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Exosomal microRNA signatures in 
multiple sclerosis reflect disease 
status
Saeideh Ebrahimkhani1,2,3, Fatemeh Vafaee  4,5,9, Paul E. Young6, Suzy S. J. Hur6, Simon 
Hawke3, Emma Devenney2,3, Heidi Beadnall2,3,8, Michael H. Barnett2,3,8, Catherine M. Suter6,7 

& Michael E. Buckland  1,2,3

Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system 
(CNS). There is currently no single definitive test for MS. Circulating exosomes represent promising 
candidate biomarkers for a host of human diseases. Exosomes contain RNA, DNA, and proteins, can 
cross the blood-brain barrier, and are secreted from almost all cell types including cells of the CNS. We 
hypothesized that serum exosomal miRNAs could present a useful blood-based assay for MS disease 
detection and monitoring. Exosome-associated microRNAs in serum samples from MS patients (n = 25) 
and matched healthy controls (n = 11) were profiled using small RNA next generation sequencing. We 
identified differentially expressed exosomal miRNAs in both relapsing-remitting MS (RRMS) (miR-
15b-5p, miR-451a, miR-30b-5p, miR-342-3p) and progressive MS patient sera (miR-127-3p, miR-370-3p, 
miR-409-3p, miR-432-5p) in relation to controls. Critically, we identified a group of nine miRNAs (miR-
15b-5p, miR-23a-3p, miR-223-3p, miR-374a-5p, miR-30b-5p, miR-433-3p, miR-485-3p, miR-342-3p, 
miR-432-5p) that distinguished relapsing-remitting from progressive disease. Eight out of nine miRNAs 
were validated in an independent group (n = 11) of progressive MS cases. This is the first demonstration 
that microRNAs associated with circulating exosomes are informative biomarkers not only for the 
diagnosis of MS, but in predicting disease subtype with a high degree of accuracy.

Multiple sclerosis (MS) is the most common cause of neurologic disability in young adults1. MS is characterised 
by in�ammation, demyelination, and neuro-axonal injury in the central nervous system, leading to progressive, 
long-term disability1. �e clinical phenotypes of MS include relapsing-remitting MS (RRMS), and progressive 
forms: secondary progressive MS (SPMS) and primary progressive MS (PPMS)2. RRMS is the most prevalent MS 
subtype, comprising over 70% of cases. Within 10–15 years of disease onset, the majority of patients with RRMS 
will transition to SPMS, a phase of the disease de�ned by gradual clinical worsening that does not respond to any 
available treatment. PPMS is clinically indistinguishable from SPMS, except that it manifests de novo, without a 
preceding relapsing-remitting phase.

Currently there is no one de�nitive test for MS assessment; diagnosis and disease monitoring relies on multi-
ple clinical parameters including clinical examination, magnetic resonance imaging, cerebrospinal �uid assess-
ment, and electrophysiology3. Such investigations are not only costly over the protracted disease course, they also 
have limited utility in distinguishing active RRMS from progressive disease2,4.

Here we have assessed the utility of microRNAs (miRNA) within serum exosomes as biomarkers of MS dis-
ease. miRNA are small (18–25 nt) noncoding RNA with post-transcriptional gene regulatory function5. Exosomes 
are membrane bound vesicles shed by almost all cell types, and packed with small regulatory RNAs such as 
miRNA6. In many in�ammatory diseases there is a signi�cant increase in circulating exosome concentration7,8. 
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Given that exosomes can cross the blood-brain barrier9,10, it is thus likely that at least some of the circulating 
exosomes in MS patients are derived from a�ected CNS cells or the associated in�ammatory milieu.

We hypothesised that physiological changes associated with MS and its progression are re�ected in di�erences 
in serum exosomal miRNAs. Using next-generation sequencing and integrative bioinformatics we found that 
serum exosome miRNA pro�les can not only distinguish MS from healthy controls, but also distinguish RRMS 
from progressive forms of the disease with high accuracy.

Results
Serum exosomes carry a unique miRNA signature. Patient blood was collected at the time of clini-
cal consultation and pre-processed as detailed in the Methods. Exosomes were isolated from 1 ml of serum by 
size exclusion chromatography (SEC). Prior to exosome isolation, serum samples were treated with RNaseA to 
remove any unprotected circulating RNA. SEC fractions containing vesicles were pooled (fractions 8, 9, and 10; 
see Methods) and analysed by nanoparticle tracking analysis (Fig. 1a) and transmission electron microscopy 

Figure 1. Identi�cation and characterization of serum exosomes. (a) Size distribution of serum exosomes 
puri�ed by size exclusion chromatography as analysed by Nanoparticle Tracking Analysis. (b) Transmission 
electron micrograph of serum exosomes demonstrates small vesicles with sizes ranging from 60–110 nm in 
diameter. (c) Western blotting for exosome-associated proteins CD63, CD81 and Alix in three separate patient 
samples (cropped images – uncropped originals available in Supplementary Figure 1). (d) Bioanalzyer trace 
of RNA extracted from serum exosomes reveals a predominant population of small RNAs without ribosomal 
RNA. (e) Hierarchical clustering of di�erentially expressed miRNAs shows that RNaseA treatment of serum 
results in unique miRNA population, (p-value ≤ 0.05 and fold change ≥ 2).
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(Fig. 1b). �ese analyses revealed a population of nanovesicles with a predominant size of 95 nm and cup-shaped 
morphology typical of exosomes. Western blotting of protein extracts for CD61, CD83 and Alix, con�rmed that 
the particles isolated expressed all three characteristic exosome markers (Fig. 1c). RNA extraction from each 
sample yielded the typical RNA pro�le for exosomes, with the absence ribosomal RNA and enrichment of small 
(<200 nt) RNA species (Fig. 1d). Small RNA libraries were constructed from the exosomal RNA and sequenced 
to yield on average ~10 million reads per sample. Normalised miRNA read counts are detailed in Supplementary 
Data File 1.

To con�rm that our protocols were selecting for small RNAs protected by association with exosomes, we com-
pared miRNA pro�les between four samples with and without RNAse pre-treatment. �is identi�ed 62 miRNAs 
whose relative expression di�ered signi�cantly by at least 2-fold (Fig. 1e). �is demonstrates that serum exosomes 
carry a distinct pool of protected miRNA that can be interrogated in MS diagnosis and progression.

Exosomal miRNAs are dysregulated in MS patients and differentially expressed between dis-
ease subtypes. Twenty-�ve unrelated individuals with a diagnosis of MS (relapsing-remitting n = 14, pro-
gressive MS n = 11 (SPMS n = 7, PPMS n = 4)) and 11 healthy individuals were studied. A second, independent 
set of progressive cases (n = 11) was then analysed; participant demographic and clinical characteristics are out-
lined in Table 1. �e healthy control cohort was selected to match for age and gender to the RRMS group. While 
progressive MS is associated with older age and di�erent gender ratio compared to RRMS11, Pearson correlation 
demonstrates that age, gender and treatment did not correlate with the expression pro�les of the identi�ed miR-
NAs (Supplementary Figure 2a). Also, these clinical characteristics when incorporated to the multivariate model-
ling have minimal contributions to the model’s prediction accuracy (Supplementary Figure 2b).

We employed three statistical approaches (Student’s t-test, Fisher’s exact, Wilcoxon rank sum) to identify dif-
ferential expression of miRNAs between healthy controls, RRMS, and progressive MS. miRNAs were identi�ed as 
di�erentially expressed if they met a fold-change ≥ 2, and p-value ≤ 0.05 in at least two of the three statistical tests. 
Using this strategy we identi�ed four signi�cantly dysregulated miRNAs between healthy controls and RRMS 

Clinical Characteristics RRMS (n = 14)
S/PPMS (Dis.) 
(n = 11) HC (n = 11)

S/PPMS (Val.) 
(n = 11)

Age (mean ± SD) 42.5 (9.04) 53.4 (7.2) 40.3 (13.3) 52.7 (8.9)

Age of onset (±SD) 35.6 (7.28) 38.4 (8.5) NA 32.3 (8.2)

Gender (F/M) 10/4 5/6 9/2 10/1

Disease Duration in years 
(±SD)

6.9 (7.1) 15 (9.4) NA 20.4 (4.8)

Treatment (Y/N) 6/8 4/7 0/11 7/4

EDSS (±SD) 1.5 (1.0) 5.3 (1.6) NA 6 (1.1)

Table 1. Characteristics of participants in this study. Abbreviations: RRMS, Relapsing Remitting Multiple 
Sclerosis; S/PPMS, Secondary/Primary Progressive Multiple Sclerosis; HC, Health Control; Dis., Discovery set; 
Val., Validation set; EDSS, Expanded Disability Status Score; NA, Not Applicable.

miRNA CPM (B) CPM (A) FC t-test Exact test Wilcoxon Error rate

Control 
(A) vs. 
RRMS 
(B)

15b-5p 314 145.9 2.1 0.045 0.002 0.05 0.23

30b-5p 673 246 2.7 0.06 0.0004 0.026 0.21

342-3p 329 132 2.4 0.05 0.0002 0.008 0.21

451a 39592 19114 2 0.009 0.0003 0.005 0.2

Control 
(A) vs. 
S/PPMS 
(B)

127-3p 1,715 752 2.2 0.007 0.001 0.003 0.17

370-3p 707 321 2.2 0.008 0.002 0.007 0.18

409-3p 2,893 1,385 2.1 0.005 0.002 0.002 0.17

432-5p 682 308 2.2 0.002 0.001 0.003 0.16

15b-5p 314 135 2.3 0.04 0.008 0.05 0.23

223-3p 2646 934 2.8 0.026 0.002 0.047 0.22

23-3p 1116 506 2.2 0.04 0.005 0.025 0.21

S/PPMS 
(A) vs. 
RRMS 
(B)

30b-5p 673 219 3.1 0.05 0.001 0.015 0.20

342-3p 329 130 2.5 0.05 0.0016 0.02 0.22

374a-5p 328 159 2.1 0.02 0.009 0.038 0.22

432-5p 329 682 0.5 0.004 0.006 0.005 0.19

433-3p 195 414 0.5 0.003 0.0027 0.0007 0.14

485-3p 295 618 0.5 0.0056 0.002 0.004 0.17

Table 2. Signi�cantly dysregulated miRNAs across all group comparisons. Abbreviations: CPM, miRNA counts 
per million; FC, fold change; RRMS, Relapsing Remitting Multiple Sclerosis; S/PPMS, Secondary/Primary 
Progressive Multiple Sclerosis; HC, healthy control; EDSS, expanded disability status score; NA, not applicable; 
Error rate, estimated by leave-one-out cross validation.

http://1
http://2a
http://2b


www.nature.com/scientificreports/

4Scientific RepoRts | 7: 14293  | DOI:10.1038/s41598-017-14301-3

patients, and a further four between healthy controls and MS patients with progressive disease (SPMS/PPMS; 
Table 2). �ese represent miRNAs that have the potential to be exploited as blood-based diagnostic markers.

We also compared miRNA pro�les between the two clinically distinct MS subtypes, RRMS and progres-
sive MS. Here we found nine miRNAs that were signi�cantly di�erentially expressed between the two subtypes 
(Table 2). Importantly, in silico validation by leave-one-out cross validation correctly identi�ed the test sample on 
average 80% of the time (range 77–86%; Table 2).

An independent validation set of 11 new progressive MS samples was then sequenced and analysed using the 
same methods. Di�erential expression analysis between this new group and healthy controls con�rmed that three 
of the four original miRNAs (miR-370-3p, miR-409-3p, miR-432-5p) were signi�cantly dysregulated. �e fourth 
miRNA (miR-127-3p), while exhibiting close to 2-fold change in expression between the groups, failed to reach 
statistical signi�cance (Table 3). Di�erential expression analysis between the validation group and RRMS samples 
identi�ed eight out of nine signi�cantly dysregulated miRNAs as identi�ed previously (miR-15b-5p, miR-23a-3p, 
miR-223-3p, miR-374a-5p, miR-30b-5p, miR-433-3p, miR-485-3p, miR-342-3p, miR-432-5p) (Table 3).

Serum exosomal miRNAs reflect MS subtypes. We next examined the predictive power of each 
miRNA in our discovery sets using logistic regression (LR) models in which the predictor was the individual 
miRNA expression pro�le. Receiver operator characteristic (ROC) curves were determined for each candidate 
miRNA, where the true positive rate (sensitivity) is plotted against the false positive rate (1 – speci�city). Area 
under the ROC curve (AUC) measures were ≥0.74 for each individual miRNA, for both RRMS and S/PPMS 
groups compared to healthy controls (Fig. 2); for RRMS compared to S/PPMS the AUC measurements were 
≥0.76 (Fig. 3).

�e relative importance of each miRNA in our discovery sets, when considered individually, was calculated 
using the Random Forest method and these shown in Fig. 4a. Multivariate analyses using Random Forest were 
used to determine whether the combined expression patterns of multiple miRNAs could improve this predictive 
power. All possible miRNA combinations in each comparator group were trialled; the corresponding Random 
Forest multivariate models were then generated and out-of-bag error rates estimated. Using these methods, we 
were able to achieve predictive power of 66% for RRMS and progressive MS versus controls. Strikingly however, a 
combination of 3 or more miRNAs provided a predictive power of 95% for distinguishing RRMS from progressive 
MS (Table 4 and Fig. 4b).

We then examined the accuracy of Random Forest analysis in predicting the status of the validation set of new 
progressive samples using the same miRNA signatures. In this new test set, the original nine miRNAs reported 
for RRMS vs S/PPMS could predict 11/11 progressive MS samples in the validation sets (i.e., class speci�c error 
rate = 0%).

Pathway analysis of dysregulated miRNAs. We performed functional analysis on targets of identi�ed 
miRNAs. For each signature, we retrieved validated targets of miRNAs from three major miRNA-target data-
sets, miRecords12, miRTarBase13, and TarBase14 using the multiMiR R analysis package15. We then performed 
pathway overrepresentation analysis using KEGG pathways retrieved from the Molecular Signatures Database 
(MSigDB)-V 6.016. Among top 5% of signi�cantly enriched pathways (adjusted-p-value ≪10E-5), we observed 
relevant pathways such as neurotrophin signalling pathway, focal adhesion, and T cell receptor signalling. �e top 
signi�cantly enriched pathways are detailed in Supplementary Data File 2.

Discussion
In this study we have used unbiased high-throughput sequencing on RNA derived from serum exosome 
preparations in order to capture the complete pro�le of these miRNAs in patient sera. We used size exclusion 
chromatography for exosome isolation; a method that is known for high purity of exosome extracts as well 
as high reproducibility17. This method, coupled with RNAse treatment of extracts, allows interrogation of 

miRNA
CPM 
(B)

CPM 
(A) FC t-test

Exact 
test Wilcoxon

Error 
rate

Control 
(A) vs. 
S/PPMS 
(B)

127-3p 402 752 0.53 0.08 0.03 0.07 0.25

370-3p* 625 322 1.94 0.05 0.17 0.04 0.24

409-3p* 2585 1385 1.87 0.002 0.0002 0.003 0.19

432-5p* 589 309 1.91 0.03 0.6 0.03 0.23

15b-5p* 314 110 2.8 0.017 7E-08 0.0004 0.17

223-3p* 2647 675 3.9 0.011 0.0004 0.0005 0.15

23a-3p* 1116 557 2 0.047 0.6 0.015 0.20

S/PPMS 
(A) vs. 
RRMS 
(B)

30b-5p* 673 90 7.5 0.014 2E-09 0.000001 0.00

342-3p* 329 103 3.2 0.029 0.034 0.0007 0.17

374a-5p* 328 188 1.7 0.033 6E-07 0.133 0.23

432-5p* 329 589 0.5 0.051 0.0005 0.059 0.24

433-3p* 195 492 0.4 0.006 1E-09 0.002 0.18

485-3p 295 220 1.3 0.181 0.06 0.211 0.27

Table 3. Signi�cantly dysregulated miRNAs using progressive MS validation set. *miRNAs whose 
p-value < 0.05 in at least two tests and FC ≥ 1.7 in either directions. Abbreviations: c.f. Table 2.
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exosomal-associated miRNAs; a source of biomarkers distinct from free circulating miRNA. Machine-learning 
approaches on miRNAs were used to examine their individual and collective predictive powers to identify dis-
ease subtype in MS. �e results from this study con�rm that exosome-associated miRNAs represent unique and 
potentially powerful biomarkers for this common neurological disease.

We have identified dysregulated miRNAs that discriminate healthy individuals from RRMS or S/PPMS 
patients with good predictive power. We also identi�ed nine miRNAs that distinguish RRMS from S/PPMS 
patients with a very high degree of accuracy. A combination of just three miRNAs (miR-223-3p, miR-485-3p, 
miR-30b-5p) had a 95% accuracy rate of predicting disease progressive forms of MS from RRMS as identi�ed 
by Random Forest analyses, suggesting that they may be useful clinical biomarkers. An independent validation 
set of progressive MS samples con�rmed the reproducibility of our �ndings, and Random Forest analysis cor-
rectly categorised all samples in this new test set as progressive MS. To date, there are no clear clinical, imaging, 
or pathologic criteria to determine the point when RRMS converts to SPMS2. Our �ndings indicate that serum 
exosomal miRNA pro�les may be a useful tool in assisting determination of this transition.

Some of the miRNAs we have identi�ed have been previously implicated as circulating biomarkers in multi-
ple sclerosis, namely miR-23a, miR-15b, miR-223, and miR-374a4,18–25. MiR-23a is involved in oligodendrocyte 
di�erentiation26 and increases within active and chronic MS lesions23. Also, both miR-23a and miR-15b target 
the �broblast growth factor-2 (FGF-2) gene27. FGF2 is implicated in demyelination and remyelination, and there 
is some evidence that CSF FGF2 may be a useful marker of in�ammation in MS28. MiR-223 is one of the few 
miRNAs that have been identi�ed across several independent blood-based miRNA studies in MS4, and it targets 

Figure 2. Di�erentially expressed miRNAs for control vs. RRMS or S/PPMS groups. Di�erentially expressed 
miRNA species were identi�ed by Student’s t-test, Fisher’s exact test (EdgeR), and the Wilcoxon rank sum test 
for control versus RRMS (a) and control versus S/PPMS (b). MiRNAs with fold-change ≥ 2 and p-value ≤ 0.05 
in at least two tests were identi�ed as being di�erentially expressed. (le� panels) Box-and-whisker plot for each 
miRNA species between the two groups (black box represents control group, red and blue boxes represent 
RRMS and S/PPMS respectively). (right panels) Logistic regression and receiver operator characteristic analysis 
performed on individual miRNAs to assess predictive power. Logistic regression was used to determine the 
linear model with the best discriminatory power between control and MS patient samples. �e quality of this 
model was measured by the area under the curve (AUC) displayed on each plot.



www.nature.com/scientificreports/

6Scientific RepoRts | 7: 14293  | DOI:10.1038/s41598-017-14301-3

the transcription factor STAT5 and other in�ammatory regulators implicated in MS such as heat shock protein 
90 and E2F29–31.

While several candidate miRNAs have been previously reported as potential MS biomarkers, the majority we 
have identi�ed are novel. �is likely re�ects the unique constituent pro�le of exosomes versus free circulating 
miRNAs, and demonstrates that serum exosomal preparations represent a novel source of biomarkers. miR-
451a was upregulated in RRMS patients compared to healthy controls; a miRNA previously reported as a regu-
lator of oxidative stress with potential importance in a variety of neurodegenerative process32. We also identi�ed 
miR-342-3p to be upregulated in RRMS patients; a miRNA especially enriched in microglia and dysregulated in 
Creutzfeldt-Jakob and Alzheimer’s disease33–35. Both miR-342-3p and mir-30b-5p have been proposed as free 
circulating miRNA biomarkers in Alzheimer’s and Parkinson’s diseases27,28, and their association with MS in this 
study suggests that they may be more general markers of neuro-axonal injury. Pathway analysis of transcripts 
known or predicted to be regulated by our candidate miRNA pro�les yielded functional pathways highly relevant 
to MS disease pathogenesis such as neurotrophin signalling36, focal adhesion37, and T cell receptor signalling 
pathways38.

Figure 3. Di�erentially expressed miRNAs for RRMS vs. S/PPMS groups. Di�erentially expressed miRNA 
species were identi�ed as per Fig. 2 above. (le� panels) Box-and-whisker plot for each miRNA species between 
the two groups (red = RRMS group and blue represent S/PPMS group). (right panels) Logistic regression and 
receiver operator characteristic analysis of individual miRNAs to assess predictive power. Logistic regression 
was used to determine the linear model with the best discriminatory power between control and MS patient 
samples. �e quality of this model was measured by the area under the curve (AUC) displayed on each plot.
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Small RNA analysis from biological fluids, including exosomal miRNAs, are subject to a variety of 
pre-analytical variables such as sample collection and processing methods, as well as di�erences in coagula-
tion processes of serum and plasma39,40. �is likely contributes to the only partially overlapping ‘free circulating’ 
miRNA pro�les reported in di�erent studies of MS to date4,20. We have used size exclusion chromatography for 
exosome isolation, and analyses of our extracts with nanoparticle tracking, western blotting and electron micros-
copy demonstrate that this isolation method yields highly enriched vesicle populations with characteristics of 
exosomes. In line with recommendations from �e International Society for Extracellular Vesicles41, we have 
provided detailed technical information on our collection and isolation methodologies to allow comparison with 
future studies of serum exosomes in MS and other disorders. Our results with and without RNaseA treatment are 
in line with previous studies indicating that exosomes provide a protective environment for RNA6, and that some 
miRNAs appear to be selectively packaged in exosomes42.

Figure 4. Random Forest multivariate analysis. (a) Signi�cantly dysregulated miRNAs in each comparator 
group were ordered by the importance of contribution towards clinical classi�cation as measured by Random 
Forest models. (b) Random Forest model was run using all possible combinations of dysregulated miRNAs 
to �nd combinations (i.e., signatures) with highest multivariate predictive power. Error rates of di�erent 
combinations were strati�ed by the number of miRNAs (signature size) and their distributions were displayed 
as violin plots. �is Figure shows results achieved in RRMS vs S/PPMS comparisons. Similar analyses were 
performed for other comparator groups and summarized in Table 4.

# of miRNAs miRNA composition Error

9
miR-15b-5p, miR-23a-3p, miR-223-3p, 
miR-374a-5p, miR-30b-5p, miR-433-3p, 
miR-485-3p, miR-342-3p, miR-432-5p

0.15

6
miR-15b-5p, miR-23a-3p, miR-223-3p, 
miR-30b-5p, miR-485-3p, miR-432-5p

0.05

5
miR-23a-3p, miR-374a-5p, miR-30b-5p, 
miR-485-3p, miR-432-5p

0.05

5
miR-23a-3p, miR-223-3p, miR-374a-5p, 
miR-30b-5p, miR-485-3p

0.05

3 miR-223-3p, miR-485-3p, miR-30b-5p 0.05

Table 4. miRNA combinations improve discriminatory power between relapsing-remitting (RRMS) and 
progressive (S/PPMS) disease.
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In summary, this study demonstrates that exosomal-associated miRNAs have utility as biomarkers in MS. Our 
�ndings indicate that these biomarker pro�les are distinct to those previously reported from serum or plasma cir-
culating miRNA studies, while having comparable or superior predictive powers. Of note is the potential power to 
distinguish RRMS from progressive forms of the disease. �e next generation of MS therapies o�er the potential 
to speci�cally treat neuro-axonal and brain volume loss, and hence the ability to detect disease progression early 
may have major therapeutic and economic implications. If these exosomal biomarkers are able to indicate trans-
formation to progressive disease earlier than current clinical methods, they are likely to have signi�cant clinical 
utility. Longitudinal studies are needed to assess this question, and based on these initial investigations; these 
longitudinal studies should be pursued.

Materials and Methods
Participants. All patients attended the Royal Prince Alfred Hospital MS Clinic at the Brain and Mind Centre, 
University of Sydney. �e study was ethically approved by the RPA Hospital Human Research Ethics Committee 
(#X13-0264), and all patients provided written informed consent. All methods were performed in accordance 
with the relevant guidelines and regulations. MS was diagnosed according to the revised McDonald criteria43, and 
SPMS patients were di�erentiated from the other clinical phenotypes (RRMS and PPMS) using the de�nitions 
o�ered by Lublin et al.2.

Sample collection and preparation. A 20 mL blood sample was obtained from each participant’s using 
venepuncture with a 23 gauge butter�y needle. Blood was collected in three BD Vacutainer SST II Advance 
Serum-gel 7.5-ml Tubes (BD Vacutainer®, USA). Serum-gel tubes were le� at room temperature for 30 minutes 
for coagulation, and then centrifuged at 1,800 g for 10 minutes. �e resulting serum was transferred into 15 ml 
tubes and centrifuged at 3,000 g for 20 minutes to remove any cellular debris. �e serum sample was aliquoted 
into 2 ml microcentrifuge tubes with O-rings (Interlab®, New Zealand), immediately snap-frozen in liquid nitro-
gen and stored at −80 °C. All serum-gel tubes were processed within 2 hours of collection.

Exosome purification and characterisation. Serum (1 mL from each individual) was treated with RNase 
A at 37 °C for 10 min (100 ng/ ml, Qiagen, Australia) before exosome puri�cation. �e treated serum then under-
went size exclusion chromatography (qEV iZONE Science) by being overlaid on qEV size exclusion columns 
followed by elution with 5 ml freshly �ltered PBS. Ten fractions of 500 µl each were collected and analysed with 
Nanoparticle Tracking Analysis (NanoSight, Amesbury, UK). Fractions 8, 9, and 10 were pooled and stored at 
−80 °C for downstream analysis.

Western Immunoblotting (WB). Purified exosomes were resuspended with 4X sodium dode-
cyl sulfate (SDS) loading buffer and heated at 95 °C for 5 min to lyse. Samples were resolved on 12% (w/v) 
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and were transferred onto polyvinylidene difluoride 
(PVDF) membrane at 400 mA for 1 h using Criterion™ Blotter (BioRad, Hercules, CA, USA). Membranes 
were blocked in TBS-T containing 5% skim milk (w/v) followed by overnight incubation at 4 °C with a primary 
antibody (CD63, Abcam, ab193349, CD81, ProSci, 5195, Alix, Cell Signaling 21715). Membranes were washed 
with TBS-T (triplicate, 5 min) and incubated with a secondary antibody (conjugated to horse-radish peroxidase 
(HRP)) for 1 h at room temperature followed by three more TBS-T washing steps. Immunoreactive bands were 
visualized with enhanced chemiluminescence (ECL) (Amersham Biosciences, Inc.) detection reagent and imaged 
manually using X-ray �lm.

Transmission electron microscopy. 10 ul of puri�ed exosomes were loaded onto carbon-coated, 200 
mesh Cu formvar grids (#GSCU200C; ProSciTech Pty Ltd, QLD, Australia) and �xed with 2.5% glutaralde-
hyde in 0.1 M phosphate bu�er (pH 7.4). Samples were negatively stained with 2% uranyl acetate for 2 min and 
dried overnight. �en samples were visualised at 40, 000 X magni�cation on a Philips CM10 Bio�lter TEM (FEI 
Company, OR, USA) equipped with an AMT camera system (Advanced Microscopy Techniques, Corp., MA, 
USA) at an acceleration voltage of 80 kV.

RNA extraction. Puri�ed exosomes were processed for RNA extraction using the Plasma/Serum Circulating 
& Exosomal RNA Puri�cation Mini Kit (Norgen Biotek, Cat. 51000) according to the manufacturers protocol. 
To check the yield, quality and size of extracted total RNA we analysed samples with an Agilent 2100 Bioanalyser 
(Agilent Technologies, United States) on a Eukaryote Total RNA chip.

Small RNA sequencing. Sequencing libraries were constructed from exosome RNA using the NEBNext 
Multiplex Small RNA Library Prep Kit for Illumina (BioLabs, New England) according to the manufacturer’s 
instructions. Yield and size distribution of resultant libraries were validated using Agilent 2100 Bioanalyzer on 
a High-sensitivity DNA Assay (Agilent Technologies, United States). Libraries were then pooled with an equal 
proportion for multiplexed sequencing on Illumina HiSeq. 2000 System at the Ramaciotti Centre for Genomics.

Data pre-processing and differential expression analysis. Data pre-processing was performed using 
a pipeline comprising of adapter trimming (cutadapt), followed by genome alignment to human genome hg 19 
using Bowtie (18 bp seed, 1 error in seed, quality score sum of mismatches < 70). Where multiple best strata align-
ments existed, tags were randomly assigned to one of those coordinates. Tags were annotated against mirBase 
20, and �ltered for at most one base error within the tag. Counts for each miRNA were tabulated and adjusted 
to counts per million miRNAs passing the mismatch �lter. Samples with low miRNA read counts (<50,000) 
and miRNAs with low abundance (<100 read counts across more than 50% of samples) were removed (two 
RRMS and three S/PPMS samples). Di�erential expression analysis was performed using three di�erent statistical 
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hypothesis tests including a non-parametric two-sample Wilcoxon test and two parametric tests – Student’s t-test, 
and an exact test (implemented in Bioconductor EdgeR) which tests for di�erences between the means of two 
groups of negative-binomially distributed counts. Data pre-processing and di�erential expression analysis were 
performed using Bioconductor and R statistical packages.

Univariate analysis. We performed logistic regression (LR) and receiver operator characteristic (ROC) anal-
ysis to assess the predictive power of individual miRNAs between the two groups of interest. LR was used to iden-
tify linear predictive models with each miRNA as the univariate predictor. �e quality of each model was depicted 
by the corresponding ROC curve, which plots the true positive rate (i.e., sensitivity) against the false-positive rate 
(i.e., 1-speci�city). �e area under the ROC curve (AUC) was then computed as a measure of how well each LR 
model can distinguish between two diagnostic groups. We then used leave-one-out cross-validation (LOO-CV) 
to estimate the prediction errors of the LR models. LOO-CV learns the model on all samples except one, and tests 
the learnt model on the le�-out sample. �e process is repeated for each sample and the error rate is the propor-
tion of misclassi�ed samples. Overall, cross validation is a powerful model validation technique for assessing how 
the results of a statistical analysis can be generalized to an independent dataset44. �ese analyses were performed 
using R stats (glm) and boot (cv.glm) packages.

Multivariate analysis. �e predictive power of multiple miRNAs as disease multivariate signatures was 
assessed using Random Forest (RF) modelling. RF modelling is an ensemble learning method for classi�cation/
regression that operate by constructing a multitude of decision trees at training time in order to correct for the 
over�tting problem45. We used the R RandomForest package which reports out-of-bag (OOB) error as an unbi-
ased estimate of the test set prediction error. �e model computes the ‘importance’ of each predictor by permut-
ing OOB data that is for each tree the misclassi�cation error rate on the out-of-bag portion of the data is recorded. 
�e same procedure is done a�er permuting each predictor variable. �e di�erence between the two are then 
averaged over all trees, and normalized by the standard deviation of the di�erences.
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