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RESEARCH ARTICLE Open Access

Exosomal cell-to-cell transmission of alpha
synuclein oligomers
Karin M Danzer1,3, Lisa R Kranich1, Wolfgang P Ruf1, Ozge Cagsal-Getkin1,2, Ashley R Winslow1, Liya Zhu1,

Charles R Vanderburg1,2 and Pamela J McLean1,4*

Abstract

Background: Aggregation of alpha-synuclein (αsyn) and resulting cytotoxicity is a hallmark of sporadic and familial

Parkinson’s disease (PD) as well as dementia with Lewy bodies, with recent evidence implicating oligomeric and

pre-fibrillar forms of αsyn as the pathogenic species. Recent in vitro studies support the idea of transcellular spread

of extracellular, secreted αsyn across membranes. The aim of this study is to characterize the transcellular spread of

αsyn oligomers and determine their extracellular location.

Results: Using a novel protein fragment complementation assay where αsyn is fused to non-bioluminescent

amino-or carboxy-terminus fragments of humanized Gaussia Luciferase we demonstrate here that αsyn oligomers

can be found in at least two extracellular fractions: either associated with exosomes or free. Exosome-associated

αsyn oligomers are more likely to be taken up by recipient cells and can induce more toxicity compared to free

αsyn oligomers. Specifically, we determine that αsyn oligomers are present on both the outside as well as inside of

exosomes. Notably, the pathway of secretion of αsyn oligomers is strongly influenced by autophagic activity.

Conclusions: Our data suggest that αsyn may be secreted via different secretory pathways. We hypothesize that

exosome-mediated release of αsyn oligomers is a mechanism whereby cells clear toxic αsyn oligomers when

autophagic mechanisms fail to be sufficient. Preventing the early events in αsyn exosomal release and uptake by

inducing autophagy may be a novel approach to halt disease spreading in PD and other synucleinopathies.
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Background
Parkinson’s disease (PD) is pathologically characterized

by alpha-synuclein (αsyn) immunopositive intracellular

deposits termed Lewy bodies [1]. Gene multiplication of

the αsyn gene [2,3] and missense mutations [4-6] are

linked to familial forms of PD. Together, these data sup-

port a role for αsyn in the pathogenesis of PD.

Because αsyn inclusion body pathology associated with

PD occurs in a hierarchical distribution with its epicen-

ter in the brainstem, then extends to the mesolimbic

cortex and associated areas [7], Braak et al. have sug-

gested that αsyn pathology spreads gradually throughout

the neuraxis as PD progresses [8]. However, as yet, the

underlying mechanisms of disease progression in PD re-

main to be determined.

The main component of Lewy bodies and Lewy neur-

ites are fibrillar aggregates of αsyn [1] but a growing

body of evidence suggests that prefibrillar oligomers of

αsyn are key contributors in the progression of Parkin-

son's disease [9-15].

Until recently αsyn was thought to exert its toxic

effects intracellularly. However, this concept was chal-

lenged when El-Agnaf et al. detected αsyn species in

human plasma and CSF [12]. Furthermore, Desplats

et al. demonstrated that αsyn can be directly transmitted

from neuronal cells overexpressing αsyn to transplanted

embryonic stem cells both in tissue culture and in trans-

genic animals [16]. Concurrently, our group was able to

demonstrate that cell produced αsyn oligomers are

secreted and taken up by neighboring cells where they

have detrimental consequences [17]. These results sug-

gest that the pathogenic action of αsyn oligomers are
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not limited to the donor cells but can extend into the

extracellular space and affect neighboring cells. In sup-

port of this hypothesis, recombinant αsyn oligomers

added to cell culture medium have been shown to be

internalized by recipient cells causing either cell death

or seeding of αsyn [18-22]. The mechanism(s) of αsyn

transmission from cell to cell that contribute to the

spread of αsyn pathology remain largely unknown. One

intriguing question is how intracellularly generated αsyn

is released into the extracellular space. A first hint that

αsyn may be secreted by externalized vesicles that have

hallmarks of exosomes was recently provided [23,24].

The aim of this current study is to characterize αsyn

associated with exosomes and to explore the nature of

αsyn secretion using a highly sensitive protein comple-

mentration assay [25-30]. Moreover, we examine the

specific relationship of αsyn oligomers with exosomes

and find that both intra-and extra-exosomal associated

αsyn oligomers exist. The importance of intact exosomes

for re-uptake of αsyn oligomers into neighboring cells

and the role of autophagic activity on exosomal secre-

tion of αsyn oligomers are also examined.

Results
Alpha-synuclein oligomers are found in exosomes

Increasing evidence suggests that αsyn can be released

by neurons and neuronal like cells [17,31-33] although

extracellular αsyn and its pathological relevance are still

hotly debated in the field. Recent work from our own

group and the elegant study from Desplats et al. suggest

that αsyn can be transferred from cell to cell and thus

may provide an explanation for the spread of αsyn path-

ology in PD patients [16,17]. However, little is known

about the mechanism of αsyn secretion.

Recently, secretion of αsyn in association with mem-

brane vesicles, identified as exosomes based on their com-

position and biophysical properties, has been described

[23,24]. However, the specific αsyn species (monomers vs

pathogenic oligomers) secreted with exosomes and the lo-

cation of αsyn remains to be determined.

To investigate whether oligomeric species of αsyn are

present in the exosome enriched fractions we employed

a bioluminescent protein-fragment complementation

assay [25,26,30]. In this strategy, αsyn was fused to non-

bioluminescent amino-terminal (S1) or carboxy-terminal

fragments (S2) of Gaussia princeps luciferase [28] that

can reconstitute when brought together by αsyn-αsyn

interactions [25], thus providing a readout of αsyn

oligomerization (Additional file 1: Figure S1A). The

same principle of protein complementation with fluores-

cent venus YFP was used generating the fluorescent

protein-fragment complementation pair V1S or SV2

whereby N-terminal half of Venus YFP is fused to the

N-terminus of αsyn (V1S) and C-terminal half of Venus

YFP is fused to the C-terminus of αsyn (SV2) [25] (Add-

itional file 1: Figure S1B).

Human H4 neuroglioma cells were co-transfected with

S1 and S2 that reconstitute luciferase activity upon αsyn

oligomerization. Exosomes were isolated from condi-

tioned media (CM) of H4 cells using an established sub-

cellular fractionation methodology [34,35] and the

exosomal pellet was analyzed for luciferase activity that

is indicative of αsyn oligomers. Interestingly, we wit-

nessed a large increase in luciferase activity in the exoso-

mal fraction derived from H4 cells transfected with S1

and S2 compared to exosomes from mock transfected

cells (Figure 1A), suggesting that αsyn, and specifically

αsyn oligomers are present in the exosomal fraction. To

exclude the possibility that N- or C-terminal fragments

of human Gaussia Luciferase can interfere with protein

sorting in exosomes, our results were verified in exo-

somes isolated from human H4 cells transfected with

untagged wild-type (wt) αsyn using a human αsyn

ELISA. Significant levels of αsyn were present in the

exosomal fraction from wt αsyn and S1/S2 transfected

H4 cells compared to exosomes derived from empty vec-

tor (mock) transfected cells (Figure 1B).

We extended these observations to primary cortical

neurons where αsyn oligomers were also found in the

exosomal fraction isolated from primary neurons co-

transduced with adeno-associated virus (AAV) encoding

S1 (AAV-S1) and S2 (AAV-S2) as demonstrated by a sig-

nificant increase in luciferase activity compared to exo-

somes isolated from naive neurons (Figure 1C). In

accord with the experiments performed in H4 cells, we

also confirmed the presence of αsyn in exosomes derived

from primary neurons infected with a variety of different

AAV constructs encoding either αsyn-ires-GFP, AAV-S1

and AAV-S2 or αsyn-venusYFP fluorescent protein-

fragment complementation pair (AAV8-V1S or AAV8-

SV2) (Figure 1D) using an αsyn ELISA. Taken together,

our data provide evidence that αsyn oligomers are

present in the exosomal fractions from both neurons

and non-neuronal cells.

Characterization of exosomes

To confirm the presence of exosomes, fractions from

both primary neurons and H4 cells were subjected to

SDS-PAGE and immunoblotting. All exosomal fractions

were found to be immunopositive for the exosome-

specific proteins alix and flotillin, whereas the ‘exosome-

free’ supernatant was immuno-negative for alix and

flotillin (Figure 2A).

Moreover, exosome-enriched fractions isolated from

CM of H4 cells transfected with the αsyn complementa-

tion pair S1 and S2 were also analyzed using electron

microscopy and demonstrated the distinctive vesicular

morphological structures characteristic of exosomes
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(Figure 2B). Immuno-electron microscopy with an anti-

body against the exosomal marker CD63 [36], confirmed

characteristic exosomal vesicles typically 60–100 nm in

size in exosome enriched fractions from CM of primary

neurons co-transduced with AAV expressing the αsyn

complementation pair V1S or SV2 (Figure 2C).

Because microRNAs (miRs) have been found in exo-

somes [37], miR profiling is a powerful tool to defini-

tively characterize exosomes. Exosome fractions from

both S1/S2 transfected H4 cells and primary neurons

transduced with AAV- αsyn-ires-GFP were found to

contain a large number of miRs that have previously

been reported to be present in exosomes (see Tables 1

and 2). Of interest, we did not detect miR-7, which has

been previously identified as a negative regulator of αsyn

expression [66].

Localization of αsyn oligomers in the extracellular space

Cytosolic proteins can be secreted from cells via at least

two distinct pathways which include exocytosis and

fusion of multi-vesicular bodies with the plasma mem-

brane to release exosomes. Defining the localization of

αsyn in the extracellular space will provide insight into

the mechanisms and pathways involved in αsyn release.

To examine the localization of αsyn oligomers in the

extracellular space we first digested exosome-enriched

fractions containing αsyn S1/S2 oligomers with 0.25%

trypsin. Interestingly, trypsin digestion significantly

reduced luciferase activity in the exosome fraction by

62% (Figure 3A) suggesting the presence of αsyn oligo-

mers either on the external surface of the exosomes or

outside of exosomes. However, trypsin treatment did not

eliminate luciferase activity to background levels com-

pletely, indicating that αsyn oligomers must exist in the

lumen of the exosomes that are insensitive to the trypsin

treatment. To further clarify, we cotreated exosome frac-

tions with trypsin and the detergent saponin (0.1%). The

presence of saponin results in exosome-membrane

permeabilization. Notably, we saw a complete elimin-

ation of luciferase activity in the presence of trypsin and
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Figure 1 Extracellular αSyn oligomers are associated with exosomes: (A) Exosomal fractions from human H4 cells transfected with

αsyn complementation pair S1 and S2 contain high amounts of αsyn oligomers, analyzed with a luciferase assay. Signal corresponds to

1.25x100mm dishes. n = 6, unpaired t test with Welch's correction, ***p < 0.001 (B) αsyn ELISA analysis from exosomal fractions from human H4

cells transfected with S1/S2, wt αsyn or Mock. Signal corresponds to 1x100 mm dish. n = 4, unpaired t test with Welch's correction, ***p < 0.001

(C) Exosomal fractions from primary neurons infected with αsyn complementation pair S1 and S2 contain high amounts of αsyn oligomers,

analyzed with a luciferase assay, signal corresponds to 1x60 mm dish, n = 4, unpaired t test with Welch's correction, ***p < 0.001 (D) αsyn ELISA

analysis from exosomal fractions from primary neurons infected with AAV expressing GFP, αsyn -ires-GFP, V1S/SV2 and S1/S2. Values correspond

to 1x60 mm dish, n = 4, Tukey's Multiple Comparison Test, ***p < 0.001.
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saponin (Figure 3A). Treatment with saponin alone

slightly increased luciferase activity compared to un-

treated control exosomes, although it was not a signifi-

cant increase. This could be due to enhanced substrate

availability to lumenal αsyn oligomers. The same experi-

mental paradigm was tested on the "exosome-free"

supernatant fraction. As expected, trypsin eliminated all

luciferase activity from "free" αsyn oligomers in the

supernatant fraction in the presence or absence of sap-

onin (Figure 3B). These data confirm the absence of exo-

somes from the supernatant fraction and verify that the

experimental paradigm is sufficient to digest all available

αsyn oligomers.

To confirm our results on the localization of αsyn oli-

gomers inside/outside exosomes we examined samples

prepared under the same experimental conditions using

dot blot immunoblotting. Probing with Syn-1 antibody

showed that exsosome free αsyn oligomers (sup) were

completely digested by trypsin independent of saponin

treatment (lane 1, sup, Figure 3C). In contrast, Syn-1

signal was not completely eliminated when exosome

fractions were treated with trypsin (lane 2, exo,

Figure 3C). Only the combination of trypsin and saponin

resulted in a complete digestion of αsyn oligomers and a

consequent abolishment of αsyn immunostaining in exo-

some fractions. Probing with an antibody against the

exosomal marker CD63, which is known to be located

solely on the outside of exosomes, shows reactivity only

in the exosome fractions not treated with trypsin and no

reactivity at all in supernatant-associated αsyn oligomers.

anti Alix

V1S+SV2
exo-

somes sup cells

anti flotillin

Syn-ires-GFP

anti Alix

anti flotillin

anti Alix

anti flotillin

S1+S2

cellssup
exo-

somes

exo-

105 kDa

48 kDa

105 kDa

48 kDa

105 kDa

48 kDa

A B

C

somes sup cells

Figure 2 Characterization of exosomes: (A) Exosomal pellets derived from primary neurons infected with AAV-V1S/SV2, AAV-S1/S2,

AAV- αsyn-ires-GFP were resuspended in 1xPBS and analyzed by Western blotting using exosome specific antibodies anti Alix and anti

flotillin. Also total cell lysates and exosome free supernatant (sup) were loaded as positive and negative controls, respectively. (B) Exosomes from

S1/S2 transfected H4 cells were prepared as described before. After fixation vesicles were negatively stained with 2% uranyl acetate and observed

under electron microscopy. Scale bar, 100 nm. (C) Exosomes from primary neurons infected with AAV-V1S/SV2 were negatively stained with 2%

uranyl acetate and immunolabeled with CD63 antibody as exosomal marker. Scale bar, 100 nm.
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Dot blots were also performed on fractions prepared

from CM of cells transfected with wt untagged αsyn. As

expected, trypsin treatment resulted in a reduction in

Syn-1 signal in exosome associated αsyn oligomers but

only the combination of trypsin and saponin resulted in

a complete digestion and abolishment of Syn-1 signal.

Together, the data indicate that αsyn oligomers are

located on the inside and outside of exosomes.

Table 1 MicroRNA profiling of alpha-synuclein containing exosomes from H4 cell culture media

miRNAs function remarks Key citations

7b Inhibition of cell cycle progression and growth of melanoma cells present in exosomes [38,39]

7i regulatory responses to microbial infection present in exosomes [40,41]

18b exocytosis, angiogenesis, hematopoiesis, tumorgenesis present in exosomes [40]

182 Repression of tumor suppressors present in exosomes [39,42]

184 Block of NFAT1 protein expression present in exosomes [40,43]

363* - [44,45]

373* Involvement in tumor migration and invasion present in exosomes [39,46]

375 exocytosis, angiogenesis, hematopoiesis, tumorgenesis present in exosomes [39,40]

376* - [47,48]

424 controlling the macrophage differentiation program present in exosomes [39,49]

431 - CNS specific miRNA [47,50]

455 - [51]

487a Role in angiogenesis and cell aging [52]

492 - [44]

494 regulation of PTEN expression and functions as a micro-oncogene in carcinogenesis present in exosomes [39,53]

518c - [44,54]

Table 2 MicroRNA profiling of alpha-synuclein containing exosomes from primary cortical neuron media

miRNAs function remarks Key citations

27a activating the expression of P-glycoprotein present in exosomes [39] [55]

28 inhibitor of thrombopoietin receptor translation present in exosomes [39] [56]

34a suppression of cell proliferation through modulation of the E2F signaling pathway - [57]

106b modulation of TGFβ signaling in tumors present in exosomes [39] [58]

184 Block of NFAT1 protein expression present in exosomes [40,43]

185 Inducion of cell cycle arrest in lung cancer cell lines present in exosomes [40,59]

192 affects cellular proliferation through the p53-miRNA circuit present in exosomes [39] [60]

199b Regulation of protein phosphatase 2A inhibitor) in human choriocarcinoma - [61]

302b* regulatory mechanism in tuning stem cell properties - [62]

373* Involvement in tumor migration and invasion present in exosomes [39,46]

422b - present in exosomes [40]

431 - CNS specific miRNA [47,50]

448 - - [63]

455 - - [51]

487a Role in angiogenesis and cell aging - [52]

491 decreases cell viability by induction of apoptosis - [64]

493-3p - - [54]

518* Predicted to be involved in Huntington’s disease - [54,65]

522 - present in exosomes [39]

526a - present in exosomes [39]

526b -
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Exosome-associated αsyn oligomers are more prone to

internalization than exosome-free αsyn oligomers

It has been reported that recombinant αsyn or αsyn oli-

gomers can be internalized by cells and result in vari-

ous cellular effects [18-20,33,67]. Furthermore, we and

others have shown that cell produced αsyn oligomers

can be secreted and taken up by proliferating cells and

primary neurons [17,23]. To investigate if exosomes are

required for the internalization of αsyn oligomers, we

exposed naive H4 cells to exosome-associated αsyn oli-

gomers or exosome-free supernatant containing αsyn

oligomers derived from S1/S2 transfected H4 cells for

3 days. Concurrently, exosomes or exosome-free super-

natant from ”mock” transfected cells were added to

naïve H4 cells. Interestingly, we found that exosome

associated αsyn oligomers are more prone to being

taken up than exosome free asyn oligomers

(Figure 4A). To control for the variable amounts of

αsyn in each exosome or supernatant preparation added

to cells, the luciferase signal detected in the recipient

cells was normalized back to the initial luciferase

counts added to the naïve cells. Data analysed in this

way revealed a 2.4 fold increase in uptake of exosome-

associated αsyn oligomers compared to exosome-free

αsyn oligomers (Figure 4B).

Recombinant oligomers as well as physiologically

secreted αsyn oligomers can cause cell death when ap-

plied to culture medium of different cell lines and pri-

mary neurons [18-20,23,33,67]. To determine if

exosome-associated αsyn oligomers confer more cyto-

toxicity compared to exosome-free αsyn oligomers, we

applied exosome-enriched fractions or exosome-free

fractions derived from S1/S2 or MOCK transfected H4

cells to naïve proliferating H4 cells and found an in-

crease in Caspase 3/7 activation conferred by exosome

associated αsyn oligomers (Figure 4C). To ensure the
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oligomers when trypsin and saponin are used concurrently. Signal of exosomal marker CD63 is abolished by addition of solely trypsin.
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same amount of αsyn oligomers in each fraction, the

level of Caspase 3/7 activation was normalized to the

amount of αsyn oligomers prior to the addition to naïve

cells. Interestingly, a significant 1.5-fold increase in Cas-

pase3/7 activation and resulting apotosis induction from

exosome-associated αsyn oligomers compared to

exosome-free αsyn oligomers was detected (Figure 4D).

In accordance with our data for human H4 cells we

confirmed that exosome-associated αsyn oligomers

could also be taken-up by naive primary neurons

(Figure 4E) and induce apoptosis as characterized by an

increase in caspase3/7 activity (Figure 4F). Unfortu-

nately, due to high levels of non-specific background

bioluminescence from B-27 supplement in our neuronal
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correction, ***p < 0.001. (B) Naïve H4 cells treated with exosome-associated S1/S2 oligomers and exosome-free S1/S2 oligomers (sup) were

assayed for luciferase activity. Luciferase signal was normalized to the amount of αsyn oligomers in the input, n = 9, unpaired t test with Welch's

correction, ***p < 0.001. (C) H4 cells treated with exosome-associated αsyn fractions conferred greater toxicity on naive H4 cells than exosome-

free αsyn (sup n= 5, unpaired t test with Welch's correction, ***p < 0.001 (D) Naïve H4 cells treated with exosome-associated αsyn oligomers and

exosome free αsyn oligomers (sup) were assayed for toxicity. Level of toxicity was normalized to the luciferase activity in each input n = 5, Mann

Whitney test, *p < 0.05. (E) Exosomal fractions derived from primary neurons infected with AAV-S1/S2 or AAV-GFP were applied to naive neurons

and incubated for 3 days. Uptake of αsyn oligomers into recipient neurons was measured performing a luciferase assay on recipient cells. n = 3,

one-sample t-test, *p < 0.05. (F) Toxicity assay of naïve primary neurons treated with exosome-enriched fractions and exosome-free fractions (sup)

derived from either AAV-αsyn-ires-GFP or AAV-GFP infected primary neurons. n = 9, one sample t-test, ***p < 0.001.
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cell culture medium, we were unable to assess the

internalization of exosome-free αsyn oligomers by pri-

mary neurons.

Exosomes need to be intact to be internalized

Because our data suggest that exosome-associated αsyn

may be preferentially taken up by neighboring cells, we

next asked whether exosomes need to be intact for up-

take to occur. To explore this question, we labeled puri-

fied exosome-enriched fractions derived from S1/S2

transfected H4 cells with the membrane dye DiD [68].

To delineate the morphology of H4 cells or primary neu-

rons, we transfected cells with venus-YFP prior to exo-

some addition resulting in a subpopulation of H4 cells

or primary neurons that could be identified via green

fluorescence. As expected when labeled exosomes were

exogenously added to H4 cells or primary neurons in

culture, we observed a rapid uptake of labeled exosomes

into the cytosol of cells. To investigate whether mem-

brane integrity is important for uptake, exosomes were

subjected to sonication which is known to disrupt lipid

bilayer integrity [69-71]. Sonication of exosomes pre-

vented the uptake of exosomes by recipient cells

(Figure 5A). These results were confirmed by measuring

luciferase activity inside naive cells following incubation

with intact or sonicated exosome fractions from syn-luc

transfected H4 cells. Where exosomes were sonicated,

significantly less luciferase activity was detected inside

the naive cells (Figure 5B) although sonication itself had

no effect on luciferase activity of exosomal fractions.

This uptake was not unique to proliferating cells as we

were also able to confirm the uptake of labeled exo-

somes into primary cortical neurons (Figure 5C). These

results demonstrate that intact exosomes promote exo-

somal uptake.

To confirm that the labeled microvesicles being

observed by confocal microscopy were actually exo-

somes, we immunostained cells with the exosomal mar-

ker flotillin and found that the flotillin immunoreactivity

colocalized with the DiD labeled exosomes (Figure 5D).

Autophagy regulates αsyn secretion

Exosomes are derived from multivesicular bodies

(MVBs), which are endocytic organelles generated by

membrane invagination [72-74]. Proteins that are desig-

nated for lysosomal degradation are sequestered by

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

sonication

fo
ld

s
y
n

-l
u

c
e

x
o

s
o

m
e

u
p
ta

k
e

+ -

***

A
+ sonication of exosomes- sonication of exosomes

+ sonication of exosomes- sonication of exosomes mergedDiDflotillin

B

C D

Figure 5 Exosomes need to be intact to be internalized: (A) DiD labeled exosomes containing αsyn with or without prior sonifications

were added to H4 cells transfected with Venus-YFP and incubated for 3 days. Scale bar = 20 μm (B) Exosomal fractions derived from H4

cells transfected with αsyn-luciferase were applied to naive H4 cells after sonication or without sonication and incubated for 3 days. Uptake of

αsyn oligomers into recipient neurons was measured performing a luciferase assay on recipient cells. n = 5, one-sample t-test, *p < 0.05. (C) DiD

labeled exosomes containing αsyn with or without prior sonifications were added to primary cortical neurons infected with AAV-Venus-YFP

incubated for 3 days. Scale bar = 20 μm (D) Co-localization of exosomal marker flotillin (green) and DiD labeled exosomes (red) after addition of

exosomes containing αsyn to naïve H4 cells. Scale bar = 20 μm.
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MVBs, however, an alternative destination of MVBs is

their exocytic fusion with the plasma membrane leading

to the release of intraluminal vesicles (ILVs; i.e., exo-

some) into the extracellular environment. Interestingly,

induction of autophagy can markedly increase the inter-

action of MVBs and autophagosomes and thereby block

exosome secretion [75].

We detected a higher luciferase activity extracellularly

(Figure 6A) which may suggest that more oligomers are

secreted. However, it’s also possible that coelentrazine is

more sensitive to extracellular αsyn oligomers although

it is cell permeable. Nevertheless, given that we detected

αsyn oligomers in the exosomal fraction of cells and

observed that αsyn oligomer secretion could be modu-

lated by autophagic activity (Figure 6A) we asked

whether autophagy would be a release pathway for

exosome-associated αsyn oligomers.

Following guidelines for assays monitoring autophagy

[76] we measured the levels of LC3.II (ratio with ß-actin)

and p62 (ratio with α-tubulin) in S1/S2 transfected H4

cells treated with rapamycin, bafilomycin A1 and

DMSO. Levels of LC3.II and p62 significantly increased

when H4 cells were treated with bafilomycin A1 com-

pared to DMSO controls, indicating an abundance of

autophagosomes due to reduced downstream fusion

with lysosomes. The opposite effect was observed when

treated with rapamycin (Figure 6 B, C). We speculated

that an increased pool of autophagosomes could be the

basis for an increased exosomes secretion. Exosomes

were isolated from conditioned media of S1/S2 trans-

fected H4 cells treated with bafilomycin A1, rapamycin

or DMSO, and luciferase activity was monitored. A sig-

nificant increase in luciferase activity in the exosomal

fraction from cells that were treated with bafilomycin A1

compared to DMSO control (Figure 6D) was observed

which suggests that inhibition of the fusion of the autop-

hagosome with the lysosome by bafilomycin A1 provides

an increased pool autophagosomes which enhances exo-

somal release. Likewise, treatment with the autophagy

enhancer rapamycin showed a decreased αsyn oligomer

signal in the exosomal fraction as measured by luciferase

activity compared with DMSO treatment (Figure 6D),

suggesting that enhanced lysosomal activity results in ef-

fective αsyn oligomer degradation and less secretion. We

extended these findings to primary neurons and

observed an increase in the αsyn oligomer signal in the

exosomal fraction from neurons treated with bafilomycin

A1 and a decrease in the αsyn oligomer signal with rapa-

mycin treatment in the exosomal fraction compared to

DMSO control (Figure 6E), although these effects did

not reach statistical significance (p = 0.17), probably due

to the fact that the yield of exosomes are significantly

less from primary neuronal preparations resulting in

barely detectable luciferase and an decrease in the

signal/noise ratio. Together, these experiments indicate

autophagy can be a specific release pathway for secretion

of αsyn oligomers.

Discussion
Multivesicular bodies (MVBs) and their intraluminal

vesicles (ILVs) are involved in the sequestration of pro-

teins destined for degradation in lysosomes. However,

MVBs can also fuse with the plasma membrane leading

to the release of 50-90 nm ILVs into the extracellular mi-

lieu, which are then called exosomes [77,78]. Exosome

secretion can therefore be used by cells, including neu-

rons and astrocytes, to clear molecules originally des-

tined for lysosomal degradation [77]. Recently, exosomes

have been suggested to play a role in neurodegeneration:

Exosomes from prion infected cells have been demon-

strated to be efficient initiators of prion propagation in

uninfected recipient cells and more importantly, to pro-

duce prion disease when inoculated into mice [34,79].

Also the beta-amyloid peptide has been found to be

secreted from cells in association with exosomes [80].

Ghidoni et al. suggested that exosomes could be the

"Trojan horses" of neurodegeneration; a mechanism

underlying the death of cells by shipping toxic agents in

exosomes from cell to cell [81]. In our study we identi-

fied αsyn oligomers to be present in exosomes and found

that exosome-associated αsyn oligomers are more toxic

to neighboring cells than exosome-free αsyn oligomers.

In contrast to the study of Hasegawa et al. we found that

αsyn oligomers are present in both the exosomal pellet

and the exosome free supernatant from the conditioned

media of αsyn overexpressing cells whereas Hasegawa

et al. recovered αsyn mainly from the supernatant frac-

tion [82]. One possible explanation for this discrepancy

is the different cellular models and resulting levels of

sensitivity. The use of a highly sensitive luciferase pro-

tein complementation assay, allows the detection of

minimal amounts of protein compared to Western blot

analyses.

To our knowledge, this is the first report of αsyn oligo-

mers in the exosomal fraction of primary neurons or

neuronal cells. Specifically, we have conclusively shown

that αsyn oligomers can be found outside exosomes,

presumably on the outer surface of exosomes. The exist-

ence of αsyn oligomers outside exosomes has been

demonstrated in two ways. First, any external αsyn has

been digested using trypsin which resulted in a signifi-

cant decrease in luciferase counts indicative for αsyn oli-

gomers. Second, trypsin digestion also led to a dramatic

decrease of αsyn signal in a Dot blot approach. There

are several possible reasons for the existence of αsyn oli-

gomers on the external surface of exosomes (Figure 7).

First, lipid raft components were found on the mem-

brane surface of secreted exosomes [83]. αSyn has been
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Figure 6 αSyn oligomer secretion is modulated by autophagic activity. (A) Human H4 cells were transfected with αsyn complementation

pair S1/S2 and treated with DMSO, rapamycin or bafilomycin A1. After 48 h cells CM was assayed for luciferase activity and a ratio of luciferase

activity in media compared to cells was expressed. n = 4, One way ANOVA, Bonferroni’s Multiple Comparison Test, **p < 0.001. (B) Immunoblot

levels of autophagosome marker LC3.II and macrophagy substrate p62 in H4 cells treated with autophagy inhibitor Bafilomycin A1, autophagy

inducer rapamycin or DMSO. (C) Densiometric analysis of immunoblots probed with LC3.II normalized to ß-actin[n = 3 (Baf A1) p < 0.0001, t-test;

n = 3 (rapa), p = 0.0021, t-test ] and p62 normalized α-tubulin [n = 3 (Baf A1) p = 0.022, t-test; n = 3 (rapa), p = 0.0022, t-test ](D) Exosomal fractions

from H4 cells transfected with S1/S2 and treated with DMSO, rapamycin or bafilomycin A1 were assayed for luciferase activity. n = 4, One way

ANOVA, Bonferroni’s Multiple Comparison Test, ***p < 0.001 (E) Exosomal fractions from primary neurons infected with AAV-S1/S2 and treated

with DMSO, rapamycin or bafilomycin A1 were assayed for luciferase activity. n = 4, One way ANOVA, Bonferroni’s Multiple Comparison Test,

p = 0.17, ns = non-significant.
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shown to interact with lipid rafts and artificial mem-

branes [84,85] and a recent report demonstrates that

αsyn can penetrate in the outer leaflet of a bilayer [86].

We also found αsyn present in the inside of exosomes.

Cytosolic proteins like αsyn can end up in ILVs because

plasma membrane invagination occurs during endocyto-

sis and results in the formation of early endosomes en-

capsulating a significant amount of cytosol (Figure 7).

Endosomal membranes further invaginate to form ILVs,

which give endosomes their multi-vesicular appearance.

When MVBs fuse with the plasma membrane they can

then be released as exosomes containing the encapsu-

lated cytosolic proteins like αsyn [87]. Why αsyn oligo-

mers are encapsulated in MVB’s and released as

exosomes is not understood. Possible explanations in-

clude first, that αsyn oligomers in exosomes could repre-

sent the species that are most harmful to cells and is

thus targeted for release. Second, Fang et al. have pro-

posed that proteins which exhibit higher order

oligomerization and are associated with the plasma

membrane, are preferentially sorted into exosomes [88].

A third explanation for the presence of αsyn oligomers

in exosomes could be that exosomes provide an environ-

ment that is favorable for the oligomerization process.

Indeed, lipid-mediated oligomerization seems to be im-

portant in amyloid formation and polyunsaturated fatty

acids have been shown to trigger multimerization of re-

combinant αsyn [89].

We also found αsyn oligomers in the exosome-free

fraction. One explanation for the presence of exosome-

free αsyn oligomers could be that the the exosomal

membrane undergoes extracellular degradation via pro-

teases or lipases that would lead to the release of proteins

from the exosomal lumen to the extracellular environ-

ment during the fractionation process [90,91]. Another

explanation could be that αsyn oligomers might become

unstable and lose their affinity for lipid membranes after

being released from the cell, due to changes in the pH

value or ionic strength in the extracellular space. In fact,

only a small fraction of Abeta peptide is found associated

with exosomes [80], which supports our observations. A

third explanation for the secretion of soluble, non-

exosomal αsyn oligomers could be that there is an

exosome-independent pathway of αsyn secretion

(Figure 7) maybe through the Rab11a-dependent recyc-

ling endosomal pathway [82,92], however, further in

depth studies will be needed to determine if this is the

case. Supporting evidence for the presence of αsyn in the

exosomal fraction also comes from the recent studies of

Emmanouilidou et al. and Alvarez-Erviti [23,24]. Taken

together with the previously published studies, our find-

ings support the "Trojan horse" hypothesis [81].

Our data make a case for exosomal transfer of αsyn

from cell to cell and could represent a key mechanism

in the spread of αsyn aggregates between neurons in the

brain. Indeed, exosomes are biologically active vesicles

that are thought to be important for intercellular com-

munication [93,94]. Valadi et al. recently reported that

exosomes also contain both mRNA and microRNA,

which can be delivered to neighboring cells and be func-

tional in the recipient cell [40]. Exosomes can interact

with recipient cells in different ways, including endo-

cytosis, fusion with the plasma membrane, receptor-

ligand-binding or attachment [78,95-97].

Critical to our understanding of the toxic effects of

secreted αsyn oligomers on neighboring cells is the

Figure 7 Schematic presentation of endosomal pathways and possible αsyn secretory pathways. Membrane associated cargo proteins

including αsyn or cytosolic αsyn are translocated to early endosomes. Invagination and final scission of the endosomal membrane contribute to

MVB formation. MVB direct either for lysosomal degradation by fusion from the autophagosome with the lysosome or for secretion as exosomes

by exocytic fusion with the plasma membrane. Under physiological conditions αsyn in the early endosome may be transferred to MVB and then

targeted for lysosomal degradation. Alternatively, αsyn might be secreted into the extracellular milieu through the rab11a dependent recycling

endosome (free αsyn) and MVB-exosome pathway (free and exosome associated αsyn). Exosomes can also enter in the extracellular interspace by

outward budding of the plasma membrane.
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identification of the toxic species. Our data support the

possibility that both exosome-associated αsyn oligomers

and exosome-free αsyn oligomers can confer toxicity on

neighboring cells. We found that exosome-associated

αsyn oligomers are more likely to be taken up by neigh-

boring cells, although we also observe the uptake of free

αsyn oligomers. The same holds true in terms of toxicity:

exosome-associated αsyn oligomers are more toxic to

neighboring cells compared to free αsyn oligomers. It is

tempting to speculate that the more αsyn oligomers that

are taken up by recipient cells, the greater the toxicity.

However, it remains to be determined whether αsyn oli-

gomers exert their toxic effects after being taken up by

recipient cells by impacting cellular homeostasis [98,99]

or if extracellular αsyn oligomers exert their effect at the

cell membrane.

Autophagy can function as a protective mechanism in

cells and is particularly crucial in the aging brain and in

neurodegeneration where aggregated proteins accumu-

late [100]. It is now thought that αsyn can be degraded

by either the proteasome or by autophagy and both

macroautophagy and CMA have been reported to con-

tribute to αsyn degradation [101-104]. In this study, we

demonstrate that secretion of αsyn oligomers is

increased when lysosomal activity is blocked by Baf A1.

Baf A1 inhibits the fusion of the autophagosome with

the lysosome by inhibiting vacuolar type H(+)-ATPase

[105], thereby inhibiting lysosomal activity. We speculate

that by blocking the major degradation pathway for αsyn

oligomers, the cells use secretion as an alternative path-

way to eliminate harmful αsyn oligomeric species. By

contrast, we did not detect a significant effect of protea-

somal inhibition with MG132 on the secretion of αsyn

oligomers. These results support a hypothesis where

autophagy is the major route for degradation of αsyn oli-

gomers which are then targeted to the plasma mem-

brane to be cleared by secretion as an alternative route

upon failure of this pathway. This assumption is also

supported by the fact that rapamycin decreased αsyn se-

cretion by enhancing autophagy and thereby triggering

intracellular degradation of αsyn oligomers. Our results

are also in line with the recent work from Emmanouili-

diou et al., who did not observe an effect of proteasome

inhibitor on levels of extracellular αsyn, but found a pro-

found increase in the levels of secreted αsyn when the

lysosomal pathway was blocked by methylamine [23].

Our study specifically investigates the regulation of se-

cretion of oligomeric αsyn upon autophagy inhibition or

activation, supporting and significantly augmenting the

published study. The fact that we observed more αsyn

oligomers in the exosomal fraction after inhibition with

BafA1 raises the possibility that αsyn oligomer contain-

ing vesicles (presumably ILVs) originally destined for

lysosomal degradation, were re-directed to the plasma

membrane and released as exosomes. This hypothesis

requires an interaction between exosomal and autopha-

gic pathways. Indeed, a recent study by Fader et al.

demonstrated that induction of autophagy markedly

increased the interaction of MVBs and autophagosomes

and concurrently blocked exosome secretion, suggesting

that MVBs are directed to the autophagic pathway with

a consequent inhibition in exosome release [75].

In conclusion, we demonstrate that αsyn oligomers

can be found in different extracellular fractions in asso-

ciation with exosomes or as exosome-free oligomers.

αSyn oligomers associated with exosomes are more toxic

to recipient cells compared to free αsyn oligomers. The

toxic mechanisms of αsyn oligomers spreading from cell

to cell described here in cell culture could resemble

events explaining the spread of αsyn pathology that has

been observed in human post-mortem brains [8]. Add-

itional studies are needed to verify exosome-associated

αsyn oligomers and exosomal release in the brains of PD

patients. Preventing the early events in exosomal release

and uptake by inducing autophagy might be a novel ap-

proach for the development of effective drugs for the

treatment of PD and other synucleinopathies.

Conclusions
These data demonstrate that oligomeric forms of αsyn

can be found in multiple extracellular fractions: asso-

ciated with exosomes and free. Exosome-associated αsyn

oligomers are more likely to be taken up by recipient

cells and can induce more toxicity compared to free

αsyn oligomers. In addition, we determined αsyn oligo-

mers oligomers to be present both on the outside of

exosomes as well as inside of exosomes. Notably, the

pathway of secretion of αsyn oligomers is strongly influ-

enced by autophagic activity. Preventing the early events

in αsyn exosomal release and uptake by inducing autop-

hagy may be a novel approach to halt disease spreading

in PD and other synucleinopathies.

Methods
Plasmid generation

Fusion constructs αsyn-hGLuc1 (S1), αsyn-hGLuc2 (S2)

and Venus1-αsyn (V1S), αsyn-Venus2 (SV2) were gener-

ated by subcloning αsyn into Not1/Cla1 sites of huma-

nized Gaussia Luciferase and VenusYFP constructs

provided by Dr. Stephen Michnick of University of Mon-

treal [25,28].

AAV vectors construction and production

The viral vectors rAAV-CBA-WPRE, rAAV-CBA-IRES-

EGFP and rAAV-CBA-SYNUCLEIN-IRES-EGFP were

described previously [29]. rAAV-CBA-SYNUCLEIN-

LUC1-WPRE (AAV-S1) and rAAV-CBA-SYNUCLEIN-

LUC2-WPRE (AAV-S2) were constructed as follows:
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αsyn -hGLuc1 (S1) and αsyn -hGLuc2 (S2) were sub-

cloned into Not1/Nhe1 sites of AAV-CBA-WPRE vector.

rAAV-CBA- VENUS1-SYNUCLEIN-WPRE (AAV-V1S)

and rAAV-CBA-SYNUCLEIN-VENUS2-WPRE (AAV-

SV2) were constructed as follows: the fragments

Venus1-Synuclein and Synuclein-Venus2 was inserted

into the EcoRV and NheI sites of the pAAV-CBA-WPRE

vector. Recombinant adeno-associated type 2/8 was gen-

erated by tripartite transfection (AAV-rep/cap expres-

sion plasmid, adenovirus miniplasmid and AAV vector

plasmid) into 293A cells and purified by iodixanol gradi-

ent followed by Q sepharose column chromatography

(Harvard Gene Therapy Initiative, Harvard Medical

School). The purified virus was dialyzed against PBS,

concentrated by Amicon spin column, and tittered by

dot blot hybridization. Final titers for virus were for

AAV-S1 1.5E13 gc/ml, AAV-S2 1.3E13 gc/ml, V1S

8.3E12 gc/ml and SV2 8.7E12 gc/ml.

Human αsynuclein ELISA

Alpha synuclein concentration was quantified using

human αsyn specific ELISA (#KHB0061, Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s

instructions. Absorbance is read at 450 nm. The absorb-

ance is directly proportional to the concentration of

αsyn present in the original specimen. αSyn concentra-

tion was determined by plotting sample absorbances

against standards using Graph Pad Prism fitting software

(four parameter algorithm).

Cell culture and transfections

Unless otherwise stated, human H4 neuroglioma cells

(HTB-148 - ATCC, Manassas, VA, USA) were main-

tained in OPTI-MEM medium supplemented with 10%

fetal bovine serum (both from Invitrogen) and incubated

at 37°C. Cells were plated 24 hours prior to transfection,

growing to 80–90% confluency prior to transfection.

Transfection was performed using Superfect (Qiagen,

Chatsworth, CA, USA) using equimolar ratios of plas-

mids according to the manufacturer’s instructions. Con-

ditioned media was collected 48 hours post-transfection

and centrifuged for 5 min at 3000 g to eliminate floating

cells before being used.

Gaussia luciferase protein-fragment complementation

assay

Fusion constructs αsyn hGLuc1 (S1) and αsyn -hGLuc2

(S2) were generated as described previously [25]. S1 and

S2 were transfected into H4 cells in a 96-well plate for-

mat as described above. 48 h after transfection, culture

media was transferred to a new 96 well plate (Costar,

Corning, NY, USA). Cells were washed with PBS and

replaced with serum- and phenol-red free media. Luci-

ferase activity from protein complementation was

measured for conditioned media and live cells in an

automated plate reader at 480 nm following the injection

of the cell permeable substrate, coelenterazine (20 μM)

(Prolume Ltd, Pinetop, AZ) with a signal integration

time of 2 seconds.

Primary cortical cell culture

Primary cortical neurons were prepared from cerebral

cortices of E14-16 mouse embryos. Cortices were dis-

sected from embryonic brain and the meninges were

removed. Cortices were dissociated by titruation at RT

and cells were resuspended in Neurobasal (NB) (Gibco)

medium supplemented with 10% fetal bovine serum,

2 mM Glutamax, 100 U/mL penicillin, and 100 μg/mL

streptomycin and plated at a density of 3.84 x 104 cells/

well on 96w plates (Corning, NY, USA), 60 mm dishes at

a density of 3.6 x 106 cells/dish (Costar, Corning, NY,

USA) coated with 20μg/mL poly-D-lysine(Sigma-

Aldrich, St. Louis, MO, USA). After 2 h medium was

changed into NB/B-27 [NB medium containing 2% (v/v)

B-27 supplement], 100 U/mL penicillin, 100 μg/mL

streptomycin, and 2 mM/L glutamine. Cells were main-

tained at 37°C in 5% CO2 in a humidified incubator.

Medium was changed every third day. Neurons were

grown for 4–5 days in vitro (DIV) before infected with

AAV8-S1/AAV8-S2, AAV8-V1S/AAV8-SV2, AAV8-syn-

ires-GFP or AAV8-GFP. Infections were carried out as

followed: 6 μl rAAV2/8 expressing eGFP (1.3E13gc/ml)

per 60 mm dish, 6μl rAAV2/8 expressing αsyn(wt)-ires-

GFP (1.1E13gc/ml) per 60 mm dish and 3 μl rAAV2/8

expressing V1S (8.3E12gc/ml) together with 3 μl rAAV2/

8 expressing SV2 (8.7E12gc/ml) per 60 mm dish, as well

as 3 μl rAAV2/8 expressing S1 (1.5E13gc/ml) together

with 3 μl rAAV2/8 expressing S2 (1.3E13gc/ml) per

60 mm dish.

Exosome isolation

Exosomes from Human H4 cells and primary neurons

were prepared as described earlier [34,35] with minor

modifications. Briefly, conditioned medium was col-

lected and spun for 5 min at 500xg to remove floating

cells. The supernatants were then sequentially centri-

fuged at 300xg (10 min) and 2x 200xg (10 min) at 4°C

each. Then supernatants were filtered through a 0.45 μm

(Whatmann, Florham Park, NJ) and then 0.22 μm (Milli-

pore, Carrigtowhill, Cork, Ireland) filter, and centrifuged

for 30 minutes at 10,000xg (2X) at 4°C. After ultracentri-

fugation at 100,000xg for 70 min at 4°C, exosomal pellet

was then resuspended in 1xPBS for Western Blotting,

electron microscopy or luciferase assay or resuspended

culture medium for cell treatments.

Exosome depleted medium was prepared as described

above, except after ultracentrifigation at 100,000xg for
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70 min at 4°C, exosome free supernatant was filtered

through a 0.22 μm filter before used in cell culture.

Digestion of exosomes

Exosome associated or exosome free αsyn oligomers

were digested by addition of 0.25% trypsin (Invitrogen,

Carlsbad, CA, USA) and/or 0.1% saponin and incubated

for 20 min at 37°C. After complete digestion samples

were analyzed in luciferase assay or Dot blot approach.

Labeling of exosomes

The exosomes were labelled using DiD (Biotium, Hay-

ward, CA USA) according to manufacturer’s instructions

in a 1:200 dilution. Briefly, after the final spin in exo-

some purification exosomal pellet was resuspended in

1 ml DiD solution and incubated for 5 minutes. After

ultracentrifugation at 100,000xg for 70 min at 4°C the

exosomal pellet was washed in 1xPBS centrifuged again

for 90 min at 150 000 g to remove free dye. Then the

pellet is resuspended finally as exosome fraction.

Dot blot

Exosomes or exosome free supernatant was collected as

described previously. 100ul of each condition was ap-

plied to nitrocellulose membrane (pore size 0.22 um,

Whatman Protran,Sanford, ME, USA) placed in a Dot

blot apparatus (Schleicher & Schuell Minifold-I Dot-Blot

System, Whatman, Sanford, ME, USA, ) and incubated

at RT for 1 h. Samples were filtered through the mem-

brane by gentle vacuum and developed using conditions

as described previously (21). Briefly, the membrane was

blocked with 10% non-fat dried milk in Tris-buffered sa-

line (TBS, Sigma-Aldrich, St. Louis, MO, USA) contain-

ing 0.01% Tween 20 (TBS-T), at room temperature for

1 h. After three washes with TBS-T, the membrane was

incubated with anti- Syn-1 antibody (1:1000; BD trans-

duction, Franklin Lakes, NJ, USA) or monoclonal anti-

CD63 antibody (1:500, BD Transduction) overnight at 4

C with gentle agitation. The membranes were then

washed three times for 5 min with TBS-T, incubated

with horseradish peroxidase conjugated anti mouse IgG

(Jackson Immuno Research Laboratories, Baltimore, PA,

USA) diluted 1:2000 in 5% non-fat dried milk in Tris-

buffered saline (TBS) containing 0.01% Tween 20 (TBS-

T) and incubated for 1 hour at room temperature. The

blots were washed three times with TBS-T and devel-

oped with Pierce ECL chemiluminescence kit from

Thermo Scientific (Rockford, IL, USA).

Pharmacological treatments in vitro

H4 cells were plated into 96 well plates or 60 mm dishes

(Costar, Corning, NY, USA) and transfected as described

above. Transfection mix was incubated for 2 h according

to manufacturer’s protocol, then media was replaced by

fresh culture media containing 0.4 μg/ml rapamycin

(Sigma Aldrich, St. Louis, MO) or DMSO (Sigma

Aldrich, St. Louis, MO) and incubated for 48 h. 200nM

Bafilomycin A1 (Merck KG, Darmstadt, Germany) was

added to the culture medium 20 h before harvesting the

medium. Conditioned medium was collected for aluci-

ferase assay or exosomal isolations. To ensure that

pharmacological treatments result in a true increase in

the secretion ratio of αsyn oligomers and not simply a

matter of more available αsyn oligomers in the cyto-

plasm, we calculated the ratio of secreted αsyn oligomers

in the conditioned medium to intracellular αsyn

oligomers.

Primary neurons were plated into 60 mm dishes

(Costar, Corning, NY, USA) and infected as described

above. DMSO and 0.1 μg/ml rapamycin were added to

the culture medium right after infection, whereas

100nM bafilomycin A1 was added after 3 days expres-

sion and incubated for 20 h. Conditioned medium was

then collected to perform exosomal isolations.

Exosomal uptake experiments

Conditioned media from naïve H4 cells or naïve primary

neurons was replaced by exosome containing culture

media. After 3–4 days incubation cells were washed

twice with 1xPBS and then assayed for luciferase

activity.

Toxicity assay

Toxicity was analyzed 3–4 days after exosome applica-

tion by measuring the activity of Caspases 3 and 7 using

a fluorometric substrate Z-DEVD-Rhodamine 110 (Apo-

ONE homogeneous Caspase-3/7 assay #G7790, Pro-

mega, Madison, WI) according to the manufacturer’s

protocol.

Western blotting

Primary cortical neurons were scraped from 60 mm

dishes and washed by centrifugation and resuspension in

cold PBS. The cells were resuspended in 1x PBS contain-

ing protease inhibitors (protease inhibitor cocktail tablet

1 tablet/10 mL (Roche Diagnostics) sheared by passing

through a 27-gauge 1 ml syringe 4–6 times and centri-

fuged for 5 min at 13,000 g. Lysates or exosomal samples

were resolved by electrophoresis on a 4–12 % Bis-Tris

gradient gel (NuPAGE Novex Bis-Tris Gel, Invitrogen,

Carlsbad, CA, USA) according to manufacturer’s

instructions using NuPAGE MOPS buffer. After transfer

to nitrocellulose membrane (Protran, Schleicher and

Schuell, Whatman GmbH, Dassel, Germany) mem-

branes were blocked in either 5% milk inTBS-T or Li-

Cor blocking buffer (LI-COR,Lincoln, NE, USA) for

1 hour at room temperature. Membranes were then

incubated with primary antibodies (mouse anti-Alix,
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1:500, BD Transduction; mouse anti-flotillin: monoclo-

nal, 1:500, BD Transduction) overnight at 4 C. After

three 5–10 min TBS-T washes, membranes were incu-

bated at room temperature for 1 hour with either IR-

labeled secondary antibodies (IR800 goat anti-mouse,

1:2000, Rockland Immunochemicals, PA,USA) or HRP-

conjugated secondary antibodies (1:2000). After three

5– 10 min TBS-T washes, immunoblots were analyzed

using either the Odyssey Infrared imaging system (Li-

Cor, Lincoln, NE,USA) or the ECL chemiluminescent

detection system (Amhersham/GE HealthCare, Bucking-

hamshire, UK).

Cell imaging and immunofluorescence staining

All images were acquired using a 20x Plan Apochromat

lens (Carl Zeiss), 25x APO-Plan NEOFLU lens (Carl

Zeiss) or Zeiss 63x 1.2 NA C-APO-Plan NEOFLU water

immersion lens (Carl Zeiss), mounted on the microscope

described before. H4 cells or cortical neurons were

washed three times with phosphate-buffered saline (PBS)

following 30 min incubation in a fixation solution con-

taining 4% paraformaldehyde in PBS. After washing, the

cells were permeabilized and unspecific binding sites

were blocked using 0.05% Saponin and 1% bovine serum

albumin in PBS followed by another washing step. The

primary rabbit antibody against flotillin (1:500, BD

Transduction) was added for 1 h at RT, followed by an-

other washing step and incubation with the secondary

antibody (anti-mouse antibody labeled with Alexa-Fluor

488; Invitrogen) for 1 h at RT.

Electron microscopy

An exosome pellet from either human H4 cells or pri-

mary neurons was prepared by centrifugation as

described above and then resuspended in 20 μl of cold

Karnovsky’s EM fixative (2% formaldehyde and 2.5% glu-

taraldehyde in 0.1 M Sodium Cacodylate buffer, pH 7.4.).

Ultrathin sections from LR white embedded samples

were picked up from the knife with a loop, dipped in a

2:1 mixture of 2.3 M sucrose and 2% methylcellulose,

and adsorbed to the surface of a formvar/carbon coated

copper grid. Grids are placed on 2% gelatin in a small

petri dish and stored in the fridge until immunogold la-

beling. This was accomplished by washing grids in PBS

and then either treating with CD63 antibody (BD Trans-

duction) followed by 10 nm gold labelled secondary anti-

bodies (Sigma Aldrich, St. Louis, MO) or processing

without immunolabelling. These exosome containing

grids were then post-fixed with 2.5% glutaraldehyde,

washed and contrasted with 2% methyl cellulose and 3%

aqueous uranyl acetate. Samples were examined and

photographed with a JEOL 1200EX electron microscope.

microRNA profiling and data analysis

For nucleic acid analysis, the entire exosome pellet is

gently resuspended in 20 μl of 1xPBS. Any cellular/

ribosomal RNAs that may exist in the extra-exosomal

solution (53) are eliminated by adding 8 μg of RNAse

T1/A (Fermentas) to the 20ul preparation and incubat-

ing for 10 minutes at 37°C. Four hundred units of

SuperRase-in RNAse (Ambion) inhibitor are then added

to inactivate the RNAses and the sample is held at 25°C

for 10 minutes. The entire mixture is then dissolved in

60 μl of miRNA extraction buffer (Arcturus), incubated

at 42°C for 30 minutes, and stored at −80°C prior further

processing. In order to generate amplified sense RNA

from small quantities (<1 ng) of purified miRNAs, we

used the NCode miRNA Amplification System (Invitro-

gen) according to the manufacturer’s instructions.

miRNA expression profiles were generated by adding

250 ng of this amplified miRNA to the FlexMiR miRNA

assay from Luminex Corporation (Austin, Texas) and

running on a Luminex FlexMAP 3D system according to

the manufacturer's instructions.

Statistical analysis

Statistical analyses were carried out using the program

GraphPad Prism, Version 4.0. Values in the figures are

expressed as means +/− SEM.

Additional file 1

Additional file 1: Schematic representation of the αsyn protein

fragment complementation constructs. (A) Nonbioluminescent halves

of humanized gaussia luciferase are fused to αsyn monomers (B) Non

fluorescent halves of Venus-YFP are fused to αsyn monomers.
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PD: Parkinson’s disease; αsyn: Alpha synuclein; CM: Conditioned media;
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