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Abstract

In recent years, there has been interest in Earth-like exoplanets in the habitable zones of low-mass stars
(∼0.1–0.6Me). Furthermore, it has been argued that a large moon may be important for stabilizing conditions on a
planet for life. If these two features are combined, then an exoplanet can feel a similar tidal influence from both its
moon and parent star, leading to potentially interesting dynamics. The moon’s orbital evolution depends on the
exoplanet’s initial spin period P0. When P0 is small, transfer of the exoplanet’s angular momentum to the moon’s
orbit can cause the moon to migrate outward sufficiently to be stripped by the star. When P0 is large, the moon
migrates less and the star’s tidal torques spin down the exoplanet. Tidal interactions then cause the moon to migrate
inward until it is likely tidally disrupted by the exoplanet and potentially produces rings. While one may think that
these findings preclude the presence of moons for the exoplanets of low-mass stars, in fact a wide range of
timescales are found for the loss or destruction of the moon; it can take ∼106–1010 years depending on the system
parameters. When the moon is still present, the combined tidal torques force the exoplanet to spin asynchronously
with respect to both its moon and parent star, which tidally heats the exoplanet. This can produce heat fluxes
comparable to those currently coming through the Earth, arguing that combined tides may be a method for driving
tectonic activity in exoplanets.

Key words: celestial mechanics – planet–star interactions

1. Introduction

It has been revealed in recent years that terrestrial extrasolar

planets are basically ubiquitous in our Galaxy (Burke

et al. 2015; Mulders et al. 2015), and, although extrasolar

moons have yet to be discovered, certainly many of these

exoplanets have moons just like the planets in our own solar

system. Whether or not a planet has a moon is not just a minor

curiosity but potentially fundamental to the question of whether

these planets host life. In the case of the Earth, the Moon’s

relatively large size allows it to stabilize the Earth’s obliquity.

This may be crucial for stabilizing conditions on Earth for a

sufficiently long time to allow life to develop (Ward &

Brownlee 2000, although also see Lissauer et al. 2012; Li &

Batygin 2014).
Another factor that may affect a planet’s ability to host life is

the presence of internal heating and volcanism. The associated

tectonic activity due to the movement of plates sitting atop a

fluid mantle can trap atmospheric gases such as carbon dioxide

into rocks and help stabilize the climate (Walker et al. 1981;

Sleep & Zahnle 2001; Foley & Driscoll 2016). Tectonic

activity can also cycle fresh rock and minerals out of deeper

regions of the planet, providing the building blocks and

nutrients for life. Heating can provide the energy needed to

drive biochemical reactions as is seen from hydrothermal vents

on Earth. In the case of the Earth, this heating is driven by

a combination of radioactivity, latent heat, and heat from

formation; but in principle, a moon could also provide a source

of heating through tidal interactions, as is seen for Io. The

easiest way to drive such tidal heating would be for a moon via

an eccentric orbit. In the absence of a large eccentricity though

there could also be cases where a planet is being tidally torqued

by both its moon and parent star. The competing torques ensure

that the planet is never perfectly synchronized to either the

moon or star, so that tidal heating can continue to persist.

Motivated by these possibilities, here I consider the

evolution of a planet tidally torqued to a similar level by

both its moon and parent star. Particular focus is on stars in

the mass range of M*≈0.1–0.6Me, as they have two

attractive properties: (1) there has been strong interest in

studying exoplanets in the habitable zones of these stars, and

(2) their habitable zones are closer-in, where tidal interactions

with the star are more important. Of course, various aspects of

star–planet–moon tidal interactions have been investigated

previously. As early as in Counselman (1973), it was noted

such systems would evolve toward one of three states, (1) the

moon migrates inward until it reaches the planet, (2) the moon

migrates outward until it escapes from the planet, and (3) the

moon finds a stable state where its orbital frequency and the

planetary spin frequency are at a mutual resonance. Since this

work, the problem has continued to be studied in various ways

over a wide variety of possible systems (e.g., Ward &

Reid 1973; Touma & Wisdom 1994; Neron de Surgy &

Laskar 1997; Barnes & O’Brien 2002; Sasaki et al. 2012;

Sasaki & Barnes 2014; Adams & Bloch 2016). Here, I focus

on particular aspects of this previous work by highlighting

the possibility of tidal heating and the importance of the

initial spin period of the planet in determining the resulting

dynamics.
In Section 2, I motivate and summarize the parameter

range for the star–planet–moon systems I will be considering.

In Section 3, I present the set of equations I use to solve

for the orbits and tides. In Section 4, I summarize the

characteristic timescale of the problem and solve for the

evolution of the exoplanet’s spin in the limit of no orbital

evolution. This provides some intuition that is useful for

solving the more detailed evolution of the system. In

Section 5, I explore the full evolution of the star–planet–

moon system over a range of parameters, and I conclude in

Section 6 with a summary.
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2. Setting the Stage

Before diving into the details of tidal interactions, it is
helpful to motivate the range of parameters that will be
considered. In Figure 1, I plot the habitable zone for stars in the
mass range of M*=0.1–0.6Me (green shaded region). This is
estimated as the range of distances at which an exoplanet
would receive the same flux as at distances of 0.8–1.7 au from
the Sun (this is the more optimistic range from the work of
Kasting et al. 1993—a less optimistic range would be
0.95–1.4 au). In comparison to the Sun, the habitable zone
must be fairly close to the parent star because the luminosity
varies strongly with mass.

If an exoplanet with an exomoon is within this range of
distances from the star, it is possible that the star’s gravity is
sufficiently strong to unbind that moon. The critical distance
within which a moon can remain is proportional to the so-
called Hill sphere, RH, so that

*
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for which I use a constant factor f=0.49 (Domingos et al. 2006,

as appropriate for prograde orbits) for this work (although note

that a value of f=0.36 has also been argued for in the past by

Holman & Wiegert 1999). This relation can be inverted to find a
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where = ´a 3.84 10 cmM
10 is the distance between the Earth

and Moon. In Figure 1, I plot
*

acrit, for different values of

a am M (blue dashed lines). In all cases, I assume the mass of

the exoplanet is Mp=M⊕, where = ´ÅM 5.97 10 g27 is the

mass of the Earth, and the mass of the exomoon is =M Mm M,

where = ´M 7.35 10 gM
25 is the mass of the Moon. From

comparing these critical distances to the habitable zone, one

can see that the moon must be sufficiently close to the

exoplanet to prevent being stripped. For example, for

M*=0.5Me and a*=0.3 au, then the moon must be at a

distance a a0.7m M from the exoplanet to stay bound. These

considerations roughly set the parameters I will be using for the

initial conditions of the dynamical evolution calculations.

3. Basic Equations

I next present the set of equations I will be using to solve for
the dynamics of the planet’s spin and the orbital separations.
The basic strategy is to focus on the secular evolution of the
star–planet–moon system rather than follow each orbit
individually. In this sense, the conservation equations used
represent averages over many orbits. This allows the evolution
of these systems to be considered over much longer timescales
of ∼105–1010 years rather than being focused on the much
shorter timescale of the orbits themselves. Further simplifica-
tions include assuming that the spin angular momentum of the
planet is parallel to the orbital angular momentum of both the
moon and planet.
Consider the configuration of a star, planet, and moon, with

masses M*, Mp, and Mm, respectively, as shown schematically
in Figure 2. The semimajor axis of the orbit of the star and
planet is a* and the semimajor axis of the planet and moon is
am. The orbits are all assumed to be circular. Tidal forces from
the star and moon each generate two bulges on the planet on
opposite sides. The frequency of these bulges in the frame of
the planet are

* *
w = - Wˆ ( )n2 and w = - Wˆ ( )n2m m due to

the star and moon, respectively, where the factor of two
represents the two bulges, Ω is the spin of the planet, and the
orbital frequencies are

* * *
=n GM a2 3 and =n GM am p m

2 3.
These bulges are not perfectly aligned with the position of

the mass generating the bulge because the planet is not a
perfect fluid. Instead, the bulge can proceed or lag behind. This
is emphasized in Figure 2, where the bulge caused by the star
proceeds the star by an angle α and the bulge caused by
the moon lags behind by an angle β (note that these angle are
exaggerated here and are much smaller in real systems). These
angles depend on the “time lag” of the tidal forcing of
the planet τ and tidal forcing frequencies such that

*
a twµ ˆ

and b twµ ˆm. In Figure 2, it is assumed that the planet is
spinning faster than its orbit around the star, thus

*
w <ˆ 0 and

the bulge from the star proceeds its position.
Due to the misalignment between the bulge and the object

causing the tide, the planet’s spin can be torqued up or down.
These torques over secular timescales can be approximated as

Figure 1. The habitable zone for stars in the mass range of
*
= –M M0.1 0.6

(green shaded region). This is defined as the range of distances which match the
same flux received at distances of 0.8–1.7 au from our Sun. Blue dashed lines
indicate

*
acrit, , the critical distance for the planet from the star, within which the

moon would be stripped away. These are shown for different values of a am M

as labeled. In all cases I use Mp=M⊕ and =M Mm M.
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(Ogilvie 2014)

* *
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from the star and moon, respectively, where Rp is the radius of

the planet and k2 is the Love number which represents the

planet’s rigidity. In the specific case of Figure 2,
*
<N 0 and

>N 0m because of whether the bulge proceeds of lags. These

torques can be rewritten in terms of the orbital frequencies as
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Note that because I am assuming that M Mp m, there is an
additional factor of M Mm p for Nm.

Note that for this work, I express the tidal torque using a
constant time lag model (Mignard 1979, 1980, 1981; Hut 1981;
Heller et al. 2011) rather than a constant geometric lag model
(MacDonald 1964; Goldreich 1966; Murray & Dermott 1999),
which would be parameterized with a quality factor Q. The
relation between the two is tw s=ˆk k Q2 2 with s w= ˆsgn
(see Efroimsky & Makarov 2013 for a discussion of the
limitations and implications of different tidal implementations).
I choose this formalism simply because it provides a more
smooth transition from a positive torque (when the planet is
spinning slowly) to zero torque (when the planet is tidal
locked) to a negative torque (when the planet is spinning
quickly). In contrast, if I leave Q fixed, the torque changes
more abruptly as the planet’s spin evolves, which causes
numerical issues when evolving the orbits and spins.

Another issue is that I consider the torque by the star from
the star’s bulge and the torque by the moon from the moon’s
bulge but not vice versa (for example, the torque by the star
from the moon’s bulge). This is a reasonable approximation for
the secular limit, because over long timescales, the moon’s
bulge, for example, will appear at all different positions with
respect to the star and therefore will average to zero torque. If
the orbits were followed individually, there would be more
complicated behavior on shorter timescales, but this is beyond
the secular focus of the present study.
The torques change the spin angular momentum of the planet as

*
W = +( ) ( )

d

dt
I N N , 7p m

where Ip and Ω are the moment of inertia and spin frequency of

the planet, respectively. To conserve angular momentum, the

orbital separations must also change. The differential equations

that describe these are

* * *
= -[ ( ) ] ( )

d

dt
M GM a N , 8p

1 2

and

+ = -[ ( ) ] ( )
d

dt
M GM a I n N , 9m p m m m m

1 2

where Im is the moment of inertia for the moon. For simplicity,

I assume that the moon is tidally locked to the planet, which

gives rise to the term I nm m in Equation (9). As relatively little

angular momentum is in the moon’s spin, whether or not this

tidal locking occurs does not impact my main conclusions. For

the star, I assume that its spin is not changing appreciably from

the small tidal torque of the planet and that it can be ignored.
From the above differential equations, a number of key

timescales can be identified. Rewriting Equation (7), one finds

*

* *
t t

W
= -

W
+ -

W⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )

d

dt

n

n

n

n
1 1 , 10

m

m msyn, syn,

Figure 2. Schematic showing the combined tidal effects on an planet from both a star and moon (definitely not drawn to scale). Two tidal bulges are raised by each the
star and moon, which proceed or lag behind the actual position of the forcing body depending on the time for the planet to react to the tides (parameterized by the time
lag factor τ) and the relative frequencies of the planet’s spin and the orbits. In this specific example

*
> W >n nm , so that the bulge from the star proceeds ahead of the

star’s position by an angle α, while the bulge from the moon lags behind the moon’s position by an angle β.
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where the associated synchronization timescales are
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* *

*
*

t
l
t

º -⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )

k n

M

M

a

R
n

3
, 11

p

p

syn,
2

3

1

and

t
l
t

º -⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )

k n

M

M

a

R
n

3
, 12m

m

p

m

m

p
msyn,

2

2 3

1

and l = I M Rp p p
2 is the radius of gyration for the planet.

The orbital separations also change as described by the
differential equations
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where the last term is due to synchronous spin of the moon and

I assume = ( )I M R2 5m m m
2. For the change in the orbital orbital

separations,

* *
*

*
*

t tº - -⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )k n

M

M

a

R
n6 , 15

p

p

mig, 2
1

5

1

and

t tº - -⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )k n

M

M

a

R
n6 . 16m m

p

m

m

p
mmig, 2

1

5

1

for the migration timescales.
Besides the planet’s spin and orbital separations, tides will

also change the eccentricity of the orbits, which is governed by
the equation (Ogilvie 2014)
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This happens on a roughly similar timescale to t mmig, .

Nevertheless, I assume circular orbits in this work because

one of my main goals is to highlight the fact that tidal heating is

possible even without eccentricity.
Tidal heating can be present for circular orbits because when

both the moon and star exert their tides on the planet, the planet
is always forced to spin asynchronously with respect to each of
them. To estimate the strength of this heating, first consider the
total energy of the combined spinning planet plus gravitational
interaction with a moon is

= W - ( )E I
GM M

a
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2 2
. 18m p

p m

m

2

Taking the derivative of this expression results in
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Substituting the part of the torque due to the moon’s tide on

Wd dt and doing some algebra one finds
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This change of energy represents the maximum amount of

heating possible on the planet due to asynchronous rotation

with respect to the moon. Performing a similar set of arguments

on the tidal forcing from the star results in

*
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for the heating of the planet due to the star. I take the total

heating rate on the exoplanet to be the sum of the two tidal

heating contributions,

*
= +˙ ˙ ˙ ( )E E E . 22m

In detail, the tidal heating can occur at different locations

depending on how the tides are damped, but this requires a

more sophisticated treatment of the tides that is outside the

scope of this work.

4. Characteristic Timescales and Analytic Evolution
Solutions

The detailed evolution of the star–planet–moon system can
be complicated because of the many parameters that can be
varied. It is therefore helpful to consider some of the key
timescales that will govern the evolution as well as solving a
simpler set of evolution equations to provide some intuition on
how the evolution will proceed.

4.1. Orbital and Tidal Timescales

First, we consider the four key timescales for the
synchronization and migration of the orbits that were identified
in Section 3. Substituting physical values, these are
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where = ´ÅR 6.37 10 cm8 is the radius of the Earth, and I

have used λ=0.33 and k2=0.3, which are motivated by

empirical measurements and fits to the shear modulus and

stiffness of the present day Earth (Williams 1994; Henning

et al. 2009; Ray & Egbert 2012; Heller & Barnes 2013;

Driscoll & Barnes 2015). The time lag is set to τ=638 s
(Lambeck 1977; Neron de Surgy & Laskar 1997), which for

the current values of the Earth–Moon system gives a migration

rate of the moon of = -da dt 3.8 cm yrm
1 and spindown rate

of the planet of = - -dP dt 2.2 ms century 1, where P=2π/Ω
is the planet’s spin period. As a check on the general

framework used here, these rates are both in agreement with

the currently measured values for the Earth and Moon.
At least for the specific values used in Equations (23)–(26), the

ordering of the timescales is
* *

 t t t tm msyn, syn, mig, mig, .
Thus, for the Sun–Earth–Moon system, the synchronization of the
Earth with the Moon’s orbit is occurring the fastest of any of these
processes. As emphasized in the discussion in Section 1, where
things potentially get interesting is when

*
t t» msyn, syn, , so that

both the tides acting from the star and moon are impacting
the planet on similar timescales. Setting

*
t t» msyn, syn,

using Equations (23) and (24), one can estimate that the
typical separation between the planet and moon where this
occurs is

* *»
-


⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )a

a M

M

M

M
a0.5

0.3 au 0.5
. 27m

m

M

1 3 1 3

M

Comparing this estimate for am with Figure 1, one can see that

*
t t» msyn, syn, will naturally occur for low-mass stars over a

wide range of the parameter space where moons can remain

bound to planets.

4.2. Analytic Solutions without Orbital Migration

To get more intuition for what will happen to the system
when

*
t t» msyn, syn, , I consider the simplified case when the

orbital separations do not evolve. In other words, I make the
approximation that

* *
t t t t, ,m mmig, mig, syn, syn, . It is found for

this case that a particularly simple analytic solution is possible
for the planet’s spin evolution.

Assuming that am and a* are constant, Equation (10)
becomes a differential equation simply in Ω(t). Integrating this
then results in

tW = W + W - W -( ) ( ) ( ) ( )t texp , 28eq 0 eq syn

where W º W =( )t 00 is the initial spin frequency, Ωeq is the

equilibrium spin frequency as  ¥t , and the total synchro-

nization time of the planet is defined to be

*

*

t
t t
t t

º
+

( ). 29
m

m

syn
syn, syn,

syn, syn,

The easiest way to estimate Ωeq is to just set W =d dt 0 with

Equation (10), and then solve for Ω, resulting in.

* *

*

t t
t t

W º
+

+
( )

n n
. 30

m m

m

eq
syn, syn,

syn, syn,

Equation (28) shows that the planet’s spin just exponentially

decays on a timescale τsyn to the final equilibrium spin of Ωeq.
In general, this solution is not exactly correct because am can

also potentially evolve on similar timescales as shown by
Equation (26). This in turn changes

*
tsyn, and t msyn, , so that

they are not constant as assumed to derive Equation (28). An
example where this fails is for the Sun–Earth–Moon system,
where the migration of the Moon cannot be ignored.
Nevertheless, the full evolutions of the star–planet–moon

system will demonstrate that the concept of Ωeq plays an
important role. In particular, note that from Equation (30) it is
apparent that Ωeq cannot exactly equal either n* or nm. This
means that there will be tidal forcing on the planet by both the
star and the moon, and tidal heating will always play some role
in a star–planet–moon system.

5. Full Time-evolved Solutions

Now that the main background has been covered, I consider
the full evolution of the star–planet–moon system. This is solved
by numerically integrating forward in time Equations (10), (13),
and (14), which are three coupled differential equations in the
dependent variables Ω, a*, and am, respectively.

5.1. Example Evolution

It is helpful to first just focus on one fiducial example that
exemplifies the main features on the solutions, which is presented
in Figure 3. For this specific case, I useM*=0.5Me,Mp=M⊕,
and =M Mm M (in all further examples, Mp and Mm use these
values for simplicity). The initial orbital separations are

*
=a

0.3 au and =a a0.5m M. Finally, the initial spin of the planet
must be chosen, in this case I use p= W =P 2 7 hr0 0 (note that
the Earth is generally thought to have had an initial spin period of
roughly 6 hrs).
From this example, a number of important features are seen

that will inform our more detailed parameter survey below.
First, in the upper panel of Figure 3, I summarize the key
periods of the system. These are the actual spin period of the
planet P=2π/Ω (solid red line), the equilibrium spin period
related to the analytic solutions from Section 4.2 p= WP 2eq eq

(dashed turquoise line),
*

p ŵ4 (dotted blue line), and p ŵ4 m

(long dashed purple line). These latter two periods are the
periods of the tidal forcing from the star and moon,
respectively, with an extra factor of two in each case to cancel
the factor of two from the two tidal bulges. Also, for these
periods the absolute value is plotted because they can be
either negative or positive. At early times we see that

*
p w p w» »ˆ ˆP 4 4 m. This is because the fast initial spin of

the planet dominates setting the tidal frequencies. Furthermore,
both of the toques are negative, and the planet is spinning
down. At a time of ≈2×108 years, the planet has spun down
sufficiently that W < nm, which causes the torque from the
moon to instead want to spin the planet up. This switch in the
sign of the moon’s torque can be seen in the plot of p ŵ4 m,
which shows a cusp at this time. Now the combined torques of
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the moon (spinning the planet up) and the star (spinning the
planet down) push the planet’s spin toward P≈Peq.

Even though the planet has reached this spin equilibrium, the
story is not over because this equilibrium is not stable. As
shown by Equation (30), if spin equilibrium is reached, then the
planet is not tidally locked with either the moon or the star, and
thus the tidal forces still persist. Given the relative frequencies,
in this situation the ordering is

*
> W >n nm eq , and therefore

the planet will be spun down by the star but spun up by the
moon. Thus, we find that an equilibrium is reached, but the
equilibrium is not stable as summarized in Figure 4. As
> Wnm eq, the moon torques up the planet. This then moves the

moon closer to the planet to conserve angular momentum. With
the new orbital separation, once again > Wnm eq, and thus the
process repeats until the moon moves close enough to the
planet to be disrupted.

This is seen in the middle panel of Figure 3, which plots the
evolution of the moon’s orbital separation (red solid line). At
early times, am increases as the planet spins down and donates
its angular momentum to the moon’s orbit until leveling off
when P≈Peq. This does not last though because of the
unstable situation and eventually am comes crashing back to
the planet. Also plotted in Figure 3 is the critical radius for
the moon to be lost to the parent star a mcrit, (black dashed line)

given by Equation (1). In this particular case, <a am mcrit, for
the entire evolution, but if this critical radius is ever exceeded,
one should expect the moon to be tidally stripped from the
planet.
Finally, in the bottom panel of Figure 3, I summarize the

tidal heating rates. At early times, this is dominated by the star,
and at late times the moon. But in either case, it must remain
nonzero because the combined tides always make sure the
planet is asynchronous with the orbits of both the star and
moon. Also plotted is the heat flux of» ´ -4 10 erg s20 1 that is
currently emanating through the Earth (black dashed line,
Dye 2012) due to a combination of radioactivity, latent heat,
and heat left over from the Earth’s formation. This demon-
strates that the tidal heating is actually similar or exceeds this
value for a timescale of ≈108 years, and thus one might expect
such a planet to have tectonic activity similar to the Earth
(or perhaps even Io, which has an even greater heating rate)
during this time. Although compared to the timescale necessary
for life to develop, this appears too short (albeit, such a
timescale is obviously very uncertain).

5.2. Is the Moon Disrupted or Lost?

In the example from the previous section and in Figure 3, it
appears the moon will be forced to migrate into the planet
rather than expelled by the star. But this example also showed
that the moon was fairly close to being removed by the star if
only the moon migrated out a little further (compare the red
solid line and black dashed lines in the middle panel of
Figure 3).
To better explore what controls the fate of the moon, in

Figure 5 we plot the evolution of the star–planet–moon system
for a variety of different initial spins for the planet. The initial
spins vary from from periods of 3 hr (blue curves) to 13 hr (red
curves). This demonstrates that the initial spin of the planet can
have a dramatic affect on the fate of the moon. The reason is
that the moon’s migration is driven by the extraction of angular
momentum from the planet’s spin, and the more spin the planet
has, then the further out the moon will migrate. This
dependency on P0 is not emphasized in the work of Sasaki
et al. (2012), which used a constant value of P0=6 hr for
Earth-like planets (although see some of the discussion in
Sasaki & Barnes 2014).
Whether the moon is disrupted or lost can be addressed

with some simple arguments. The initial angular momentum in
the planet’s spin is plM R P2 p p

2
0. If all of this angular

momentum goes into the moon’s orbit, with angular

Figure 3. An example time evolution of the star–planet–moon system, using
the parameters M*=0.5 Me, Mp=M⊕, and =M Mm M, with initial orbital
separations a*=0.3 au and =a a0.5m M, and an initial spin period for the
planet of P0=7 hr. The top panel summarizes the main periods of the system

p= WP 2eq eq (dashed turquoise line), P=2π/Ω (solid red line),
*

p ŵ4
(dotted blue line), and p ŵ4 m (long dashed purple line). The middle panel is
the moon’s orbital separation (red solid line) in comparison to the critical radius
a mcrit, (dashed black line) at which the moon would be tidally stripped by the
star from Equation (1). The bottom panel compares tidal heating rates, which
includes the heating from the star E* (dotted blue line), the moon Em (long
dashed purple line), and the total heating (solid red line). Also plotted is the

current heat flux coming up through the Earth of » ´ -4 10 erg s20 1 (dashed
black line).

Figure 4. Although the planet can spin down until Ω≈Ωeq, this is not a stable
equilibrium. Because

*
> W >n nm eq , this means that (1) the moon torques up

the planet, which then (2) moves the moon closer to conserve angular
momentum, so that (3) at the new spin equilibrium again > Wnm eq because

Ωeq>n*. Thus, this loops continue and the moon moves in toward the planet
until it is disrupted.
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momentum ( )M GM am p m
1 2, then the orbital separation of the

moon would be

p l
= ( )a

M R

GM P

4
. 31m

p p

m

2 2 4

2
0
2

Equating this to a mcrit, given by Equation (1) and solving for P0

provides the critical initial period for the planet
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This matches fairly closely the critical value for the initial

period found from the evolutions in Figure 5.
In detail, this critical period does not exactly hold. This is

because it depends on how much angular momentum the moon
initially has as well. For example, in Figure 6 for each of the
evolutions the initial spin period of the planet is set to
P0=9 hr (in Figure 5, this P0 was found to be sufficiently long
that the moon is expected to migrate back into the planet). But
varying the moon’s initial orbital separation from a0.2 M to
a0.7 M demonstrates that if the moon is initially sufficiently far,

then it will be easier to strip. This effect is not captured by
Equation (32).

Another physical mechanism that will play a role in
determining the fate of the moon is the role of tidal resonances.
Of particular interest may be the evection resonance, where the
moon’s perihelion precession rate becomes equal to the orbital
period of the planet (e.g., Touma & Wisdom 1998). This can
alter the moon’s orbit dramatically, but it depends in detail on
the rate of the orbital evolution and the width of the resonance.
Due to these complications, I save a more detailed study of
these processes for future work.

5.3. Fate of the Disrupted Moon

In the cases where the moon is forced to tidally migrate back
toward the planet, there are likely two potential outcomes:
(1) the moon is tidally disrupted, or (2) the moon directly
impacts the planet. Here, it is argued that at least for a system
similar to the Earth–Moon, tidal disruption is more likely.
The moon will migrate inward until its radius hits the Roche

lobe, i.e., the equipotential surface where material will no
longer be gravitationally bound to the moon. As long as

M M 1m p , this can be approximated by the condition (Frank
et al. 2002)

= + »
-⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ ( )R

M

M
a

M

M
a0.462 1 0.462 , 33m

p

m

t
m

p

t

1 3 1 3

where at denotes the semimajor axis when tidal disruption

occurs. At the moment of disruption, the L1 Lagrange point is

located a distance » ( )d M M a0.7t m p t
1 3 from the center of

mass of the moon. Thus, for tidal disruption to occur, then

Figure 5. Similar to Figure 3, but varying the initial spin period P0 of the planet
with values of 3 hr (blue curves), 5 hr (turquoise curves), 7 hr (green curves),
9 hr (yellow curves), 11 hr (orange curves), and 13 hr (red curves). All other
parameters are the same as in Figure 3. This demonstrates when P0=7 hr, the
moon will likely be disrupted, but if the initial spin is shortened to P0=5 hr,
then the moon is likely stripped by the star.

Figure 6. Similar to Figure 3, but with P0=9 hr and varying the orbital
separation of the moon over the values a0.7 M (blue curves), a0.6 M (turquoise
curves), a0.5 M (green curves), a0.4 M (yellow curves), a0.3 M (orange curves),
and a0.2 M (red curves). All other parameters are the same as in Figure 3. This
demonstrates that for a0.7 M, the moon is sufficiently far away to begin with
that only with a small amount of migration it will be stripped by the star.
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 +a R dt p t, otherwise the planet and moon are too close

together and direct impact will occur instead. Rewriting this

inequality by making use of Equation (33),

 +
⎛
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⎟ ( )

M

M

R

R
2.16 1.51. 34

p

m

p

m

1 3

Simply using the properties of the Earth and Moon, the left side

is 9.35 while the right side is 5.19, thus the result is tidal

disruption. Another way to understand this is to multiple both

sides of this expression by R Rm p, which results in


r

r

á ñ
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⎝
⎜

⎞

⎠
⎟ ( )
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R
0.46 0.70 , 35
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m
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where rá ñp and rá ñm are the average density of the planet and

moon, respectively. Because the right-hand side of Equation (35)

has a value between 0.46 and 1.16 (because <R Rm p), this

demonstrates that as long as the density of the planet is similar or

greater than the moon, then tidal disruption is expected.

Conversely, direct impact only occurs when the density of the

planet is much less than the moon (similar arguments were

presented in Metzger et al. 2012, in a somewhat different

context).
Following disruption, the moon will likely form some sort of

ring-like structure around the planet. This may indicate that
some rocky planets around low-mass stars should be expected
to have circumplanetary rings. To get some idea of what such
rings may look like, consider that at the moment of disruption
at a separation at, the orbital angular momentum of the moon is

= +

» +

[ ( ) ]

[ ( ) ] ( )

J G M M a M

G M M R M M1.47 . 36

t p m t m

p m m p m

1 2

1 2 1 6 5 6

where for the second expression I have used Equation (33). For

the values of the Earth–Moon system, this gives an angular

momentum of » ´J 6 10 erg st
40 . This same amount of

angular momentum should be roughly stored in the resulting

rings, which would be given by

» ( ) ( )J GM R M , 37r p r r
1 2

where Rr and Mr are the radius and mass of the rings,

respectively. The actual mass that goes into the rings would

depend on the details of the ring dynamics, but even if ≈10%

of the moon’s mass went into the rings it would imply a radius

of » ´R 2 10 cmr
11 (and an even larger radius if the ring

mass is smaller). Such a large radius cannot be maintained for

the rings. Material interior to the so-called fluid Roche limit

will remain in rings, where the fluid Roche limit is given by

(Murray & Dermott 1999)

r

r
=

á ñ

á ñ

⎛

⎝
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⎞

⎠
⎟ ( )R R2.46 , 38p

p
FRL

1 3

where rá ñ is the average density of the material that makes up

the rings. This results in typical ring radii of ≈2×109 cm.

Searching for such rings (using the methods described in, for

example, Barnes & Fortney 2004; Ohta et al. 2009; Zuluaga

et al. 2015) may verify that processes as discussed here took

place in a specific system. Exterior to the fluid Roche limit,

material can coalesce into a new moon that is some fraction of

the mass of the moon before. This new moon could then

migrate inward again and the process repeat. This suggests that

the planet may go through phases where it alternatively has a

moon or rings, which has actually been suggested to be the case

for Mars and Phobos (Hesselbrock & Minton 2017). More

work is needed to better understand the evolution and duty

cycle of such rings.

5.4. Exploration of Additional Evolutions

The above discussions spell out some of the general features
of the evolution, but there are many parameters that can be
varied for a star–planet–moon system. Thus, here I highlight
some other example evolutions to provide some sense of the
diversity of potential results. In each example, I consider a
range of values for P0, as this factor has proven to be key in
determining a moon’s fate.
In the above examples, I set

*
=a 0.3 au for the initial

separation so that the planet would be within the habitable
zone, but what if the planet is much further out? In Figure 7, I
consider such a case with

*
=a 0.6 au. The two main results of

this change are that (1) the moon avoids being tidally stripped
by the star for a larger range of initial spin periods for the
planet, and (2) it takes a much longer timescale for the moon to
migrate back into the planet. For the first case, this is simply
because the ability of the star to strip the moon depends most
strongly on the separation, as shown by Equation (1). For the
second case, this is because the tidal timescales depend on a
high power of the separation. In addition, tidal heating also
stays strong for a longer period of time, exceeding the current
heat flux on Earth for up to ∼109 years.
In Figure 8, I consider the case of a smaller star with

*
= M M0.2 , which requires an initial separation of a*=

0.1 au for the planet to be near the habitable zone. Although the
mass of the star is smaller, the planet’s orbital separation plays
a much stronger role in setting the tidal interaction timescales.
Thus, the evolution occurs much faster, in this case with the
fate of the moon being decided within ∼106 years. In
comparison, in Figure 9, just by tripling the initial separation to
a*=0.3 au, now the evolution can occur for 1010 years or
longer.

6. Discussion and Conclusions

In this work, I have investigated the tidal interactions of star–
planet–moon systems. In comparison to the broader work of
Sasaki et al. (2012), this study has a more specific focus on
Earth–Moon-like systems around low-mass stars, which is
motivated by recent surveys finding planets in the habitable
zones of these stars. Furthermore, because these habitable
zones are relatively close to the star, the tidal interactions
between the planet and star are naturally comparable to the
interactions between the planet and moon. I especially
highlight the role of the initial spin period of the planet P0 in
determining the fate of the moon, and I use a constant τ

formalism rather than a quality factor for assessing the impact
of the tides.
Solving for the time evolution of these systems, my main

conclusions are as follows.
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1. The combined tidal interactions cause the moon to
eventually be stripped by the star or migrate back toward
the planet.

2. Which of these fates befall the moon depends sensitively
on the initial spin period of the planet P0, with a small
spin making it more likely for the moon to be stripped.

3. In cases where the moon migrates into the planet, the
moon will be tidally disrupted rather than directly impact
the planet because of the relatively similar densities of the
rocky planet and moon. This may produce rings around
rocky planets.

4. The combined tidal interactions force the planet to always
spin asynchronously with respect to the both the moon
and star, often generating an amount of tidal heating
similar to the current heat flux coming up through the
Earth for up to ∼109 years.

5. The overall evolution of this system until the time the
moon is stripped or disrupted depends on the initial
separation of the planet and star, and can vary greatly
from less than 10 years6 to greater than 1010 years.

In the future, as extrasolar moons are inevitably discovered, the
formalism presented here can be used to better understand the
lifetime and fate of these moons (although in some cases,
additional planetary bodies may also impact the moon,
something outside the scope of this work). If instead the
presence of rings around rocky planets orbiting low-mass stars
is found, it would provide evidence that processes as described
here have occurred in specific systems. Alternatively, if no
rings or moons are ever present, it could indicate that the
moons are stripped because of the short initial spin when the
planet is formed, providing insight into the planet formation
process. Further calculations are needed to understand the
details of these rings, how they evolve, and how long they
should be present.

Figure 7. Same as Figure 5, but with
*
=a 0.6 au. This greatly extends the

evolution to longer timescales and the moon gets tidally disrupted for a larger
range of initial spin periods for the planet P0.

Figure 8. Same as Figure 5, but with
*
= M M0.2 and a*=0.1 au. The small

separation greatly speeds up the evolution.

Figure 9. Same as Figure 5, but with M*=0.2 Me and a*=0.3 au. In
comparison to Figure 8, the larger separation dramatically lengthens the
evolution.
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It is interesting to ponder the implications of the long timescale
found for the loss of the moon through tidal disruption or stripping.
One might assume that the fate of a moon would be determined
relatively early during the formation process of the solar system
and planet. But in fact, without fine tuning the parameters much, a
moon could orbit a planet for well over 1010 years before being
tidally disrupted or lost from the planet completely! If such a
planet could harbor life, this would presumably be sufficiently long
for an advanced civilization to develop, only to be subject to a
catastrophic event. Nevertheless, as we have seen over the last
century, technology advances quickly. And although our species
still seems to be sorting out issues more local to home, one might
hope that in a relatively short amount of time in comparison to
astrophysical timescales, an advanced society may be able to
overcome such a unique challenge.

I thank Johanna Teske for suggestions on a previous draft of
this manuscript, and Jason Barnes for answering my questions
about his work. I also thank Konstantin Batygin, Alexandre
Correia, Michael Efroimsky, Jim Fuller, and Valeri Makarov
for their feedback.

ORCID iDs

Anthony L. Piro https://orcid.org/0000-0001-6806-0673

References

Adams, F. C., & Bloch, A. M. 2016, MNRAS, 462, 2527
Barnes, J. W., & Fortney, J. J. 2004, ApJ, 616, 1193
Barnes, J. W., & O’Brien, D. P. 2002, ApJ, 575, 1087
Burke, C. J., Christiansen, J. L., Mullally, F., et al. 2015, ApJ, 809, 8
Counselman, C. C., III 1973, ApJ, 180, 307
Domingos, R. C., Winter, O. C., & Yokoyama, T. 2006, MNRAS, 373, 1227
Driscoll, P. E., & Barnes, R. 2015, AsBio, 15, 739

Dye, S. T. 2012, RvGeo, 50, RG3007
Efroimsky, M., & Makarov, V. V. 2013, ApJ, 764, 26
Foley, B. J., & Driscoll, P. E. 2016, GGG, 17, 1885
Frank, J., King, A., & Raine, D. J. 2002, Accretion Power in Astrophysics (3rd

ed.; Cambridge: Cambridge Univ. Press)
Goldreich, P. 1966, AJ, 71, 1
Heller, R., & Barnes, R. 2013, AsBio, 13, 18
Heller, R., Leconte, J., & Barnes, R. 2011, A&A, 528, A27
Henning, W. G., O’Connell, R. J., & Sasselov, D. D. 2009, ApJ, 707, 1000
Hesselbrock, A. J., & Minton, D. A. 2017, NatGe, 10, 266
Holman, M. J., & Wiegert, P. A. 1999, AJ, 117, 621
Hut, P. 1981, A&A, 99, 126
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icar, 101, 108
Lambeck, K. 1977, RSPTA, 287, 545
Li, G., & Batygin, K. 2014, ApJ, 790, 69
Lissauer, J. J., Barnes, J. W., & Chambers, J. E. 2012, Icar, 217, 77
MacDonald, G. J. F. 1964, RvGSP, 2, 467
Metzger, B. D., Giannios, D., & Spiegel, D. S. 2012, MNRAS, 425, 2778
Mignard, F. 1979, M&P, 20, 301
Mignard, F. 1980, M&P, 23, 185
Mignard, F. 1981, MNRAS, 194, 365
Mulders, G. D., Pascucci, I., & Apai, D. 2015, ApJ, 798, 112
Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge:

Cambridge Univ. Press)
Neron de Surgy, O., & Laskar, J. 1997, A&A, 318, 975
Ogilvie, G. I. 2014, ARA&A, 52, 171
Ohta, Y., Taruya, A., & Suto, Y. 2009, ApJ, 690, 1
Ray, R. D., & Egbert, G. D. 2012, GeoJI, 189, 400
Sasaki, T., & Barnes, J. W. 2014, IJAsB, 13, 324
Sasaki, T., Barnes, J. W., & O’Brien, D. P. 2012, ApJ, 754, 51
Sleep, N. H., & Zahnle, K. 2001, JGR, 106, 1373
Touma, J., & Wisdom, J. 1994, AJ, 108, 1943
Touma, J., & Wisdom, J. 1998, AJ, 115, 1653
Walker, J. C. G., Hays, P. B., & Kasting, J. F. 1981, JGR, 86, 9776
Ward, P., & Brownlee, D. 2000, Rare Earth: Why Complex Life is Uncommon

in the Universe (New York: Copernicus Books)
Ward, W. R., & Reid, M. J. 1973, MNRAS, 164, 21
Williams, J. G. 1994, AJ, 108, 711
Zuluaga, J. I., Kipping, D. M., Sucerquia, M., & Alvarado, J. A. 2015, ApJL,

803, L14

10

The Astronomical Journal, 156:54 (10pp), 2018 August Piro

https://orcid.org/0000-0001-6806-0673
https://orcid.org/0000-0001-6806-0673
https://orcid.org/0000-0001-6806-0673
https://orcid.org/0000-0001-6806-0673
https://orcid.org/0000-0001-6806-0673
https://orcid.org/0000-0001-6806-0673
https://orcid.org/0000-0001-6806-0673
https://orcid.org/0000-0001-6806-0673
https://doi.org/10.1093/mnras/stw1883
http://adsabs.harvard.edu/abs/2016MNRAS.462.2527A
https://doi.org/10.1086/425067
http://adsabs.harvard.edu/abs/2004ApJ...616.1193B
https://doi.org/10.1086/341477
http://adsabs.harvard.edu/abs/2002ApJ...575.1087B
https://doi.org/10.1088/0004-637X/809/1/8
http://adsabs.harvard.edu/abs/2015ApJ...809....8B
https://doi.org/10.1086/151964
http://adsabs.harvard.edu/abs/1973ApJ...180..307C
https://doi.org/10.1111/j.1365-2966.2006.11104.x
http://adsabs.harvard.edu/abs/2006MNRAS.373.1227D
https://doi.org/10.1089/ast.2015.1325
http://adsabs.harvard.edu/abs/2015AsBio..15..739D
https://doi.org/10.1029/2012RG000400
http://adsabs.harvard.edu/abs/2012RvGeo..50.3007D
https://doi.org/10.1088/0004-637X/764/1/26
http://adsabs.harvard.edu/abs/2013ApJ...764...26E
https://doi.org/10.1002/2015GC006210
http://adsabs.harvard.edu/abs/2016GGG....17.1885F
https://doi.org/10.1086/109844
http://adsabs.harvard.edu/abs/1966AJ.....71....1G
https://doi.org/10.1089/ast.2012.0859
http://adsabs.harvard.edu/abs/2013AsBio..13...18H
https://doi.org/10.1051/0004-6361/201015809
http://adsabs.harvard.edu/abs/2011A&amp;A...528A..27H
https://doi.org/10.1088/0004-637X/707/2/1000
http://adsabs.harvard.edu/abs/2009ApJ...707.1000H
https://doi.org/10.1038/ngeo2916
http://adsabs.harvard.edu/abs/2017NatGe..10..266H
https://doi.org/10.1086/300695
http://adsabs.harvard.edu/abs/1999AJ....117..621H
http://adsabs.harvard.edu/abs/1981A&amp;A....99..126H
https://doi.org/10.1006/icar.1993.1010
http://adsabs.harvard.edu/abs/1993Icar..101..108K
https://doi.org/10.1098/rsta.1977.0159
http://adsabs.harvard.edu/abs/1977RSPTA.287..545L
https://doi.org/10.1088/0004-637X/790/1/69
http://adsabs.harvard.edu/abs/2014ApJ...790...69L
https://doi.org/10.1016/j.icarus.2011.10.013
http://adsabs.harvard.edu/abs/2012Icar..217...77L
https://doi.org/10.1029/RG002i003p00467
http://adsabs.harvard.edu/abs/1964RvGSP...2..467M
https://doi.org/10.1111/j.1365-2966.2012.21444.x
http://adsabs.harvard.edu/abs/2012MNRAS.425.2778M
https://doi.org/10.1007/BF00907581
http://adsabs.harvard.edu/abs/1979M&amp;P....20..301M
https://doi.org/10.1007/BF00899817
http://adsabs.harvard.edu/abs/1980M&amp;P....23..185M
https://doi.org/10.1093/mnras/194.2.365
http://adsabs.harvard.edu/abs/1981MNRAS.194..365M
https://doi.org/10.1088/0004-637X/798/2/112
http://adsabs.harvard.edu/abs/2015ApJ...798..112M
http://adsabs.harvard.edu/abs/1997A&amp;A...318..975N
https://doi.org/10.1146/annurev-astro-081913-035941
http://adsabs.harvard.edu/abs/2014ARA&amp;A..52..171O
https://doi.org/10.1088/0004-637X/690/1/1
http://adsabs.harvard.edu/abs/2009ApJ...690....1O
https://doi.org/10.1111/j.1365-246X.2012.05351.x
http://adsabs.harvard.edu/abs/2012GeoJI.189..400R
https://doi.org/10.1017/S1473550414000184
http://adsabs.harvard.edu/abs/2014IJAsB..13..324S
https://doi.org/10.1088/0004-637X/754/1/51
http://adsabs.harvard.edu/abs/2012ApJ...754...51S
https://doi.org/10.1029/2000JE001247
http://adsabs.harvard.edu/abs/2001JGR...106.1373S
https://doi.org/10.1086/117209
http://adsabs.harvard.edu/abs/1994AJ....108.1943T
https://doi.org/10.1086/300312
http://adsabs.harvard.edu/abs/1998AJ....115.1653T
https://doi.org/10.1029/JC086iC10p09776
http://adsabs.harvard.edu/abs/1981JGR....86.9776W
https://doi.org/10.1093/mnras/164.1.21
http://adsabs.harvard.edu/abs/1973MNRAS.164...21W
https://doi.org/10.1086/117108
http://adsabs.harvard.edu/abs/1994AJ....108..711W
https://doi.org/10.1088/2041-8205/803/1/L14
http://adsabs.harvard.edu/abs/2015ApJ...803L..14Z
http://adsabs.harvard.edu/abs/2015ApJ...803L..14Z

	1. Introduction
	2. Setting the Stage
	3. Basic Equations
	4. Characteristic Timescales and Analytic Evolution Solutions
	4.1. Orbital and Tidal Timescales
	4.2. Analytic Solutions without Orbital Migration

	5. Full Time-evolved Solutions
	5.1. Example Evolution
	5.2. Is the Moon Disrupted or Lost?
	5.3. Fate of the Disrupted Moon
	5.4. Exploration of Additional Evolutions

	6. Discussion and Conclusions
	References

