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�e rehabilitation of patients should not only be limited to the rst phases during intense hospital care but also support and therapy
should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only
be given to the patient if needed and asmuch as it is required. To allow this, automatic self-initiatedmovement support and patient-
cooperative control strategies have to be developed and integrated into assistive systems. In this work, we rst give an overview
of di�erent kinds of neuromuscular diseases, review di�erent forms of therapy, and explain possible elds of rehabilitation and
benets of robotic aided rehabilitation. Next, themechanical design and control scheme of an upper limb orthosis for rehabilitation
are presented. Two control models for the orthosis are explained which compute the triggering function and the level of assistance
provided by the device. As input to themodel fused sensor data from the orthosis and physiology data in terms of electromyography
(EMG) signals are used.

1. Introduction

�e requirements on a social, well-functioning, and modern
health care system—including elderly care—are demanding:
it must be �exible enough to encounter the increasing
process of change and the related challenges. �ese changes
and challenges are triggered, among other things, by the
demographic changes, the increase in chronic diseases, the
rising costs, and the impending skills shortage [1].

To assure the achievement of these objectives in medical
care, the publicly nanced science plays a major role. In this
context, robotics research is an important element which is
increasingly gaining signicance [2].

Nowadays, robotic systems are used in various medical
disciplines and di�erent highly specialized applications, for
example, in the eld of minimally invasive surgery [3]. Fur-
thermore, technical therapy approaches in physiotherapy and
occupational therapy are given more and more importance.

In this context, particular assistance and training devices are
in the center of interest. �ese could be systems like powered
exoskeletons, active orthoses, or special end-e�ector-based
therapy robots [4]. On the one hand, these systems could
provide important support in medical rehabilitation for the
therapist and patient and, on the other hand, they could be a
help in everyday activities for the elderly or motor-impaired
people in their home environment [5].

Due to the aging society and probably signicant increase
in chronic diseases of the musculoskeletal and the nervous
system, the need for innovation in assistive technologies for
everyday activities and rehabilitation is judged as very high
[6].

In general, independent living and acting are strongly
connected with the motor skills of the individual. �e proper
function of the arm and hand in everyday activities—at work
or at home—are of vital importance [7].
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In the long-term view, our superior goal is to design
and develop a full home rehabilitation system, composed
of an exoskeleton and physiological data acquisition and
processing in terms of EEG, EMG, and gaze-direction, which
can be operated in real as well as in virtual environments.
For this purpose we will make use of our acquired expertise,
gained with the development of exoskeleton systems in
recent projects [8]. �e exoskeleton shall be lightweight and
comfortable to wear, while having enough force tomove both
plegic arms and the upper body of a patient. With the use
of physiological data movement intentions of the patient can
be predicted and therefore the interaction between subject
and rehabilitation device can be improved. �e system is
meant to support a therapist in the daily routines during the
rehabilitation phase of a patient. When using the system in a
virtual environment it is possible for the therapist to design
and change tasks for the patient without being on sight and in
addition the training/rehabilitation success can bemonitored
via physiological data, for example, EMG signals.

Anyhow, in the rst stepwedecided to design anddevelop
an orthotic system which accounts with one active degree of
freedom (DOF) capable of �exing and extending a patient’s
arm in parallel with the upper body exoskeleton. �is gives
us the opportunity of analyzing and developing physiological
data driven control strategies for an exoskeleton in an easier-
to-handle setup compared to full upper body system.

�erefore, in this paper we introduce the concept and
medical background of a support and rehabilitation system
for the upper limb in the form of an active elbow orthosis.

A demonstrator of the orthosis is developed and driven
in terms of EMG signals from the upper arm measured from
the biceps brachii and triceps brachii [9].�e control is based
on threshold functions which are correlated to maximum
amplitudes measured in both muscles.

In this paper we conduct experiments to improve the
control of the system.We derived a model with the Recursive
Least Square (RLS) algorithmwhich takes into account EMGs
from the upper arm as well as sensor data from the orthosis
(position and force induced to the device). O�-line gained
results for the triggering of the orthosis are provided. In
addition, we present results of an experiment giving the
orthosis the ability to adjust the level of support provided
to the patient. Again a model is formulated with the RLS
involving the same input data. Having the possibility of
automatic support adjustment during rehabilitation can have
positive e�ects since an increasing muscle activity results in a
lower support. In this way the support is constantly reduced
until the point the patient does not need any external help for
moving his arm.

Furthermore, by means of the movement prediction,
the patient has the impression to control the arm himself,
although the orthosis is actually moving the arm. �is
reconnects the movement planning phase of the brain with
movement execution to reestablish the capability of the
patient for free and self-paced movements. �erefore, the
combination of the self-initiated movement support and
patient-cooperative control strategies can lead to a positive
e�ect on rehabilitation and user-centered support in daily
activities.

In the long term, this device could be used for the
entire rehabilitation process, for example, to improve motor
recovery in patients with neurological or orthopaedic lesions.
Furthermore, the progress of therapy can be evaluated by
monitoring and analyzing the muscle activity via EMG.

2. Use of Robots in Rehabilitation

In this section, the basic elements of rehabilitation robotics
are presented.�is includes themedical background for reha-
bilitation, the basic functions of robotic systems and appli-
cations, target groups, and transferable treatment modalities
which can be suited to adapt on rehabilitation devices.

2.1. Foundations of Rehabilitation of Impairments of the
Motor System. Common causes of acquired and permanent
physiological defects such as limited motor skills are mostly
neurological diseases or injuries. In this case, one of the
most common causes of permanent disabilities in western
civilization is stroke [10]. Only about 40% of all stroke
survivors are able to return to normal employment and one-
third are permanently dependent on support and care.Hence,
the main goal of rehabilitation is the reintegration of a�ected
people back into normal life in an optimal way [11].

In general, rehabilitation can achieve its goals in two
ways: through compensation of motor dysfunction and/or
through recovery of motor functions. Here, a force exerting
exoskeleton or orthosis for rehabilitation applications is
used for compensation of motor decits and/or for the
recovery of motor skills. Hereby the extremities with motor
decit—incomplete paralysis (paresis) or with total paralysis
(plegia)—are actively supported (e.g., by gravity compensa-
tion).

To recover or improve motor function, a preferably early
and intensive rehabilitation is recommended, since a positive
relationship between treatment intensity and outcome exists
[12]. However, this requires a high and e�cient deployment
of personnel, which can be a limiting factor. In this context,
the use of robot-aided therapy is worthwhile [13].

�e main problem of a paresis is located in the lack of
necessary force, associated with concomitant reduction in
range of motion and speed of the a�ected muscles. Further-
more, the muscle coordination is impaired; this applies to
the muscle chain coordination and to the internal muscle
coordination. �e muscles tend to a prolonged contraction
time and a delayed end of the contraction. Moreover, the
a�ected muscles fatigue much faster with respect to the
nona�ected muscles [14].

By motor learning the brain is able to adjust to new
situations due tomassive functional reorganization.�is phe-
nomenon is known as neuronal plasticity and characterized
by the ability of the brain to restructure itself by forming
new neural connections. However, the ability of the brain to
restructure itself is limited since it is not plastic in every of its
regions. Long-term evaluations will reveal the magnitude of
the rehabilitation success.
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2.2. Target Group and Corresponding Applications. For a vari-
ety of diseases a motor rehabilitation by means of a robotic
device is in general conceivable. We are of the opinion
that an application is particularly suitable and economically
useful, where long rehabilitation periods are necessary. �is
applies, for instance, to chronically or chronic-progressive
neurological diseases in which a regular, persevering training
a rapidly progression of symptoms and sequelae of diseases
might be prevented. �ese are in addition to the surgical
and orthopedic diseases, such as elbow and shoulder joint
prosthesis, brain tumor surgery, and muscle weakness due to
immobilization and surgical follow-up care (mobilization),
in essence, the neurological diseases. Examples of such
neurological diseases are multiple sclerosis, peripheral nerve
lesions, traumatic brain injury, infantile cerebral palsy, and as
mentioned stroke.

Stroke is a sudden onset of dysfunction of the motor,
sensory, and cognitive functions of the brain. Depending
on the location and severity of the injury, the functional
limitations may vary.

In the rst 3 to 18 days a�er stroke certain neurotransmit-
ters can be detected. It is believed that these substances are
important for the neural plasticity. �erefore, the rst weeks
are an ideal time to ensure optimal functional and structural
reorganization of the brain. Hence, an early active training
of the disturbed functions leads to functional recovery
[15].

Nevertheless, approximately 35% of stroke survivors live
in the long termwith a signicant leg paresis and 65% are not
able to use the a�ected hand in daily activities. To this already
high level of su�ering, patients o�en su�er fromdepression, a
so-called poststroke depression. �e resulting psychological
problems can prevent a successful motor therapy, since the
motivation and cooperation of the patient play a crucial role
[15].

Hence, a modern rehabilitation of stroke or other neuro-
logical diseases is always oriented to the individual patient’s
condition.

Together with the patient, specialised everyday and (if
necessary) job-relevant therapy goals are determined. �e
treatment team selects an appropriate therapy concept [15].
�e various therapeutic measures for arm rehabilitation,
which can be transferred to a robotic system, include repeti-
tive training, uni- and bilateral training, the e�ect of training
at distal positions, task-oriented training, andmirror therapy
[13, 16–19].

In addition, in the course of treatment the successes or
failures are detected and evaluated to adjust the therapeutic
measures or to dene new therapeutic goals. �us, the
assessment procedures play an important role in motor
rehabilitation. Robotic systems which are equipped with
assessment functions can make an important contribution to
the quality of treatment, since they could ensure a simple and
regular review of treatment e�ects.

By revisiting established therapy measures and assess-
ment methods, robotic therapy systems can be optimally
integrated into the rehabilitation process.

2.3. Robotic Systems for Rehabilitation Applications. Exoskel-
eton or orthotic systems for medical applications in rehabil-
itation should support scientically founded training princi-
ples. Furthermore, these systems should optimally be inte-
grated into the rehabilitation routine and must support the
therapist and patient in a useful way.

�e general aims of rehabilitation robotics relate mainly
to the increase of e�ciency, accuracy, and reproducibility of
the treatmentmethods while ideally improving the economic
situation in rehabilitation [20]. In addition to the general
objectives, concrete goals have to be formulated. �ese goals
are as follows:

(i) imitation of natural and patient-specic motion,

(ii) high degree of compliance control (this promotes a
safe man-machine interaction),

(iii) self-initiated movement support and patient-
cooperative control strategies (this promotes motor
learning processes in the brain),

(iv) solid monitoring of the treatment progress,

(v) early intensive training.

2.3.1. Bene�ts of Orthosis and Exoskeleton Technology. �e
properties of an exoskeleton/orthosis o�er a number of
advantages for use in rehabilitation [21]. �e advantages are
as follows

(i) Good stabilization and guidance of the limb: com-
pared to end-e�ector systems (usually with just one
interface to the patient) an exoskeleton/orthosis can
be connected to several points with the patient. With
this specic structure the patient’s arm is guided and
stabilized at every joint.

(ii) Gravity compensation: the weight of mechanical
structures and the human limb can be compensated
by di�erent mechanisms.

(iii) Reproduction of the human kinematics with a high
number of active degrees of freedom.

(iv) Haptic features: the exoskeleton/orthosis design
allows transferring haptic functions at certain points
throughout the patient’s arm. Possible types of haptic
feedback are kinaesthetic feedback (force-feedback)
and tactile feedback (e.g., vibrations)

(v) Modular design: exoskeleton/orthosis with a seg-
mental structure allows providing a patient-specic
system which meets the requirements and needs of
the patient, in the sense that an exoskeleton including
only the a�ected joint would be used.�is can reduce
costs and deliver a di�erentiated training, following
the slogan: “as much as necessary, as little as possible.”

(vi) Force intensication: due to the active degrees of
freedom andmobility, an exoskeleton/orthosis can be
used as a power amplier. �rough this option, it is
possible to deliver a system that supports activities of
everyday life and acts in the same time as a training
system.
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(a) (b) (c) (d)

Figure 1: Mechanical categories of upper limb rehabilitation robots. (a) Semiexoskeleton with xed base. (b) Mobile exoskeleton (haptic
interface). (c) Wire based. (d) End-e�ector-based.

2.4. Current State of Science and Technology. Robot-aided
rehabilitation of upper and lower limbs is currently a fast
developing eld that is also gettingmore andmore acceptance
by clinicians. As mentioned, to recover motor function, an
intensive and early rehabilitation is recommended. For this
purpose, a large variety of systems which are able to support
therapists in their daily work, as well as control approaches,
have been developed and are more and more the subject
of current research. Furthermore, clinical trials on various
systems already show that robotic therapy can be useful and
compared to traditional methods of therapy there are no
disadvantages in the e�ectiveness [22, 23].

Today, developed or applied robotic rehabilitation sys-
tems can be categorized according to their application focus.
Depending on the target group (patient’s needs), pathology,
preferred method of treatment, and place of installation,
di�erent conceptual approaches are possible. Rehabilitation
systems for the upper limbs can be classied into exoskeleton
systems [24, 25] and end-e�ector-based structures [26, 27]
which further divide into uni- and bilateral designs [28], as
well as distal and proximal approaches [5, 29]. (In contrast,
systems for lower extremity have a greater variety of designs
and are alreadymore widely used.) Figure 1 shows the general
design of the currently most used systems for upper limb
rehabilitation, including portable haptic interfaces for use, for
example, in a virtual environment. In majority these systems
are equipped with a xed base and, therefore, are limited in
mobility.

All systems o�er a so called “massed practice therapy”
paradigm but nonetheless the individual systems have, due
to their design, benets, and drawbacks, in common that
they are quite focused on their application scenario. (�e
“massed practice therapy” paradigm involves an intensive,
repetitive, frequent, and according to the principles of motor
learning oriented practice.) Essentially, restrictions can be

found in the range of symptoms, which can be treated, as
well as system mobility. Generally, it can be stated that the
systems are specialized for particular parameters and there is
no system, which ts to all kinds of patients in the same way
[13].

For example, the Swiss companyHocomaAG (Industries-
trasse 4 CH-8604 Volketswil, Switzerland) provides a therapy
concept with three di�erent rehabilitation systems for upper
limb rehabilitation. �is therapy concept is based on task-
oriented training scenarios in a virtual environment, which
facilitates treatment of neurological diseases of di�erent
severity. �e three therapeutic robots are ArmeoPower (for-
mer ARMin), a robotic arm exoskeleton [30], ArmeoSpring,
an exoskeleton with integrated spring mechanism (emerging
from T-WREX exoskeleton) [31], and ArmeoBoom, an over-
head sling suspension system (emerging from the ROBAR
project) [32].

An example for an end-e�ector-based approach, which
is also widely used in modern therapy, is the InMotion
Arm Robot (former MIT Manus). �is system simulates
the classical hand-to-hand therapy of a therapist with a
continuous measurement of position and force applied to
the arm of the patient. It is also equipped with a visual
feedback which allows addressing even complex tasks [33].
A drawback is that the system is stationary and restricted to
planar movements.

�e mPower 1000 (Myomo, Inc. Cambridge, MA) is an
example for an active elbow orthosis system with one degree
of freedom, which is based on technology developments
from MIT. �e device supports the elbow movement in
extension and �exion and is designed for home and clinical
use. It supports patients in their rehabilitation process who
su�er from the consequences of stroke, spinal cord injury, or
multiple sclerosis.�e system is controlled by residual signals
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of the biceps and triceps with three possible support levels
[34].

Regardless of the type of rehabilitation device, most
systems own one of the three basic classes of rehabilitative
control strategies. �ese control strategies are referred to
as passive-assistance, assist-as-needed, and challenge-based
[35]. Focus of current research is mainly, on assist-as-needed
techniques, which support the user only as much as it
is necessary [36]. Within this context there is even the
possibility to act against the user’s movements and thus to
challenge the patient during task execution [35].

Another device group compensates physical limitations
in daily life of patients. A representative example of these
systems is the commercially available Wilmington Robotic
Exoskeleton (WREX), which relieves the weight of the arm by
elastic slings. �us, the user is able to operate with exclusion
of gravity [37].

�e project Ortho Jacket of the Karlsruhe Institute of
Technology (KIT) has the aim to develop an active orthosis
for patients with spinal marrow lesion in cervical vertebras
(C4 to C7). �e orthosis is intended to enable movements
of the shoulder, elbow, and hand, in conjunction with a
wheelchair. �e control of the individual degrees of freedom
is carried out via a joystick or via residual EMG signals of
shoulder and arm muscles [38].

�e WOTAS orthosis is able to reduce symptoms of
tremor in the upper extremity. �e orthosis has three active
degrees of freedom. With help of gyroscopes and force
sensors, the system is able to discern tremor and apply force
into the limb, in order to suppress it [39].

For active controlled orthosis systems di�erent control
strategies are used. In [40] an orthotic exoskeleton for the
hand was controlled in terms of EMG with a threshold
approach. �e EMG signal from the biceps of the contralat-
eral arm was normalized using the maximum voluntary
contraction (MVC). �e threshold for closing the orthotic
system was set around 50% of theMVC, and when deceeding
the threshold the system would open up again on its own.

In [41] a control model for a 7-DOF upper limb exoskele-
ton was developed based on the Hill-muscle model. �is
model predicts the moment in a joint based on the acti-
vations, velocity, and lengths of muscles connected to this
joint. �e raw EMGs are high pass ltered full wave rectied
and low pass ltered. Additionally, three formulas are used
to calculate the activations, velocities, and length of the
involvedmuscles.�e predictedmoments are used to control
the joints of the exoskeleton. In the previous work [42]
the group reported that the accuracy of their model for
�exion/extension of the elbow joint was � = 0.88, where �
is the correlation of their predicted moment compared to the
reference moment.

In [43] a muscle model predicting the force produced by
the triceps muscles under varying electrical stimulation is
presented. �e authors use a nonlinear Hammerstein struc-
ture for the models. �ey compare two parameter adaptation
algorithms, theRecursive Least Squares (RLS) and an adapted
online version called Alternately Recursive Least Squares
(ARLS). �e best model ts are given as −10.02 for RLS and
87.92 for ARLS.

Wearable haptic interfaces for use in a virtual environ-
ment, for example, rehabilitation, sport, or teleoperation
tasks, are developed in [44, 45] and in other research projects.
�ese portable exoskeleton systems can o�er by parallel
kinematics, targeted force-feedback, and visual integration
a comprehensive virtual immersion within the application
scenario.

3. Active Orthosis

In order to reach the goals in rehabilitation described in
Section 1 and to study and transfer rst rehabilitation con-
cepts to exoskeleton technology, a demonstrator, which is
presented in this section, was designed.

3.1. Application Scenario. �e therapeutic goal of the orthosis
is recovery of lost motor functions of the upper extremity
a�er neurological diseases.

�e idea is to use the device in the early stage of treatment
to passivelymove the patient’s arm.With therapy in advanced
stages the residual muscle activity will be measurable again.
�is low residual activitymay not be su�cient formoving the
armbutmay result inmyoelectric signals. Bymeasuring these
signals with EMG, they can be used to detect the patient’s
movement intent.

Further, these signals can be used to move the patient’s
arm in a self-motivated way. In later stages of treatment
the patient should regain more and more muscle strength.
�erefore, the orthosis has to adjust its assistance level via the
measuredmuscle activity, in a way that highermuscle activity
leads to a lower level of assistance.

�e device can enable patients to perform the following
exercise modalities (which are based on the established and
evidence-based rehabilitation methods).

(i) Early and Intensive Practice. Start of the arm rehabili-
tation, for example, few days a�er acute stroke with a
high intensity, when indicated.

(ii) Repetitive Practice. Repetitive target movements
across various sequences.

(iii) Task-Oriented Training. Exercise oriented on every-
day life situations, for example, in an exercise kitchen.

(iv) Independent Training. �erapeutic treatments with
intermittent supervision by the therapist.

�e goal of the orthosis system is to achieve a therapy
session comparable to a guided session by a therapist, without
having him at site, and to motivate the patient for a constant
training. Figure 2 shows a possible training session which
deals with di�erent movement patterns.

3.2.Mechanical Design. �ecurrent version of the systemhas
one active degree of freedom and four passive joints that are
required to compensatemisalignments andone actuated joint
to support the �exion/extensionmovement of the elbow joint
(see Figure 3). �e active joint is driven by a 24V Maxon A-
max 22 DC motor with a 333 : 1 Maxon planetary gear and a
4 : 1 worm wheel gear. For a natural force interaction, safety
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Figure 2: �e patient is able to train independently various types
of exercise of daily life. A special shoulder strap increases the stable
seating of the orthosis, resulting in a better weight distribution.

Upper arm interface

Motor Active joint Forearm interface

Microcontroller board

Motor driver board Worn wheel gear
with serial elasticity

Passive comfort joints

Figure 3: Mechanical design of the active orthosis. �e red dots
represent the positions of the passive degrees of freedom.

reasons and to measure the applied force interaction and the
actuated joint is compliant. �is compliance is generated via
serial elasticity in the worm wheel gear setup. �e worm is
axial moveable and centred in the gear via disc springs. In
case a load is applied, the worm is pushed to one side and,
thus, the spring is compressed on this side. �e position of
the worm wheel is measured with a Ballu� inductive sensor.
In this way the applied load can be calculated.�e position of
the joint is measured with an IC-Haus-MH position encoder.

Furthermore, the used electronics consist of a
STM32F103VEmicrocontroller, o�ering several data acquisi-
tion (GPIO) and communication (USART, CAN-bus) ports,
and a BD6232 custommade PWMH-Bridge driver.�e used
DC-drive can generate a torque of about 16Nm.

To avoid any danger for the user, various safety aspects
are considered. To this end, the orthosis’ working range is
limited by mechanical stops. Furthermore, at too high forces
the forearm interface will release from the orthosis.

�e active range of motion of the elbow orthosis corre-
sponds to the anatomic workspace of the human joint and is
individually adjustable to each subject. If the position of the
joint exceeds the workspace limits dened for the user, the
reference torque is automatically set to zero and the system
can only be controlled via buttons.

Since an additional and unilateral load can represent
a major in�uence on, for example, neurological patients,
the orthosis’ weight with respect to the user must be kept
as low as possible. �erefore, the orthosis’ materials are a
combination of carbon reinforced plastics and polyamide
PA6, for a lightweight, robust, and sti� design. Additionally, a
carrying system was developed, which distributes the weight

Figure 4: Design of the active orthosis.
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Figure 5: Block diagram of the torque control loop.

of the device on both shoulders. Figures 2 and 4 show the
current design concept of the orthosis.

3.3. Control Architecture. Several research groups have
described robotic devices for upper limb rehabilitation and
their strategies to control them in a user-oriented way. In [46]
the torque applied to the elbow joint of an upper extremity
exoskeleton is measured via a load cell, while the set torque is
calculated via muscle models. In a second step, the authors
derive four performance indices, in order to calculate the
magnitude of support by the exoskeleton from EMG data.
In [47] an impedance control scheme is implemented. Two
load cells in series estimate the joint torque which is fed into
a dynamic impedance function.

In the following, the torque control system of the pro-
posed active orthosis will be presented.�is can be visualized
in the simplied block diagram in Figure 5. Compared to the
systems mentioned above, the torque that is applied to the
orthosis’ joint is measured making use of the compliance in
the joint itself, as it will be further explained below.

�e general control structure is designed to be cascaded,
while the main and inner loop of the control architecture is a
torque control loop. �e DC-drive of the device is provided
with two disc springs performing the serial elasticity of the
drive. �ese springs de�ect when load is applied to the joint.
One is used formovements that are directed upwards and one
for movements that are directed downwards. �e inductive
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sensor detects this de�ection�.With thesemeasurements it is
possible to obtain a nearly linear function between the spring
de�ection and the actual torque applied to the joint, ��. A
feature of this method is that it gives an accurate measure-
ment for closed-loop actuator force/torque control without
the need for calculating or measuring the armature current
of the motor [48]. �e set (desired) joint torque �� is fed
externally via USART port. At this time the reference values
are dened in a common PC, and later �� will be calculated
online using dynamic models presented in Section 5. �e
di�erence between these two torques is the control error �,
which is propagated into an antiwindup PID controller. �e
performance of the control system was veried with weight
discs in order to simulate values for ��, giving the correspond-
ing �� to the system and resulting in an accurate balancing of
the weights. Furthermore, the resulting measured torque was
compared with the de�ection-torque curve depicted above.

Alternatively, the orthosis can be manually operated via
two buttons at any time, supplying a constant voltage of
±15V. �is allows corrections and repositioning of the joint
if needed.

4. Material and Methods

4.1. Experimental Setup. �is section describes the con-
ducted experiments. �e idea behind the experiments was to
obtainmodels that can help to study and to predict important
aspects of the behavior of the active orthosis.

All experiments were performed by one subject in an
upright position with EMG electrodes and orthosis equipped
to the subject’s right arm. A monitor on a table in front of
the subject was used to give commands (�exion, relaxation,
and extension). �is stimulation was implemented with
the Presentation so�ware (Neurobehavioral Systems, Inc.,
Albany, USA). �e given commands were marked in the
measured EMGs. We designed three di�erent experiments
which are explained in the following part.

Triggering the Orthosis. For this experiment the orthosis was
xed in di�erent positions in a range of [90, . . . , 180] degrees
in 10 degrees steps. In these positions the user performed
three di�erent actions: �exion, relaxation, and extension of
the arm. Each action period took 5 s.�e routine started with
a relaxation phase. A�erwards two alternating action combi-
nations ((1) �exion/relaxation (2) extension/relaxation) were
executed 10 times each. �e experiments were recorded
separately for each angle starting at 180 degrees. Between two
measurements a short break of 2 minutes was given to the
subjects.

�is experiment was conducted to record data to build a
model that enables triggering the movement direction which
was intended by the user and is supported by the orthosis
as well as the relaxation phase where the orthosis stays in
a xed position. �e di�erent starting positions were used,
since in each position themuscles are contracted to a di�erent
amount, which leads to diverse signal shapes.

Level of Assistance (Flexion). For this experiment the orthosis
was operated in free-run mode. �e operator had to li�

weights in the range of [1, . . . , 4] kg in 1 kg steps. �e
experiment started with the user’s arm being fully extended.
�e subject had to �ex and extend his arm for 10 times, each
action period was again 5 s. �e experiments were recorded
separately for each weight starting with the lightest. Between
twomeasurements again a short break of 2minutes was given
to the subjects.

�is experiment was conducted to formalize a model
which can modulate the level of assistance provided by the
orthosis in dependence of the weight the operator has to li�.

Level of Assistance (Flexion and Extension). In contrast to the
previously explained experiment, here forces were applied in
bothmovement directions.�e forcewas directly provided by
the orthosis in a range of [−2.0, . . . , 2.0]Nm in 0.5Nm steps.
Note that a negative torque extends and a positive torque
�exes the orthosis and a torque of zero is complementary to
the free-running mode.

�is experiment was conducted to formalize a model
which can modulate the level of assistance provided by the
orthosis in dependence of induced force and movement
direction.

4.2. Acquisition and Processing of EMG and Orthosis Data.
�is section describes howmuscle activity was measured and
processed in order to use it as a control signal for the orthosis.
Since the orthosis is designed to actively �ex and extend the
operators forearm, EMGs were measured at the biceps and
triceps, which are the muscles mainly involved in the process
of �exion and extension. Ag/Ag-Cl electrodes were placed
in a bipolar arrangement on the middle of the muscles in
direction of the muscle bers.�e signals were acquired with
a sampling frequency of 1000Hz using a BrainAmp ExGMR
amplier (Brain Products GmbH, Gilching, Germany).

�e EMGs were preprocessed in two consecutive steps.
First a variance based lter [49]was applied.�is ltering step
eliminates motion artifacts and enhances the signal-to-noise
ratio of EMG signals.�e length of the lter was set to 50ms.
Basically a sliding window of length 50ms is passed to the
signal with a step width of 1ms. �e variance of the whole
window is assigned as the new value of the last sample inside
the window, resulting in the ltered signal. In a second step
the RootMean Square (RMS) of the signal was calculated. For
the calculation, again a window of 50ms was used, but in this
case the step width was chosen as 50ms so that the windows
did not overlap.�e resulting signal had a frequency of 20Hz.
In this way we obtained the same sampling frequency as the
sensors of the orthosis.

In addition to the EMGs, we recorded sensor values from
the orthosis. �ese are the position and the force induced
into the orthosis by the operator’s arm. �e signals were
acquired with 20Hz and sent via RS-232 to a computer
where they were stored. In order to synchronize the EMG
and sensor data, we marked the beginning and end of the
orthosis measurements in the EMG. Since the preprocessed
EMGs have the same sampling frequency as the orthosis
sensor data, the corresponding EMG part could be cut and
merged into one time series togetherwith the sensor data.�e
processing was done with MATLAB 2009a (�e MathWorks
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Inc., Natick, USA). For loading the EMG data the EEGLAB
toolbox (Swartz Center for ComputationalNeuroscience, San
Diego, USA) was used.

4.3. System Identi�cation with the RLS Algorithm. In the
eld of system identication the Recursive Least Squares
(RLS) method is a basic estimation method [50]. Its principle
is simple and relatively easy to use. In most of the cases
the algorithm delivers high accuracy, fast convergence of
parameters, and high modelling e�ciency. What also makes
this algorithm attractive is the fact that it can easily be
extended for identication of more complex and nonlinear
models.

Let � be the actual time step. �e general structure of the
RLS algorithm is given by

�̂ (� + 1) = �̂ (�) + 	 (� + 1) 
 (�) �0 (� + 1) (1)

with the adaptation gain:

	 (� + 1) = 	 (�) − 	 (�) 
 (�) 
(�)
�	 (�)

1 + 
(�)�	 (�) 
 (�)
(2)

and the prediction error

�0 (� + 1) = � (� + 1) − �̂(�)�
 (�) . (3)

�̂ is the vector of computed model parameters.
Furthermore 
(�) is the predictor regressor vector or the

vector of measurable signals, in which the real input values
(�) and the real output values �(�) are fed:


(�)� = [−� (�) ,  (�)] . (4)

Finally, the model output �̂ is computed as follows:

�̂ (� + 1) = �̂(� + 1)�
 (�) . (5)

It is common to provide the adaptation gain with a
forgetting factor, in order to improve performance.

�is method is widely used in engineering for identica-
tion of several dynamic systems, for example, electromotors.
For a more detailed description and an example of the use of
this algorithm for identication of a nonlinear model, please
see [51].

Using our own MATLAB implementation of the RLS
algorithm, and following the experiment descriptions in
Section 4.1, models of important dynamic relationships of
the active orthosis were identied. �e parameters of the
models were adapted, in specic, with (1). �e motivations
for the identication of themodels presented in the following
paragraphs were that particularly in rehabilitation, on the one
side, the need for an accurate discrimination of movement
direction is of major importance and, on the other side, the
requirement of a correct computation of the level of support
currently needed by the user, according to all measurable
states of the system, including muscular states.

Multi-input, single output (MISO)model structures were
chosen for identication. �e learning set always consisted
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Figure 6: Modelling of the activation function of the orthosis. �e
real function (blue) is compared with the modelled function (red).
Model t reaches over 99%. In this example the orthosis was xed at
90∘ angular position.

of the rst half of samples available and the validation set of
the second half. Both muscle (EMG) and device information
were used. �e four inputs of the model are the preprocessed
EMGsof the triceps and biceps EMGtri andEMGbi, the torque
applied on the orthosis’ joint measured via the displacement
of a disc spring �spring, and the angular position values of the
orthosis �.

5. Results

In this section the experimental results are presented. First,
the triggering function of the orthosis, which denes when
and in which direction the system should move, was approx-
imated. Consider the following:

�1 mod =
−3.2251 ⋅ 10−7� + 6.5147 ⋅ 10−8
�3 − 0.9717�2 − 0.0163� − 0.001 ⋅ EMGtri

+ −2.0212 ⋅ 10
−6� + 5.3232 ⋅ 10−7

�3 − 0.9717�2 − 0.0163� − 0.001 ⋅ EMGbi

+ 0.0135� − 0.0104
�3 − 0.9717�2 − 0.0163� − 0.001 ⋅ �spring

+ −1.9671 ⋅ 10
−6� + 1.2784 ⋅ 10−6

�3 − 0.9717�2 − 0.0163� − 0.001 ⋅ �.
(6)

�e resulting model of the triggering function �1 mod ,
given by (6), ts the real triggering function excellently (mean
absolute error less than 0.001) and can be seen in Figure 6.
Here, a value of −1 represents a triggering of an extension
movement, a value of 1 represents a triggering of a �exion
movement, and a value of 0 corresponds to the resting state
(no triggering). One can see, from these gures, that the
biggest model errors are reached at the phases with no active
movement. We assume this is due to sensor noise in the used
magnetic position encoder.
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Figure 8: Modelling of the support function of the orthosis,
experiment 1. �e level of support is only calculated for the upward
direction.

For better visualization, an enlarged fragment of the
results can be seen in Figure 7. At about 750 samples the
model output shows a bigger noise component. At this point
at least one of themuscles could not reach the relaxation state
entirely. Even in this situation the model handles the signals
in an acceptable way.

Further, a second model that can help to determine the
level of support needed from the orthosis was identied. �e
input signals chosen are the same as in the rst model. In
order to determine the real level-of-assistance function, in a
rst step experiments were performed with di�erent external
weights carried with the hand while moving the arm with the
device (see Section 4.1).

�e drawback of this experimental setup is that it is
almost only useful to obtain biceps data, since the coun-
terforce exerted by the weights is always acting in one
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Figure 9: Modelling of the support function of the orthosis. �e
real function (blue) is compared with the modelled function (red,
dotted). Model t reaches over 99%.

direction (Figure 8). �at is the reason why in a second step
it was decided to generate counterforces in both up and
down directions (and, thus, to compute the level of support
in both directions) over the orthosis’ torque control loop,
obtaining again excellent results. Here, 100% level of support
corresponds to 2Nmand−100% level of support corresponds
to −2Nm. Consider the following:

�2 mod =
1.0278 ⋅ 10−8� + 7.4272 ⋅ 10−9
�3 − 0.8757�2 − 0.1104� − 0.0138 ⋅ EMGtri

+ 1.0294 ⋅ 10
−7� − 1.0769 ⋅ 10−7

�3 − 0.8757�2 − 0.1104� − 0.0138 ⋅ EMGbi

+ 0.002� − 0.0029
�3 − 0.8757�2 − 0.1104� − 0.0138 ⋅ �spring

+ −4.7578 ⋅ 10
−5� + 4.6896 ⋅ 10−5

�3 − 0.8757�2 − 0.1104� − 0.0138 ⋅ �.
(7)

�e resulting model of the support function �2 mod is
given by (7). �e performance of the modelling algorithm
can be seen in Figure 9. One can see that the prediction error
is bigger at the beginning of the measurements. �ese are
the rst samples of the learning set and one can observe the
modelling algorithm converging a�er 2000 samples.�is ini-
tial error could probably be reduced with further ne-tuning
of initial model parameters. �roughout the validation set,
only isolated deviations, which are not signicant (caused by
sensor noise), can be seen.

�e precision of the model can be better observed in the
enlargement shown in Figure 10.

In both experiments a high model t could be reached. A
big contribution to that is the fact that the measurable signals
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Figure 10: Modelling of the support function of the orthosis,
enlarged view.

used to identify the models, especially the EMG signals, were
properly preprocessed, so that it was possible to work with
largely clean signals. �is is very important, since the RLS
algorithm reacts sensitively to noise contaminated signals.
Furthermore, the highmodel t is also an indicator of a strong
correlation between the inputs and the desired output signal.
Compared to the Hill model in [46] the proposed black-
box model is signicantly easier to formalize mainly in two
aspects. �e rst one is the preprocessing of the myosignals
since the used here variance lter works in one step compared
to a two-lter preprocessing. �e other point is that for
the formalization of the models presented in this paper the
signals are directly fed into the identication algorithm,while
in [46] important variables, for example, the length of the
muscles, have to be computed rst in some steps before
computing the output of the model.

Compared to thework presented in [43], inwhich theRLS
algorithm compared to an adapted form of the same is used
for identication, our proposed model structure is simpler,
since we have formalized linear models which generally
have a lower computational complexity than (Hammerstein)
nonlinearmodels. Further, it has to be stressed that the exper-
imental setup used in [43] is di�erent, since electrical stimuli
given to a xed upper extremity were measured instead of
EMG, while the torque is measured via a force/torque sensor
installed at a padded hand grip.

Nevertheless, in contrast to the two above-mentioned
studies, where the torque produced by the muscles was
computed, in the present work, control signals as well as the
torque needed for assisting the user were modelled.

6. Conclusions and Outlook

In this work we presented some background information and
facts that support the use of robotic systems for rehabilitation
processes. Further, an overview of exoskeleton technology
was given. Starting from this knowledge, concepts on the
feasibility of exoskeleton technology for home rehabilitation
were given and discussed by means of a demonstrator, an
active 1-DOF-elbow orthosis. Its possible application, design

and mechanics, and control were presented. To summarize,
the system allows supporting self-initiated movements that
are normally executed by both upper arm muscles M. biceps
brachii or M. triceps brachii.

Two dynamic models, identied with the RLS algorithm,
were shown. �e rst one computes the triggering function
of the system from the muscle and sensor information from
the orthosis, while the second one computes a function
describing the level of support needed to counteract external
forces. Both models show excellent performance in matching
the real signals.

�e next step is to integrate the obtained models into the
orthosis’ control system, turning it into a model-based con-
trol scheme. It is expected that with the predicted triggering-
and torque-assistive function the control system of the active
orthosis will improve in two points: in the discrimination of
time and direction of movements and on the other side in
the precision at dening proper assistive set torque values,
according to the current state of all measurable signals in the
system.

�e derived models are patient and session-specic and
therefore have to be trained individually. EMGs of a single
subject may vary from session to session, due to slightly dif-
ferent electrode positions or resistances and due to di�erent
levels of muscle fatigue. E�ects between subjects are likely
even bigger, since the physical conditions of the muscles are
completely di�erent.

Nevertheless, in the futurewewill investigate the transfer-
ability of amodel fromone subject to another orwork into the
direction of adaptivemodels. Further, themodel reliability for
more natural movements will be evaluated. It can be expected
that the parameters of the presented models derived with
data acquired under a controlled setting will vary for natural
movements. However, the model structure might remain the
same. Follow-up experiments with daily life task, for example,
grasping a glass, getting up from a chair, or li�ing items, are
planned to verify this.

Nonetheless, the presented results are very promising,
in terms of the control accuracy of orthotic systems driven
by myoelectric signals and sensor data from the device
itself. In particular, the automatic adjustment of assistance
regulated by the means of EMG leads into the direction of
an autonomous assist-as-needed home rehabilitation system.

Finally, the design of the next version of the system is
currently under development. From the electromechanical
point of view it is intended to use a brushless DC (BLDC)
motor in combination with a harmonic drive. Advantages of
harmonic drives are among others high torque capacity with
compact and lightweight designs, as well as zero backlash. In
this case the torque will be measured via the motor’s current.
An important point will be to give some kind of feedback to
the user on the e�ects of the rehabilitation process.

In order to give the system full mobility, the power will
be supplied via battery packs, which will be installed in a
decentralizedmodule thatmay be carried at the lower back of
the user. �is is located close to the human center of gravity
and, therefore, minimizes the load that is put on the user.

One possibility of a redesign of the system can be seen in
Figure 11.
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Figure 11: One possible design for the future version of the active
orthosis.

Figure 12: One possible redesign for the future version of the active
orthosis—back perspective.

Figure 12 shows the design from the back perspective,
including the battery packs.
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