for population-level inference
analysis, these have a negligible effect on any calculated constraints.
Nevertheless, if one considers the mass-loss timescale under XUV
photoevaporation for misclassified planets, given by:

𝑡 ¤𝑋 =
4𝐺𝑀2c 𝑎𝑋

[𝐿XUV𝑅
3
ph

, (4)

then one finds that such planets are those losing mass on Gyr
timescales. Since we evolve our training sample for 5Gyr, the emula-
tor thus struggles to determine whether such planets will be stripped
of their atmosphere in this length of time. We comment on this
limitation in Section 5.5.

2.2 Initial Conditions of TOI-270

To test the emulator in a science-based case, we begin by infer-
ring the initial conditions of TOI-270 b, c and d (Van Eylen et al.
2021), which was discovered with TESS (Ricker et al. 2015; Günther
et al. 2019). This archetypal system consists of an inner super-Earth
(TOI-270 b) with an orbital period of 3.4 days and with observed
mass and radius of 1.58 ± 0.26𝑀⊕ and 1.21 ± 0.04𝑅⊕ . It also hosts
two sub-Neptunes (TOI-270c and d) at 5.7 and 11.4 days, respec-
tively, with masses of 6.15 ± 0.37𝑀⊕ and 4.78 ± 0.43𝑀⊕ and radii
of 2.36 ± 0.06𝑅⊕ and 2.13 ± 0.06𝑅⊕ . This architecture is highly
indicative of mass-loss (e.g. Owen & Campos Estrada 2020). In a
similar manner to the analysis of the Kepler-36 system in Owen &
Morton (2016), we set up a Bayesian model in which we aim to
place constraints on the core composition �̃�, core masses 𝑀core and
initial atmospheric mass fractions 𝑋init required to evolve into the
three planets that we observe today. Thus for our model parameters
𝜽 = { �̃�, 𝑀core, b, 𝑀core, c, 𝑀core, d, 𝑋init, b, 𝑋init, c, 𝑋init, d} and ob-
served mass and radius data 𝑫 = {𝑅obs, b, 𝑅obs, c, 𝑀obs, b, 𝑀obs, c},
we may write from Bayes’ law:

𝑃(𝜽 |𝑫) ∝ 𝑃(𝑫 |𝜽) 𝑃(𝑫), (5)

where 𝑃(𝜽 |𝑫) is the target posterior, 𝑃(𝑫) is the prior and assumed
to be flat for core masses and core compositions and log-flat for
initial atmospheric mass-fractions. Since all planets were formed in
the same stellar environment, we follow Owen & Morton (2016)
and assume the core composition is the same for all planets. The
likelihood function 𝑃(𝑫 |𝜽) is modelled as Gaussian:

𝑃(𝑫 |𝜽) ∝
∏
𝑖

exp
(
−

(𝑅𝜽,𝑖 − 𝑅obs,i)2

2𝜎2
𝑅𝑖

−
(𝑀𝜽,𝑖 − 𝑀obs,i)2

2𝜎2
𝑀𝑖

)
, (6)
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Semi-analytic 
Model

Emulator

Typical 
meas. 
uncert.

Mean Fractional 
Error (%)

Figure 3. Left: The radius gap computed with the semi-analytic model of XUV photoevaporation (orange) and with the evolution emulator (blue). Contours
represent relative occurrence, and individual planets are plotted in black. Right: A population of planets are shown with their periods and final radii according
to the semi-analytic model, with arrows pointing to this position as predicted with the evolution emulator. They hence represent the error between the physical
model and the emulator for each planet in this test population. Note that the majority of planets do not have arrows since the error is negligible. Colours represent
the initial atmospheric mass fraction. Whilst the average RMS error for the emulator is 1%, the right-hand histogram shows this error as a function of radius.
The grey-hatched region expresses the fact that whilst there is no error in planet size for super-Earths, this is because we inherently assume these planets have
no atmosphere meaning that the mean fractional error is always zero if correctly classified. A typical radius measurement uncertainty is shown in black, taken
from the value in the CKS catalogue (Fulton & Petigura 2018).

where 𝑖 = {𝑏, 𝑐, 𝑑} and 𝜎𝑅𝑖
and 𝜎𝑀𝑖

are the measurement uncer-
tainties in radius and mass from transit and RV observations for each
planet from Van Eylen et al. (2021). We evaluate the posterior by
calculating the radius and mass of TOI-270 b, c and d for a given set
of parameters 𝜽 using the evolution emulator. In addition, we also
take the measured stellar mass of 0.386 ± 0.008𝑀� , stellar metal-
licity of −0.20± 0.12 and orbital periods from the planetary system,
which are used as model input. To account for the measurement un-
certainty in these quantities, we randomly redraw them from their
associated errors every time the likelihood function is evaluated.
To sample the posterior, we use the affine-invariant Monte Carlo
Markov Chain (MCMC) emcee (Foreman-Mackey et al. 2014). We
run two independent chains that converge to the same results, each
with 100 walkers and different initial conditions. We justify chain
convergence with the use of the Gelman-Rubin diagnostic (Gelman
& Rubin 1992), which yields a value of 1.0001, as well as the rank-
normalised split-�̂� diagnostic (Vehtari et al. 2021), which yields a
value of 1.001, which are both sufficiently close to unity to suggest
MCMC chain convergence. The chain has an Effective Sample Size
(ESS) > 103, implying that the posteriors are sufficiently sampled.
In Figure 4, we show marginalised posteriors for the core masses

and initial atmospheric mass fractions for the TOI-270 system, as
calculated by the evolution emulator. We also show posteriors which
have been calculated with the semi-analytic model, which yields
near identical results. Whilst the outer planets (TOI 270 c and d)
are inferred to originally host atmospheric masses of ∼ 1 − 2%,
the inner super-Earth (TOI 270 b) has a sufficiently small mass and
close proximity to its host star to be completely stripped. The flat
posterior on its initial atmospheric mass fraction indicates that the
planet could have originally hosted any atmospheric mass and still
been completely photoevaporated.
In Figure 5, the marginalised posterior for core composition is

shown for the TOI-270 planets, which is inferred to have an iron-
mass fraction of 0.09+0.16−0.14 and consistent with the population-wide

inference analysis of Rogers & Owen (2021). This value is largely
controlled by the measured mass and radius for planet b, for which
its current mass and radii yield an iron-mass fraction of ∼ 0.1+0.15−0.08.
For reference, Earth has a composition in this parameterisation of
�̃�⊕ ≈ 0.33 (Fortney et al. 2007), which is consistent with TOI-270
to 2𝜎.

3 DEMOGRAPHIC INFERENCE

In the previous demonstration of statistical inference on the TOI-
270 system, we have shown that the emulator produces constraints
that are in excellent agreement with the semi-analytic model it was
trained on. However, the ultimate goal of the emulator is to exploit
its computational speedup on large, population-level inference prob-
lems.
We now apply the evolution emulator to amore sophisticated prob-

lem, which seeks to find the initial conditions for a population of ex-
oplanets. In doing so, we seek to infer the relation between planetary
core mass and the amount of atmospheric mass retained post-disc
dispersal. This essentially sets the initial atmospheric conditions for
photoevaporation for each planet. Chronologically speaking, plan-
ets will accrete H/He dominated material whilst immersed in their
nascent disc, which have lifetimes of 3-10 Myrs (Kenyon & Hart-
mann 1995; Luhman et al. 2010; Ercolano et al. 2011; Luhman et al.
2010; Koepferl et al. 2013). However, a large fraction of this mass
has been shown to escape during disc dispersal on timescales of 105
yrs (Ikoma & Hori 2012; Owen & Wu 2016; Ginzburg et al. 2016),
through a process known as “boil-off”. In this scenario, the nascent
disc that once provided pressure support to a planet’s newly formed
atmosphere is removed faster than its own cooling timescale. As a re-
sult, the atmospheric material adiabatically expands and is removed
from the planet’s gravitational influence by the stellar bolometric
luminosity via a Parker-type wind (Parker 1958). This process halts
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Figure 4.Marginalised posteriors are shown for core masses (top row) and initial atmospheric mass fractions (bottom row) for TOI-270 b, c and d (left, middle
and right-hand panels respectively). These are calculated with the semi-analytic model of XUV photoevaporation from Owen & Wu (2017) (black solid) and
the machine learnt evolution emulator (red dashed), yielding near identical results.
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Figure 5.Marginalised posterior for the core composition of TOI-270 planets.
Negative values represent a composition consistent with an ice-rock mixture,
whilst positive represents a rock-iron mixture. Similar to Figure 4, this is cal-
culated with the semi-analytic model of XUV photoevaporation from Owen
& Wu (2017) (black solid) and the machine learnt evolution emulator (red
dashed), yielding near identical results.

once the planet’s atmosphere has sufficiently cooled and contracted,
typically such that its photospheric radius is ∼ 10% the size of its
Bondi radius (Owen & Wu 2016).

For the proposed inference problem, we aim to place the first
statistical constraint on how much atmospheric mass is retained after
disc dispersal as a function of core mass. For this, we take a sample
of exoplanets from the NASA Exoplanet Archive1 with measured
masses and radii, with respective uncertainties of ≤ 20% and ≤
10%. Additional cuts were placed to restrict planet best-fit masses
to 0.5 ≤ 𝑀pl ≤ 20𝑀⊕ and planet sizes to 0.6 ≤ 𝑅pl ≤ 4𝑅⊕ .
Additionally, stellar masses andmetallicities were restricted such that
0.3 ≤ 𝑀∗ ≤ 1.5𝑀� and −1.0 ≤ 𝑍∗ ≤ 0.5. Finally, orbital periods
were restricted to be 1 ≤ 𝑃 ≤ 100 days. These cuts were chosen so
as to remain in the domain of high accuracy for photoevaporation
models from Owen & Wu (2017). In particular, we avoid planets
around late M-dwarfs (𝑀∗ ≤ 0.3𝑀�) since there is more uncertainty
on the high-energy luminosity evolution (i.e. Eq. 2) for such stars (e.g.
Jackson et al. 2012; McDonald et al. 2019; Johnstone et al. 2021).
Note that this cut removes the Trappist-1 system from our planet
sample (Gillon et al. 2016). After parameter cuts, 81 planets remain
around 59 stars. The goal is to accurately reproduce these systems
with an underlying physical model, utilising the computational speed
of the atmospheric evolution emulator.
The inference problem takes the form of a Bayesian Hierarchical

Model (BHM) and is outlined graphically in Figure 6. The design of
the inference model follows similar works from Wolfgang & Lopez
(2015); Wolfgang et al. (2016). For each planet, we draw a random
core mass and draw its initial atmospheric mass fraction post-disc

1 Accessed on 09/08/2022, with all adopted quantities taken as default values
from NASA Exoplanet Archive.
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Mcore,i Xinit,i ρ̃i Pi M*,i Z*,i

μρX⊕ σργ σX α

Rtrue,iXfinal,i

Robs,iMobs,i

Emulator

Figure 6. Graphical representation of Bayesian hierarchical model for popu-
lation of Kepler, K2 and TESS planets. Grey variables are directly observed
with RV/TTVmeasurements formass and transit observations for radii.White
variables, meanwhile, are unobserved. Yellow variables are the parameters of
interest in this problem and are constrained as part of the inference analysis.
Variables outside of the dashed box are ‘hyperparameters’ i.e. those that con-
trol population-level distributions, whilst each parameter inside the dashed
box refers to the 𝑖th planet. Variable definitions are as follows: 𝑋⊕ , 𝛾 and
𝜎𝑋 are hyperparameters that, along with core mass 𝑀core, control the initial
atmospheric mass fraction 𝑋init via Eq. 7; `𝜌 and 𝜎𝜌 are hyperparameters
for mean and standard deviation for Gaussian distribution that controls the
core composition of planets �̃� via Eq. 8; 𝛼 is a set of population-wide dis-
tribution hyperparameters that control the orbital period 𝑃, stellar mass 𝑀∗
and stellar metallicity 𝑍∗ for each planet; the atmospheric evolution emulator
(blue circle) determines the final atmospheric mass fraction 𝑋final and true
radius 𝑅true of each planet; finally 𝑀obs and 𝑅obs are the observed mass and
radius for each planet.

dispersal via the following prior distribution:

𝑋init ∼ G
(
` = 𝑋⊕

(
𝑀core
𝑀⊕

)𝛾
, 𝜎 = 𝜎𝑋

)
. (7)

In other words, the prior on initial atmospheric mass fraction for
each planet follows a power-law: 𝑋init = 𝑋⊕ (𝑀core/𝑀⊕)𝛾 with a
statistical scatter introduced via a Gaussian distribution G with a
standard deviation of 𝜎𝑋 . Thus, we are aiming to infer the values of
𝑋⊕ , being the mean initial atmospheric mass fraction for an Earth-
mass core; 𝛾, being the power-law index; and 𝜎𝑋 , being the intrinsic
scatter involved in the associated atmospheric accretion and escape
processes. In a similar vein,we also aim to infer the core compositions
of planets via a separate Gaussian prior:

�̃� ∼ G(` = `𝜌, 𝜎 = 𝜎𝜌) (8)

where we aim to infer the parameters `𝜌 and 𝜎𝜌. Since these param-
eters and those that describe initial atmospheric mass fraction are
population-level parameters, they are labelled as hyperparameters in
the nomenclature of Bayesian hierarchical models.
Note that since we are attempting to infer population-level distri-

butions for core composition and initial atmospheric mass fraction,
it is important to perform this inference on all planetary systems
in our sample simultaneously, as opposed to performing individual
inferences for each system. For example, performing this analysis on
a single sub-Neptune in a given system would yield uninformative

constraints due to the known degeneracy in planet composition with
measuredmass and radii (e.g. Rogers & Seager 2010a).We can break
this degeneracy in a multi-planet system which hosts both super-
Earths and sub-Neptunes, such as the case of TOI-270 from Section
2.2, since there are only certain combinations of initial atmospheric
mass-fractions and core masses that reproduce the planet observa-
tions (assuming they have the same core composition). Analogously,
for our population level inference presented here, we must perform
the analysis on a population of planets consisting of super-Earths and
sub-Neptunes under the assumption that they follow population-wide
distributions.
Whereas in previous analyses that use similar statistical frame-

works to infer population-level hyperparameters controlling the dis-
tribution of core masses (Wolfgang et al. 2016; Rogers & Owen
2021), we choose to instead infer the core mass for every planet as an
individual parameter. In total, this inference model thus consists of 5
hyperparameters and 81 parameters (being the core masses for each
planet), meaning the posterior is sampled in 86-dimensional param-
eter space. Without the computational speed of the atmospheric evo-
lution emulator, this would be a truly futile endeavour. Nonetheless,
we choose not to infer individual parameters for core composition
and initial atmospheric mass fraction since this would result in an
impractically large inference problem.
For each planet: stellar masses, stellar metallicities and orbital

periods are drawn from within their associated measured values.
Similar to the analysis of TOI-270 in Section 2.2, we assume that
planets within a given system have the same core composition. The
likelihood function is calculated as follows

𝑃(𝑫 |𝜽) ∝
∏
𝑖

exp
(
𝑤𝑖

(
−

(𝑅𝜽,𝑖 − 𝑅obs,i)2

2𝜎2
𝑅𝑖

−
(𝑀𝜽,𝑖 − 𝑀obs,i)2

2𝜎2
𝑀𝑖

))
,

(9)

where 𝑖 denotes an individual planet from the sample. Here, 𝑤𝑖 is
a weighting that is required to account for an intrinsic bias in mass
measurements that favours larger mass planets. This results in a sam-
ple consisting of far more sub-Neptunes than super-Earths, which
is not representative of the underlying distribution. In order to in-
fer hyper-parameters that are indeed representative, we weight by a
completeness corrected radii distribution of Kepler planets. Hence
this should make our estimate of atmospheric mass as a function
of core mass more representative of the underlying Kepler sam-
ple. To calculate this weight, we determine a probability density
function (PDF) of planetary radii for the adopted sample, labelled
Pobs (𝑅/𝑅⊕). Additionally, a second PDF for planet radii is taken
from the inference analysis of Rogers & Owen (2021), which repre-
sents the underlying population of Kepler planets, i.e. an unbiased
distribution of planet radii, which is labelled as Ppop (𝑅/𝑅⊕). The
weight for a given planet, 𝑤𝑖 , is the ratio of these two distributions,
i.e. 𝑤𝑖 = Ppop (𝑅𝑖/𝑅⊕) / Pobs (𝑅𝑖/𝑅⊕). However, when calculating
this numerically, the weight diverges when Pobs tends to zero in re-
gions of no occurrence. Therefore, we introduce a small number, 𝜖 ,
to avoid this problem:

𝑤𝑖 =
Ppop (𝑅𝑖/𝑅⊕) + 𝜖

Pobs (𝑅𝑖/𝑅⊕) + 𝜖
. (10)

Since the choice of 𝜖 is arbitrary, we choose its value to be 𝜖 = 1.
One can see that in the limit that Ppop tends to Pobs, the weight is
unity for all planet sizes. In our case, there are more super-Earths in
Ppop than in Pobs. Hence they are given a larger weight, resulting
in a likelihood that samples a fair approximation of the underlying
distribution of Kepler planets.
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All hyperparameters and coremass parameters are given flat priors
(except 𝑋⊕ which is given a log-flat prior) and are thus uninforma-
tive on the inference results. Posteriors are sampled with the affine
invariant Monte Carlo Markov Chain of Goodman & Weare (2010)
from emcee (Foreman-Mackey et al. 2014). We run two independent
chains that converge to the same results, each with 1000 walkers and
different initial conditions. As with the inference analysis of Section
2.2, we justify chain convergence with the use of the Gelman-Rubin
diagnostic (Gelman & Rubin 1992) and rank-normalised split-�̂� di-
agnostic (Vehtari et al. 2021) which yield values of 1.0002 and 1.01
respectively, which are both sufficiently close to unity to suggest
MCMC chain convergence. The chain has an Effective Sample Size
(ESS) > 103, implying that the posteriors are sufficiently sampled.

4 RESULTS

Posteriors for the population level hyperparameters are shown in
Figures 7 and 8. For the hyperparameters controlling the relation
between core mass and initial atmospheric mass fraction post disc
dispersal (see Eq. 7), we infer 𝑋⊕ = 0.0096+0.0053−0.0037, implying that an
Earth-mass core will retain ∼ 1% atmospheric mass fraction once
its protoplanetary disc has dispersed. Additionally, we find that the
power-law index is 𝛾 = 0.34+0.17−0.15. Finally, we find the standard
deviation in this atmospheric mass retention is 𝜎𝑋 = 0.12+0.07−0.06,
implying there is an astrophysical scatter involved of ∼ 0.12 dex.
For hyperparameters controlling the Gaussian distribution of plan-

etary core compositions (see Eq. 8), we find a mean of `𝜌 =

0.17+0.07−0.08, which is consistent with the results for TOI-270 in Figure
5 and the inference analysis of Rogers & Owen (2021). We find the
standard deviation in compositions to be 𝜎𝜌 = 0.10+0.03−0.03, implying
a ∼ 0.1 dex spread in core compositions for the chosen sample of
planets.
To assess the suitability of these inferred parameters, Figure 9

shows the sample of planets from Kepler, K2 and TESS in blue.
In orange, we show the set of latent variables i.e. values of planet
mass and radii for each planet as calculated through the Bayesian
hierarchical model. Apart from one exception, all modelled planets
are consistentwith the observed values, implying excellent agreement
between data and model. Kepler 36 c, however, appears as an outlier
in Figure 9. We discuss Kepler 36 further in Section 5.3
In Figure 10, we present the inferred core masses with initial and

final atmospheric mass fractions for the planet sample. Note we pro-
vide these inferred values for all planets in Table 1. In the top panel,
the initial values are shown alongside the inferred form of Eq. 7 as
a blue credible region, which relates core mass to this initial atmo-
spheric mass. All uncertainties represent 1𝜎 credible regions and are
calculated by integrating the MCMC posterior distributions. In ad-
dition, analytic models are shown from Lee & Chiang (2015), which
predicts the atmospheric mass attained during gaseous core accre-
tion, and fromGinzburg et al. (2016), which predicts the atmospheric
mass retained post disc-dispersal and the subsequent boil-off process
(referred to in this work as ‘spontaneous mass-loss’). One can see
that the inferred relation between core mass and initial atmospheric
mass fraction is consistent with that of Ginzburg et al. (2016), sug-
gesting that small, close-in exoplanets do indeed undergo a boil-off
process after core accretion and during disc dispersal. We comment
on these findings in Section 5.2.
Finally, in the bottom panel of Figure 10, the final atmospheric

mass fractions are shown as a function of core mass with uncer-
tainties calculated in the same way. Planets with a final atmospheric
mass fraction consistent with 10−4 are shown with upper limits (red

triangles) and are inferred to have been stripped of their primordial
H/He atmosphere within their lifetime. Such planets tend to be lower
in mass since they have a lower gravitational influence and are more
vulnerable to photoevaporation. We fit the final atmospheric mass
fractions for planets that maintain a significant atmosphere (i.e. blue
circles) with a power law of the form Eq. 7, which is shown as a blue
credible region representative of 1𝜎 uncertainties. One can analyt-
ically predict the form of this relation, with the use of Eq. 14 from
Owen &Wu (2017), which states that the atmospheric mass fraction
of a planet for a given size and core mass is:

𝑋 ∝ 𝑀0.17c

(
Δ𝑅

𝑅c

)1.31
, (11)

where 𝑅c is the core radius and Δ𝑅 = 𝑅p − 𝑅c represents the height
of the planet’s optically thick atmosphere. In addition, Eq. 20 from
Owen&Wu (2017) relates the photoevaporative mass-loss timescale
to these same variables:

𝑡𝑋 ∝ 𝑀1.42c

(
Δ𝑅

𝑅c

)1.69
. (12)

Note that these relations from Owen & Wu (2017) assume an adia-
batic index of 𝛾 = 5/3 and an opacity scaling relation of ^ ∝ 𝑃𝛼𝑇𝛽 ,
where ^, 𝑃 and 𝑇 are the opacity, pressure and temperature respec-
tively, with 𝛼 = 0.68 and 𝛽 = 0.45 chosen from Rogers & Seager
(2010b). This is appropriate for a highly irradiated low-mass planet
with a solar metallicity H/He atmosphere. Since all sub-Neptunes
(i.e. planets that have retained a significant atmospheric mass frac-
tion) will have been photoevaporated for the same length of time, we
can state that the mass-loss timescale is constant for such planets.
This then allows one to eliminate Δ𝑅/𝑅c to find:

𝑋final ∝ 𝑀1.27c (13)

This approximate power law is shown in the bottom panel of Fig-
ure 10, which also shows good agreement with the inferred scaling
relation.

5 DISCUSSION

Our inference analysis has demonstrated the capability of machine-
learnt emulators in exoplanet evolution studies. We began by training
a two-step neural network emulator on the semi-analytic models of
XUV photoevaporation from Owen &Wu (2017); Owen & Campos
Estrada (2020). As a proof of concept, we applied the emulator to
the archetypal system TOI-270 (Van Eylen et al. 2021), consisting
of three planets that straddle the radius gap. We used the emulator
to find the initial conditions required to evolve into the planets that
we observe today. We find that the emulator places constraints on
core mass, initial atmospheric mass fraction and core composition
that are near-indistinguishable from those calculated by the semi-
analytic model that it was trained on.
In light of this, we then applied the emulator to a far more complex

inference problem, which sought to infer the initial conditions for a
sample of 81 Kepler, K2 and TESS planets with well-constrained
masses and radii. Consistent with the result for TOI-270, we find that
the core compositions of such planets have an iron-mass fraction of
0.17+0.07−0.08. In addition, we present the inferred core masses, initial
atmospheric mass fractions and final atmospheric mass fractions for
all planets in Table 1.
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5.1 The initial conditions of TOI-270

Using both the machine-learnt evolution emulator and the semi-
analytic model from which it was trained, we find that the core
masses for TOI-270 b, c and d are 1.53+0.25−0.26𝑀⊕ , 6.05+0.37−0.38𝑀⊕ and
4.72+0.43−0.42𝑀⊕ respectively. We find the atmospheric mass fractions
for TOI-270 c and d are 0.020+0.007−0.006 and 0.015

+0.007
−0.006 respectively.

Meanwhile, no constraint can be placed for the initial atmospheric
mass fraction of TOI-270 b since its mass is so small and its orbital
period so short that there is no photoevaporative history that results
in the planet not being stripped after Gyrs of evolution. Note that
the adopted physical model does not include self-gravity, meaning
that we cannot model large atmospheric mass fractions 𝑋 � 1. As
a result, we cannot place a large upper limit on TOI-270 b’s initial
atmospheric mass fraction, although it is unlikely to have started so
high. These constraints are consistent with that of Van Eylen et al.
(2021), in which the photoevaporation evapmass code (Owen &
Campos Estrada 2020) was used to place lower limits on the masses
of TOI-270 c and d. These lower limits were found to be 1.04𝑀⊕
and 0.44𝑀⊕ .
TOI-270 is a promising target for follow-up transit spectroscopy

using HST and JWST (Chouqar et al. 2020). If the innermost planet

is found to be consistent with a very small and potentially metal-
rich atmosphere, it would further attest to the atmospheric mass-loss
scenario since it is the H/He material that is most prone to escape,
leaving behind a metal-rich, low-mass atmosphere. Likewise, the
presence of a H/He dominated atmosphere for TOI-270 c and d
would confirm this picture.

5.2 Atmospheric retention post disc-dispersal

In the inference analysis of Section 3, we find that the atmospheric
mass fraction, 𝑋 ≡ 𝑀atm/𝑀core, that is retained post-disc dispersal
for small, close-in exoplanets approximately follows the relation:

𝑋 ≈ 0.01
(
𝑀core
𝑀⊕

)0.34
. (14)

We also infer an intrinsic scatter in this relation, implying ∼ 0.12
dex spread in these atmospheric masses for a given core mass. It
is interesting to note that in the work of Lee & Chiang (2015),
an analytic scaling relation was derived for the atmospheric mass
fraction accrued through gaseous core accretion. As used in Jankovic
et al. (2019), this scaling relation is adapted for varying gas surface
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&
Kepler 36 c

Figure 9. Planet masses and radii are shown in blue for the selected planet
sample from Kepler, K2 and TESS, with error bars from their associated
measurement uncertainty. The suitability of the model presented in Figure 6
is demonstrated with latent variables in orange, i.e. the values of planet mass
and radii for each planet as calculated through the Bayesian Hierarchical
Model. Error bars are representative of a 1𝜎 credible region, calculated by
integrating the MCMC posterior distributions. Kepler 36 c is the only system
that is not consistent with our statistical model.

density (Lee et al. 2018; Fung & Lee 2018) as follows:

𝑋 (𝑡) ≈ 0.014
(
𝑀core
𝑀⊕

)1.6 (
𝑡

1Myr

)0.4 (
0.02
𝑍

)0.4 (
`

2.37

)3.3
×

(
1600 K
𝑇rcb

)1.9 (
𝑓Σ

0.1

)0.12 (15)

where 𝑍 is atmospheric metallicity, ` is mean molecular weight,𝑇rcb
is the temperature at the radiative-convective boundary inside the
atmosphere and 𝑓Σ is the ratio of gas surface density to that of the
minimum mass solar nebula (Hayashi 1981). Note that the power-
law index for core mass is 1.6, which is shown in Figure 10 with
all other nominal values taken from Eq. 15. One can clearly see that
this relation is inconsistent with the relation inferred in this work.
As argued in Jankovic et al. (2019); Rogers & Owen (2021), this
discrepancy can be resolved by invoking another mass-loss process,
separate from XUV photoevaporation or core-powered mass-loss,
that occurs during disc dispersal. As shown in evolution models
from Ikoma & Hori (2012); Owen &Wu (2016), protoplanetary disc
dispersal can cause dramatic atmospheric escape through a process
referred to as “boil-off”. Whilst discs survive for 3 − 10 Myrs, they
disperse on much shorter timescales ∼ 105 yrs (Kenyon & Hartmann
1995; Luhman et al. 2010; Ercolano et al. 2011; Luhman et al. 2010;
Koepferl et al. 2013). As a result, planets immersed in these nascent
discs cannot remain in hydrostatic equilibrium and lose mass via a
powerful hydrodynamic outflow.Using analytic arguments,Ginzburg
et al. (2016) predicted a scaling relation for the atmospheric mass
retained after boil-off (referred to as ‘spontaneous mass-loss’ in this
latter study) as follows:

𝑋 ≈ 0.01
(
𝑀core
𝑀⊕

)0.44 (
𝑇eq
1000 K

)0.25 (
𝑡disc
1Myr

)0.5
, (16)
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Figure 10.Top: the distribution of initial atmospheric mass fractions post disc
dispersal for the planet sample is shown as a function of coremass, constrained
via Eq. 7. The blue-shaded region is representative of a 1𝜎 credible region
for the form of this relation, calculated by integrating the MCMC posterior
distributions. The analytic core accretion model from Lee & Chiang (2015)
is shown in dashed orange. The analytic ‘spontaneous mass-loss’ model of
Ginzburg et al. (2016) (also referred to as ‘boil-off’, e.g. Owen & Wu 2016)
is shown in red dot-dashed, which represents a prediction of atmospheric
retention post disc-dispersal. Bottom: The final atmospheric mass fraction
distribution of the chosen planet sample. Planets with a final atmospheric
mass fraction consistent with 10−4 are inferred to have been stripped of their
primordial H/He atmosphere and are represented as upper limits on the final
atmospheric mass fraction (red triangles). An analytic scaling relation for the
atmospheric mass fractions of sub-Neptunes (see Eq. 13) is shown in dashed
orange.
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where𝑇eq is the planetary equilibrium temperature and 𝑡disc is the disc
lifetime. This relation is also shown in Figure 10 and is consistentwith
the relationship that we infer in this work. This suggests that despite
large atmospheric masses being accreted whilst the disc survives,
the boil-off phase causes a reduction in this mass that is consistent
with the masses that photoevaporation can remove. Chronologically
speaking, planets might accrete such that 𝑋 ∝ 𝑀1.6c (Eq. 15), boil-off
such that 𝑋 ∝ 𝑀0.4c (Eq. 16) and then losemass via photoevaporation
and/or core-powered mass-loss to 𝑋 ∝ 𝑀1.3c (Eq. 13). The inferred
spread in atmospheric mass retention may be explained by invoking
a range in equilibrium temperatures and disc lifetimes from Eq.
16. Note that the Bayesian hierarchical model we present here can
be adapted to find such trends, for example, by determining the
correlation between 𝑋⊕ , 𝛾 and 𝜎𝑋 with incident stellar flux. We
leave this for future work.
Of course, there are alternative solutions to the discrepancy be-

tween core accretion and atmospheric escape. Possible mechanisms
to resolve this tension also include forming the planets at the very end
of the disc lifetime (Ikoma&Hori 2012; Lee&Chiang 2015), or alter-
natively improving the accuracy of gas accretion models to include
the effects of giant mergers (Liu et al. 2015; Inamdar & Schlicht-
ing 2016) which would result in potentially significant atmospheric
mass-loss and the production of heat which would take typically kyrs
to disperse. The inclusion of 3D simulations has additionally shown
that recycling of high-entropy gas during the accretion phase can
act to reduce the final atmospheric mass of the planet (Ormel et al.
2015; Fung et al. 2015; Cimerman et al. 2017; Ali-Dib et al. 2020;
Chen et al. 2020). We highlight that more sophisticated modelling of
the boil-off phase is required, as it is clearly an important process in
exoplanet evolution to understand.

5.3 The curious case of Kepler 36 c

Kepler 36 c is the only planet for which its mass and size are not
accurately reproduced by the BHM model (see Figure 9). In Owen
& Morton (2016), a similar analysis to that performed on TOI-270
in Section 2.2 was performed on this system to find that Kepler 36
c required an initial atmospheric mass fraction of ∼ 20% under the
photoevaporative model (similar to the early suggestion of Lopez &
Fortney 2013 for this system), which is much higher than predicted
by our statistical relation between core mass and initial atmospheric
mass fraction. This is likely caused by the fact that Kepler 36 c has
one of the largest sizes of all planets in our sample (𝑅p ≈ 3.7𝑅⊕)
given its mass (𝑀p ≈ 7.1𝑀⊕) (Carter et al. 2012; Vissapragada
et al. 2020). Furthermore, the planet is in a delicate 7:6 mean-motion
resonance with Kepler 36 b, hinting towards a dynamical history
with potential mutual migration (Quillen et al. 2013; Rimlinger &
Hamilton 2021), and perhaps a smoother than normal disc dispersal
process. One can conclude that Kepler 36 c is highly inflated and
may not be well-described by our statistical model. Investigating
how other highly inflated planets (e.g. Bonfils et al. 2012; Ofir et al.
2014; Jontof-Hutter et al. 2014; Wang & Dai 2019; Belkovski et al.
2022) fit within our statistical model if left for future work, however
we note that spectroscopic follow-up of Kepler 36 c as well as other
similarly inflated planets may help guide our interpretation of this
result.

5.4 Core Compositions

The inferred core compositions from the inference model of Section
3 have a mean of `𝜌 = 0.17+0.07−0.08, which implies an iron-silicate

mixture with iron-mass-fraction of 17%. For an Earth-mass core,
this would result in a bulk density of 𝜌𝑀⊕ ≈ 4.7 g cm−3. This is
consistent with compositions determined for the TOI-270 planets
from Section 2.2 as well as the inference analysis of Rogers & Owen
(2021), which inferred a value of 0.26+0.08−0.09 for the sample of planets
from the California Kepler Survey (CKS) (Fulton et al. 2017). In this
latter work, orbital periods and planet sizes were used to infer the
underlying core mass distribution, initial atmospheric mass fraction
and core composition distribution. To do so, synthetic transit surveys
were implemented to accurately model the bias of the Kepler survey.
As a result, the constraints placed on the distributions of interest were
representative of the underlying planet distribution. In the inference
model we present in this paper, the distribution for core composition
is not representative since the adopted planet sample does not have
quantifiable biases. Instead, this distribution represents the composi-
tions for the cores of the adopted sample with measured masses and
radii. Note that RV/TTV surveys are heavily biased to observe larger
mass planets, yet this bias is extremely difficult to quantify since it
would require homogeneous observations of a well-defined sample
of stars (Howard et al. 2010; Mayor et al. 2011; Fulton et al. 2021).
Nevertheless, the inferred core compositions are inconsistent with
significant ice-mass fractions and thus hint towards core formation
interior to water-ice line (e.g. Hansen & Murray 2012; Chiang &
Laughlin 2013; Chatterjee & Tan 2014; Jankovic et al. 2019). Recall,
however, that our model assumes all planets in a given system have
the same core composition. This would not be the case for models
that posit that super-Earths form interior to the water-ice line and
sub-Neptunes are in fact water-rich planets that migrated into their
current orbital separation (e.g. Ida & Lin 2005, 2010; Bodenheimer
& Lissauer 2014; Raymond & Cossou 2014; Bitsch et al. 2018;
Raymond et al. 2018; Zeng et al. 2019). Of particular note, Neil
et al. (2022) explored the statistical validity of such ‘water worlds’
within the framework of a joint mass-radius-period distribution for
a selection of Kepler planets. They compared various population
mixture models consisting of different combinations of planet types;
including rocky and icy worlds, both of which could host H/He atmo-
spheres or be stripped/born intrinsically rocky/icy. They found strong
degeneracy between water-world populations and rocky planets that
host atmospheres, suggesting that the current data, specifically sub-
Neptunes, are consistent with both scenarios. We, on other hand, find
more favour for rocky cores with H/He atmospheres, as opposed to
water worlds. As mentioned, this comes from the fact that we assume
all cores in a system have the same core composition and that, unlike
Neil et al. (2022), we explicitly perform evolution calculations on the
planets in our models. We are thus directly exploiting the evolution
of each planet to find the histories that are consistent with its current
mass and radius.
Whilst our value for mean composition is consistent with Rogers

& Owen (2021), we infer ∼ 10% less iron content in the cores of
planets. There are multiple potential causes to such a difference.
One possibility is the differing planet samples. In Rogers & Owen
(2021), the CKS sample was used, which exclusively included FGK
stars (Petigura et al. 2017). In this work, however, we have included
stars with masses down to 0.3𝑀� . Since different formation mecha-
nisms may be at play around lower-mass stars, the addition of planets
orbiting M-dwarfs could reduce the inferred mean core composi-
tion, implying that lower-mass stars host less iron-rich cores. The
Bayesian hierarchical framework presented in Section 3 is suitable
to investigate such trends, for example, by determining the scaling
between stellar mass and core composition. Another option, however
comes from the works of Kite et al. (2016); Schlichting & Young
(2022), in which chemical modelling of planetary cores interacting
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with H/He dominated atmospheres demonstrated significant seques-
tration of hydrogen and oxygen into the metal cores, reducing its bulk
density when compared to Earth. Schlichting & Young (2022) argue
that this may be the cause for the observed reduction in bulk densities
of Trappist-1 planets (e.g. Dorn et al. 2018, 2019; Agol et al. 2021).
Finally, another cause may come from the different methodology

of the work we present here and that of Rogers & Owen (2021). In
the latter, the position of the radius gap itself allows constraints to be
placed on the core compositions ofKepler planets. As shown inOwen
& Wu (2017), the radius gap shifts to smaller radii for populations
of planets with an iron-rich core composition since this compresses
a core for a given mass. In the work we present here, we are not
directly using the radius gap as a demographic feature, but instead
using the measured masses and radii from Kepler, K2 and TESS
planets. This may also explain the difference in core composition
standard deviation, inferred to be 𝜎𝜌 = 0.10+0.03−0.03 in this work and
an upper limit of 𝜎𝜌 ≤ 0.16 in Rogers & Owen (2021). Whilst
still statistically consistent, this difference may be caused by the
varying approaches. On a demographic level, a clean radius gap
is produced by populations of planets with a small spread in core
compositions. Thus, it is clear why the inference analysis of Rogers &
Owen (2021) inferred a value consistent with no spread. Ideally, one
would construct a combined approach, which uses large demographic
distributions of planets around the radius gap as well as measured
masses to fully constrain their core compositions.

5.5 Atmospheric evolution emulators

The results shown in Figures 4 and 5 clearly demonstrate that the
evolution emulator is capable of reproducing the demographics and
constraints provided by the semi-analytic model of Owen & Wu
(2017), whilst crucially being dramatically quicker to compute. The
goal of this paper was to validate the use of such an emulator, paving
the way for more complexmodels to be used as training data.We note
that the work of Owen & Morton (2016), which placed constraints
on the initial conditions of Kepler-36 b and c (Carter et al. 2012), im-
plemented evolutionary models of photoevaporation using the stellar
and planetary evolution code mesa (Paxton et al. 2011, 2013, 2015,
2018). Whilst being more accurate than the semi-analytic model
adopted for training in this work, the computational expense was far
greater since a grid of simulations was produced and interpolated in
the MCMC sampling.
The adopted semi-analytic model of the planetary structure is

known to perform poorly when the atmospheric mass fraction falls
to small values, such that the radiative zone of the atmosphere starts
to dominate both the radius and envelope mass. Since the evolution
emulator can now be trained onmore complex simulations that do not
suffer from such issues, one could construct and train the emulator on
a suite of planetary evolution simulations that incorporate appropriate
radiative transfer, equations of state and self-gravity (e.g., those deter-
mined by MESA Owen &Wu 2013; Chen & Rogers 2016; Kubyshk-
ina et al. 2020). One could also incorporate additional physics from
alternative mass-loss models such as core-powered mass-loss (e.g.
Ginzburg et al. 2018; Gupta & Schlichting 2019; Rogers et al. 2021)
to investigate how the two mechanisms compete. Furthermore, it is
important to emphasise the issue of ‘over-fitting’ is not of concern in
this machine learning application since the deterministic models do
not introduce noise that the emulator may be unintentionally trained
on. This is because a single set of planetary and stellar conditions
always produce the same planetary evolution track. Moreover, our
training data samples parameter space to a high degree and crucially

in a random manner (as opposed to grid-based sampling), meaning
that over-fitting does not become a further issue.
In this work, the emulator was trained with input parameters of

orbital period, stellar mass, stellar metallicity, core mass, core den-
sity and initial atmospheric mass fraction. As a further improvement,
one could include additional parameters such as the planet’s initial
cooling timescale and the system’s final age. We note that this latter
variable has little effect on the final radius of a planet under the pho-
toevaporation model since the majority of mass-loss occurs during
the first ∼ 100Myrs. As the majority of observed exoplanets orbit
main-sequence stars, it implies that age is not a dominant parameter.
However, the small fraction of planets that the emulator misclassifies
are those that are being stripped on Gyr timescales (as shown in Sec-
tion 2.1). Therefore, adding age as a parameter may reduce this error
since the emulator could learn this trend. Furthermore, if additional
physics is included, such as core-powered mass-loss, which operates
at much longer timescales, one would also require system age as an
input.

6 CONCLUSIONS

We have shown that an emulator, trained on an evolutionmodel for an
exoplanet’s H/He atmosphere, can accurately predict the final prop-
erties of an exoplanet at a fraction of the computational expense of
standard evolutionary models. Given that exoplanet evolution results
in a bimodal population of super-Earths and sub-Neptunes, we im-
plemented an emulator that consists of two neural networks: the first
that classifies planets that will be stripped of their primordial H/He
atmosphere from those that won’t; and a second that determines the
final planet size and atmospheric mass fraction for those that can
maintain such an atmosphere after 5Gyrs. We find that the fractional
RMS error introduced in the final radius is ∼ 1% when compared
to the original model, typically smaller than even the best measure-
ments of an exoplanet’s radius (for example using asteroseismology,
e.g. Van Eylen et al. 2018). The computational speed-up factor is
∼ 1000.
As a test-case, we use the evolution emulator to infer the initial

conditions of TOI-270 b, c and d (Van Eylen et al. 2021).We find that
the inner planet is stripped, whilst the outer planets havemaintained a
H/He atmosphere which was originally 1−2% before photoevapora-
tion took place. These constraints were near-indistinguishable from
those found when using the original semi-analytic photoevaporation
model from Owen & Wu (2017), validating the use of the emulator.
We then applied the evolution emulator to a more sophisticated

inference problem of determining the initial atmospheric conditions
for a sample of 81 planets with well-constrained masses and radii
from Kepler, K2 and TESS. In doing so, we inferred the relation
between core mass and the atmospheric mass fraction retained post-
protoplanetary disc dispersal. The main conclusions from this anal-
ysis are as follows:

• We find that small, close-in planets retain an atmospheric
mass fraction after disc dispersal, 𝑋 ≡ 𝑀atm/𝑀core, according to
𝑋 ≈ 0.01(𝑀core/𝑀⊕)0.34, which is consistent with the analytic
predictions from Ginzburg et al. (2016) that include the physics of
mass-loss during disc dispersal, often referred to as the boil-off phase
(Owen&Wu 2016).We also find an intrinsic scatter to these retained
atmospheric masses of ∼ 0.12 dex, which may arise due to differing
disc lifetimes and planet equilibrium temperatures. We highlight that
more sophisticated modelling of atmospheric escape during disc dis-
persal is required to understand its importance in exoplanet evolution
better.
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• The mean core composition for the planet sample was found to
be an iron-silicate mixture, with an iron-mass-fraction of 0.17+0.07−0.08.
For an Earth-mass core, this would result in a bulk density of
𝜌𝑀⊕ ≈ 4.7 g cm−3. Whilst this is consistent with the inference anal-
ysis of Rogers & Owen (2021), which was applied to the Califor-
nia Kepler Survey Fulton et al. (2017), we note the value inferred
here is lower in iron-mass-fraction. This could arise due to differing
methodologies or potentially due to a different planet sample, includ-
ing planets around lower mass stars. It could also suggest an increase
in hydrogen and oxygen sequestration into the metal cores for such
planets (Schlichting & Young 2022).

As with Rogers & Owen (2021), these results depend on the
fact that the photoevaporation scenario dominates the evolution of
small, close-in exoplanets. We highlight that more theoretical work
is needed to understand the interplay between photoevaporation and
core-powered mass-loss (Rogers et al. 2021; Schulik & Booth 2022),
as well as other escape mechanisms such as the boil-off phase, which
acts during protoplanetary disc dispersal.
Overall, this work has demonstrated that machine-learnt emula-

tors are well-suited for demographic inference analyses. Although
the emulator is clearly accurate and fast, there are many aspects in
which it may be improved. Instead of simple evolutionary models,
sophisticated numerical simulations with higher accuracy can now
be used for training. Furthermore, other parameters, such as system
age and initial cooling timescale, may be used as inputs. Finally,
additional physics may be included in the training data, such as
core-powered mass-loss (Ginzburg et al. 2018; Gupta & Schlichting
2019). Nevertheless, implementing an appropriate evolution emula-
tor to inference analyses will remedy the issues of computational
cost and thus allow investigation into potential correlations between
distributions such as stellar mass and core composition, as well as the
imprint of competing mass-loss mechanisms on the demographics
of exoplanets.
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Table 1. Planetary properties from our evolutionary inference model.

Planet
Name

Core
Mass (𝑀⊕)

Initial Atmospheric
Mass Fraction (%)

Final Atmospheric
Mass Fraction (%)

Parameter
Reference

EPIC 249893012 b 7.40+0.74−0.70 1.58+0.91−0.71 ≤ 0.19 Hidalgo et al. (2020)

EPIC 249893012 c 15.14+2.18−1.70 5.02+1.29−1.29 4.74+1.15−1.17 Hidalgo et al. (2020)

GJ 3470 b 12.99+1.58−1.55 3.35+1.95−1.05 3.07+1.46−0.95 Kosiarek et al. (2019)

GJ 357 b 1.85+0.32−0.33 1.19+0.73−0.47 ≤ 0.01 Luque et al. (2019)

GJ 486 b 2.80+0.17−0.15 1.47+0.77−0.56 ≤ 0.01 Trifonov et al. (2021)

GJ 9827 b 4.91+0.43−0.52 1.73+0.88−0.66 ≤ 0.01 Dai et al. (2019)

HD 110113 b 5.11+0.68−0.60 1.56+0.95−0.54 ≤ 0.01 Osborn et al. (2021)

HD 136352 b 3.75+0.31−0.36 1.16+0.62−0.44 ≤ 0.01 Kane et al. (2020)

HD 136352 c 10.74+0.88−1.01 1.99+0.61−0.56 1.94+0.59−0.53 Kane et al. (2020)

HD 137496 b 3.41+0.57−0.53 1.64+0.77−0.65 ≤ 0.01 Azevedo Silva et al. (2022)

HD 15337 b 5.40+0.56−0.60 1.05+0.72−0.39 ≤ 0.01 Dumusque et al. (2019)

HD 15337 c 8.97+1.58−1.45 1.96+0.62−0.60 1.85+0.55−0.56 Dumusque et al. (2019)

HD 191939 b 10.93+1.34−1.11 6.16+1.09−0.85 4.79+0.64−0.52 Lubin et al. (2022)

HD 191939 c 8.84+1.87−1.24 4.42+1.10−0.88 4.21+0.92−0.84 Lubin et al. (2022)

HD 207897 b 13.20+2.03−1.98 1.51+0.55−0.43 1.49+0.53−0.42 Heidari et al. (2022)

HD 213885 b 8.64+0.80−0.75 2.15+1.04−0.76 ≤ 0.01 Espinoza et al. (2020)

HD 219134 b 4.74+0.26−0.29 1.65+0.88−0.61 ≤ 0.01 Gillon et al. (2017)

HD 219134 c 3.99+0.27−0.23 0.94+0.38−0.28 ≤ 0.01 Gillon et al. (2017)

HD 219134 d 10.67+0.00−0.00 0.49+0.00−0.00 ≤ 0.01 Gillon et al. (2017)

HD 260655 b 1.96+0.27−0.25 1.21+0.80−0.48 ≤ 0.01 Luque et al. (2022)

HD 260655 c 2.83+0.31−0.33 1.01+0.55−0.37 ≤ 0.17 Luque et al. (2022)

HD 5278 b 7.63+1.14−0.91 1.81+0.68−0.54 1.15+0.36−0.34 Sozzetti et al. (2021)

HD 63935 b 10.74+1.75−1.57 2.86+0.97−0.79 2.39+0.76−0.62 Scarsdale et al. (2021)

HD 73583 c 8.96+1.91−1.62 1.65+0.62−0.50 1.61+0.59−0.48 Barragán et al. (2022)

HD 86226 c 7.58+0.64−0.63 1.96+1.02−0.70 0.23+0.23−0.14 Teske et al. (2020)

HD 97658 b 7.17+0.96−1.00 1.53+0.59−0.51 1.15+0.42−0.40 Van Grootel et al. (2014)

K2-110 b 13.20+2.99−2.79 1.77+0.67−0.54 1.72+0.63−0.53 Osborn et al. (2017)

K2-111 b 5.47+0.47−0.58 1.55+0.91−0.59 ≤ 0.11 Mortier et al. (2020)

K2-146 b 5.90+0.65−0.63 1.95+0.80−0.59 0.95+0.39−0.37 Lam et al. (2020)

K2-18 b 8.97+1.58−1.86 2.00+0.89−0.68 2.00+0.91−0.69 Sarkis et al. (2018)

K2-180 b 10.24+2.06−1.94 1.38+0.52−0.51 1.20+0.42−0.45 Korth et al. (2019)

K2-199 c 12.24+2.25−2.01 2.58+0.88−0.65 2.43+0.74−0.60 Akana Murphy et al. (2021)

K2-285 b 10.02+1.13−0.97 2.07+0.79−0.59 1.16+0.33−0.36 Palle et al. (2019)

K2-285 c 16.50+1.61−2.16 5.06+0.97−0.81 4.65+0.61−0.72 Palle et al. (2019)

K2-291 b 5.26+0.87−0.68 1.78+0.96−0.65 ≤ 0.01 Dai et al. (2019)

KOI-142 b 10.89+1.19−1.45 5.92+1.68−0.88 4.52+0.68−0.56 Weiss et al. (2020)

Kepler-10 c 11.95+1.97−2.06 1.27+0.46−0.40 1.26+0.46−0.39 Weiss et al. (2016)

Kepler-107 c 5.50+0.63−0.78 1.84+0.88−0.71 ≤ 0.01 Bonomo et al. (2019)

Kepler-1705 b 4.92+0.50−0.48 1.87+0.86−0.71 ≤ 0.29 Leleu et al. (2021b)

Kepler-1705 c 5.46+0.58−0.60 1.80+0.96−0.61 0.29+0.29−0.20 Leleu et al. (2021b)

Kepler-177 b 6.22+1.25−1.02 6.65+2.20−2.79 5.46+1.76−1.94 Vissapragada et al. (2020)
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Planet
Name

Core
Mass (𝑀⊕)

Initial Atmospheric
Mass Fraction (%)

Final Atmospheric
Mass Fraction (%)

Parameter
Reference

Kepler-26 b 5.48+0.66−0.64 3.47+1.46−0.87 2.96+0.98−0.69 Jontof-Hutter et al. (2016)

Kepler-26 c 6.68+0.74−0.75 2.85+1.09−0.90 2.75+0.99−0.87 Jontof-Hutter et al. (2016)

Kepler-30 b 11.78+1.71−1.30 6.50+1.90−1.87 6.33+1.66−1.85 Sanchis-Ojeda et al. (2012)

Kepler-307 b 7.09+1.07−0.84 1.83+0.70−0.55 1.37+0.48−0.41 Jontof-Hutter et al. (2016)

Kepler-307 c 4.42+0.51−0.51 1.89+0.79−0.57 0.96+0.37−0.34 Jontof-Hutter et al. (2016)

Kepler-36 b 3.78+0.13−0.15 1.14+0.48−0.38 ≤ 0.01 Vissapragada et al. (2020)

Kepler-36 c 7.40+0.00−0.41 3.62+2.36−0.00 2.32+0.63−0.00 Vissapragada et al. (2020)

Kepler-48 c 13.42+2.60−2.33 2.08+0.80−0.62 1.97+0.72−0.59 Marcy et al. (2014)

Kepler-60 b 4.46+0.57−0.57 1.56+0.89−0.61 ≤ 0.01 Jontof-Hutter et al. (2016)

Kepler-80 b 7.47+0.81−0.85 2.60+0.90−0.78 1.89+0.56−0.56 MacDonald et al. (2016)

Kepler-80 c 7.51+0.91−0.97 2.79+0.96−0.78 2.31+0.71−0.64 MacDonald et al. (2016)

Kepler-80 d 5.37+0.51−0.55 1.25+0.87−0.47 ≤ 0.01 MacDonald et al. (2016)

Kepler-80 e 3.87+0.46−0.50 1.32+0.70−0.50 ≤ 0.01 MacDonald et al. (2016)

Kepler-93 b 4.65+0.83−0.86 1.62+0.91−0.61 ≤ 0.01 Stassun et al. (2017)

Kepler-94 b 13.10+1.46−1.22 4.00+2.38−1.13 2.62+0.89−0.76 Marcy et al. (2014)

L 168-9 b 4.34+0.64−0.70 1.65+0.92−0.58 ≤ 0.01 Astudillo-Defru et al. (2020)

L 98-59 c 2.29+0.30−0.30 1.23+0.76−0.48 ≤ 0.01 Demangeon et al. (2021)

L 98-59 d 2.05+0.27−0.23 1.28+0.68−0.43 ≤ 0.42 Demangeon et al. (2021)

TOI-1062 b 9.23+0.94−1.09 1.44+0.63−0.50 0.75+0.33−0.29 Otegi et al. (2021)

TOI-1064 b 12.23+1.84−2.03 1.64+0.57−0.44 1.54+0.48−0.40 Wilson et al. (2022)

TOI-1235 b 4.66+0.45−0.48 1.03+0.57−0.47 ≤ 0.24 Bluhm et al. (2020)

TOI-1246 b 10.15+1.14−1.07 3.86+2.30−1.11 2.20+0.48−0.56 Turtelboom et al. (2022)

TOI-1246 c 8.49+1.20−1.15 1.91+0.84−0.57 1.30+0.42−0.39 Turtelboom et al. (2022)

TOI-1246 e 15.35+2.27−1.98 6.08+1.81−1.32 6.04+1.78−1.33 Turtelboom et al. (2022)

TOI-125 b 9.91+0.81−0.91 2.56+0.95−0.72 1.57+0.42−0.42 Nielsen et al. (2020)

TOI-125 c 7.53+0.96−0.91 2.83+0.96−0.83 1.93+0.52−0.53 Nielsen et al. (2020)

TOI-125 d 13.39+1.53−1.46 2.58+0.99−0.81 2.53+0.96−0.80 Nielsen et al. (2020)

TOI-1260 b 7.75+1.24−0.97 1.89+0.77−0.66 0.89+0.40−0.35 Georgieva et al. (2021)

TOI-1759 b 11.65+1.53−1.51 4.29+1.08−1.00 4.26+1.08−0.95 Espinoza et al. (2022)

TOI-178 c 4.65+0.50−0.58 1.53+0.72−0.56 ≤ 0.01 Leleu et al. (2021a)

TOI-220 b 13.64+1.32−1.26 2.76+0.99−0.77 2.62+0.91−0.71 Hoyer et al. (2021)

TOI-269 b 9.45+1.67−1.28 2.71+0.84−0.83 2.28+0.67−0.66 Cointepas et al. (2021)

TOI-270 b 1.61+0.25−0.21 1.13+0.76−0.47 ≤ 0.01 Van Eylen et al. (2021)

TOI-270 c 6.12+0.48−0.49 2.12+0.69−0.59 1.70+0.49−0.50 Van Eylen et al. (2021)

TOI-270 d 4.78+0.49−0.56 1.69+0.51−0.50 1.46+0.45−0.44 Van Eylen et al. (2021)

TOI-431 d 11.08+1.90−1.69 4.65+1.28−1.06 4.39+1.09−0.95 Osborn et al. (2021)

TOI-561 c 6.85+0.89−0.58 3.48+1.65−0.95 2.27+0.66−0.57 Lacedelli et al. (2021)

TOI-763 b 8.90+1.29−0.84 1.50+0.74−0.52 0.94+0.37−0.36 Fridlund et al. (2020)

TOI-763 c 9.23+1.10−1.32 2.14+0.76−0.66 1.86+0.61−0.55 Fridlund et al. (2020)

TOI-824 b 17.25+1.56−1.93 2.65+1.20−0.94 1.63+0.64−0.56 Burt et al. (2020)

Wolf 503 b 5.77+0.72−0.58 1.39+0.72−0.48 0.52+0.29−0.21 Polanski et al. (2021)

pi Men c 5.71+0.41−0.36 1.91+0.88−0.61 0.20+0.17−0.10 Gandolfi et al. (2018)
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