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Exosomes and microvesicles are extracellular nanovesicles released by most but not all cells. They are spe-
cifically equipped to mediate intercellular communication via the transfer of genetic information, including
the transfer of both coding and non-coding RNAs, to recipient cells. As a result, both exosomes and micro-
vesicles play a fundamental biological role in the regulation of normal physiological as well as aberrant
pathological processes, via altered gene regulatory networks and/or via epigenetic programming. For ex-
ample, microvesicle-mediated genetic transfer can regulate the maintenance of stem cell plasticity and
induce beneficial cell phenotype modulation. Alternatively, such vesicles play a role in tumor pathogenesis
and the spread of neurodegenerative diseases via the transfer of specific microRNAs and pathogenic pro-
teins. Given this natural property for genetic information transfer, the possibility of exploiting these vesicles
for therapeutic purposes is now being investigated. Stem cell-derived microvesicles appear to be naturally
equipped to mediate tissue regeneration under certain conditions, while recent evidence suggests that exo-
somes might be harnessed for the targeted delivery of human genetic therapies via the introduction of
exogenous genetic cargoes such as siRNA. Thus, extracellular vesicles are emerging as potent genetic
information transfer agents underpinning a range of biological processes and with therapeutic potential.

INTRODUCTION

Genetic information can be transferred through two proposed
mechanisms: vertical gene transfer, gene exchange from
parent to the next generation, and horizontal gene transfer,
induced through, for example, bacteriophages (1) or viruses
(2). Recently, another mechanism of horizontal gene transfer
has emerged: naturally occurring cell-derived vesicles such
as exosomes and microvesicles. These are extracellular vesi-
cles produced constitutively by most, but not all, cell types
and, interestingly, contain both mRNAs and non-coding
RNAs such as small regulatory microRNAs (miRNAs) as
well as proteins that can be functionally delivered between dif-
ferent cell types and across species (3). As a result, such vesi-
cles have a significant impact on natural physiological
processes including the regulation of stem cell plasticity.

However, this natural ability of exosomes and microvesicles
to transfer genetic information might instead facilitate the
spread of disease through the delivery of genetic material
and/or pathogenic proteins (4). For example, it has been
noted that greater numbers of extracellular vesicles can be

isolated from diseased patients, some of which contain ele-
vated levels of specific miRNAs, which may be involved in
the cause and spread of diseases such as cancer (5). Recently,
similar evidence has been found for neurodegenerative dis-
eases, raising the possibility that the local spread of neuropath-
ology could be exosome-mediated (6). Hence, an increasingly
attractive hypothesis is that extracellular vesicles play crucial
roles in genetic information transfer in both normal and dis-
eased states.

In addition to their natural role in genetic information trans-
fer, several groups have now attempted to exploit the potential
of extracellular vesicles for therapeutic applications. Microve-
sicles derived from injured tissues can induce phenotypic
changes in local stem cells through epigenetic reprogramming
with miRNAs to stimulate tissue repair and regeneration (7),
while the natural ability of exosomes as agents for the delivery
therapeutic genetic materials has also recently been demon-
strated (8,9).

In this review, we discuss the fundamental role that extra-
cellular vesicles play in the regulation of normal physiological
and aberrant pathological processes through the transfer of
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genetic information. We also describe how these vesicles may
be utilized in the context of gene therapy. Lastly, we touch on
the challenges and potential future directions for studying
extracellular vesicle biology and therapy.

EXTRACELLULAR VESICLES: EXOSOMES AND

MICROVESICLES

The notion of extracellular vesicles first arose in 1983, when
researchers in Stahl’s (10) and Johnstone’s (11) groups
described the observation of multivesicular late endosomes re-
leasing vesicles from reticulocytes into the extracellular envir-
onment. These vesicles were subsequently named ‘exosomes’
(12), not to be confused with the identically named ribonucle-
ase complex (13).

Recently, the interest in extracellular vesicle biology has
grown enormously and many have described different types
of vesicles depending on their biophysical properties and bio-
genesis including several cell type-specific vesicles depending
on their source of origin (Tables 1 and 2). Such vesicles are
released from most cells and can be readily isolated from
most body fluids such as serum, plasma, urine and cerebro-
spinal fluid. Here, we focus the discussion on two specific
types of extracellular vesicles: exosomes and microvesicles.

Both exosomes and microvesicles are membrane bound
vesicles that differ based on their process of biogenesis and
biophysical properties, including size and surface protein
markers (Fig. 1). Exosomes are homogenous small particles
ranging from 40 to 100 nm in size and are derived from the
endocytic recycling pathway. In endocytosis, endocytic vesi-
cles form at the plasma membrane and fuse to form early
endosomes. These mature and become late endosomes where
intraluminal vesicles bud off into an intra-cytoplasmic
lumen. Instead of fusing with the lysosome, these multivesicu-
lar bodies directly fuse with the plasma membrane and release
exosomes into the extracellular space (14). Interestingly,
exosome biogenesis (15,16), protein cargo sorting (17,18)
and release (19) involve the endosomal sorting complex
required for transport (ESCRT complex) and other associated
proteins such as Alix (20,21) and Tsg101 (22). In contrast,
microvesicles are produced directly through the outward
budding and fission of membrane vesicles from the plasma
membrane, and hence, their surface markers are largely de-
pendent on the composition of the membrane of origin.
Further, they tend to constitute a larger and more heteroge-
neous population of extracellular vesicles, ranging from 50
to 1000 nm in diameter. However, both types of vesicles
have been shown to deliver functional mRNA, miRNA and
proteins to recipient cells. Hence, some reports have inter-
changeably used the terms ‘exosomes’ and ‘microvesicles’
to describe their role in genetic information transfer.

CELL–CELL COMMUNICATIONS VIA EXOSOMES

AND MICROVESICLES

In order to maintain cellular homeostasis or to respond to
pathogens in the extracellular milieu, cells often exchange in-
formation through the secretion of soluble factors, via
ligand-receptor interactions or via cellular ‘bridges’ such as
nanotubes (23). However, increasing evidence now indicates

Table 1. Table summarizing the properties and biogenesis of the different
extracellular vesicles described in literature

Nomenclature Properties Biogenesis Reference

Exosome Homogenous
population with a
size of 40–100 nm
in diameter

End of endocytic
pathway,
released from
cells when
multivesicular
bodies fuse with
the plasma
membrane

(16,103,117)

Exosomal markers
include CD9,
CD63, Alix,
flotillin-1 and
Tsg101

ESCRT is involved

Microvesicle Heterogeneous
population with a
size of 50–1000 nm
in diameter

Budding off/fission
directly from the
plasma
membrane

(116)

No definite unique
markers

Apoptotic
bodies

Variable size, 500–
2000 nm in
diameter

Extensive plasma
membrane
blebbing occurs
followed by
karyorrhexis and
separation of cell
fragments during
a process called
‘budding’

(118,119)

Consist of cytoplasm
with tightly packed
organelles

Ectosomes Neutrophil- or
monocyte-derived
MVs

Small shedding
membrane
vesicles, which
bud directly from
the cell
membrane

(120)

Table 2. Table summarizing some of the different tissue/cell-specific microve-
sicle/exosomes that have been described to date

Name Type of vesicle Function Reference

Cardiosome Microvesicles/
exosomes from
cardiomyocytes

Contain RNAs that are
involved in a
metabolic course of
events in the
microenvironment of
the heart

(26)

Prostasome Nanosized
microvesicles
secreted by acinar
epithelial cells of
the prostate gland

Intercellular
communication by
direct interaction
primarily between the
immobile acinar cells
of the prostate gland
and the mobile
spermatozoa

(121)

Vexosome Microvesicles/
exosomes that are
associated with
adeno-associated
virus vectors

Proposed to be an
efficient and novel
gene delivery system

(122)
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that exosomes and microvesicles contribute significantly to
genetic cross-talk between all cells.

Pioneering reports on vesicle-mediated genetic information
transfer were on tumor-derived (24) and murine embryonic
stem cell (ESC) (25)-derived microvesicles. The first study
reported that tumor-derived microvesicles (TMVs) showed
the presence of several surface determinants of tumor cells
such as chemokine receptors (CCR6) and CD44v7/8 and con-
tained mRNA for growth factors including vascular endothe-
lial growth factor (VEGF) and interleukin-8 (IL-8). When
TMVs were engulfed by monocytes, these surface determi-
nants were transferred and activated Akt, resulting in anti-
apoptotic effects in these monocytes. As for the latter study,
it provided evidence that ESC-derived microvesicles could
induce epigenetic reprogramming of hematopoietic progenitor
cells (HPCs). The authors proposed that ESC microvesicles
stimulated HPCs through the interaction of a surface ligand,
Wnt3 and delivery of mRNAs encoding several pluripotency
transcription factors. This mRNA transfer led to increased
phosphorylation of the mitogen-activated protein kinase p42/
44 and Akt, resulting in higher survival rates and increased ex-
pression of early pluripotent (e.g. Oct-4, Nanog and Rex-1)
and haematopoietic stem cell (e.g. Scl, HoxB4 and GATA
2) markers. Subsequently, exosomes derived from human
mast cell lines (3) were also shown to contain RNAs, aptly
named ‘exosomal shuttle RNAs (esRNAs)’. Interestingly,
RNAs found in exosomes were annotated mainly as small
RNAs, including miRNAs. Further microarray and DNA–
ChIP analysis revealed that only �8% of vesicle RNA corre-
sponded to that found in the parental cells, with �270 unique
gene transcripts found in the exosomes. These results were
corroborated in subsequent reports of non-coding RNAs and
miRNAs in extracellular vesicles derived from other cells
such as cardiomyocytes (26), a range of stem cells (27),
tumor cells (28) and dendritic cells (29–31). Besides RNAs,

extracellular vesicles also contain and transfer important mem-
brane and cytoplasmic protein components (32–34), some of
which are involved in RNA stabilization and trafficking
(35), translation and transcription, e.g. the RNA-induced silen-
cing complex proteins such as Argonaute 2 and its interacting
partner GW182 (36). Hence, exosomes and microvesicles are
a potent source of genetic information transfer both between
different cell types and even between cell types across a
species barrier, e.g. genetic transfer from human liver stem
cell-derived microvesicles to hepatectomized rats (37–39)
(Fig. 2).

MICROVESICLE-MEDIATED INFORMATION

TRANSFER FOR CELL PHENOTYPE MODULATION

An important, yet not well–understood, feature of
microvesicle-mediated information transfer is cell phenotype
modulation. This idea first arose when the Sharkis laboratory
demonstrated that bone marrow cells began to express
mRNA encoding albumin after being co-cultured with liver
cells (40). Subsequently, Aliotta et al. (41) generated similar
results when co-culturing injured lung tissues with bone
marrow cells: microvesicles released from the lung cells
induced epigenetic modifications in the recipient bone
marrow cells, causing these cells to express pulmonary epithe-
lial cell-specific genes and pro-surfactant B protein. Using
microarray analysis, the transfer of tissue-specific mRNAs,
miRNAs and protein-based transcription factors through the
extracellular microvesicles was shown to induce this pheno-
type change (42). Interestingly, this microvesicle-induced
phenotype change in bone marrow cells was not limited to
extracellular vesicle transfer from lung tissues: they also
demonstrated the expression of tissue-specific brain, heart
and liver mRNAs in marrow cells when co-cultured with

Figure 1. (A) Exosome and microvesicle biogenesis. Exosomes are an end-product of the endocytic recycling pathway. First, endocytic vesicles form at the
plasma membrane and fuse to form early endosomes. These mature and become late endosomes where intraluminal vesicles bud off into the lumen. These multi-
vesicular bodies (MVBs) then directly fuse with the plasma membrane and release exosomes into the extracellular space. As for microvesicles, they bud off
directly from the plasma membrane. (B) An enlarged exosome showing that there are a variety of common exosomal surface markers (e.g. tetraspanins such
as CD9 and CD63 and lipid raft-associated proteins including flotillin-1) as well as internal markers such as Alix and Tsg101. Each exosome also contain
and transfer small RNAs and other cytoplasmic proteins (purple) and cell-specific receptors (orange) which can be transferred to recipient cells.
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cells derived from these various tissues (43,44). However, they
did notice that this phenotype modulation was dependent on
cell cycle status (45). Microvesicles contain varied levels of
adhesion molecules, such as integrins, when released by
stem cells at different stages of the cell cycle and this could
affect vesicle trafficking and uptake. Hence, a model of stem
cell regulation termed ‘the continuum model’ was proposed
where the plasticity of stem cells, both intra- and extra-
haematopoietic, is mediated by two factors: the cell cycle
status and the transfer of genetic information from microvesi-
cles in the local environment (43).

ROLE OF EXTRACELLULAR VESICLES IN

MAINTENANCE OF NORMAL PHYSIOLOGICAL

PROCESSES

In many biological systems, extracellular vesicles are emer-
ging as important mediators of cell–cell communication
underpinning the maintenance of physiological function.
Early studies in the immune system had shown that exosomes
derived from a range of different immune cells can harbor im-
munologically relevant molecules such as major histocompati-
bility complex (MHC) class II, cluster of differentiation 86
(CD86), lymphocyte function-associated antigen 1 and inter-
cellular adhesion molecule 1 that impact on a variety of im-
munological functions, including T cell activation (46,47),
tolerance induction (48) and dendritic cell maturation (49).
More recent studies have shown that the genetic transfer of
esRNAs across immune cell types, e.g. between human mast
cells and CD34+ progenitor cells, provides critical regulatory
signals for appropriate cell maturation (50). Such genetic
transfer may also be crucial for antigen recognition purposes,
e.g. as shown by T cell-derived exosomes transferring
miR-335 to antigen-presenting cells in an antigen-dependent,
unidirectional manner, only during immune synapsis (51).
Besides immune cells, exosomes from other cell sources
such as breast tissues have also been found to modulate
immune responses including immune stimulation (52) and tol-
erance induction (48). Further, it was recently discovered that
exosomes isolated from breast milk are highly enriched in
immune- and developmental-related miRNAs (e.g.
miR-148a-3p and let-7 family). Hence, it seems plausible

that breast milk exosomes play a role in the development of
the immune system through post-transcriptional repression of
various miRNA-regulated target genes in the cells of the
newborn infant digestive tract (53,54).

Similarly in the nervous system, extracellular vesicles
derived from neurones have been shown to transmit informa-
tion in the form of proteins to facilitate neural circuit function.
For example, cortical neurone-derived exosomes transfer
newly synthesized proteins including a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor receptor subunits
to the presynaptic terminals of connected neurones and con-
tribute to the local synaptic plasticity (55,56). Further, increas-
ing evidence of esRNA transfer within the nervous system
suggests that mRNAs and miRNAs are also transferred (57)
to regulate neuronal function. Importantly, membrane vesicles
here provide an efficient form of exchange of biochemical in-
formation as these vesicles are sufficiently motile to carry their
genetic contents and impact on static neuronal networks
located at a distance (6).

SPREAD OF DISEASE PATHOLOGY BY

EXOSOMES AND MICROVESICLES

Since extracellular vesicles are a potent source of information
transfer to neighboring and distant cells, it is no surprise that
viruses (58,59) and other pathogens would exploit this
system to assist transmission. Indeed, many studies have
noted that the production of extracellular vesicles rises
sharply in diseased when compared with non-diseased states
(5,60–62). One mechanism of disease spreading is through
the vesicle-mediated receptor transfer, e.g. transfer of chemo-
kine receptors to aid the spread of the human immunodefi-
ciency virus (63–65). Another mechanism could involve the
transfer of miRNAs and oncogenic proteins through microve-
sicles to facilitate local or metastatic tumor spread. For
example, glioblastoma-derived microvesicles contain elevated
levels of let-7a, miR-15b and oncogenic receptors such as
EGFRvIII, all of which can be transferred to other cells in
the tumor environment, leading to further tumor growth and
metastasis (34). Moreover, neighboring non-tumor cells such
as tumor-associated macrophages can secrete microvesicles
with high levels of miR-223. miR-223 can bind to target
sites in the 3′-UTR of Mef2c (66), causing an increased accu-
mulation of b-catenin in the nuclei of breast cancer cells to en-
courage local invasion (67). Further, microvesicles have been
postulated to re-shape the local tumor environment into a more
favorable niche for tumor growth, invasion and spread of me-
tastasis (60,68–70). For example, microvesicles from lung
cancer cells can activate and stimulate expression of several
pro-angiopoietic factors (e.g. IL-8, VEGF, LIF, oncostatin
M, IL-11 and matrix metalloproteinase 9) in surrounding
stromal cells, effectively supporting the microenvironment to
encourage lung cancer cell metastasis (68).

Besides cancer, extracellular vesicles are also implicated in
the local spread of neurodegenerative diseases as increasing
evidence indicates that exosomes released from neurones
can be transferred to other brain cells locally and at a distance.
For example in Alzheimer’s disease, processing of amyloid-b
results in the release of secreted amyloid precursor protein and

Figure 2. The different beneficial (green) and potentially detrimental (red)
effects of exosome and microvesicle gene information transfer.
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a membrane-associated fragment [beta-C-terminal fragment
(b-CTF)] (71). The latter fragment can be trafficked into endo-
somal compartments and become encapsulated in exosomes
(72,73). Subsequently, exosomes containing toxic proteins
can transport these and lead to pathogenic amyloid deposition
in other parts of the brain (4,74–79). Similarly, oligomeric and
monomeric a-synuclein species have also been detected in
extracellular vesicles. These vesicles can then transfer these
toxic inclusions to assist with the propagation of Parkinson’s
disease-related pathology (80–82). Another brain pathogen
that exploits exosome-mediated transfer is the prion protein.
Exosomes from prion-infected cells contain both the
host-encoded prion protein (PrP(C)) and the abnormal patho-
genic prion protein isoform (PrP(Sc)) (83). When applied,
these exosomes can efficiently initiate prion propagation in un-
infected recipient cells and even to non-neuronal cells. Hence,
it is increasingly evident in a range of diseases and disease
models that extracellular vesicles assist disease propagation
through the genetic transfer.

THERAPEUTIC POWER OF EXOSOMES AND

MICROVESICLES

With the natural ability of exosomes and microvesicles to
transfer genetic material both locally and systemically, some
groups have investigated ways to exploit these vesicles as
therapeutic agents. In 2007, Camussi’s group (84) isolated
microvesicles from endothelial progenitor cells (EPCs)
which they later deduced had contained proangiogenic
miR-126 and miR-296 (85). Transfer of these miRNAs trig-
gered the activation of the PI3K/Akt signaling pathway and
phosphorylation of endothelial nitric oxide synthases and
directed endothelial cells to undergo angiogenic and anti-
apoptotic Programme, shown initially in vitro and later in
vivo (86). Interestingly, the same miRNAs (miR-126 and
miR-296) in microvesicles derived from EPCs were also
shown to induce therapeutic effects in other cell types. For
example, EPC microvesicles were able to reprogram hypoxic
resident renal cells to regenerate and protect them from
ischaemia-reperfusion injury (87) or activate an angiogenic
Programme in islet endothelium to sustain revascularization
and b-cell function, potentially useful for increasing efficacy
of insulin production after islet transplantation (86). Subse-
quently, microvesicles from different sources including mes-
enchymal stem cells (MSCs) and liver stem cells were also
found to confer therapeutic benefit in a range of different dis-
eases; enhancing survival in acute (37,88) and chronic (89)
kidney injuries and peripheral arterial disease (90) as well as
accelerating hepatic regeneration (38). Similarly,
MSC-derived exosomes were also able to provide protection
against myocardial ischaemia (91) and to treat myocardial in-
farction (92) through the expression of higher levels of precur-
sor forms of hsa-let-7b and hsa-let-7g miRNAs (93). These
findings led to the hypothesis that microvesicle-mediated
therapeutic effects may occur through two different mechan-
isms involving gene information transfer (7,23,94) (Fig. 3).
First, microvesicles released from injured tissues can act on
(local) stem cells and promote the release of ‘regenerative’
microvesicles for tissue repair; second, local stem cells in

the vicinity of injured or degenerating tissues produce micro-
vesicles that induce de-differentiation and re-entry into the cell
cycle of cells neighboring the injured tissues to stimulate re-
generation.

An alternative therapeutic approach is to re-engineer natur-
ally derived exosomes for targeted gene therapy. Exosomes
are potentially ideal gene therapy delivery vectors as they
are comprised of natural non-synthetic and non-viral compo-
nents. Further, their small size and flexibility enables them
to cross major biological membranes, while their bi-lipid
structure protects the RNA and protein cargo from degrad-
ation, facilitating delivery to its target (95). In 2011,
Alvarez-Erviti et al. (8) published the first study using modi-
fied murine exosomes to successfully deliver exogenous
genetic cargo (siRNA) resulting in gene-specific silencing in
the brain. They proved that by expressing a rabies virus glyco-
protein peptide (96), which specifically targets the brain, on
these exosomes, they were able to get target gene knockdown

Figure 3. The two mechanisms of stem cell exosome/microvesicle-mediated
regeneration of injuired tissues. (A) Microvesicles and exosomes can be
released from injuired tissues and act locally on the stem cells to prime
them to release exosomes/microvesicles that naturally contain a variety of
beneficial cargoes to help in repair and regeneration directly. (B) Microvesi-
cles and exosomes can be released from injuired tissue and act on the stem
cells. These stem cells can then de-differentiate neighbouring cells at the
injuired site to replace the damaged cells. (C) Enlarge view of a stem cell-
derived extracellular vesicle, showing its cargo contents for repair and regen-
eration. These cargoes include proangiogenic miRNAs such as miR-126 and
miR-296, mRNAs for immune regulation including cytokine receptor-like
factor 1 (CRLF1) and interleukin 1 receptor antagonist (IL1RN), transport pro-
teins that assist in the transport and stability of mRNA such as Staufen1
(Stau1) and 2 (Stau2) and factors involved in miRNA transport and processing
like Argonaute2 (Ago2).
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in a number of brain regions following systemic intravenous
delivery, with little effect in peripheral organs such as the
liver and kidneys. Further, these modified exosomes could
be repeatedly injected into healthy mice without adverse
immune response, indicating that this might be a relatively
safe form of therapy. Recently, Valadi’s group was able to val-
idate exosomes from peripheral blood as genetic delivery
agents (9) for heterologous siRNA against MAPK-1. These
exosomes could be delivered to human blood mononuclear
cells including monocytes and lymphocytes, to result in effi-
cient gene knockdown. These exciting early findings have
laid the groundwork for developing extracellular vesicles as
intelligent, targeted gene therapeutic agents and extending
the repertoire of cargoes to other therapeutic macromolecules
including oligonucleotides and proteins.

IMPORTANCE AND CHALLENGES IN STUDYING

EXOSOMES AND MICROVESICLES

Exosomes and microvesicles are beginning to emerge as
crucial vectors aiding genetic information transfer in both
health and disease. Moreover, new evidence showing the
therapeutic relevance of these vesicles in both unmodified
and modified forms make them attractive therapeutic agents
for further study. However, there remain fundamental chal-
lenges in the field of extracellular vesicle research. These
include development of robust, reproducible methods for
extracellular vesicle isolation and characterization as well as
developing greater fundamental knowledge on exosome bio-
genesis and function; all of which will serve to enhance our
overall understanding on the role of such vesicles in gene
information transfer.

The derivation of highly pure and well-characterized ves-
icular populations is crucial to establishing a detailed under-
standing of genetic information transfer; how such
information is packaged and transferred and how its func-
tions are mediated within the host cell. There are currently
various methods to isolate specific extracellular vesicle
populations; from ultracentrifugation protocols (97), to
newer alternative methods such as filtration (98), immunoaf-
finity capture with beads (99) and microfluidics approaches
(100). Sucrose density gradients can be used to derive
pure populations (97), but this method is time-consuming
with low yield. At present, there is a lack of consensus as
to the optimal methods for the isolation of pure vesicular
preparations.

Regarding characterization of extracellular vesicles, there
are several common methods used including electron micros-
copy (EM), western blotting and fluorescence-activated cell
sorting (FACS) with beads. In addition, new technologies
such as the Nanosight (101), new FACS (102) protocols and
curation of an exosome marker database like exocarta.org
(103) have emerged recently to further supplement current
characterization studies. However, some methods have signifi-
cant limitations; for example, the original EM classification of
exosomes as ‘cup-shaped’ vesicles is incorrect as this is now
known to be an artefact of EM preparation (61). Moreover,
it is important to note that none of these methods singly
allows for complete biophysical and biochemical

characterization of vesicles and their genetic content. Robust
and reproducible methods for elucidating vesicular genetic
contents will be crucial to underpin our understanding of
vesicle biology and for the exploitation of such contents as
disease biomarkers (34,104–106). Hence, establishing appro-
priate and comprehensive methods for isolation and character-
ization of extracellular vesicles is critical to ensuring the
reliability of genetic data derived from analysing different
vesicle populations.

Understanding the specificity and mechanism by which
genetic information is inserted into extracellular vesicles
prior to release will be central to understanding their role
in information transfer (3). Numerous reports have specu-
lated that plasma membrane anchors such as a myristoyla-
tion tags (107), conserved glycan signatures (108), a
25-nucleotide zip code (109) or short nucleotide patterns
(110) can shuttle specific RNA and protein cargo into exo-
somes but none of these data have been repeated for exo-
somes from all cell types. Thus, it remains unclear
whether the RNA and protein content in vesicles is the
result of a highly selective or stochastic process. Another
idea gaining favour is that the type of cargo entering vesi-
cles is dependent on the external environment of the cell.
For example, it has been shown that exosomes derived
from mast cells under oxidative stress have a RNA content
distinct from those grown under normal conditions and
that these exosomes have the ability to induce tolerance to
oxidative stress in recipient cells (111).

Lastly, the actual mode of trafficking and uptake of vesi-
cles into recipient cells is still poorly understood. Some have
hypothesized that exosomes and microvesicles can be pha-
gocytosed by recipient cells (112,113) or fuse directly with
the plasma membrane (114). Others have speculated that
this could be a receptor-mediated process (33,115,116),
which suggests that cells could take up extracellular vesicles
selectively based on their surface receptor repertoires. Also,
upon uptake of vesicles into recipient cells, there are further
unanswered questions on how genetic information such as
miRNA are released and localized to the cytoplasmic or
nuclear compartments in which they are functional.
Gaining a deeper understanding of extracellular vesicle traf-
ficking, targeting and uptake will help to answer fundamen-
tal questions relating to the function and importance of the
genetic signals encapsulated and transferred within such
natural vesicles.

CONCLUSION

Extracellular vesicles are emerging as potent sources of
genetic information transfer between mammalian cells and
tissues resulting in both beneficial (cell communication, stem
cell plasticity and repair of injured tissues) and potentially det-
rimental (spread of disease) outcomes. Such vesicles also have
therapeutic potential as gene therapy tools, and hence increas-
ing efforts will be made in the coming years to better under-
stand their biology and function.
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Urbanowicz, B., Brański, P., Ratajczak, M.Z. and Zembala, M. (2006)
Tumour-derived microvesicles carry several surface determinants and
mRNA of tumour cells and transfer some of these determinants to
monocytes. Cancer Immunol. Immunother., 55, 808–818.

25. Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P. and
Ratajczak, M.Z. (2006) Embryonic stem cell-derived microvesicles
reprogram hematopoietic progenitors: evidence for horizontal transfer of
mRNA and protein delivery. Leukemia, 20, 847–856.

26. Waldenström, A., Gennebäck, N., Hellman, U. and Ronquist, G. (2012)
Cardiomyocyte microvesicles contain DNA/RNA and convey biological
messages to target cells. PLoS One, 7, e34653.

27. Yuan, A., Farber, E.L., Rapoport, A.L., Tejada, D., Deniskin, R.,
Akhmedov, N.B. and Farber, D.B. (2009) Transfer of microRNAs by
embryonic stem cell microvesicles. PLoS One, 4, e4722.

28. D’Souza-Schorey, C. and Clancy, J.W. (2012) Tumour-derived
microvesicles: shedding light on novel microenvironment modulators
and prospective cancer biomarkers. Genes Dev., 26, 1287–1299.

29. Kosaka, N., Iguchi, H. and Ochiya, T. (2010) Circulating microRNA in
body fluid: a new potential biomarker for cancer diagnosis and
prognosis. Cancer Sci., 101, 2087–2092.

30. Pegtel, D.M., Cosmopoulos, K., Thorley-Lawson, D.A., van Eijndhoven,
M.A.J., Hopmans, E.S., Lindenberg, J.L., de Gruijl, T.D., Würdinger, T.
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K., Löwer, J., Misasi, R., Montrasio, F. and Sorice, M. (2009) Paracrine
diffusion of PrPC and propagation of prion infectivity by plasma
membrane-derived microvesicles. PLoS One, 4, e5057.

60. Noerholm, M., Balaj, L., Limperg, T., Salehi, A., Zhu, L.D., Hochberg,
F.H., Breakefield, X.O., Carter, B.S. and Skog, J. (2012) RNA expression
patterns in serum microvesicles from patients with glioblastoma
multiforme and controls. BMC Cancer, 12, 22.
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64. Mack, M., Kleinschmidt, A., Brühl, H., Klier, C., Nelson, P.J., Cihak, J.,
Plachý, J., Stangassinger, M., Erfle, V. and Schlöndorff, D. (2000)
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