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The endothelial dysfunction, associated with inflammation and vascular permeability, remains the key event in the pathogenesis of
cerebral ischemic stroke. Angiogenesis is essential for neuroprotection and neural repair following stroke. The neuroinflammatory
reaction plays a vital role in stroke, and inhibition of inflammation contributes to establishing an appropriate external
environment for angiogenesis. Exosomes are the heterogeneous population of extracellular vesicles which play critical roles in
intercellular communication through transmitting various proteins and nucleic acids to nearby and distant recipient cells by
body fluids and circulation. Recent reports have shown that exosomal therapy is a valuable and potential treatment strategy for
stroke. In this review, we discussed the exosomes in complex interaction mechanisms of angiogenesis and inflammation
following stroke as well as the challenges of exosomal studies such as secretion, uptake, modification, and application.

1. Introduction

Cerebral ischemic stroke is a common and serious cerebro-
vascular disease, accounting for 87% of all strokes [1], and
is the leading cause of persistent disability. Although the
incidence, prevalence, and mortality of stroke tend to
decline, the results from the Global Burden of Stroke 2017
study indicated that the overall stroke burden keeps growing
worldwide [2]. Ischemic strokes are caused by sudden cere-
bral vascular obstruction, and cerebral tissue ischemia and
hypoxia can lead to mitochondrial dysfunction, decreased
adenosine triphosphate (ATP), and excessive production of
reactive oxygen species (ROS) after a few minutes [3]. This
event results in the dysfunction of the sodium pump, cal-
cium pump, and other ATP-dependent ion transporters,
which causes Ca2+ excretion obstacles and calcium overload
[4]. Calcium overload promotes the release of glutamate,
and glutamate increased in the intercellular space causes
excessive excitation of glutamate receptors on the postsyn-
aptic membrane, which further increases the loading of

intracellular Ca2+ and leads to cell necrosis [4]. Besides, after
mitochondria were stimulated by calcium overload, the
mitochondrial permeability transition pore (MPTP) was
opened, and then, cytochrome C and other proapoptotic
proteins are released through MPTP, which can lead to cell
apoptosis [5]. In addition, when the blood supply to brain
tissue is interrupted, ATP synthesis is decreased, and the
increase of adenosine monophosphate (AMP)/ATP ratio
can directly activate AMP-activated protein kinase and then
inhibit the action of the mammalian target of rapamycin
(mTOR), leading to cell autophagy [6]. Overall, these
complex pathological cascades, such as calcium overload,
glutamic acid excitatory toxicity [7], and oxidative stress,
will eventually lead to edema, inflammatory reaction, necro-
sis, autophagy, apoptosis, and other serious consequences
for the central nervous system cells [8], which will seriously
affect the health and living quality of patients and increase
the burden on families and society.

At present, the intravenous recombinant tissue plasmin-
ogen activator (IV-rtPA) was considered to be effective for
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acute stroke [9]; however, it is a pity that the therapeutic
time window is only 4.5 hours. The risk might outweigh
the benefit when the IV-rtPA was applied beyond 4.5 hours
after stroke [10], and the hemorrhagic transformation and
oxidative stress are major clinical risks, which will further
amplify the pathological cascade [9, 11]. Fortunately, the
ischemic penumbra becomes the salvageable target for coun-
teracting the expansion of the infarct core and promoting
the recovery of stroke [12, 13].

The interaction between inflammation and angiogenesis
exists in many pathological processes, such as tumors,
diabetic retinopathy, and stroke. Various proinflammatory
cytokines, such as tumor necrosis factor α (TNF-α), interleu-
kin 4 (IL-4), and monocyte chemoattractant protein 1(MCP-
1) can promote the expression of vascular endothelial
growth factor (VEGF) and the proliferation of endothelial
cells and promote angiogenesis [14]. Similarly, the classical
angiogenic factor VEGF also promotes the inflammatory
response [15]. The crosstalk among different systems plays
a crucial role in maintaining the homeostasis of the central
nervous system and the integrity of the blood-brain barrier
(BBB) both under physiological conditions and various
diseases such as cerebral ischemia [16–19].

Exosomes, with a diameter of about 30-150 nm, are a
heterogeneous population of extracellular vesicles equipped
with functional molecule-decorated phospholipid bilayer
and rich in proteins, lipids, and nucleic acids [20, 21]. As
an alternative therapeutic strategy to whole-cell implanta-
tion, exosomes play critical roles in intercellular communi-
cation through transmitting various proteins and nucleic
acids to nearby and distant recipient cells by body fluids
and circulation [22]. Recently, exosome-based treatment
has shown immense effects in angiogenesis, anti-inflamma-
tion, neurogenesis, and antiapoptosis of stroke [23–25].

In this review, we summarize the biogenesis, uptake, and
function of exosomes and the mechanisms of exosomes in
crosstalk between angiogenesis and inflammation following
stroke. And then, we discuss the challenges in the translation
of exosome-based therapy to clinical applications.

2. The Features of Exosomes Applicable to the
Treatment of Stroke

2.1. The Advantages of Exosomes for Stroke. There are many
treatments for stroke in the clinic, for instant, anticoagu-
lants, blood pressure-lowering, and cholesterol-lowering
drugs can prevent stroke; IV-rtPA and endovascular throm-
bectomy in the acute stage of stroke can timely achieve the
blood flow recanalization [26]; some exercise training, phys-
ical factor therapies, and other rehabilitation treatments also
can promote the restoration of nerve function in the stage of
stroke convalescence [27]. However, numerous patients had
poor control of the risk factors of stroke or can not arrive at
the hospital within the time window of IV-rtPA and throm-
bectomy, resulting in severe neurological dysfunction. In
summary, the available treatment strategies for stroke are
limited; therefore, more research must be done on stroke.

Neurorestorative therapies, as adjunctive therapy to
improve stroke outcomes, mainly act on nerve cells, endo-

thelial cells, and immune cells to promote neurovascular
remodeling and reduce local and systemic inflammation
[28]. Cell-based therapies are a neuro repair therapy for
stroke by stimulating endogenous neuroplasticity and brain
remodeling to promote neurological recovery following
stroke [29]. Increasing evidence has indicated that the posi-
tive effects of cell-based therapies are mediated by exosomes,
which are derived from the administered cells [22]. In
addition, the exosomes have been shown that have many
advantages [22], for instance, overcome the obstacles of
BBB, can not block blood vessels, and can not induce malig-
nant transformation. Therefore, exosomes provide a novel
and potential therapeutic strategy for stroke.

2.2. Secretion and Regulation of Exosomes. Almost all living
cells can secrete exosomes in diverse pathophysiologic envi-
ronments [30]. Several kinds of central nervous system cells
such as microglia, oligodendrocytes, astrocytes, and neural
stem cells (NSCs) can secrete exosomes and regulate the
occurrence and development of neurological diseases. These
central nervous system cell-derived exosomes play a key role
in promoting angiogenesis, regulating inflammation, and
remodeling the brain following stroke [25, 31]. In addition,
mesenchymal stem cells (MSCs) have attracted wide atten-
tion in stroke treatment because they can differentiate into
neurons, but the MSCs were ≥15μm in diameter [32], which
makes it difficult to target them in the ischemic areas. Fortu-
nately, exosomes have physiological functions similar to
their donor cells; therefore, exosomes originated from cen-
tral nervous system cells and MSCs are considered a poten-
tial therapeutic strategy.

Secretion and release of exosomes is a complex pro-
cess, and multiple signal transduction factors, such as Rab
GTPases, endosomal-sorting complex required for transport
(ESCRT), and the ESCRT-associated protein ALIX are
involved in the regulation of the secretion of exosomes
[33–35]. The first step of the formation of exosomes is the cell
membrane invagination which forms the early endosomes,
and the further invagination of early endosomes wraps the
proteins, lipids, and nucleic acids in the cytoplasm and form
intraluminal vesicles (ILVs). The ESCRT family participates
in the regulation of the molecular composition of the
exosomes and the formation of ILVs, such as ESCRT-0,
ESCRT-I, and ESCRT-II in charge of the cargoes sorting,
and ESCRT-III undertakes the deformation and fission of
membrane [36]. In addition, ALIX recruits ESCRT-III to
endosomes and promotes sorting. Although the ALIX is an
active form of the ESCRT-associated protein, the ALIX/
ESCRT-III pathway needs lysophosphatidic acid rather than
being dependent on the ESCRT [36].

And then, with the gradual accumulation of ILVs, the
early endosomes mature into late endosomes/MVEs, some
MVEs fuse with the cell membrane and secrete exosomes
through exocytosis, and the other MVEs are degraded by
lysosomes [37–39]. The Rab GTPases are a critical family
in this process. The conversion of Rab5 to Rab7 regulates
the transition from early to late endosomes [36, 40]. Rab27a
and Rab27b are specialized in docking MVEs at the plasma
membrane [41]. The Rab7 regulates the fusion of MVEs with
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lysosomes to degrade the ILVs [36]. The Rab31 inhibits
MVEs degradation by recruiting TBC1D2B to Rab7 and
further suppressing the fusion of MVEs with lysosomes
[42]. Currently, the initiation mechanisms of membrane
invagination, the contents sorting (random or specific),
and the balance between the degradation of MVEs by lyso-
somes and the formation of exosomes still needed further
exploration.

2.3. The Uptake of Exosomes in the Central Nervous System.
The recipient cells capture the exosomes in many ways,
including specific molecular interactions, direct fusion of
membrane, and various endocytosis involving macropinocy-
tosis, lipid raft-mediated endocytosis, clathrin-mediated
endocytosis, and clathrin-independent endocytosis [43–46].
Recipient cells uptake exosomes by specific molecular such
as proteins, sugars, or lipids on the surface of the membrane
[47]; for instance, the integrin lymphocyte function-
associated antigen 1 on the macrophage-derived exosomes
can interact with intercellular adhesion molecule 1 (ICAM-
1) on the brain microvascular endothelial cells (BMECs)
[48]. The exosomal fusion directly with the membrane of
the recipient cells accompanied several key events such as
the rearrangement of exosomal membrane proteins, the
hydrophobic sequences insert into the target cell membrane,
lipid reorganization, protein reconstruction, and mem-
brane dimpling [49]. Macropinocytosis internalizes large
amounts of extracellular fluid by forming folds in the
plasma membrane, which depends on the functions of
actin, Rac1, and Na+/H+ exchanger [43]. The microglia
uptake oligodendroglia-derived exosomes by macropino-
cytosis, and inhibiting the functions of actin, Rac1, and
Na+/H+ exchanger resulted in a significant reduction of
the uptake of exosomes by microglia [50]. In the process of
BMECs uptake of macrophage-derived exosomes, Yuan
et al. observed the phenomenon of clathrin-mediated endo-
cytosis and caveolae-mediated endocytosis [48]. In addition,
exosomes can also be taken in neurons such as dopaminergic
neurons and affect these neurons. After the dopaminergic
neurons ingest exosomes, the substantia nigra loss and
apoptosis were reduced and the level of dopamine in the stri-
atum was upregulated [51] and restored the homeostasis of
oxidative stress, neuroinflammation, and cell apoptosis in
the Parkinson’s disease model mice [52]. Interestingly, exo-
somes secreted from stimulated by glutamatergic synapses
cortical neurons and were specifically endocytosed by neu-
rons [53]. The formation of exosomes, uptake by central
nervous cells, and their effects are shown in Figure 1.

In general, several mechanisms of exosomal uptake have
been identified, but the specificity of exosomes to recipient
cells and the membrane molecules that participate in the
recognition of exosomes by recipient cells still needed fur-
ther investigation.

3. Exosomes in Inflammation following Stroke

3.1. Inflammatory Response following Stroke. Following
cerebral ischemia, danger-associated molecular patterns,
including high-mobility-group box 1 (HMGB1), peroxire-

doxins, IL-33, mitochondrial transcription factor A, and
cytochrome C, are released by damaged neurons in the
minutes and bind to receptors on immune cells and then
result in inflammation and neurotoxicity [54–56]. Activated
microglia produce distinct phenotypes, M1 type secretes
a plentiful of proinflammatory factors including IL-1β,
IL-23, and TNF-α, which aggravate the inflammation
[57]. Contrary to the M1 type, the M2 type plays an anti-
inflammation role in ischemic injury against oxygen and
glucose deprivation [58]. Moreover, circulating immune cells
including neutrophils, monocytes/macrophages, and T cells
also aggravate central nervous system cell death due to the
permeability of BBB increased after cerebral ischemia [54].
At the same time, cellular adhesion molecules on leukocytes
and cerebral endothelial cells and cytokines were upregulated
following stroke and then promote adhesion and leukocyte
transendothelial metastasis, which further aggravates inflam-
matory response [54, 59]. The astrocytes also produce two
distinct phenotypes which, respectively, are A1 and A2 under
different pathological conditions. Research has shown that
the A1 type was induced by activated microglia under neuro-
inflammation, while the A2 type was induced by ischemia
and plays a neuroprotective role via upregulating neuro-
trophic factors to promote neuronal survival and function
repair [60, 61]. But the remarkable thing is that neuroinflam-
mation can contribute to the enlargement of infarcts; mean-
while, it can promote remodeling and repair at certain stages
following stroke [54, 62].

3.2. Exosomes in the Inflammatory Response following Stroke.
Exosomes participate in the remodeling process by deliver-
ing therapeutic nucleic acids, proteins, and drugs affecting
inflammation following stroke. The MSC-derived exosomes
packaged miR-542-3p target the Toll-like receptor 4
(TLR4) in HA1800 cells (human glial cells) and then prevent
ischemia-induced glial cell inflammatory response [63].
Meanwhile, in the inflammation following stroke-induced
reactive astrogliosis, the MSC-derived exosomes target astro-
cytes and reduce the reactive astrogliosis and inflammation;
the undergoing mechanism might be related to nuclear fac-
tor erythroid-derived 2 (Nrf2)/nuclear factor-κB (NF-κB)
[64]. Bone MSC- (BMSC-) derived exosomes with miR-
138-5p target the lipocalin 2 (LCN2) on astrocytes and
reduce the neurological impairment by inhibiting the astro-
cytes’ inflammatory response and apoptosis after stroke [65].
Melatonin is an effective free radical scavenger and antioxi-
dant, and melatonin-treated plasma exosomes significantly
protect against ischemia-induced inflammatory response
and inflammasome-mediated pyroptosis via regulating the
TLR4/NF-κB pathway [66]. The neural progenitor cell-
(NPC-) derived EVs showed the strong suppression of the
inflammatory response following cerebral ischemia, and
the effect is related to a set of miRNAs packaged in the EVs
that inhibited the inflammation-related pathway mitogen-
activated protein kinase (MAPK) [67].

3.3. Function of Exosomal miRNAs in Inflammation
Response following Stroke. Except for exosomal miRNAs,
there are many proteins and DNA also involved in some
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crucial biological processes. For instance, tetraspanin (CD9,
CD63, and CD81) and integrin proteins are essential for cell
targeting and adhesion, Rab GTPases, annexins, and flotillin
contribute to membrane fusion, and G proteins and kinases
are signal transduction molecules [20, 68]. Furthermore, in a
few types of research, genomic and mitochondrial DNA has
been found in exosomes [69]. However, there are few studies
on exosomal proteins and DNA in the field of neuroinflam-
mation and angiogenesis following stroke, and increasing
evidence has suggested that the exosomal miRNAs are
largely responsible for the therapeutic effects [70, 71].

Recent research suggests that exosomal miRNAs have
dual effects [71]. On the one hand, the exosomal miRNAs
negatively regulate the expression of target genes; for
instance, M2 microglia-derived exosomes attenuate ischemic
brain injury and promote neuronal survival via exosomal
miR-124 which negatively regulates its target gene
ubiquitin-specific protease 14 [72]. On the other hand, the
exosomal miRNAs as a ligand binds to the receptor; for
instance, the exosomal miR-21 and miR-29a have demon-
strated that bind to TLR and induce TLR8-mediated
activation of NF-κB and NF-κB-mediated secretion of proin-
flammatory cytokines TNF-α and IL-6 [73].

In addition to exogenous miRNAs, exosomal miRNAs
are also critical in regulating inflammation following stroke.
Microglia are prominent resident immune cells in the
central nervous system, and the activated microglia trigger
severe inflammatory responses following stroke. The MSC-
derived exosomal miR-223-3p inhibits M1 microglia polari-
zation and inflammatory response [74]. Moreover, the
human umbilical cord MSC- (hUMSC-) derived exosomes
also attenuate microglia-mediated neuroinflammation and
promote the recovery of neural function, and the undergoing

mechanism is involved in that exosomal miR-146a-5p regu-
lates the IL-1 receptor-associated kinases 1 (IRAK1)/TNF
receptor-associated factor 6 (TRAF6) [75]. Serum exosomes
from acute cerebral infarction patients aggravate cerebral
inflammation and promote microglia activation in middle
cerebral artery occlusion (MCAO) rats, and the undergoing
mechanism might be related to the exosomal miR-27-3p
which targets the peroxisome proliferator-activated recep-
tors γ (PPARγ) [76]. The PPARγ is a ligand-activated
transcriptional factor that participates in regulating a variety
of signaling networks including inflammation, glucose
homeostasis, and cell fates [77]. BMSC-derived exosomal
miR-221-3p can target the activated transcription factor 3
(ATF3) and then attenuate the neuroinflammation and
apoptosis following stroke [78].

While plentiful studies have proved that exosomes can
regulate inflammation after stroke, current studies have
mainly focused on the miRNAs of exosomes. The effect of
other exosomal cargoes on inflammation after stroke needs
further study.

4. Exosomes in Crosstalk between
Inflammation and Angiogenesis
following Stroke

4.1. Crosstalk between Inflammation and Angiogenesis
following Stroke. Angiogenesis usually occurs in the inflam-
matory environment, the inflammatory response is usually
accompanied by the initiation, progression, and stability of
angiogenesis [79]. Increasing research has indicated that
many immune cells and cytokines not only secrete inflam-
matory factors to aggravate brain injury but also promote
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Figure 1: Summary of the exosomal secretion, uptake, and the effect of regulating inflammation and angiogenesis. Process A represents the
exosomes derived from donor cells such as ADSCs, MSCs, and EPCs. This complex process is relevant to the formation of early endosomes,
early endosomes mature into late endosomes, and MVEs fuse with the cell membrane and secrete exosomes. Process B is exosomes that bind
to the central nervous system cells such as microglia, astrocytes, and endothelial cells through specific molecular interactions, the direct
fusion of membrane, and various endocytosis. Process C shows the effect of exosomes in regulating inflammation and angiogenesis
by promoting the formation of the blood vessel and suppressing the production of neuroinflammatory mediators following stroke.
Abbreviations: ADSCs: adipose-derived stem cells; MSCs: mesenchymal stem cells; EPCs: endothelial progenitor cells; MVEs:
multivesicular endosomes; ESCRT: endosomal-sorting complex required for transport.
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angiogenesis and BBB repair in a later stage [80, 81]. It is
well-known that the M2 type microglia affect angiogenesis
and anti-inflammation through secreting the IL-10, trans-
forming growth factor β (TGF-β), insulin-like growth factor
(IGF), and VEGF [57]. In the early phase of stroke, the
monocytes destroy BBB integrity and exacerbate neuroin-
flammation through secreting ROS, cytokines, and chemo-
kines [80]. However, the function and phenotype of
monocytes are not unchangeable; following differentiation
into mature macrophage cells, the monocyte-derived M2
type macrophage cells have a stronger ability in angiogenesis
by upregulating the basic fibroblast growth factor (FGF),
IGF-1, and placental growth factor (PGF) [80, 82]. The peri-
cytes were considered immune cells in the brain, and the
pericytes’ membrane protein TLR4 can bind the HMGB1
and induce the secretion of proinflammatory cytokines and
chemokines shortly after stroke. Moreover, pericytes are
essential for the whole process of angiogenesis including
degrading the basement membrane surrounding endothelial
cells, promoting the formation of tip cells by endothelial
cells, and preventing the degradation of matrix proteins of
neovascularization by secreting matrix metalloproteinase,
VEGF, and tissue inhibitor of metalloproteinase-3 [83–85].

In addition, the proinflammatory cytokines such as
TNF-α, MCP-1, and SDF-1 also can affect angiogenesis.
The research has shown that the interaction of TNF-α with
TNF receptor 1 can amplify the effect of erythropoietin-
induced angiogenesis by upregulation of the erythropoietin
receptor [86]. Significantly, a high dose of TNF inhibits
angiogenesis, but the pericytes can enhance angiogenesis
and overcome the inhibition of angiogenesis induced by a
high dose of TNF [79]. The MCP-1 is a key regulatory
molecule of monocytes trafficking to sites of inflammation;
meanwhile, the MCP-1 is a chemokine with angiogenic
properties. The angiogenic effect of MCP-1 is maintained
and modulated by VEGF [87]. The stromal cell-derived
factor-1 (SDF-1), also called C-X-C motif chemokine ligand
12 (CXCL12) binds to the CXC receptor 4 (CXCR4) as an
inflammatory initiator in the acute phase of stroke [88].
During the postacute phase of stroke, the CXCL12 promotes
angiogenesis by recruiting circulating endothelial progenitor
cells (EPCs) [89]. In addition, SDF-1 promotes neurogenesis
and angiogenesis through CXCR4-mediated downstream pro-
tein kinase B (AKT), extracellular signal-regulated kinases
(ERK), and P38 MAPK signaling pathways [88, 90].

Similarly, angiogenic factors and growth factors can
induce inflammatory responses [81]. Endothelial cell-
specific molecule 1 (Esm1) has dual effects on angiogenesis
and inflammation, and the research has shown that knock-
out Esm1 can reduce vascular permeability and cerebral
edema following stroke [91]. Moreover, gathered VEGF
directly participates in the proliferation, migration, and dif-
ferentiation of endothelial cells [92, 93], but VEGF is also a
chemokine that causes an increase in vascular permeability
and inflammation. Clinical evidence has shown that circulat-
ing VEGF was elevated 24-48 h after acute stroke and con-
veyed severe prognostic information [94]. HIF-1 is a kind
of nuclear protein with transcriptional activity induced by
hypoxia [95]. When mild and moderate ischemic hypoxia

occurs, HIF-1 is upregulated and then promotes angiogene-
sis in the ischemic region by directly upregulating the
expression of VEGF [96–99]. However, HIF-1 also has an
opposite effect that is bad for functional repair following
stroke. Several experiments have shown that upregulated
HIF-1 could aggravate apoptosis, autophagy, oxidative
stress, and inflammation [98, 100]. Although brain-derived
neurotrophic factor (BDNF) is a neurotrophic protein that
is widely expressed in the central nervous system and it
can promote angiogenesis and neurogenesis [101], increased
BDNF can promote the inflammatory response by increas-
ing neutrophil infiltration [102]. Besides, the notch signaling
pathway directly receives signals from neighboring cells, the
signals are transmitted to the nuclear as well as activate
the expression of related transcription factors and then
regulate angiogenesis [103]. Likewise, notch signaling can
also regulate inflammation in activated microglia in cere-
bral ischemia [104, 105].

In summary, the crosstalk between inflammation and
angiogenesis following stroke relates to the interaction of
various cells, cytokines, and signaling pathways in the
central nervous system.

4.2. The Effects of Exosomes in Crosstalk between
Inflammation and Angiogenesis following Stroke. The circu-
latory system and immune systems have complex interac-
tions, so some new therapeutic measures are needed to
address the challenges of inflammation and angiogenesis in
distinct environments. Exosomes can be used as a potential
tool, which reprograms recipient cells by providing numer-
ous factors of proangiogenesis and regulating inflammation
such as nuclear acids, noncoding RNAs, and proteins. The
effects of exosomes on crosstalk between inflammation and
angiogenesis are shown in Figure 2.

4.2.1. MSC-Derived Exosomes. The transplanted MSCs
increase the vascular density in infarcted areas via upregulat-
ing the expression of angiogenic factors such as HIF-1,
VEGF, and Angiogenin 1 (Ang-1). The improvement effects
not only include the promotion of the maturation and stabil-
ity of blood vessels, the activation of endothelial cells, vascu-
lar smooth muscle cells, and pericytes but also include the
reduction of inflammation and vascular leakage [106–110].
Moreover, MSCs can attenuate the circulating immune cells
including B-cells, natural killer cells, and T-cells, which
provide an appropriate external environment for brain
remodeling [111]. Similarly, MSC-derived exosomes were
certificated that participate in angiogenesis and inflamma-
tion. For example, MSC-derived exosomes with miR-29b-
3p promote angiogenesis via targeting phosphatase and
tensin homologue deleted on chromosome 10 (PTEN)/
AKT pathway [112], and the PTEN/AKT indicated an
increased ratio of M2 polarization to M1 polarization and
thus inhibiting inflammation [113]. MSC-derived and
loaded cholesterol-modified miR-210 exosomes target the
ischemic brain and promote angiogenesis by upregulating
the integrin β3, VEGF, and CD34 [114]. The MSC-derived
exosomes decorated with iron oxide nanoparticles (IONP)
exhibit a significant therapeutic effect on ischemic stroke,
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this effect is connected with angiogenesis, anti-inflammation,
and antiapoptosis [23]. Notably, the IONP-decorated exo-
somes not merely obtain a better targeting ability but also
activate the phosphorylation of c-Jun N-terminal kinase
(JNK) and upregulate the expressions of angiogenic factors
(Ang-1, FGF2, and VEGF) and anti-inflammation factors
(TGF-β1 and TGF-β3) [23]. Ischemic stroke may cause more
severe dysfunction in aged humans; in an animal research,
MSC-derived EVs reduced brain macrophage infiltrates in
aged MCAO rats and the accumulation of microglia in young
rats. Meanwhile, the EVs increased angiogenesis in young
and aged rats [115]. A hypoxic environment can stimulate
angiogenesis; similarly, hypoxic-treated MSC-derived EVs
were indicated that effectively increase BMEC proliferation,
migration, and tube formation and promote the postischemic
survival of BMECs [116]. In addition, MSC-derived exo-
somes significantly increase the number of newly formed
doublecortin (a marker of neuroblasts) and von Willebrand
factor (a marker of endothelial cells) and enhance neurovas-
cular remodeling following stroke [117].

4.2.2. EPC-Derived Exosomes. The EPCs not only merely
migrate to the injury zone, participate in the angiogenesis,
and restore the integrity of BBB but also have an important
role in regulating the inflammatory response, lessening the
motor and neurological impairments associated with stroke
pathology [19, 118]. EPCs promote endothelial regeneration
by stimulating the proliferation and migration of endogenic
endothelial cells via paracrine mechanisms, instead of direct
differentiation into mature endothelial cells [119, 120]. As a
key component of paracrine secretion, the EPC-derived exo-
somes have been confirmed to promote angiogenesis and
improve the recovery of function [121]. In recent studies,
Wang et al. observed that EPC-derived exosomes decrease
infarct size and increase cerebral blood flow and cerebral
microvascular density, especially the exosomes with enrich-
ment miR-126 enhance the therapeutic efficacy [122], and
miR-126 has been found that promote angiogenesis and
inhibit inflammation by repressing sprouty-related EVH1
domain-containing protein 1 (SPRED1) and vascular cell
adhesion molecule 1 (VCAM1) [123]. In addition, EPC-
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Figure 2: Summary of the exosomes in crosstalk between inflammation and angiogenesis. The red arrow represents regulation of
inflammatory response, the yellow arrow represents regulation of angiogenesis, and the blue arrow represents general regulation.
Exosomes from different sources carry miRNAs and other contents that affect central nervous system cells and simultaneously regulate
inflammation and angiogenesis through different signals. The balance between inflammation and angiogenesis is also influenced by many
factors following stroke, including the pathological stage of stroke, the signal received, and the dose of therapeutic substances.
Abbreviations: MSC: mesenchymal stem cell; EPC: endothelial progenitor cell; ADSC: adipose-derived stem cell; NPC: neural progenitor
cell; IONP: iron oxide nanoparticles; FGF: fibroblast growth factor; Ang-1: Angiogenin 1; VEGF: vascular endothelial growth factor;
NF-κB: nuclear factor-κB; TRPM7: transient receptor potential cation channel member 7; TLR4: Toll-like receptor 4; LCN2: lipocalin
2; IRAK1: IL-1 receptor-associated kinases 1; TRAF6: TNF receptor-associated factor 6; PTEN: phosphatase and tensin homologue
deleted on chromosome 10; AKT: protein kinase B; IL-1β: interleukin-1β; TNF-α: tumor necrosis factor α; TGF-β: transforming
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vascular cell adhesion molecule 1

6 Mediators of Inflammation



T
a
bl
e
1:
T
he

ro
le
s
of

ex
os
om

es
in

in
fl
am

m
at
io
n
an
d
an
gi
og
en
es
is
fo
llo
w
in
g
st
ro
ke
.

So
ur
ce

C
ar
go
es

R
ec
ip
ie
nt

ce
ll

T
ar
ge
t
m
ol
ec
ul
es
/p
at
hw

ay
s

Fu
nc
ti
on

R
ef
.

M
SC

s
m
iR
-5
42
-3
p

H
A
18
00

ce
lls

(h
um

an
gl
ia
lc
el
ls
)

T
LR

4
P
re
ve
nt

in
fl
am

m
at
or
y
re
sp
on

se
[6
3]

M
SC

s
/

A
st
ro
cy
te
s

N
rf
2/
N
F-
κB

R
ed
uc
e
th
e
re
ac
ti
ve

as
tr
og
lio

si
s
an
d

in
fl
am

m
at
io
n

[6
4]

B
M
SC

s
m
iR
-1
38
-5
p

A
st
ro
cy
te
s

LC
N
2

In
hi
bi
t
in
fl
am

m
at
io
n

[6
5]

P
la
sm

a
m
iR
N
A
s

/
T
LR

4/
N
F-
κB

A
ga
in
st
in
fl
am

m
at
io
n
an
d
in
fl
am

m
as
om

e-
m
ed
ia
te
d
py
ro
pt
os
is

[6
6]

N
P
C
s

m
iR
N
A
s

B
V
2
m
ic
ro
gl
ia

M
A
P
K

In
hi
bi
t
in
fl
am

m
at
io
n

[6
7]

M
SC

s
m
iR
-2
23
-3
p

B
V
2
m
ic
ro
gl
ia

M
ic
ro
gl
ia
l
M
1
po

la
ri
za
ti
on

In
hi
bi
t
in
fl
am

m
at
io
n

[7
4]

hU
M
SC

s
m
iR
-1
46
a-
5p

M
ic
ro
gl
ia

IR
A
K
1/
T
R
A
F6

A
tt
en
ua
te

ne
ur
oi
nfl

am
m
at
io
n

[7
5]

Se
ru
m

m
iR
-2
7-
3p

M
ic
ro
gl
ia

P
P
A
R
γ

A
gg
ra
va
te

ce
re
br
al
in
fl
am

m
at
io
n
an
d
pr
om

ot
e

m
ic
ro
gl
ia
ac
ti
va
ti
on

[7
6]

B
M
SC

s
m
iR
-2
21
-3
p

N
eu
ro
ns

A
T
F3

A
tt
en
ua
te

ne
ur
oi
nfl

am
m
at
io
n
an
d
ap
op

to
si
s

[7
8]

M
SC

s
m
iR
-2
9b
-3
p

B
M
E
C
s,
ne
ur
on

s
P
T
E
N
,A

K
T

P
ro
m
ot
e
an
gi
og
en
es
is
an
d
an
ti
ap
op

to
si
s

[1
12
]

M
SC

s
m
iR
-2
10

C
er
eb
ra
lv

as
cu
la
r
en
do

th
el
ia
lc
el
ls

in
te
gr
in

β
3,
V
E
G
F,

C
D
34

P
ro
m
ot
e
an
gi
og
en
es
is

[1
14
]

M
SC

s
/

P
he
oc
hr
om

oc
yt
om

a
12

ce
lls
,h

um
an

um
bi
lic
al
ve
in

en
do

th
el
ia
lc
el
ls

N
eu
ro
na
ln

it
ri
c
ox
id
e
sy
nt
ha
se
s,
ar
gi
na
se
-1
,

m
ic
ro
tu
bu

le
-a
ss
oc
ia
te
d
pr
ot
ei
n
2,
T
N
F-
α
,

IL
-1
β
,C

O
X
2

E
nh

an
ce

an
gi
og
en
es
is
an
d
an
ti
-i
nfl

am
m
at
or
y

[2
3]

M
SC

s
/

/
/

P
ro
m
ot
e
an
gi
og
en
es
is
,r
ed
uc
e
m
ac
ro
ph

ag
e

in
fi
lt
ra
te

an
d
m
ic
ro
gl
ia
ac
cu
m
ul
at
e

[1
15
]

M
SC

s
m
iR
N
A
s

B
M
E
C
s

V
E
G
F,

le
uk

oc
yt
e

tr
an
se
nd

ot
he
lia
lm

ig
ra
ti
on

In
du

ce
an
gi
og
en
es
is

[1
16
]

M
SC

s
/

E
nd

ot
he
lia
lc
el
ls
,n

eu
ro
bl
as
ts

D
ou

bl
ec
or
ti
n,

vo
n
W
ill
eb
ra
nd

fa
ct
or

In
cr
ea
se

an
gi
og
en
es
is
an
d
en
ha
nc
e

ne
ur
ov
as
cu
la
r
re
m
od

el
in
g

[1
17
]

E
P
C
s

m
iR
-1
26

B
M
E
C
s,
ne
ur
on

s,
as
tr
oc
yt
es
,m

ic
ro
gl
ia

V
E
G
FR

2,
ca
sp
as
e-
3

P
ro
m
ot
e
an
gi
og
en
es
is

[1
22
]

E
P
C
s

m
iR
-1
37

SH
-S
Y
5Y

ce
lls

C
O
X
2/
P
G
E
2

A
ga
in
st
ap
op

to
si
s
an
d

m
it
oc
ho

nd
ri
al
dy
sf
un

ct
io
n

A
D
SC

s
m
iR
-1
81
b-
5p

B
M
E
C
s

T
R
P
M
7

P
ro
m
ot
e
an
gi
og
en
es
is

[1
26
]

A
D
SC

s
m
iR
-1
26

M
ic
ro
gl
ia
,e
nd

ot
he
lia
l
ce
lls

T
N
F-
α
,IL

-1
β
,v
on

W
ill
eb
ra
nd

fa
ct
or

P
ro
m
ot
e
an
gi
og
en
es
is
,i
nh

ib
it
m
ic
ro
gl
ia
l

ac
ti
va
ti
on

an
d
in
fl
am

m
at
or
y
re
sp
on

se
[1
29
]

7Mediators of Inflammation



derived exosomes enriched with miR-137 could be against
apoptosis and mitochondrial dysfunction in SH-SY5Y cells,
and the protective efficacy might be connected with the
cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) signal-
ing pathway [124], COX2 is expressed in inflammation
and other pathological processes, and the beneficial effect
of anti-inflammation is connected with inhibition of COX2.

4.2.3. Adipose-Derived Stem Cell- (ADSC-) Derived Exosomes.
The ADSCs are self-renewing pluripotent stem cells derived
from adipose tissue, and ADSCs have the characteristics of
easy selection, nonimmunogenicity, and low risk in terato-
genesis and tumorigenesis. ADSCs also play an important
role in angiogenesis and immune regulation [125]. It has
been demonstrated that ADSC-derived exosomes with
miR-181b-5p promoted the mobility and angiogenesis of
BMECs by targeting the transient receptor potential cation
channel member 7 (TRPM7) following oxygen-glucose
deprivation [126], and TRPM7 is a major controller that
produces proinflammatory cytokine and activates NF-κB
by transmitting Ca2+; notably, angiogenesis and vascular
remodeling also depend on the Ca2+ signal [126–128].
Moreover, the ADSC-derived exosomes enriched miR-126
against cerebral ischemia injury by promoting angiogenesis
after stroke; meanwhile, the exosomes inhibit microglial acti-
vation and inflammatory response induced by stroke [129].

To sum up, exosomes are a cell-based therapy and the
biological functions of exosomes are closely related to the
biogenesis, cargoes, and target cells. Current researches focus
on the stem cell-derived exosome, whereas there are numer-
ous immune cells such as microglia-derived exosomes for
crosstalk between inflammation and angiogenesis following
stroke which needs further investigation. The roles of exo-
somes in inflammation and angiogenesis following stroke
are shown in Table 1.

5. Conclusions and Perspectives

Given the above, inflammatory cells and cytokines may
promote angiogenesis at different stages after stroke, and
angiogenic factors also may induce inflammation depending
on many complicating factors such as the dose, signal
received, stage of stroke, and microenvironment. The
interaction between neuroinflammation and angiogenesis
dictates the injury and repair processes following stroke. It
is crucial to develop therapeutic measures that target multi-
ple systems to maximize therapeutic efficacy. Numerous
evidences have indicated that exosomes exert protective
and restorative through regulating the interaction of angio-
genesis and inflammation effects in stroke.

Although exosomes have shown great therapeutic poten-
tial in the treatment of stroke, many challenges need to be
clarified before exosomes are used as a new method for
stroke. ① How to prepare more exosomes? The secretion
of exosomes is finite, which limits the clinical application.
Therefore, scale production is essential. At present, the mea-
sures to obtain a large number of exosomes mainly include
the addition of elicitors or drugs, change the culture condi-
tions, and extrusion. However, these methods may change

the exosomal contents and affect the therapeutic effects.
② How to increase the targeting of exosomes? The drawback
of undecorated exosomes is the poor targeting, thereby yield-
ing a poor therapeutic outcome. Engineering exosomes have
better targeting; for example, the MSC-derived exosomes
modified with IONP can drastically improve the ischemic-
lesion targeting [23, 25]. But the preparation of engineered
exosomes involves multiple reaction steps that may affect
the exosomal surface structures and molecules, resulting in
adverse reactions. ③ How do loading the required drugs
and bioactive substances into exosomes? The existing
methods have coincubation of parental cells with drugs,
directly loaded into exosomes, and directly incubated with
exosomes. Using the method of coincubation of parental cells
with drugs to secrete engineered exosomes is simple to oper-
ate but can not control the efficiency of drug delivery. It is a
widely used method that the drugs are loaded directly into
exosomes such as electroporation. The process is the drug
diffuse into exosomes following the formation of the tempo-
rary pores on the exosomal membrane by electric stimula-
tion. However, the process may damage the membrane
structure of exosomes and lead to drug leakage. In addition,
the drugs directly incubated with exosomes can not affect
the integrity of membrane structure, and the loading effi-
ciency is very limited and requires a large dose of drugs.

As described above, the challenges, activity, and thera-
peutic effects of exosomes can be affected easily. Therefore,
comprehensive consideration of the secretion, preparation
and uptake of exosomes, in-depth understanding of molecu-
lar transfer mechanisms and biological characteristics, and
selection of appropriate modification and loading methods
are of irreplaceable significance to better play the role of
exosomes.
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