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Adult neurogenesis has been convincingly demonstrated in two regions of the

mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the

hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ

newborn neurons are destined to the granular cell layer (GCL) of the DG, while new

neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process

of adult neurogenesis persists throughout life and is supported by a pool of neural

stem cells (NSCs), which reside in a unique and specialized microenvironment known

as “neurogenic niche”. Neurogenic niches are structured by a complex organization of

different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus,

cell-to-cell communication plays a key role in the dynamic modulation of homeostasis

and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular

signals originated locally provide the necessary support and regulate the balance

between self-renewal and differentiation of NSCs. Furthermore, extracellular signals

originated at distant locations, including other brain regions or systemic organs, may

reach the niche through the cerebrospinal fluid (CSF) or the vasculature and influence

its nature. The role of several secreted molecules, such as cytokines, growth factors,

neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically

addressed. Interestingly, in addition to these well-recognized signals, a novel type of

intercellular messengers has been identified recently: the extracellular vesicles (EVs).

EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs

(miRNAs), proteins and lipids between cells and thus are able to modify the function of

recipient cells. Exosomes appear to play a significant role in different stem cell niches

such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic

niche; however, their roles in adult neurogenic niches remain virtually unexplored. This

review focuses on the current knowledge regarding the functional relationship between

cellular and extracellular components of the adult SVZ and SGZ neurogenic niches, and

the growing evidence that supports the potential role of exosomes in the physiology and

pathology of adult neurogenesis.
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INTRODUCTION

It was long believed that mammalian neurogenesis, i.e.,

the process of generating functional neurons from neural

precursors, occurred only during embryonic and perinatal

stages (Ming and Song, 2005). Altman’s pioneering studies

in the 1960’s provided the first histological evidence for the

presence of newborn neurons in the adult brain of rodents

(Altman and Das, 1965, 1966; Altman, 1969). However,

the fact that young neurons are continuously incorporated

into the adult brain circuitry was not widely accepted until

the mid-1990’s (Gross, 2000; Kaplan, 2001). Advances in

immunohistological techniques and particularly the introduction

of bromodeoxyuridine (BrdU), a thymidine analog that can

be incorporated in vivo, allowed to recognize proliferative

populations of cells within the central nervous system (CNS)

and to identify the destination of adult-born neurons. To

date it is well known that neural stem cells (NSCs) reside

in the brain of most adult mammals, including humans, and

that neurogenesis does occur throughout life (Eriksson et al.,

1998; Gage, 2000; Lie et al., 2004; Abrous et al., 2005; Ming

and Song, 2005; Lledo et al., 2006; Merkle and Alvarez-

Buylla, 2006; Bergmann et al., 2015; Kempermann et al., 2015).

Interestingly, regions harboring active adult neurogenesis are

located in discrete but specific areas of the brain. These areas,

known as ‘‘neurogenic niches’’, are composed of different cell

types, specific cell-cell contacts, and particular extracellular cues

originated both locally and distantly. Thus, the function of

the different cellular and molecular components of the niche

supports the physiology of NSCs, balancing quiescence with

proliferation, and regulating cell differentiation (Conover and

Notti, 2008).

In this context, not only the cytoarchitectonic organization

of the niche but also the ways of communication between

the cellular components, are critical to understand the adult

neurogenic process under both physiological and pathological

conditions. Cells communicate reciprocally with other cells

by (i) intercellular contacts, and (ii) secreted molecules,

such as growth factors, cytokines, hormones, etc. (paracrine

or endocrine communication). However, a novel way of

cell-to-cell communication mediated by extracellular vesicles

(EVs) has attracted the attention of several researchers in

different fields. EVs, such as exosomes, carry a specific

cargo of proteins, lipids and nucleic acids and are currently

consider one of the most complex and physiologically relevant

messengers between cells. This review focuses on the cellular

components of the adult neurogenic niches, the mechanisms

involved in intercellular communication, and the potential

role of exosomes as regulators of the neurogenic process,

and as mediators and novel biomarkers of neuropsychiatric

and neurological disorders associated with defective adult

neurogenesis.

ADULT NEUROGENIC NICHES

In the adult mammalian brain, neurogenesis is well documented

to continue throughout life in two regions: the subventricular

zone (SVZ) of the lateral ventricles (LV) and the subgranular

zone (SGZ) of the dentate gyrus (DG) in the hippocampus

(Figure 1A). A lineage model from NSCs to mature neurons

has been characterized in both, the SVZ and the SGZ

adult neurogenic niches (Figure 1B). In this model, NSCs

give rise to neural progenitor cells (NPCs), also known

as transit amplifying cells because of their limited division

potential, which differentiate into migrating neuroblasts and

then, into neurons that integrate into pre-existing circuits

(Gage, 2000). Neuroblasts in the SGZ migrate short distances

and integrate into the existing circuitry of the granular cell

layer (GCL) of the DG (Figure 1C); those from the SVZ

migrate along the rostral migratory stream (RMS) and supply

newborn neurons for the olfactory bulb (OB; Figures 1A,D).

Interestingly, glial and vascular cells are also major contributors

to the configuration of functionally structured neurogenic

niches (Figures 1B–D). Growing evidence suggests that the

adult mammalian brain contains other neurogenic niches

that are capable of generating new neurons and glial cells,

particularly after injury or after some inductive stimuli (Lin

and Iacovitti, 2015). The neocortex (Gould et al., 1999; Gould,

2007; Cameron and Dayer, 2008) and the hypothalamus

(Kokoeva et al., 2005) have also been reported to support adult

neurogenesis, but the magnitude of the neurogenic process in

these regions is still under debate. Although the functional

significance of adult-born neurons under physiological and/or

pathological conditions has not been completely clarified and

is being actively pursued, it is well-defined that neurogenesis

in the SVZ and SGZ of the adult brain depends on

the presence and maintenance of NSCs, which is tightly

regulated by their highly specialized microenvironments or

neurogenic niches (Palmer et al., 2000; Alvarez-Buylla and

Lim, 2004; Ma et al., 2005; Merkle and Alvarez-Buylla,

2006).

Niches are defined by their ability to anatomically house

stem cells and functionally control their development in vivo

(Ma et al., 2008). The concept that stem cells reside within

specific niches was first suggested in the 1970’s (Schofield,

1978), but it was not until the 2000’s, when substantial progress

was made in describing both the cellular components of the

niches and their functional interactions, in several mammalian

tissues, including skin, intestine and bone marrow (Spradling

et al., 2001; Li and Xie, 2005; Scadden, 2006). In the adult

brain, much is known about the cellular composition and

organization that characterize the SVZ and SGZ neurogenic

niches (Ma et al., 2008; Mirzadeh et al., 2008; Aimone et al., 2014;

Bjornsson et al., 2015; Licht and Keshet, 2015). Furthermore,

the interaction and functional coordination of these components

as well as the heterogeneity and complexity of neurogenic

niches and their emerging roles under pathological conditions

is being pictured (Jordan et al., 2007; Alvarez-Buylla et al.,

2008).

The Subventricular Zone (SVZ) Niche
Adult NSCs persist in a narrow niche along the walls of the

LV, bordered on one side by the ependymal surface lining the
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FIGURE 1 | Neurogenic niches in the adult mammalian brain. (A) Schematic representation of the neurogenic regions (niches) in a sagittal section of the adult

mouse brain: the subgranular zone (SGZ, orange) in dentate gyrus (DG) of the hippocampus (Hip), and the subventricular zone (SVZ, red) in the lateral wall of the

lateral ventricles (LV). SVZ-derived newborn neurons migrate towards the olfactory bulb (OB) through the rostral migratory stream (RMS). (B) Cellular components of

neurogenic niches. In addition to the neural stem cell (NSC)-neuron lineage, neurogenic niches are composed of glial cells (astrocytes, microglia and ependymal cells)

and vascular cells (endothelial cells, pericytes). (C,D) Illustration of SGZ and SVZ neurogenic niches. The cytoarchitecture and relationships between cellular

components of the niche are represented. Different cell types (color and shape) correspond to those depicted in (B). Note the close proximity between blood vessels

and NSCs/NPCs in both niches. (C) The SGZ neurogenic niche. Radial type 1 cells correspond to the NSCs that give rise to type 2a/b NPCs, which differentiate into

type 3 neuroblasts. Neuroblasts migrate guided by astrocytes and become maturing neurons that finally mature and integrate into the granular cell layer (GCL).

(D) SVZ neurogenic niche. This niche is located underneath the ependymal lining (E) of the LV. It is composed of type B quiescent cells (NSCs), which can activate

and generate type C NPCs that rapidly proliferate and generate type A neuroblasts. Neuroblasts migrate long distances through the rostral migratory stream (RMS)

to the OB where they mature into interneurons. Note that a tunnel of astrocytes and a scaffold of blood vessels guide migration of neuroblasts. Also note that

monociliated type B cells can directly contact cerebrospinal fluid (CSF) and blood vessels. Ce, cerebelum; Cx, cortex; Str, striatum.

cerebrospinal fluid (CSF)-filled ventricles and on the other by a

complex arrangement of parallel blood vessels (Mirzadeh et al.,

2008; Shen et al., 2008; Figure 1D). NSCs that reside in the

SVZ, also known as Type B cells, exhibit hybrid characteristics

of astrocytes (GFAP+) and immature progenitors (S100β+,

Nestin+, Sox2+; Kriegstein and Alvarez-Buylla, 2009). Type B

cell bodies are typically located under the ependymal lining of

the LV and some of them have a short apical process with

a single primary cilium that projects through the ependymal

cell layer to contact the CSF directly, and a basal process

that ends on the blood vessels of the SVZ plexus (Mirzadeh

et al., 2008). Interestingly, apical processes of various type B
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cells form bundles at the center of a ‘‘pinwheel’’ of ependymal

cells (Mirzadeh et al., 2008). As a result of their position and

polarized phenotype, type B cells are strategically located to

receive cues from both the vascular and the CSF compartments

(Figure 1D). Quiescent type B cells can eventually divide

asymmetrically to give rise to type C (Mash1+) transit-amplifying

progenitor cells (Doetsch et al., 1997; Merkle and Alvarez-

Buylla, 2006). Most of type C cells, in turn, divide to give

rise to PSA-NCAM+ neuroblasts (type A cells). Type A cells

form clusters and chains that migrate toward the OB guided

by a channel of astrocytes and by a parallel scaffold of blood

vessels. The anatomical structure formed by migrating (type

A) neuroblasts is known as the RMS. Within the OB, these

immature neurons differentiate into two types of GABAergic

interneurons: the granular neurons and the periglomerular

neurons, which integrate into the existing neuronal circuitry

(Merkle and Alvarez-Buylla, 2006; Curtis et al., 2007; Kriegstein

and Alvarez-Buylla, 2009; Figures 1A,D). Interestingly, type B/C

cells can also originate glia (oligodendrocytes or astrocytes;Menn

et al., 2006).

The Subgranular Zone (SGZ) Niche
The SGZ is a region located beneath the GCL of the DG of the

hippocampus (Figure 1C). The NSCs to mature neurons lineage

model described in the SVZ can be comparably applied in the

SGZ. A similar subset of GFAP+/Sox2+/Nestin+ radial glia-like

cells are also believed to be quiescent NSCs of the SGZ (Seri

et al., 2001). These NSCs, also known as type 1 cells, give rise

through asymmetric division to transit-amplifying non-radial

progenitors (Nestin+/GFAP−) or type 2a cells. Type 2a cells

subsequently originate what appears to be amore fate-committed

(Tbr2+) intermediate progenitor (type 2b) cell population, which

give rise to doublecortin (Dcx) + (type 3) neuroblasts. Finally,

neuroblasts differentiate into maturing glutamatergic granule

cells that migrate, guided by astrocytic processes, and integrate

in the GCL of the DG (Aimone et al., 2014; Figure 1C).

CELLULAR COMPONENTS OF THE
NEUROGENIC NICHE AND THEIR ROLE IN
THE NEUROGENIC PROCESS

The highly hierarchical NSC-neuron lineage in both the SVZ

and SGZ requires the precise regulation of NSCs self-renewal,

fate specification, maturation and integration of new neurons

in the existing neural circuitry. The convergence of several

cellular and extracellular factors contributes to building a unique

and specialized niche or microenvironment that regulates the

physiology of NSCs during the course of adult life. Therefore,

the identification and functional characterization of these factors

emerges as a key aspect not only to better understand the

biology of adult NSCs but also to develop novel therapies for

a number of neurological and psychiatric disorders associated

with defects in adult neurogenesis. Significant advances have

been made in the description of the cellular components of

the neurogenic niches and the mechanisms by which they

can individually or coordinately contribute in regulating adult

neurogenesis (reviewed in Ma et al., 2008; Aimone et al., 2014;

Bjornsson et al., 2015; Figure 2).

Astrocytes
Astrocytes represent one of the major contributors to the

neurogenic niche (Song et al., 2002). Co-culture experiments

with astrocytes isolated from the adult hippocampus and cortex,

but not from the spinal cord, induce neuronal differentiation

of NPCs (Barkho et al., 2006; Oh, 2010). Furthermore,

hippocampus-derived astrocytes are more efficient than cortical

astrocytes in promoting neuronal fate of NPCs (Oh, 2010),

suggesting that the functional heterogeneity of astrocytes

may be reflecting unique characteristics of different brain

regions or environments. Interestingly, they may exert either

positive or negative regulatory roles in the neurogenic process

(Figure 2). Astrocytes negatively control neuronal differentiation

of neural stem/progenitor cells through cell–cell contacts in

which Jagged1-mediated Notch pathway and intermediate

filament proteins GFAP and vimentin play a significant role

(Wilhelmsson et al., 2012). Similarly, some astrocyte-secreted

factors such as insulin-like growth factor binding protein 6

(IGFBP6) and decorin inhibit neuronal differentiation of adult

NSCs/NPCs (Barkho et al., 2006). On the other hand, positive

effects on neuronal differentiation of adult SGZ NSCs involve

cell-cell contact by ephrin-B2(+) astrocytes (Ashton et al., 2012).

Likewise, astrocytic ATP release positively regulates proliferation

of NSCs in the SGZ (Cao et al., 2013) and astrocyte-derived

soluble factors such as Wnt3 (Seri et al., 2001; Lie et al.,

2005), neurogenesin-1 (Ueki et al., 2003), thrombospondin-1

(Lu and Kipnis, 2010) and interleukins such as IL-1β, IL-6

(Barkho et al., 2006), promote hippocampal neurogenesis. In

agreement with a positive regulatory action of astrocytes, age-

related changes in astrocyte population, including the decline of

FGF-2 + astrocytes, correlate with low levels of neurogenesis in

the aged hippocampus (Shetty et al., 2005).

Astrocytes also contribute to the migration of neuroblasts

along the RMS by creating a physical route or tube where

they (i) communicate with migrating neuroblasts (Bolteus and

Bordey, 2004), and (ii) help to maintain the architecture of

the vasculature scaffold in a VEGF- and thrombospondin-4-

dependent fashion (Bozoyan et al., 2012; Girard et al., 2014).

Similarly, in the adult SGZ, astrocytic radial processes facilitate

the short-distance migration of newly generated neurons from

the SGZ to the GCL of the DG (Shapiro et al., 2005). In

addition, adult hippocampal astrocytes promote maturation and

synaptic integration of the neural progeny of NSCs in co-culture

experiments (Song et al., 2002).

Ependymal Cells
Mature ependymal cells form a simple cuboidal to low columnar

epithelium-like structure lining ventricular cavities. These cells

have microvilli and tufts of motile cilia that contribute to the CSF

hydrodynamic flow (Nelson and Wright, 1974; Ibañez-Tallon

et al., 2004; Spassky et al., 2005). Disruption of ependymal

lining or ciliary defects can provoke CSF flow disturbances

and hydrocephalus (Jiménez et al., 2001; Wagner et al., 2003;
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FIGURE 2 | Distinct roles of niche cells on NSC-neuron lineage at different stages/steps of adult neurogenesis. Best-described cell-cell communication

mechanisms in neurogenic niches rely on soluble mediators or direct contact between the signaling and the targeting cells. The gradient bars represent varying

influence of secreted factors or cell-cell contacts on (i) activation of quiescent NSCs (proliferation); (ii) differentiation or fate specification; (iii) migration; and

(iv) survival/maturation of newborn neurons. Green: stimulation or activation; Red: inhibition; Yellow: activation or inhibition according to the circumstances. For

details and references, see the text. ATP, adenosine triphosphate; BDNF, brain-derived neurotrophic factor; CXCL, chemokine (C-X-C motif) ligand; FGF, fibroblast

growth factor; GDNF, glial cell line-derived neurotrophic factor; GFAP, glial fibrillary acidic protein; HGF, hepatocyte growth factor; IGF, insulin-like growth factor;

IGFBP, insulin-like growth factor binding protein; IL, interleukin; NGF, nerve growth factor; NT, neurotrophin; PEDF, pigment epithelium-derived factors; SDF, stromal

cell-derived factor; TGF, transforming growth factor; TNF, tumor necrosis factor; TSP, thrombospondin; VEGF, vascular endothelial growth factor.

Ibañez-Tallon et al., 2004; Banizs et al., 2005; Town et al.,

2008). Because of their location, ependymal cells display certain

barrier and signaling functions between CSF and neural tissue

(Sarnat, 1992; Del Bigio, 1995). Ependymal cells are joined

together at their apical regions by N-cadherin-based adherens

junctions (Brightman and Reese, 1969; Del Bigio, 1995;

Rodríguez and Bouchaud, 1996) and blocking N-cadherin

function in vitro induces apoptosis of ependymal cells
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and denudation of ventricular walls (Oliver et al., 2013).

Ependymal denudation of ventricular walls increases with aging

(Luo and Craik, 2008) and is associated with the pathogenesis

of neurodevelopmental disorders such as periventricular

heterotopia (Ferland et al., 2009), spina bifida aperta

(Sival et al., 2011) and hydrocephalus (Jiménez et al.,

2009; Wagner et al., 2003; Domínguez-Pinos et al., 2005).

Comprehensive analyses by Spassky et al. (2005) indicate that

most ependymal cells are born at embryonic stages and that

differentiated ependymal cells are postmitotic. However, it has

been suggested that ependymal cells can be generated postnatally

in certain brain regions (Bátiz et al., 2011). Furthermore, it

has been argued that ependymal cells lining the SVZ can act

as NSCs (Chojnacki et al., 2009). Interestingly, pathological

stimuli such as stroke can stimulate forebrain ependymal cells

to proliferate and generate neurons and astrocytes (Carlén et al.,

2009).

Beyond this controversy, it is well defined that ependymal

cells are a key component of the SVZ neurogenic niche. They

are a source of noggin and pigment epithelium-derived factor

(PEDF; Figure 2). Noggin is a bone morphogenetic protein

(BMP) antagonist involved in the maintenance of a neurogenic

niche (Lim et al., 2000). Opposite results have suggested that

BMP signaling can inhibit adult neurogenesis (Lim et al.,

2000), or promote it (Colak et al., 2008). Thus, the role of

ependymal-derived noggin on the SVZ physiology is still not

clear. PEDF is secreted by both ependymal and endothelial cells,

and specifically participates in the self-renewal capacity of type B

cells of the SVZ, thereby maintaining a pool of undifferentiated

NSCs in the neurogenic niche (Ramírez-Castillejo et al., 2006).

Furthermore, it is known that PEDF modulates stemness of

NSCs by activating Notch-dependent transcription in these cells

(Ramírez-Castillejo et al., 2006; Andreu-Agullo et al., 2009). In

this context, the loss or disruption of the ependyma in the

SVZ neurogenic niche would impair ependymal cell-mediated

signaling pathways and alter its neurogenic potential. This

appears to be the case in the SVZ niche of the hyh mutant

mice where ependymal cells of the LV are completely lost during

early postnatal stages and proliferation of SVZ progenitors

is dramatically reduced (Jiménez et al., 2009). Interestingly,

ependymal-denuded surfaces become progressively covered by

a layer of astrocytes that acquire certain morphological and

antigenic ependymal cell-like properties and probably contribute

to the repair of the ependymal lining (Páez et al., 2007; Luo

et al., 2008; Roales-Buján et al., 2012). However, the presence of

a reactive astroglial ‘‘scar’’ can reduce the proliferative activity

of SVZ neural progenitors, blocking neuronal regeneration

and revascularization and thus, interfering with the recovery

of an injured area (Fawcett and Asher, 1999; Kernie et al.,

2001).

Microglia
Most microglial cells of the CNS are already generated by the end

of the second postnatal week (Ginhoux et al., 2013). In the adult

brain, resting microglial cells represent the resident macrophages

and they survey the brain parenchyma (Nimmerjahn et al., 2005).

In the SGZ of the hippocampus, microglial cells have a prominent

surveillant and phagocytic role. It has been demonstrated that

most newborn granule neurons of the adult SGZ undergo

apoptosis and are phagocytosed by microglial cells (Sierra et al.,

2010, 2013). Beyond their role as brain ś professional phagocytes,

microglial cells can also serve neuroprotective or neurotoxic roles

depending on the physiological and pathological circumstances

(Luo and Chen, 2012; Hellwig et al., 2013; Brites and Vaz,

2014). In addition, microglial cells can interact with NSCs/NPCs

(Su et al., 2014) and regulate adult neurogenesis by secreting

several soluble mediators, such as growth factors and cytokines,

that influence either positively or negatively the neurogenic

process (reviewed in Kim and de Vellis, 2005; Harry, 2013;

Figure 2). In vitro experiments suggest that microglia secret

factors that promote neuronal differentiation of SVZ-derived

NSCs but not their maintenance or self-renewal (Walton et al.,

2006). On the other hand, activation of microglial cells can

result in negative regulatory actions on the SGZ neurogenic

process (Sierra et al., 2014). For example, inflammatory or

LPS-mediated activation of microglia can inhibit neurogenesis

and favor gliogenesis and this effect is partially mediated by

the secretion of proinflammatory cytokines, such as TNF-α

(Monje et al., 2003; Butovsky et al., 2006; Carpentier and

Palmer, 2009). On the other hand, when microglial cells are

stimulated with interleukin-4 (IL-4) and interferon-γ, they

secrete insulin-like growth factor-1 (IGF-1) and induce neuronal

differentiation of neural progenitors (Butovsky et al., 2006).

Additionally, the environmental context of the neurogenic niche

determines not only the mode of activation of microglial cells

and the positive or negative regulatory actions of these cells

as a population but also defines the pro- or anti-neurogenic

properties of specific microglial-secreted cytokines, such as the

transforming growth factor β (TGF-β; Battista et al., 2006;

Douglas-Akinwande et al., 2006). Interestingly, physical exercise

(running)-induced cell proliferation and neurogenesis in the SGZ

(van Praag et al., 1999b; Aimone et al., 2014) is associated to

a decrease in microglial function (Olah et al., 2009; Vukovic

et al., 2012; Gebara et al., 2013). Inversely, age-related changes

in microglia activity, including an increase in their reactive

profile with higher secretion of pro-inflammatory cytokines

(Njie et al., 2012), potentially contribute to the decline of

neurogenesis seen with aging (Gemma et al., 2010; Gebara et al.,

2013).

Endothelial Cells and Pericytes
The close physical proximity of NSCs/NPCs with blood

vessels within both adult neurogenic niches suggests that

critical factors derived from the vasculature may act as

major modulators of the neurogenic process and consequently,

several authors consider the SVZ and the SGZ as ‘‘vascular

niches’’ (Palmer et al., 2000; Shen et al., 2008; Tavazoie

et al., 2008; Licht and Keshet, 2015). Interestingly, vascular-

derived signals or messengers can be originated distantly,

in peripheral organs (blood-borne substances), and/or locally

from endothelial cells and pericytes (paracrine communication).

Endothelial cells are able to secrete several factors that

modulate adult neurogenesis (Palmer et al., 2000; Shen et al.,

2004; Figure 2). Several studies suggest that endothelial cell-
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produced brain derived neurotrophic factor (BDNF) and

vascular endothelial growth factor (VEGF) stimulates SGZ

neurogenesis both in vivo and in vitro (Jin et al., 2002; Cao

et al., 2004; Kim et al., 2004). Interestingly, endothelial cells

and NSCs reciprocally influence each other to couple SGZ

neurogenesis to angiogenesis, and it is suggested that VEGF

is critical to coordinate these processes (Palmer et al., 2000;

Riquelme et al., 2008; Udo et al., 2008; Ruiz de Almodovar

et al., 2009). Furthermore, VEGF appears to be necessary

for exercise-induced SGZ neurogenesis (Fabel et al., 2003).

Together with ependymal cells, endothelial cells secrete PEDF

and thus, stimulate self-renewal of NSCs (Ramírez-Castillejo

et al., 2006; Andreu-Agullo et al., 2009). Neurotrophin-3

(NT3) and betacellulin, secreted by vascular endothelial cells

of both the SVZ plexus and the choroid plexus, regulate

SVZ neurogenesis by different mechanisms. NT3 helps to

maintain the quiescence of NSCs (Delgado et al., 2014),

whereas betacellulin promotes proliferation of NPCs and

neuroblasts (Gomez-Gaviro et al., 2012). Vascular endothelial

cells also secrete a chemokine known as CXCL12 or stromal

derived factor-1 (SDF1) that differentially modulates SVZ

NSC-neuron lineage (Kokovay et al., 2010). In type B and

type C cells, SDF1 upregulates EGFR and alpha-6 integrin,

activating and attracting them to the blood vessels while SDF1

stimulates motility of type A neuroblasts (Kokovay et al.,

2010).

The role of pericytes in adult neurogenic niches is

less well characterized. Located in intimate contact with

endothelial cells, they can act as regulators or transducers of

both blood-circulating signals and endothelial-derived factors

(Armulik et al., 2011). Pericytes secrete TGF-β, a known

modulator of adult neurogenesis and blood-brain barrier (BBB;

Dohgu et al., 2005). They also secrete neurotrophins in

response to hypoxic conditions (Ishitsuka et al., 2012). In

addition to their potential paracrine function, it has been

demonstrated that pericytes remain relatively undifferentiated,

retaining the capacity to differentiate into several cell types,

including neural-related progeny. Consequently, it has been

proposed that pericytes may act as NSCs under certain

circumstances (Dore-Duffy et al., 2006; Dore-Duffy and Cleary,

2011). On the other hand, pericytes might be involved in

the pathogenesis of different CNS diseases and have been

proposed as a potential therapeutic target (Lange et al.,

2013).

DISTANT REGULATION OF THE
NEUROGENIC NICHE:
NEUROTRANSMITTERS, CSF-DERIVED
FACTORS, AND BLOOD-BORNE
SUBSTANCES

Neurotransmitters (Innervation)
Numerous neuromodulatory systems have been shown to

affect proliferation and differentiation of NSCs/NPCs and the

maturation of adult-born neurons. Adult SVZ receives inputs

from dopaminergic projections from the ventral tegmental area

(VTA) and the substantia nigra (Baker et al., 2004). It has also

been shown that SVZ type C cells express D2-like dopaminergic

receptors (Höglinger et al., 2004; Kippin et al., 2005). However,

the effects of dopamine on adult NPCs are controversial and

it has been suggested that dopamine differentially affects type

B and C cells via a distinctive mix of receptors in each

cell type (Berg et al., 2013). On the other hand, dopamine

D2 receptor-induced neurogenesis appears to be mediated by

ciliary neurotrophic factor (CNTF), a mitogen expressed by

astrocytes that is upregulated by D2 agonists (Yang et al.,

2008). The role of dopamine in the SGZ neurogenic process

is less well understood (Veena et al., 2011) but it has been

suggested that, similarly to the SVZ, D2 receptors are involved

in hippocampal neurogenesis in vivo (Yang et al., 2008). Other

major neuromodulatory systems include the serotoninergic and

cholinergic systems. The role of serotonin in SGZ neurogenesis

has been deeply studied because of its link to depressive-like

behaviors (Gould, 2007). The DG receives serotoninergic inputs

from the median and dorsal raphe nuclei (Leranth and Hajszan,

2007). Interestingly, it is well documented that fluoxetine,

a serotonin-reuptake inhibitor widely used as antidepressant,

increases the proliferation rates in the hippocampal SGZ

(Malberg et al., 2000). Similarly, serotonergic axons originated in

the raphe nuclei form a widespread network at the ventricular

surface of the LV and contact type B NSCs of the adult

mouse SVZ. Activation of serotonin receptors of Type B

cells increases proliferation (Tong et al., 2014). Mouse SVZ

NSCs/NPCs also received inputs from choline acetyltransferase-

positive axons originating in the SVZ itself. The release of

acetylcholine by these neurons depends on their activity and

can directly control SVZ proliferation (Paez-Gonzalez et al.,

2014).

In addition, local or regional network neurotransmitters

also play a significant role in adult neurogenesis. It has been

demonstrated that non-synaptic GABA signaling (released by

type A neuroblasts) can regulate proliferation of type B NSCs

in the SVZ by activating GABAA receptors. This pathway

provides a feedback mechanism to control the balance between

self-renewal and differentiation of NSCs (Liu et al., 2005).

Interestingly, this mechanism can also be reinforced by other

SVZ GABAergic inputs such as the striatal GABAergic neurons

(Young et al., 2014). In the SGZ niche, GABA helps to maintain

the quiescence of radial glia-like (type 1) cells through activation

of γ2-subunit containing GABAA receptors (Song et al., 2012).

Similarly to the SVZ, these GABAergic inputs appear to be

non-synaptic and due to diffusion from nearby parvalbumin+

basket cells synapses (Song et al., 2012). On the other hand,

type 2 NPCs and young neurons receive more direct GABAergic

inputs (Ge et al., 2006; Markwardt et al., 2009). In the adult

DG, maturing neurons also receive glutamatergic inputs and it

has been shown that NMDA receptor activation is critical for

the survival and integration of young neurons (Tashiro et al.,

2006).

CSF-Derived Factors
The SVZ is uniquely situated to experience the effects of the

flow and the composition of the CSF. Intriguingly, the direction
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of migrating neuroblasts in the RMS, parallels that of CSF

flow (Sawamoto et al., 2006). Furthermore, when ependymal

ciliary movements and CSF flow are disrupted, neuroblasts

become disoriented (Sawamoto et al., 2006). On the other

hand, the CSF contains several compounds that participate

in the neurogenic process (Lafon-Cazal et al., 2003; Bunn

et al., 2005; Redzic et al., 2005; Zappaterra and Lehtinen,

2012). Transcriptome analyses of adult and embryonic choroid

plexus (ChP) have revealed that ChP epithelial cells express

several growth factors and signaling molecules that can act

either as positive (TGF-α, amphiregulin, IGF2, and FGF2)

or negative (TGF-β superfamily members) regulators of adult

neurogenesis (Marques et al., 2011; Liddelow et al., 2012). They

also secrete SLIT1/2, known chemorepulsive signals that help

type A neuroblasts to migrate in the RMS (Nguyen-Ba-Charvet

et al., 2004). Other factors, such as ciliary neurotrophic factor

(CNTF) and leukemia inhibitory factor (LIF), play important

roles in promoting proliferative activity and maintenance of

undifferentiated neural progenitors (Shimazaki et al., 2001;

Gregg and Weiss, 2005). Recently, it was found that two G-

protein coupled receptor (GPCR) ligands present in the adult

CSF, namely sphingosine-1-phosphate (S1P) and prostaglandin-

D2 (PGD2), promotes quiescence of SVZ NSCs (Sato et al.,

2007; Kondabolu et al., 2011; Codega et al., 2014). The

role of the ChP/CSF-mediated signaling pathway has been

highlighted in aged and hydrocephalic animal models. Aging-

related changes in the ChP/CSF system negatively affect adult

neurogenesis (Baruch et al., 2014). Additionally, it has been

demonstrated that the composition of the CSF is altered in

hydrocephalus (Mashayekhi et al., 2002; Owen-Lynch et al.,

2003) and hydrocephalic CSF inhibits cell proliferation cortical

cells cultures, suggesting that CSF composition modifies some

of the properties of NPCs (Owen-Lynch et al., 2003). In fact,

the altered composition of CSF affects the normal cortical

development in hydrocephalic H-Tx embryos (Miyan et al.,

2003). However, the specific CSF changes that mediate these

effects are actually not known, and the influences of the

hydrocephalic CSF on the SVZ neurogenic niche have not yet

been reported.

Blood-Borne Substances
As stated before, the vasculature can influenceNSCs proliferation

and differentiation by providing signaling molecules secreted

locally by endothelial cells and pericytes, as well as by providing

systemic blood-circulating factors (Tavazoie et al., 2008; Egeland

et al., 2015; Licht and Keshet, 2015). Blood-borne factors that

influence adult neurogenesis, including hormones, cytokines,

metabolites, and gases can gain access to the SVZ neurogenic

niche either via the ChP-CSF pathway route or more directly

via the SVZ vasculature (Egeland et al., 2015; Licht and

Keshet, 2015). In both cases, the presence of barriers must

be considered. Indeed, ChP epithelial cells are joined together

by tight junctions and constitute the blood-CSF barrier (BCB)

while the presence of tight junctions between brain parenchymal

endothelial cells constitute the BBB (Engelhardt and Sorokin,

2009). It has been suggested that SVZ vessels have a looser

BBB than other brain vessels, allowing circulating substances

to modulate adult neurogenesis. In this context, Tavazoie et al.

(2008) have demonstrated that some circulating fluorescent

tracers have better access to the brain parenchyma through SVZ

vessels than through vessels located in other cerebral regions.

Furthermore, NSCs/NPCs can directly contact blood vessels

at specialized sites that lack pericyte coverage and glial end

feet, a feature unique to SVZ vascular plexus (Tavazoie et al.,

2008).

Several hormones seem to modulate adult neurogenesis

under particular conditions. For example, prolactin can enhance

SVZ neurogenesis in pregnant mice (Shingo et al., 2003),

while increased levels of glucocorticoids associated with stress

have the opposite effect (Snyder et al., 2011). In turn,

dietary restriction and exercise/enriched environment positively

modulate neurogenesis and it is proposed these effects are,

at least in part, consequence of changes in the composition

of blood-borne substances (van Praag et al., 1999a; Wu

et al., 2008). Interestingly, the age-related decline of the

neurogenic niche could be restored by extrinsic young signals.

Using a mouse heterochronic parabiosis model, Katsimpardi

et al. (2014) showed that (i) aged cerebral vasculature is

remodeled, and (ii) SVZ neurogenesis is re-activated in

response to young systemic factors. Furthermore, the authors

revealed that GDF11, a circulating TGF-β family member,

participate in this process (Katsimpardi et al., 2014). These

examples emphasize the fact that the adult neurogenic niche

communicates with the systemic circulation and highlight the

role of blood-borne substances in the modulation of adult

neurogenesis.

Interestingly, in addition to the well-recognized soluble

signals originated both locally by the cellular components of the

adult neurogenic niches (reviewed in ‘‘Cellular components of

the neurogenic niche and their role in the neurogenic process’’

Section), or distantly (reviewed in ‘‘Distant regulation of the

neurogenic niche: neurotransmitters, cerebrospinal fluid-derived

factors, and blood-borne substances’’ Section), novel types of

intercellular messengers, such as EVs, have emerged. EVs, and

particularly exosomes, are considered one of the most complex

ways of cell-to-cell communication, allowing the transfer of

mRNAs, microRNAs (miRNAs), proteins and lipids between

cells and thus, being able to modify the physiology of recipient

cells. However, their precise role in adult neurogenic niches

remains virtually unexplored.

EXOSOMES: UNIQUE MESSENGERS FOR
CELL-TO-CELL COMMUNICATION

EVs, and particularly exosomes, are emerging as one of the major

mediators of intercellular communication. It is known since

the late 1960’s/early 1970’s that membrane-enclosed vesicles are

present outside cells in different tissues and biological fluids

(Colombo et al., 2014). Originally, these EVs were thought

to be released only by outward budding or shedding of the

plasma membrane (PM) but 10 years later, it was described that

vesicles contained within the lumen of so-called multivesicular

endosomes or multivesicular bodies (MVBs) could be secreted

(Harding and Stahl, 1983; Pan and Johnstone, 1983). Thus, the
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term ‘‘exosome’’ was introduced to identify those EVs that have

been originated from the endosomal system (Johnstone et al.,

1987) and since then, the field of exosome research has expanded

exponentially. Now it is known that various types of EVs coexist

in the extracellular milieu. Some of them are originated from

shedding of the PM (microvesicles and apoptotic bodies) and

others (exosomes) are secreted by exocytosis after fusion of

MVBs with the PM. Thus, the various intracellular origins and

modes of formation can probably lead to different compositions

and functions of EVs (Kowal et al., 2014). Exosomes represent

one sub-type of these EVs and a lot of progress has been made

in the last few years to understand the basic mechanisms by

which exosomes are formed and secreted, and their function

in cell-cell communication under physiological and pathological

conditions.

Biogenesis of Exosomes
Exosomes are small membrane vesicles, 30–100 nm in size,

that are secreted by almost all cell types. They originate in the

endocytic pathway, which is involved in the trafficking of several

proteins that are internalized and can either recycle back to

the PM or get sorted to degradation (Gould and Lippincott-

Schwartz, 2009; Klumperman and Raposo, 2014) In these

pathways, early endosomes mature into late endosomes (LE),

and during this process, they suffer an inward budding process

of their membrane and accumulate intraluminal vesicles (ILVs;

Figure 3A). Because of their mature morphological features,

LEs are referred to as MVBs. In most cells, the main fate of

MVBs is to fuse with lysosomes, ensuring the degradation of their

content. However, organelles with hallmarks of MVBs, can also

fuse directly with the PM, releasing ILVs into the extracellular

milieu (Raposo et al., 1996; Jaiswal et al., 2002; Figure 3A). To

date is still unknown how different subpopulations of MVBs co-

exist within cells and whether these different populations follow

the same or different routes such as fusion with lysosomes for

degradation or fusion with PM for exocytosis (Edgar et al., 2014).

The best-described mechanism for the formation of MVBs and

ILVs is driven by the endosomal sorting complexes required for

transport (ESCRT) machinery. This machinery is composed of

approximately thirty proteins that assemble into four complexes

(ESCRT-0, -I, -II and -III) with associated proteins (VPS4, VTA1,

ALIX also called PDCD6IP) conserved from yeast to mammals

(Hanson and Cashikar, 2012). The ESCRT-0 complex recognizes

and sequesters ubiquitinated transmembrane proteins in the

endosomal membrane, segregates them into microdomains

and binds the ESCRTI complex. ESCRTI, in turn, recruits

ESCRTII subunits, and then both complexes initiate membrane

deformation into buds with sorted cargo, allowing cytosolic

proteins and RNAs (including mRNAs and miRNAs) to get into

the forming vesicles. Following, the ESCRTII complex recruits

ESCRTIII subunits inside nascent vesicles and together with the

ATPase VPS4, provoke the membrane cleavage required to free

ILVs while ubiquitin molecules and ESCRT subunits are released

into the cytosol for their recycling (Hanson and Cashikar, 2012).

Recently, alternative ESCRT-independent mechanisms have

been proposed for the formation and sorting of specific cargo

into exosomes, including a lipid-driven mechanism in which the

synthesis of ceramide by a neutral sphingomyelinase is involved

(Trajkovic et al., 2008) and a sphingosine 1-phosphate receptor-

dependent mechanism (Kajimoto et al., 2013). Alternatively,

ALIX, an ESCRTIII binding protein, by interacting with proteins

containing late-domain motif LYPXnL, such as syntenin or the

GPCR Par1, can be sorted into exosomes by a mechanism that

requires only the recruitment of the ESCRTIII subunit CHMP4

(Sette et al., 2010; Baietti et al., 2012; Hurley and Odorizzi,

2012).

Content and Extracellular Fate
of Exosomes
Considering the mechanisms involved in the biogenesis

of ILVs, a complex mix of proteins, lipids and other

cytosolic molecules is specifically sorted and incorporated

into ILVs/exosomes.The content of exosomes is currently

compiled in databases named Exocarta1, Vesiclepedia2 and

EVpedia3 which are continuously updated by the scientific

community (Mathivanan et al., 2012). According to the

current version of Exocarta, 9769 proteins, 1116 lipids,

3408 mRNAs, and 2838 miRNAs have been identified in

exosomes from many different cell types and organisms.

Much effort has been made to establish the proteomics of

exosomes. Initially, it was found that exosomes contain

proteins also present in endosomes, the PM, and the

cytosol, but few components from other organelles such as

nucleus, mitochondria or Golgi, confirming that they are not

composed of a random set of proteins (Théry et al., 2001).

The most frequently identified proteins in exosomes includes

(i) proteins involved in MVB biogenesis; (ii) membrane

associated proteins (lipid rafts proteins, GTPases and other

membrane trafficking proteins); (iii) transmembrane proteins

(targeting/adhesion molecules, tetraspanins (CD9, CD63,

CD81), membrane fusion proteins); (iv) cytoskeletal proteins

(actin, syntenin, moesin); (v) signal transduction proteins

(annexin, 14–3–3 proteins); (vi) chaperones (Hspa8, Hsp90);

and (vii) metabolic enzymes (GAPDH, LDHA, PGK1,

aldolase, PKM), among others (Chaput and Théry, 2011;

Mathivanan et al., 2012; Figure 3B). Interestingly, and even

though there is an important overlap in terms of protein

composition with other EVs, many of these proteins, such

as tetraspanins, CD63 and CD81, are considered exosome

markers.

In addition, exosomes contain a specific lipid composition

(Kowal et al., 2014): they are enriched in ceramide, cholesterol,

sphingomyelin, and phosphatidyl-serine. Interestingly, they are

not enriched in lysobisphosphatidic acid, a lipid described in

ILVs (Matsuo et al., 2004). As stated before, some of these

lipids can be involved in the formation of ILVs or their release

outside the cell. One very striking aspect of the content of

exosomes is that they are highly enriched in small (no longer

than 200 nucleotides) non-coding RNAs (ncRNAs). The most

widely described exosome-associated ncRNAs are the miRNAs

1http://www.exocarta.org
2http://www.microvesicles.org/
3http://student4.postech.ac.kr/evpedia2_xe/xe/
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FIGURE 3 | Biogenesis, targeting and composition of exosomes. (A) Exosomes are presumed to be a relatively homogeneous population of vesicles originated

in the endocytic pathway as intraluminal vesicles (ILVs) of late endosomes (LE) or multivesicular bodies (MVBs). Basically, ILVs are formed by the inward budding of

the membrane of maturing early endosomes (EE) to MVBs. Cargo sorting into ILVs include: (i) ESCRT-dependent mechanisms, where the endosomal sorting

complex required for transport (ESCRT) and other associated proteins are involved, and (ii) ESCRT-independent (lipid-driven) mechanisms, which depends on the

presence of ceramide and neutral sphingomyelinase. Then, a population of MVBs is destined to degradation into lysosomes (Lys) and another population of MVBs

fuse with the plasma membrane (PM), thus allowing ILVs to be exocytosed as exosomes. Once in the extracellular space, secreted exosomes can act as local

signals (paracrine communication) or travel through biological fluids (e.g., blood, CSF) to reach body sites located distant from their cell/tissue of origin. Exosomes

interact with recipient/target cells in several ways: (i) they can activate surface receptors (ligand/receptor interaction); (ii) they can transfer exosomal cargo to recipient

cells by membrane fusion or by a connexin-dependent mechanism; and (iii) they can be endocytosed by a macropinocytic mechanism and then fuse with endosomal

membranes to transfer their cargo. (B) Exosomes are small (30–100 nm) membrane bound vesicles with a complex and functionally relevant composition. They

contain nucleic acids (mRNA and miRNA), and a vast array of different proteins and lipids depending on their host cell. However, they are generally enriched in

proteins involved in MVB formation, tetraspanins, membrane trafficking and fusion, and a number of cytosolic proteins. In addition to these generic components,

molecules associated with particular cell types and/or pathological situations have also been identified in exosomes.

of 20–22 nucleotides that target the 3′ untranslated region (UTR)

of specific mRNAs to inhibit, in most cases, their translation. As

a consequence of this, miRNAs canmodify the phenotype and/or

the physiology of the recipient cell, modulating cellular processes

as relevant as proliferation, differentiation, and survival, among

others (Cocucci and Meldolesi, 2015). The mechanisms that

control the incorporation of the cargo into exosomes are

currently under intense investigation (Villarroya-Beltri et al.,

2014). Importantly, besides a ‘‘constitutive’’ array of proteins,

lipids and RNAs, the content of exosomes varies according to the

cellular source and to the physiological or pathological situation

of the cell and its environment. Thereby, exosomes serve as

interpreters of the cellular state where they came from. The

role of exosomes as intercellular messengers has been studied

extensively using cells of the immune system (Bobrie et al.,

2011), where it has been demonstrated that they modulate

antigen presentation and the immune response (Théry et al.,

2009). Similarly, the role of exosomes in several cancer types

has been well documented. For instance, glioblastoma-derived

exosomes deliver genetic information to recipient endothelial

cells, promoting tumor growth and invasion (Skog et al.,

2008).

Once secreted, exosomes can interact with target cells to

modify their function (Mittelbrunn and Sánchez-Madrid,

2012) and thus, they can act as local or paracrine messengers

or communicators. Also, they can reach biological fluids,

such as blood, CSF, urine, etc., and act as distant messengers

(Figure 3A). The targeting of exosomes to their recipient cells

involves different mechanisms (Colombo et al., 2014; Mulcahy

et al., 2014). In some cases, ligand/receptor interaction of

EVs to target cells might be sufficient to activate intracellular

pathways and induce physiological changes in target cells.

In other cases, for instance when miRNAs contained in

exosomes induce gene silencing in the recipient cell, the

content of EVs must be transferred inside that cell. In

those cases, fusion of exosomes with the PM or endocytosis

followed by fusion of exosomes with the membrane of

endocytic compartments must take place (Figure 3A).

Microenvironmental pH appears to be relevant for the

fusion of exosomes with endosomal membranes (Parolini

et al., 2009). Alternatively, a novel connexin 43-mediated

mechanism to transfer information between exosomes and

recipient cells has recently been described (Soares et al.,

2015). According to this paper, the content of exosomes

can be transferred to recipient cells by a gap junction-like

communication, thus opening new possibilities about the

mechanisms that might operate in specific environments or

situations.
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CAN EXOSOMES SERVE AS
(PHYSIOLOGICAL OR PATHOLOGICAL)
MESSENGERS BETWEEN CELLULAR
COMPONENTS OF THE ADULT
NEUROGENIC NICHE?

An efficient and well-regulated communication between

cells is vital to ensure brain homeostasis and plasticity

throughout life, particularly in the adult neurogenic niches.

Thus, information transfer through exosomes (and other EVs)

appears as a unique mechanism compared with other forms

of intercellular communication. Even though the physiological

and/or pathological role of locally- or distantly-generated

exosomes in the adult neurogenic niches is currently virtually

unknown, growing indirect evidence strongly suggest that

exosomes might be one the major elements communicating and

coordinating the function of the adult neurogenic niches. First,

neural stem/progenitor cells and most of the cell types present

in the CNS, including those cells that constitute and regulate

the neurogenic niche, secrete and/or are target of exosomes and

other EVs (Table 1). Furthermore, some of the biomolecules

expressed (and sercreted) by niche cells have been reported

to be present in exosomes under physiological or pathological

conditions (Table 1). Interestingly, several examples highlight the

role of exosomes as (i) messengers between neural cells (neurons

and glial cells) either locally or distantly (via CSF or volume

transmission); (ii) blood-CNS communicators (including their

potential as therapeutic vehicles); and (iii) modulators of several

stem cell niches.

Exosomes in Neuron-Neuron
Communication
Classical inter-neuronal communication involves synaptic

transmission, a dynamic and plastic process that is tightly

regulated by neuronal activity (Regehr et al., 2009). Exosome-

mediated communication between pre and postsynaptic cells

participates in synaptic plasticity, as it has been shown in the

Drosophila neuromuscular junction (Korkut et al., 2013). Using

cultures of mixed hippocampal cells with exosomes derived from

the neuroblastoma cell line N2a and labeled with GFP-CD63 and

GFP-TTC, it was found that they interact either with neurons,

astrocytes or oligodendrocytes. On the other hand, exosomes

released by cortical neurons upon synaptic activation interact

with neurons but not with GFAP+ astrocytes. Furthermore,

some exosomes co-localize with synaptophysin indicating that

they bind to pre-synaptic sites (Chivet et al., 2014).

Exosomes in Neuron-Glia Communication
The communication between neurons and glia is important

for brain physiology during both development and adulthood.

The different glial cell types help to maintain neuronal activity.

Oligodendrocytes protect axons with the myelin sheath and

also provide trophic support to neurons (Nave and Trapp,

2008). To maintain these functions over time there is a constant

communication between neurons and oligodendrocytes, but

the mechanisms underlying this phenomenon are not well

understood. Frühbeis et al. demonstrated that upon glutamate

stimulation, oligodendrocytes secrete exosomes, which are

endocytosed by neurons. Furthermore, exosomal cargoes

improve neuronal metabolism and viability in situations of

nutrient deprivation or oxidative stress exposure (Frühbeis et al.,

2013b). It is also noteworthy that this work demonstrated

that the internalization of exosomes by neurons occurs

through a clathrin and dynamin-dependent mechanism,

shedding light on the mechanisms that may be involved

in exosome internalization. On the other hand, selective

elimination of synaptic connections comprises the engulfment

of neurites. In a recent study, it was shown that neuron-

derived exosomes stimulate microglial phagocytosis of

neurites via upregulation of complement factors (Bahrini

et al., 2015).

Exosomes in Glia-Glia Communication
The communication between glial cells through exosomes

has been studied to a lesser extent. Exosomes secreted

by oligodendrocytes are selectively internalized through

macropinocytosis by microglia, both in vitro and in vivo (Fitzner

et al., 2011). Remarkably, only those microglial cells that do

not show antigen-presenting capacity endocytose exosomes,

thus supporting the idea that different types of microglial cells

co-exist and are differentially involved in immune functions.

Exosomes in the CSF as Volume
Transmission Vehicles
It has been proposed that the CSF compartment plays an essential

role in volume transmission within the CNS; thus, molecules or

messengers secreted in one brain region may reach the CSF and

exert their function in sites located far from its secretion site

(Agnati and Fuxe, 2014; Borroto-Escuela et al., 2015). Given the

close contact between the CSF and the interstitial fluid of several

brain areas, including the SVZ, it is conceivable that exosomes

originated in the brain parenchyma can be found in the CSF

and vice versa. Actually, isolation of membrane vesicle-enriched

fractions and further proteomic studies have demonstrated the

presence of exosomes in the human CSF (Street et al., 2012;

Grapp et al., 2013; Chiasserini et al., 2014). Furthermore, the

exosome content of the CSF is supposed to reflect ongoing brain

processes, and especially those related to plasticity, disease or

repair. Proteins related to the onset or progression of some

CNS diseases such as APP (Alzheimer’s disease), PrPsc (prion

disease), and α-synuclein (Parkinson’s disease), among others,

have been found in the exosomal fraction of CSF-samples (Pegtel

et al., 2014). Exosomes in the CSF decrease with age while those

derived from the embryonic CSF positively act on the stem

cell niche (Street et al., 2012; Feliciano et al., 2014), revealing

their influence on recipient cells. A clear demonstration of

exosomal secretion into the CSF has been recently obtained

in ChP epithelial cells. Using cell-culture assays, human CSF

analyses and in vivo tracing experiments, the authors describe

a novel pathway of exosome-mediated folate delivery into the

CSF and subsequently, into the brain parenchyma (Grapp et al.,

2013).
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TABLE 1 | Niche cells (and other CNS cells) secrete exosomes with potential physiological and pathological functions.

Niche cells Examples of biomolecules

expressed by niche cells

and found in exosomes (∗)

Physiological function Pathological function Reference

NSCs/NPCs T-cell immunoglobulin

mucin protein 4 (TIM-4)

Interferon gamma (IFN-γ)/IFN-γ

receptor 1 (Ifngr1)

Heat shock protein

70 KDa (Hsp70)

VCAM1

Connexin 43 (Cx43)

VEGF

miR-let7b

miR-9

Regulate NSC proliferation and

differentiation (miR-let7b and miR-9)

(Zhao et al., 2009, 2010)

Favor exosome targeting and

transfer of information to acceptor

cells (Cx43) (Soares et al., 2015)

Regulate the SGZ neurogenic

niche (VEGF) (Kirby et al., 2015)

Maintain protein homeostasis

and regulates cell survival (Hsp70)

(Takeuchi et al., 2015)

Modulate gene expression in target

cells via Stat1 activation (IFN-γ)

(Cossetti et al., 2014)

Mediate viral entry (TIM-4)

(Sims et al., 2014)

Modulates immune

response (Cossetti et al., 2014)

Autoimmunity

(Kang et al., 2008)

Neurophatological

development of NSCs/NPCs

(Feliciano et al., 2014)

Marzesco et al. (2005)

Huttner et al. (2008)

Kang et al. (2008)

Kunze et al. (2009)

Akerblom and Jakobsson (2013)

Bian et al. (2013)

Drago et al. (2013)

Neurons p75 (neurotrophin receptor)

Nedd4 family proteins

and Nedd4 family-interacting

protein 1 (Ndfip1)

miR-124a

Cystantin C

L1 cell adhesion molecule

(L1-CAM)

GPI-anchored prion protein

GluR2/3 (glutamate receptors

subunits)

Hsp70

α-synuclein

PrPsc

APP

miR-34a

Regulate neuronal physiology:

neurite outgrowth, cell death/

survival balance (p75).

Escudero et al. (2014)

Neuroprotection (e.g., removal of

proteins during stress; Nedd4)

(Putz et al., 2008; Low et al., 2015)

Regulate translation of glutamate

transporter GLT1 in astrocytes

(Morel et al., 2013) and neuronal

fate in SVZ NSCs (miR-124a)

Cheng et al. (2009) and

Akerblom et al. (2012)

Regulate proliferation and

differentiation of adult NSCs

(Cystatin C) (Ghidoni et al., 2011)

Regulatory function at synapses

(Faure et al., 2006)

Stimulate microglial phagocytosis

(synaptic pruning)

(Bahrini et al., 2015)

Regulate NSCs differentiation,

neuroblasts migration and neuron

maturation (miR-34a)

(Mollinari et al., 2015)

Volume transmission

(Agnati and Fuxe, 2014)

Vehicles for the transfer of toxic

proteins (PrPsc: Prion disease; APP:

Alzheimer’s disease; superoxide

dismutase: amyotrophic lateral

sclerosis (ALS); alpha-synuclein:

Parkinson’s disease)

Fevrier et al. (2004),

Alvarez-Erviti et al. (2011b) and

Bellingham et al. (2012b)

miRNAs can stimulate inflammatory

response (activating Toll-like

receptors) in stroke, ALS and other

neurodegenerative diseases

(Paschon et al., 2015)

miR-124 dysregulation is associated

to several CNS disorders

Sun et al. (2015)

Cystatin C dysregulation

is associated to Alzheimer’s disease

Ghidoni et al. (2011)

Smalheiser (2007)

Lachenal et al. (2011)

Von Bartheld and Altick (2011)

Smythies and Edelstein (2013)

Chivet et al. (2012, 2013, 2014)

Ryan et al. (2015)

Astrocytes Prostate Apoptosis

Response 4 (PAR-4)

Ceramide

Synapsin I

FGF-2

VEGF

PEDF

Hsp70

Promote neurite outgrowth

and neuronal survival

(synapsin I)

(Wang et al., 2011)

Induce glial cell proliferation

(miR-125b) (Pogue et al., 2010)

Favor exosome targeting and

transfer of information to acceptor

cells (Cx43)

(Soares et al., 2015)

Amyloid-induced exosomes are

enriched in ceramide and PAR-4.

Apoptosis induction in

Alzheimer’s disease

(Wang et al., 2012)

Astrogliosis. Alzheimer’s disease,

Down’s syndrome (miR-125b)

(Pogue et al., 2010)

Taylor et al. (2007)

Guescini et al. (2010)

Frühbeis et al. (2012)

Hajrasouliha et al. (2013)

Agnati and Fuxe (2014)

(Continued)
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TABLE 1 | (Continued).

Niche cells
Examples of biomolecules

expressed by niche cells

and found in exosomes (∗)

Physiological function Pathological function Reference

IGFBP6

miR-125b

Cx43

Angiogenesis. Proliferation and

differentiation of varios cell types

(FGF-2, VEGF)

(Proia et al., 2008)

Regulate stemness of NSCs (PEDF)

(Ramírez-Castillejo et al., 2006)

Volume transmission

(Agnati and Fuxe, 2014)

Oligodendrocytes (∗∗) Superoxide dismutase,

catalase

Myelin proteins (CNP, MBP,

MOG, PLP)

Lipids (galactocerebroside,

sulfatide, cholesterol)

Enhance neuronal stress tolerance,

promote neuronal survival during

oxygen/glucose deprivation,

and regulate neuronal physiology

(increase firing rate, modulate

gene expression and signal

transduction pathways)

(Frühbeis et al., 2013a;

Fröhlich et al., 2014)

Trophic support for axons

(Krämer-Albers et al., 2007)

Oligodendrocyte-microglia

communication

(Fitzner et al., 2011)

Neuroinflammation

(Gupta and Pulliam, 2014)

Autoantigen in multiple

sclerosis (PLP)

(Krämer-Albers et al., 2007)

Hsu et al. (2010)

Lopez-Verrilli and Court

(2013)

Peferoen et al. (2014)

Microglia Surface-bound aminopeptidase

N (CD13)

Monocarboxylate (lactate)

transporter 1 (MCT1)

Metabolic enzymes (Gliceraldehyde-

3-phosphate dehydrogenase)

miR-155

Growth Factors (FGF2,

IGF1, BDNF)

Neuropeptide (enkephalins)

catabolism (CD13)

(Potolicchio et al., 2005)

Supportive, neuroprotective role

(Hooper et al., 2012;

Prada et al., 2013)

Exosome release is modulated

by serotonin and Wnt3a

(Hooper et al., 2012;

Glebov et al., 2015)

Modulate proliferation and

differentiation of NSCs /NPCs

(growth factors)

(Grote and Hannan, 2007;

Ma et al., 2009)

Propagation of inflammation

signals. Neurodegenerative

diseases (Prada et al., 2013)

Inflammation-induced

hippocampal neurogenic deficits

(Woodbury et al., 2015)

Bianco et al. (2005)

Potolicchio et al. (2005)

Bianco et al. (2009)

Tamboli et al. (2010)

Turola et al. (2012)

Su et al. (2014)

Gomez-Nicola and Perry

(2015)

Endothelial Cells Delta-like 4 (Dll4),

(membrane-bound

Notch ligand).

miR-126

miR-214

miR-296 (angiomirs)

Growth Factors (VEGF, PEDF)

Induce angiogenesis (miR-126,

miR-214 and Dll4)

(Sheldon et al., 2010;

van Balkom et al., 2013;

Sharghi-Namini et al., 2014;

van Balkom et al., 2015)

Increase levels of pro-angiogenic

receptors (miR-296)

(Würdinger et al., 2008)

Modulate proliferation and

differentiation of NSCs/NPCs

(growth factors)

(Grote and Hannan, 2007)

Cellular stress changes RNA and

protein composition of endothelial

cell-derived exosomes. Transfer of

stress signals (hypoxia, inflammation,

hyperglycemia) to target cells

(de Jong et al., 2012)

Inflammation-induced EVs

(exosomes?) induce changes in

protein expression pattern of

cerebrovascular pericytes

(Yamamoto et al., 2015)

Shen et al. (2004)

Simak et al. (2006)

Tavazoie et al. (2008)

Jung et al. (2009)

Haqqani et al. (2013)

Crouch et al. (2015)

van Balkom et al. (2015)

(∗) In bold are presented those biomolecules expressed by the referred cell type and found in exosomes of other cell types. (∗∗) Oligodendrocytes are not typically

considered niche cells but are included here as another example of CNS cell-to-cell communication via exosomes.
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Exosomes in the Blood to CNS
Communication and as Therapeutic
Vehicles
Exosomes constitute one of the most attractive vehicles to

communicate peripheral organs with the CNS and vice versa.

The fact that blood-circulating exosomes may reach and be

incorporated into different organs has stimulated scientists from

diverse disciplines to explore the use of exosomes as therapeutic

vehicles able to deliver specific drugs (Suntres et al., 2013). This

widespread interest includes the use of exosomes as therapeutic

agents in cancer (Pitt et al., 2014; Greening et al., 2015; Tran

et al., 2015), and in infectious and allergic diseases (Admyre

et al., 2008; Prado et al., 2008; Hosseini et al., 2013), to give

just a few examples. Exosomes are considered attractive vehicles

of blood to CNS communication due to (i) their stability (their

cargo is protected from RNAses and proteases); (ii) their lack of

immunogenicity (when derived from the same patient); (iii) the

possibility of adding surface proteins or antibodies to target

specific cell types; (iv) the possibility of loading a specific

molecular cargo with therapeutic actions; and (v) importantly,

their capacity to cross the BBB (Aryani and Denecke, 2014;

Ridder et al., 2014; György et al., 2015; Kawikova and Askenase,

2015). siRNAs, for example, have been successfully targeted to

specific brain regions in mice following systemic injection of

siRNA-electroporated exosomes (Alvarez-Erviti et al., 2011c; El-

Andaloussi et al., 2012). This strategy has been reported to be

effective as a way to decrease α-synuclein aggregates in wild

type as well as in transgenic mice expressing the phospho-mimic

S129D α-synuclein, which is prone to aggregation (Cooper et al.,

2014). Exosomes have also been used to deliver curcumin and

JSI124 (activator of transcription 3 inhibitor) to brain microglia

of mice via an intranasal route, protecting from inflammation

and delaying tumor growth (Zhuang et al., 2011). These examples

emphasize the potential of exosomes, not only as therapeutic

vehicles, but also as physiological and pathological messengers

between peripheral organs and the CNS. Even though the

mechanisms by which peripheral exosomes have access to the

brain tissue are unknown, the fact that adult NSCs reside in

vascular niches, leads to the interesting proposal that blood-

borne exosomes may influence adult neurogenic niches.

Exosomes as Modulators of Diverse Stem
Cell Niches
Cancer stem cells (CSCs) or cancer initiating cells (CICs) are

tumor cells that have properties of self-renewal, clonal tumor

initiation, andmetastatic potential (Zhang et al., 2015b). As other

stem cells, CSCs reside in distinct regions within the tumor called

niches, which protect CSCs from immune responses and preserve

their phenotypic plasticity (Plaks et al., 2015). Furthermore, the

niche is believed to play a pivotal role in the resistance of CSCs

to some cancer therapies (Kuhlmann et al., 2015; Plaks et al.,

2015). It is known that exosomes released locally from tumor cells

are able to modify the niche, promoting angiogenesis and tumor

cell proliferation (Tickner et al., 2014). In addition, cancer-

derived exosomes can travel to sites located outside the tumor

to induce cellular changes associated with the promotion of a

‘‘pre-metastatic’’ niche, a special microenvironment that is able

to receive and harbor cancer cells, thus favoring metastasis. This

has been demonstrated in the case of melanoma metastasis in

the bone marrow (Peinado et al., 2012) and liver metastasis of

pancreatic ductal adenocarcinoma (Costa-Silva et al., 2015). Even

though the mechanisms by which exosomes modulate primary

tumor and pre-metastatic niches are not fully understood, it has

been shown that isolated exosomes from body fluids of cancer

patients (blood, ascites fluid and urine, CSF) contain several

growth factors and cytokines able to modulate the environment

of the metastatic niche (Ung et al., 2014).

On the other hand, non-tumoral mesenchymal stem cells

(MSCs) are extensively used in different cell therapy-based

clinical trials today. It is known that functional improvement

with MSCs therapies is not mainly due to cell engraftment

or differentiation at the site of injury but they exert their

effects through their secreted products, including exosomes

(Lai et al., 2015). Exosomes harvested from the conditioned

media of MSCs cultures increase angiogenesis and neurogenesis,

and promote functional recovery in animal models of stroke

and traumatic brain injury (Xin et al., 2013a,b; Zhang et al.,

2015c). Thus, in therapies for brain disorders, it has been

proposed that exosomes derived from MSCs function as an

extension of MSCs, and like their cell-source, exosomes can

target biological processes that stimulate functional repair of

the damaged nervous system (Lai et al., 2015). However, it is

thought that similar exosomes isolated from MSCs of different

origins (i.e., bone marrow, menstrual, chorion or umbilical

cord) might differentially affect target cells, possibly due to a

differential molecular cargo (Lopez-Verrilli and Court, 2013).

In this context, albeit a direct participation of exosomes in

the adult neurogenic niches has not yet been addressed, it is

conceivable that exosomes derived from the different cell types

of the neurogenic niche as well as the heterogeneous exosome

mixture that may reach the niche via CSF-volume transmission

or through the vasculature, affect the neurogenic process in a

differential and highly specific manner. Given the relevance of

these actions to a large array of diseases of the nervous system,

the cellular andmolecularmechanisms involved in the regulatory

functions of exosomes in the neurogenic niche are an attractive

field for future investigations.

MOLECULAR COMPONENTS OF
EXOSOMES WITH A POTENTIAL ROLE IN
THE REGULATION OF THE NEUROGENIC
NICHE

MicroRNAs
Several steps of adult neurogenesis are mediated or regulated

by miRNAs. For example, miR-let7b and miR-9 regulate

proliferation and differentiation of NSCs (Zhao et al., 2009,

2010). Similarly, miR-34a regulates NSCs differentiation,

neuroblast migration and neuron maturation (Mollinari et al.,

2015). miR-124a is a key determinant of neuronal fate of

SVZ NSCs by targeting Sox9 (Cheng et al., 2009; Akerblom

et al., 2012) or by targeting the JAG-Notch signaling pathway
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(Liu et al., 2011). On the other hand, miR-128 overexpression

reduces the levels of doublecortin (Dcx) in differentiating NPCs,

indicating that miR-128 can target and potentially take part in the

regulation of Dcx levels in adult neurogenesis (Cernilogar et al.,

2015). Furthermore, it has been recently shown that miR-124,

miR-128 and miR-137, can act cooperatively and synergistically

to promote neuronal differentiation of NSCs by targeting

overlapping gene sets containing a highly interconnected

transcription factor network (Santos et al., 2015). miRNAs

are also involved in glial cell proliferation/differentiation and

angiogenesis, phenomena closely related and associated with

adult neurogenesis. For example, miR-125b is involved in

glial cell proliferation under physiological and pathological

conditions (Pogue et al., 2010). On the other hand, miR-126

and miR-214 induce angiogenesis (Sheldon et al., 2010; van

Balkom et al., 2013, 2015; Sharghi-Namini et al., 2014), while

miR-296 increase levels of pro-angiogenic receptors (Würdinger

et al., 2008). Several CNS disorders associated with defective

neurogenesis has been linked to miRNAs function. For example,

dysregulation of miR-124 is associated with neurodegenerative

and stress-related disorders (Sun et al., 2015). Similarly, miR-155

is essential for inflammation-induced hippocampal neurogenic

dysfunction via microglial activation (Woodbury et al., 2015).

Despite their relevant and determinant role on the neurogenic

process, the precise target cells and mechanisms by which

miRNAs are transferred to target cells in the neurogenic niche

are virtually unknown. However, all the miRNAs mentioned

above have been found in exosomes from different cellular

origins (Table 1). Furthermore, most of them are expressed

by different niche cells; thus, it is conceivable that some

of these miRNA are transported within exosomes to exert

their function on NSCs/NPCs and regulate the neurogenic

process. In addition, a recent systemic characterization

of exosomal RNA profiles in human plasma samples by

RNA sequencing analyses showed that miRNAs were the

most abundant (Huang et al., 2013). Interestingly, the same

study showed that five (miR-128, miR-124, miR-125b,

miR-9, and miR-let7b) out of the twenty most abundant

exosomal miRNAs are involved in the neurogenic/angiogenic

process. Thus, these results highlight not only the fact the

neurogenesis-modulating miRNAs are incorporated into

exosomes, but also stress the possibility of exosome-mediated

communication between the systemic circulation and the

CNS.

Proteins and Signaling Peptides
Some of the biomolecules that have already been functionally

characterized as modulators of adult neurogenesis, have also

been described as components of exosomes. For example, TGF-β,

a negative regulator of the adult neurogenic niche, has been

documented to be present in exosomes of diverse cellular origins.

As such, TGF-β-carrying exosomes circulate in the blood stream

under diverse pathological conditions ranging from renal to

pregnancy-related diseases and in consequence, might indirectly

affect neurogenesis if crossing the BBB (Szajnik et al., 2013; Hong

et al., 2014; Tan et al., 2014; Torreggiani et al., 2014; Raimondo

et al., 2015; Solé et al., 2015). In addition to the protein,

the mRNA coding for TGF-β has been found in exosomes

from glioblastoma multiforme patients (Muller et al., 2015). On

the other hand, positive regulators of adult neurogenesis such

as Ephrin-B2 or components able to activate EGFR signaling

have also been found in exosomes (Mathivanan et al., 2010;

Higginbotham et al., 2011). Similarly, VEGF has been found in

exosomes derived from several cell types (Thompson et al., 2013;

Ekström et al., 2014; Torreggiani et al., 2014). Interestingly, it

has been recently shown that adult hippocampal NSCs/NPCs

secrete large amounts of VEGF in vitro and in vivo and this

self-derived VEGF is functionally relevant for maintaining the

neurogenic niche (Kirby et al., 2015). Several other signaling

peptides known to determine cell fate in the neurogenic niche

and described in the present work, such as PEDF, IGFBP6, EGF,

FGF-2, Hedgehog, Notch, as well as proteins of theWnt signaling

pathway, just to mention a few, have been found in the exosomal

fractions from different cell types and conditions (Graner et al.,

2009; Nazarenko et al., 2010; Lai et al., 2011; Hajrasouliha et al.,

2013; Wendler et al., 2013). Remarkably, most of the studies

describing the presence of these proteins in exosomes correspond

to proteomic analyses. In this regard, several intriguing issues

remain to be addressed. The mechanisms involved in the

delivery of several growth factors and signaling peptides to

MVBs and their incorporation into ILVs are still speculative.

Moreover, the molecular machinery responsible of transferring

exosomal cargo into target cells are unknown. Further studies

conducted to elucidate these molecular mechanisms will give

clues about how adult neurogenesis is regulated not only

under physiological conditions but also under certain CNS

disorders.

CNS DISORDERS ASSOCIATED TO
IMPAIRED ADULT NEUROGENESIS:
POTENTIAL ROLE OF EXOSOMES IN
THEIR PATHOGENESIS AND AS
BIOMARKERS

Several neurodegenerative disorders have been associated to

defects in the adult neurogenic process in the DG and/or

subventricular zone/OB system (Steiner et al., 2006; Shruster

et al., 2010; Mu and Gage, 2011; Winner et al., 2011;

Regensburger et al., 2014; Foltynie, 2015; He and Nakayama,

2015; Le Grand et al., 2015; Winner and Winkler, 2015).

On the other hand, significant progress has been done to

unravel the function and regulation of adult neurogenesis

in psychiatric diseases (Eisch et al., 2008; Jun et al., 2012).

Depression is associated to a reduction in SGZ neural

progenitor proliferation in the DG (Gould et al., 1998; Jacobs

et al., 2000). Similarly, experimentally-induced inhibition of

neurogenesis favors depressive-like behaviors in animal models

(Wang et al., 2015; Xiang et al., 2015). On the other hand,

different therapies that relieve depressive symptoms, such as

antidepressant drug treatments (Malberg et al., 2000; Santarelli

et al., 2003) or physical exercise (van Praag et al., 1999a;

Lugert et al., 2010), increase SGZ neurogenesis. However, the

mechanisms that stimulate adult hippocampal neurogenesis
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in those treatments are currently not clear (Jun et al.,

2012).

Even though we are yet to obtain a conclusive causal

relationship between adult neurogenesis and neurodegenerative

or psychiatric diseases, growing evidence reveals how these

disorders may proceed through impairment in the regulation of

adult neurogenic niches. Thereby, despite their particular genetic

or environmental origin, defects in adult neurogenesis appears

as common hallmark functionally associated to the pathogenesis

of different CNS diseases. Recent studies emphasize a putative

role of exosomes in the pathogenesis of neurodegenerative

and psychiatric disorders. Furthermore, considering that (i)

exosomes may condition the microenvironment of a particular

region such as the neurogenic niche; (ii) the content of exosomes

in a particular cell type may change in different physiological and

pathological conditions; and (iii) that brain parenchyma-derived

exosomes may have access to the CSF and the peripheral blood

circulation, neurogenic niche-derived exosomes may represent

not only powerful regulators of adult neurogenesis, but also

attractive therapeutic targets and useful biomarkers for different

CNS disorders.

Exosomes in Neurodegenerative Disorders
In neurodegenerative disorders such as Alzheimer’s disease

(Rajendran et al., 2006; Saman et al., 2012), Parkinson’s

disease (Emmanouilidou et al., 2010; Alvarez-Erviti et al.,

2011a,b) and Prion diseases (Fevrier et al., 2004), the content

of pathological forms of the toxic proteins associated to

exosomes is increased and as such, it has been proposed that

exosomes may favor the amplification and spread of protein

misfolding diseases (Bellingham et al., 2012b; Danzer et al.,

2012; Grad et al., 2014). In fact, when the production of

exosomes was inhibited in a mouse model of Alzheimer’s disease

by decreasing the synthesis of ceramide, a lipid enriched in

exosomes, total amyloid as well as plaque levels were reduced

(Dinkins et al., 2014). In brain cells, the abnormal protein

aggregates present in neurodegenerative disorders activate

the proteasome and autophagy pathways, tending to restore

proteostasis (protein homeostasis; Hetz and Mollereau, 2014).

A possible explanation of exosomal loading and secretion of

cytotoxic proteins is that the overload of misfolded proteins

may saturate the mentioned cytoprotective pathways, leading

to their elimination via exosomes, although the mechanistic

links of these processes are yet unknown (Baixauli et al., 2014).

Interestingly, exosomes might also act by sequestering toxic

proteins (Kalani et al., 2014). In Alzheimer’s Disease, in which

exosomes are loaded with amyloid-β (Aβ) peptides and with

molecules involved in its synthesis, degradation and aggregation,

exogenous exosomes expressing surface proteins such as the

cellular prion protein (PrPc), a receptor for Aβ, can sequester

Aβ and counteract its negative effects on plasticity (An et al.,

2013).

Exosomes in Psychiatric Disorders
Almost nothing is known about changes in exosome content

or release and their action on recipient cells in psychiatric

disorders, such as schizophrenia, major depressive disorder,

bipolar disorder or anxiety disorders, among others (Tsilioni

et al., 2014). Interestingly, defects in the adult neurogenic process

have been associated to the pathogenesis and/or progression

of most of these disorders. In schizophrenia and bipolar

disorders, specific exosome-related miRNAs (miR-497 and miR-

29c, respectively) were upregulated in the prefrontal cortex of

post-mortem brains (Banigan et al., 2013). We have shown that

treatment with the antidepressant drug fluoxetine upregulates

the content of the forebrain astrocyte-derived enzyme Aldolase

C in CSF exosomes. The content of this enzyme is further

upregulated in exosomes after chronic restraint stress, but

not after stress induced by complete immobilization (Sandoval

et al., 2013; Ampuero et al., 2015). A better knowledge of

molecular changes associated to brain-derived exosomes in

psychiatric disorders will allow a better comprehension of

the neurobiological features of these complex diseases and

in turn, would lead to the proposition of new treatment

strategies.

Exosomes as Potential Biomarkers of CNS
Disorders
One of the yet unmet goals in CNS diseases, especially in the

psychiatric sphere, is the establishment of biological markers,

especially those obtained by non-invasive strategies, which could

be used as diagnostic tools or to monitor disease progression,

treatment effects and prognosis. Thus, the miRNA and protein

cargo of exosomes obtained from peripheral body fluids, such as

plasma or urine, constitute remarkable candidates as biomarkers

(Cheng et al., 2014; Zhang et al., 2015a). With the exception

of an intracranial cancer type, glioblastoma multiforme (Skog

et al., 2008; Shao et al., 2012), it has not yet been possible

to show in a convincing way that exosomes produced by

neurons or glial cells might reach the blood circulation. Serum

exosomes from glioblastoma multiforme patients carry tumor

specific epidermal growth factor receptor vIII (EGFRvIII), and

transforming growth factor beta 1 (TGF-β1; Skog et al., 2008;

Graner et al., 2009). The proposed pathways are a defective

BBB (Sáenz-Cuesta et al., 2014), a CSF-blood pathway or a

transport process by transcytosis across endothelial cells in an

intact BBB, as it has recently been suggested (Haqqani et al.,

2013).

The fact that neurodegenerative diseases are associated with

increases in plasma exosomes containing misfolded, pathological

forms of proteins strongly suggest a central origin of them.

Indeed, exosomes can carry proteins that serve as common

biomarkers of a disease. A neuroblastoma cell line (SH-

SY5Y) expressing α-synuclein release exosomes that contain

this protein and are capable of transporting α-synuclein to SH-

SY5Y cells that do not express it (Alvarez-Erviti et al., 2011a).

In vivo experiments have shown that a small proportion of

radioactively labeled α-synuclein delivered to the CSF can be

recovered in plasma exosomes (Shi et al., 2014) pointing to

a central origin of the protein, although its cellular origin

remains obscure. Neurons infected with prion protein in its

cellular (PrPc) as well as with its pathogenic form (PrPsc)
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release exosomes containing prion proteins as well as a

specific miRNA signature (Fevrier et al., 2004; Vella et al.,

2007; Bellingham et al., 2012a). In intracerebrally infected

animals, exosomes carrying PrPsc, accounting for about 20%

of the plasma infectivity, could be harvested from plasma

samples (Properzi et al., 2015). In this study, PrPsc was

identified by Western blots with the caution of using sucrose

gradient-purified exosomes to avoid the presence of blood-

derived immunoglobulin contaminations that would obscure the

usefulness of protein exosome markers in the molecular weight

range of the IgG and IgM light and heavy chains (Properzi et al.,

2015).

To identify EVs of neuronal origin, affinity purification using

antibodies against neuronal membrane proteins, such as neural

cell adhesion molecule-1 (NCAM-1) or neural cell adhesion

molecule L1 (L1CAM), have been used. With this experimental

strategy, the group of Kapogiannis has been able to detect

plasma or serum exosomes with increased content of Aβ1–42,

and of phosphorylated forms of tau and type 1 insulin receptor

substrate (IRS-1) specifically associated to patients suffering

Alzheimer’s Disease. Interestingly, these findings are proposed

as useful predictive tools up to 10 years before the clinical

onset of the disease (Fiandaca et al., 2015; Kapogiannis et al.,

2015). In summary, the molecular content, i.e., miRNAs or

proteins, in exosomes are emerging as strong candidates for

providing CNS disease-specific biomarkers. The consistency of

the results depends on the isolation method and thus, the

purity of the fraction under analysis (exosomes vs. microparticles

or microvesicles), or contamination with extravesicular blood-

borne molecules while their origin in neuronal or glial cells is

awaiting an indisputable proof. Furthermore, despite their purity,

there are other shortcomings that need be to be addressed when

attempting to use exosomes as biomarkers: (i) the pattern of

exosomal RNAmay change according to the extraction methods,

due to differential susceptibility to exosomal lysis according

to their membrane composition (Eldh et al., 2012; Van Aelst

and Heymans, 2013); (ii) problems when trying to replicate

previously published microarray analysis have been reported,

mainly due to journals not enforcing more strict guidelines to

interpret and report microarray data (Shields, 2006; Ioannidis

et al., 2009); (iii) a further source of confusion is the possibility

that medications taken by patients may alter the composition of

exosomes, thus adding another level of complexity in the analysis

and interpretation of the data (Aryani and Denecke, 2014).

FIGURE 4 | Exosomes as regulators of adult neurogenesis. The NSC-neuron lineage is exposed to a complex mix of exosomes within the neurogenic niche.

Exosomes secreted locally by different niche cells can influence the physiology of other niche cells and the progression of different neurogenic stages. It is well

demonstrated that neurons, astrocytes, microglia and endothelial cells secrete exosomes. NSCs/NPCs are also able to secrete exosomes (not depicted). Exosomes

release by ependymal cells and pericytes has not been reported up to now (?). Additionally, exosomes originated in cells located far from the neurogenic niches can

influence its nature. Exosomes derived from cells located in other brain regions can reach neurogenic niches through innervation of the niche or via CSF-mediated

volume transmission. Indeed, besides being a source of soluble molecules for the SVZ neurogenic niche, the presence of exosomes in the CSF has been

demonstrated in several mammalian species including humans. Furthermore, choroid plexus epithelial cells secrete exosomes into the CSF. Interestingly, exosomes

produced in cells and tissues outside the central nervous system (CNS; peripheral tissues) can potentially reach neurogenic niches either directly, through the

vasculature (blood) of the niche, or indirectly, through the choroid plexus. Conversely, exosomes originated in the neurogenic niche might have access to the CSF

and to the peripheral blood circulation. The ability of exosomes to cross-communicate the CNS (neurogenic niches) with peripheral tissues highlights their potential

role as physiological/pathological mediators of different CNS disorders (explanation for CNS-peripheral tissues co-morbidities, for example) and as biomarkers

(CSF/blood samples). BBB, blood-brain barrier; BCB, blood-CSF barrier (choroid plexus epithelial cells); CBI, CSF-brain interface.
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CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we focus on the potential role of EVs, and

in particular, of exosomes in the regulation of the neurogenic

niche (Figure 4). Exosomes, as messengers able to modulate

the physiology of the niche, might originate from cells residing

within the niche or from distant cells/tissues, thus having

access to the neurogenic niche through the vasculature (blood-

circulating exosomes) or by volume transmission via the CSF.

The possible effects of molecular components already known

to be present within exosomes on adult neurogenic process are

also addressed. This scenario opens the possibility of a novel

form of communication between niche cells and regulation of

adult neurogenesis, able to both, regulate locally the extent of

neurogenesis, and sense and integrate physiological conditions

and pathological disturbances in diverse body systems.

On the other hand, exosomes originated in the CNS and in

the neurogenic niche (i) can vary according to the circumstances,

and (ii) might reach the peripheral blood circulation, thus linking

or communicating directly the physiological or pathological

status of the CNS to peripheral organs or tissues. This could

be relevant (1) to understand the high prevalence of co-

morbidity of pathologies associated to impaired neurogenesis

and peripheral disorders, such as major depression and diabetes

or inflammatory diseases (Kessler et al., 2003; Empana et al.,

2005; Evans et al., 2005; Katon et al., 2008; Katon, 2008; Bonaz

and Bernstein, 2013; Filipovic and Filipovic, 2014), and (2) to use

blood-circulating CNS-derived exosomes as biomarkers of brain

disorders.

The contribution of specific cell- and tissue-derived exosomes

on adult neurogenesis should be further investigated with the use

of proper animal models in which exosomes should be labeled

with the use of molecular biology techniques, and later should

be validated in health and disease with the use of a panel of

biomarkers able to define specific exosome populations. We

envisage that, in the near future, many of this work will be

addressed by a growing community of researchers interested in

the role of exosomes in disease-related processes that, among

others, affect the neurogenic niche in a yet unsuspected manner.
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