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Abstract: Osteoarthritis (OA) is a prevalent and debilitating age-related joint disease characterized
by articular cartilage degeneration, synovial membrane inflammation, osteophyte formation, as
well as subchondral bone sclerosis. OA drugs at present are mainly palliative and do not halt or
reverse disease progression. Currently, no disease-modifying OA drugs (DMOADs) are available and
total joint arthroplasty remains a last resort. Therefore, there is an urgent need for the development
of efficacious treatments for OA management. Among all novel pharmaco-therapeutical options,
exosome-based therapeutic strategies are highly promising. Exosome cargoes, which include pro-
teins, lipids, cytokines, and various RNA subtypes, are potentially capable of regulating intercellular
communications and gene expression in target cells and tissues involved in OA development. With
extensive research in recent years, exosomes in OA studies are no longer limited to classic, mes-
enchymal stem cell (MSC)-derived vesicles. New origins, structures, and functions of exosomes are
constantly being discovered and investigated. This review systematically summarizes the non-classic
origins, biosynthesis, and extraction of exosomes, describes modification and delivery techniques,
explores their role in OA pathogenesis and progression, and discusses their therapeutic potential and
hurdles to overcome in OA treatment.

Keywords: osteoarthritis; exosome; extracellular vesicle; regenerative medicine; chondrocyte; carti-
lage injury

1. Introduction

Osteoarthritis (OA) is the most common form of arthritis, causing chronic joint pain,
decline in joint function, physical disability, and impaired quality of life in the affected
population [1]. According to data from the National Health Interview Survey (NHIS),
doctor-diagnosed OA and other forms of arthritis affected 52.5 million American adults
during 2011–2012, and by 2040, this number is expected to be increased by 49% [2], creating
a considerable socioeconomic burden [3]. During OA progression, pathological changes
have been reported to affect the whole joint, including cartilage degradation, osteophyte
formation, abnormal subchondral bone remodeling, synovitis, meniscus and ligament
degeneration, hypertrophy of the joint capsule, and increased vascularization, inflam-
matory infiltration, and fibrosis in the infrapatellar fat pad (IPFP) [4,5]. Risk factors of
OA, including age, gender, genetic predisposition, obesity, inflammation, and excessive
mechanical loading, increases the probability of OA occurrence and development [6]. With
the combined effects of aging, obesity, and an increasing number of joint injuries in the
global population, this burdensome syndrome is expected to become more prevalent [7].

Treatment strategies of OA are limited due to the lack of knowledge about OA patho-
genesis. At present, no disease-modifying osteoarthritis drugs (DMOADs) are available
to reverse or halt OA progression [8]. Pharmacological approaches, such as the use of
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non-steroidal anti-inflammatory drugs (NSAIDs), analgesics, and surgical interventions
are current options to offer symptomatic relief [9]. However, these options are ineffective
in repairing damaged articular cartilage, and are also challenged by relatively small effect
sizes and uncertainty about their long-term efficacy and safety. These limitations hinder
their clinical applications [10]. Considering that OA is a multifactorial disease with com-
plex comorbid conditions, personalized treatment is essential to optimize outcomes [11].
To achieve this, researchers focus on developing personalized in situ intra-articular (IA)
therapeutic options. IA drug delivery is superior to systemic administration with higher
levels of efficacy and a lower risk of side effects. Different drug delivery systems have
emerged to improve the local delivery of small molecules to joints [12]. Among them,
exosomes, as a novel bio-cargo, have attracted significant attention in recent years.

Exosomes are a type of extracellular vehicles (EVs) with a diameter ranging between
30 and 150 nm, and a density of 1.13–1.19 g/mL [13]. These extracellular membrane-
bound vesicles are able to work as cell-specific cargoes, which contain complex signaling
molecules such as lipids, proteins, metabolites, nucleic acids, and cytosolic and cell-surface
proteins [13]. Exosomes functions to mediate intercellular communications, and can be
released into the extracellular environment by almost all types of cells through fusing
plasma membrane and multivesicular bodies (MVBs) [14]. The biomedical applications
of exosomes have been rapidly expanding in recent years because of their active roles
in the function and pathophysiology of various body systems and potential in clinical
therapeutics and diagnosis [15]. Diverse therapeutic payloads, such as DNAs, RNAs,
antisense oligonucleotides, metabolites, chemotherapeutic agents, cytokines, and immune
modulators, can be delivered to a target by engineered exosomes [16]. In OA related
research, exosomes from multiple origins in the joint, such as tissue-specific mesenchymal
stem cells (MSCs), chondrocytes, synovial fibroblasts (SFBs), osteoblasts, tenocytes, IPFP
adipocytes, and platelet-rich plasma (PRP), have been detected and change with OA
progression [17–19] (Figure 1). Herein we discuss the biosynthesis, origins, and contents of
exosomes, and review their roles in OA pathogenesis, progression, and treatment.
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Figure 1. Tissue sources of exosomes in the knee joint. Exosomes are secreted by multiple types
of cells of the joint, including adipocytes, adipose-derived stem cells (ADSCs), synovium-derived
mesenchymal stem cells (MSCs), synovial fibroblasts and macrophages, chondrocytes, osteoblasts and
osteocytes in the subchondral bone, vascular endothelial cells, immune cells such as T cells, B cells,
and dendritic cells (DCs) meniscus cells, periodontal ligament cells, tenocytes, tendon stem cells, and
bone marrow-derived MSCs. These exosomes are involved in the regulation of joint homeostasis,
cell–cell communications, and the initiation and progression of OA.
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2. Formation and Origin of Exosomes

The concept of ‘exosomes’ was first proposed in 1981 by Trams et al. [20]. In 1983,
the currently defined exosomes were first identified in sheep reticulocytes and named by
Johnstone et al. [21]. However, the widespread clinical applications were limited by the
low yield for the production method used and unexpected therapeutic effects [22]. Besides,
the function of exosomes is dependent on both the type and condition of the cells that
they are released from, and thus varies a lot. To optimize the application, a comprehensive
understanding of the generation, origins, and contents of exosomes is required.

2.1. Biogenesis of Exosomes

The detailed biological synthesis process of exosomes is shown in Figure 2. The
cellular biogenesis process of exosomes begins with double invagination of the plasma
membrane [23]. This is followed by the accumulation of bioactive substances in the early
sorting endosomes (ESEs), such as lipids, proteins, small molecules, ions, and metabo-
lites present in the extracellular space. The ESEs subsequently mature into late sorting
endosomes (LSEs), a process regulated by endosomal sorting complex required for trans-
port (ESCRT) proteins and others. After that, invagination of the limiting membrane of
LSEs results in the formation of MVBs (also referred to as multivesicular endosomes) [16].
The MVBs can be degraded by fusing with autophagosomes or lysosomes; alternatively,
MVBs fuse with the plasma membrane and release exosomes—vesicles containing the
intra-endosome substances—to the extracellular space [23].
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Figure 2. Scheme of the biogenesis of exosomes. Endocytosis and plasma membrane invagination
facilitate the entry of cell surface proteins and extracellular components such as lipids, proteins,
metabolites, ions, and small molecules into cells, leading to the formation of early sorting exosomes
(ESEs). The ESEs then fuse with the endoplasmic reticulum (ER) and/or trans-Golgi network (TGN)
and result in late sorting exosome (LSE) formation. A second invagination in the LSEs leads to
the generation of multivesicular bodies (MVBs). MVBs can then either fuse with lysosomes for
degradation or be transported to the plasma membrane and undergo exocytosis—a process resulting
in exosome release. Exosomes, filled with various cellular components such as proteins, mRNAs,
miRNAs, lipids, enzymes, and carbohydrates, are released through exocytosis after MVBs fuse with
the cell membrane. Released exosomes can be further taken up by adjacent or remote cells in various
ways, including receptor-mediated endocytosis and fusion with the plasma membrane of cells.

A key component of OA treatment is the efficient delivery of therapeutic molecules to
targeted cells, especially to chondrocytes embedded in a dense extracellular matrix (ECM),
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which requires the use of biocompatible molecular transport vehicles. Exosomes exhibit
unique features, such as high serum stability and strong penetration across biological
barriers, which make them ideal cargoes for drug delivery in OA treatment [24]. However,
pristine exosomes can experience fast clearance in the body and have weak cell-targeting
abilities, resulting in unsatisfactory treatment outcomes. Therefore, bioengineered exosome-
mediated delivery strategies, such as drug loading and surface modifications, have been
explored to improve the cell-targeting property of exosomes [23]. For example, genetic
engineering methods have been utilized to introduce specific proteins, such as ligands for
receptors or antibodies against target cells, to the surface of exosomes to achieve precise
delivery [25].

2.2. Origins of Exosomes and Their Roles in OA

Osteoarthritis is a whole-joint disease with pathological changes observed in all joint
components [26]. Exosomes secreted by cells in joint tissues or from IA-injected therapeutic
agents exhibit complex regulatory effects on the progression of OA [27]. MSCs, derived
from tissues within the joint (e.g., subchondral bone, IPFP, and synovium) and elsewhere,
represent the most widely studied sources of exosome production. In addition, exosomes
have also been obtained from non-classic sources including, but not limited to, articular
chondrocytes, adipocytes, osteoblasts, osteocytes, vascular endothelial cells, and PRP [28].
Exosomes derived from different origins exhibit varying effects. Some exosomes showed
chondroprotective effects, while others, such as vascular endothelial cell (VEC) and OA
chondrocyte-derived exomes, promoted OA progression. Detailed information and poten-
tial regulatory mechanisms of exosomes generated by different cells are listed in Table 1. In
this section, the different exosome sources are discussed, with an emphasis on joint-related
tissues and cells, followed by a description of their roles in OA.
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Table 1. Summary of major findings of OA-related studies involving the use of exosomes.

Cells Source Extraction Dose Delivery Method Target Cells Results Ref

VECs Conditioned medium Ultrafiltration 100 µg Co-incubation for 24 h Primary chondrocytes

Promoted OA progression by
inhibiting chondrocyte autophagy,

downregulating p21 expression, and
increasing ROS production and

apoptosis.

[29]

OA chondrocytes Culture supernatant Ultracentrifugation 1 × 106/mL Co-incubation Synovial macrophages

Promoted OA progression by
stimulating inflammasome activation

and upregulating mature IL-1β
production in synovial macrophages

[30]

Primary chondrocytes Conditioned medium Ultracentrifugation 200 µg/mL Co-incubation for 48 h
Intra-articular injection Chondrocytes

Prevented OA via the restoration of
mitochondrial function and

macrophage polarization toward the
M2 phenotype

[31]

OA osteoblasts Conditioned medium Ultracentrifugation 20 µg/mL Co-incubation for 14 d Chondrocytes
Promoted OA progression by

suppressing oxygen consumption by
chondrocytes via miR-210-5p.

[32]

BM-MSCs Conditioned medium Ultracentrifugation 10 µg/mL Co-incubation for 24 h Chondrocytes
Promoted proliferation and inhibited

apoptosis of chondrocyte via
miR-206/GIT1 axis

[33,34]

BM-MSCs Conditioned medium Ultracentrifugation 250 ng Intra-articular injection Chondrocytes
Prevented OA development by

inhibiting the degradation of cartilage
and the formation of osteophyte

[35]

BM-MSCs Conditioned medium Ultracentrifugation 200 µg/mL
3D printed

ECM/GelMA/exosome
scaffolds

Osteochondral defect
rabbit model

Prevented OA development by
facilitating cartilage regeneration and
restoring chondrocyte mitochondrial

function

[36]

SMSCs Conditioned medium Ultracentrifugation 5 µg Co-incubation for 12 h Chondrocytes

Prevented the development of OA by
facilitating migration, proliferation

and ECM secretion and suppressing
chondrocyte apoptosis

[37]

SMSCs Conditioned medium Ultracentrifugation 1010 particles Intra-articular injection DMM mice model

Prevented OA development by
enhancing cartilage tissue

regeneration via miR-140-5p
upregulation of Wnt and YAP

[38]

ESC-MSCs Conditioned medium Ultrafiltration 5 µg/mL
100 µg

Co-incubation for 48 h
Intra-articular injection

TMJ condylar
chondrocytes

Prevented OA development via
inflammation attenuation and matrix

homeostasis restoration
[39]
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Table 1. Cont.

Cells Source Extraction Dose Delivery Method Target Cells Results Ref

ESC-MSCs Conditioned medium Ultracentrifugation 881 ng Intra-articular injection DMM OA model
Prevented OA development by

balancing cartilage ECM synthesis and
degradation

[40]

iPSC-MSCs Conditioned medium Ultracentrifugation 8 µL
1010/mL Intra-articular injection Collagenase-induced

OA model

Prevented OA development by
promoting migration and proliferation

of chondrocytes
[41]

UC-MSCs Conditioned medium Ultracentrifugation 10 µg/mL
100 µg

Co-incubation for 72 h
Intra-articular injection

Rat cartilage defect
model

Mechanical stimulation increased the
expression level of LncRNA H19 in

exosomes, which promoted
chondrocyte proliferation, matrix
synthesis, and inhibited apoptosis

[42]

ADSCs Conditioned medium Ultracentrifugation 400 µg/mL Co-incubation for 48 h Chondrocytes

Prevented OA development by
promoting chondrogenesis and
suppressing inflammation via

upregulating miR-221 and miR-145

[43]

ADSCs Conditioned medium Ultracentrifugation 108 particles Intra-articular injection DMM and MIA induced
OA model

Prevented OA development by
inhibiting proteoglycan degradation

and cartilage destruction and
ameliorating gait abnormality

[44,45]

AFSC Conditioned medium Precipitation 30 µg
100 µg

Co-incubation for 72 h
Intra-articular injection

MIA-induced OA mice
model

Prevent the development of OA by
promoting chondrocyte proliferation,

cartilage matrix synthesis, and
polarizing macrophages to M2

phenotype

[46]

Engineered
CAP-Lamp2b exosomes Conditioned medium Ultracentrifugation 10 µg

100 µg
Co-incubation for 3 h

Intra-articular injection
Chondrocytes

DMM OA rat model

Prevented OA development by
delivering miR-140 to deep cartilage

regions and inhibiting
cartilage-degrading proteases

[47]

CPCs Conditioned medium Ultracentrifugation 108/mL
8 × 107 particle

Co-incubation for 3 h
Intra-articular injection Chondrocytes

Enhanced articular cartilage repair by
stimulating chondrocyte proliferation

and migration via upregulating
miRNA 221-3p

[48]

Synoviocytes Conditioned medium Ultracentrifugation 20 µg/mL Co-incubation for 24 h Chondrocytes

Promoted OA progression by inducing
apoptosis and cartilage matrix
degradation via upregulating

miR-142-5p/RUNX2

[49]
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Table 1. Cont.

Cells Source Extraction Dose Delivery Method Target Cells Results Ref

Synovial fibroblasts Patient synovial fluid Ultracentrifugation 2 × 109/mL
20 µg

Co-incubation for 48 h
Intra-articular injection

ACLT + MMx OA rat
model

Prevented OA development by
suppressing chondrocyte apoptosis,

constraining inflammation, and
cartilage degeneration

[50]

PRP PRP exoEasy Maxi Kit 50 µg/mL
100 µg/mL

Co-incubation for 24 h
Intra-articular injection Chondrocytes

Prevented OA development by
facilitating proliferation and reducing

apoptosis of chondrocyte via
Wnt/β-catenin

[17]

CPRP Whole blood Ultracentrifugation 1.42 × 109 particles Co-incubation for 48 h OA chondrocytes

Prevented OA development by
inducing chondrogenic gene

expression changes and preventing
proinflammatory cytokine release

[51]

IPFP IPFP Ultracentrifugation 10 µL
1010/mL Intra-articular injection DMM mice model

Prevented OA development by
alleviating articular cartilage damage

via miR-100-5p downregulation of
mTOR

[44]

Tenocyte Conditioned medium Ultracentrifugation 486.3 µg/mL Co-incubation for 48 h Tendon stem cells

Promoted tendon healing by
regulating tendon ECM metabolism

and inducing the tenogenic
differentiation of MSCs via

upregulating transforming growth
factor-beta

[52,53]

Periodontal ligament
cells

PureExo® exosome
isolation kit

Precipitation 5 µg/mL Co-incubation for 48 h Macrophage

Regulated macrophage function and
maintained inflammation homeostasis

by suppressing IL-1β via inhibiting
NF-κB signaling pathway

[54]

LPS-pretreated PDLFs Conditioned medium Ultracentrifugation 100 µg/mL Co-incubation for 48 h Osteoblast

Prevented bone remodeling by
inducing inflammation and inhibiting

osteogenic activity of osteoblasts,
promoting macrophage polarization

toward M1 via YAP

[55,56]

VECs: vascular endothelial cell; BM-MSCs: bone marrow mesenchymal stem cells; ESC-MSCs: embryonic stem cell-derived MSCs; iPSC-MSCs: induced pluripotent stem cells-derived
MSCs; UC-MSCs: umbilical cord mesenchymal stem cells; CPCs: chondrogenic progenitor cells; DMM: destabilization of the medial meniscus; ACLT + MMx: anterior cruciate ligament
and resecting the medial menisci; PRP: platelet-rich plasma; CPRP: citrate-anticoagulated platelet-rich plasma; SMSCs: synovial mesenchymal stem cells; IPFP: infrapatellar fat pad;
AFSC: amniotic fluid stem cells; ADSCs: adipose-derived stem cells; MIA: monosodium iodoacetate; PDLSCs: periodontal ligament-derived stem cells; PDLFs: periodontal ligament
fibroblasts.
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2.2.1. Exosomes Derived from Different Types of MSCs

MSCs possess multilineage differentiation potential and have been applied in IA
injection therapies for OA treatment [57]. However, MSCs also face several limitations,
including heterogeneity, inconsistent stemness, variable differentiation capacity, limited
homing ability, and potential adverse effects, such as immune incompatibility, tumori-
genicity, and chromosomal aberrations [58,59]. A growing body of evidence suggests that
MSC-secreted exosomes should be credited for many of the previously reported regen-
erative properties of MSCs [60]. It was found that bone marrow MSC (BMSC)-derived
exosomes can be endocytosed by chondrocytes. These exosomes showed capability in
restoring the proliferation of chondrocytes, promoting ECM synthesis, and relieving knee
OA pain [34]. Using MSC-derived exosomes to deliver mitochondrial-related proteins was
reported to alleviate oxidative stress-induced damage and reverse mitochondrial dysfunc-
tion in degenerative OA cartilage [36]. MSC-derived exosomes containing a novel lncRNA
KLF3-AS1 (KLF3 Antisense RNA 1; Ensembl: ENST00000440181) reversed the suppres-
sive effects of miR-206 on the expression of G-protein-coupled receptor kinase interacting
protein-1 (GIT1). It has been reported that GIT1 could promote the proliferation and inhibit
the apoptosis of chondrocytes [61]. Thus, the lncRNA-KLF3-AS1/miR-206/GIT1 axis is
possibly responsible for the chondroprotective effects of MSC-derived exosomes in OA [33].

In addition to BMSC, embryonic stem cell-derived MSCs (ESC-MSCs) [40], synovial
MSCs (SMSC) [37,38], adipose-derived MSCs (ADSC) [21,62], umbilical cord mesenchymal
stem cells (UC-MSCs) [42], periodontal ligament-derived stem cells (PDLSCs) [63], amni-
otic fluid stem cells (AFSCs) [46], and IPFP-MSCs [44,64,65] are other important origins of
MSC-derived exosomes in OA treatment [38]. IA injection of ESC-MSC-derived exosomes
facilitated the repair of osteochondral defects, maintained the chondrocyte phenotype,
promoted cartilage formation, reduced matrix degradation, and impeded cartilage de-
struction both in vitro and in the destabilization of medial meniscus (DMM)-induced OA
model in mice [40,66]. Mechanistically, these effects were achieved by promoting chon-
drocyte proliferation and migration, increasing collagen type II synthesis, and decreasing
ADAMTS5 (A disintegrin and metalloproteinase with thrombospondin motifs 5) expres-
sion [40]. Exosomes obtained from miR-155-5p-overexpressing SMSC were used to treat OA
chondrocytes and promoted their migration and proliferation, suppressed apoptosis, and
enhanced the secretion of ECM; such exosomes also effectively prevented OA from occur-
ring in mice undergoing cold water stimulation for 4 h/day over 20 days (which induced
OA in the mice without exosome treatment) [37]. Recently, it was found that exosomes
released by induced pluripotent stem cell (iPSC)-derived MSCs have a greater therapeutic
effect compared with those from SMSCs [41]. IA injection of ADSC-derived exosomes
showed an inhibitive effect on M1 macrophage infiltration into the synovium, significantly
attenuating OA progression and preventing cartilage degeneration in both surgically in-
duced (through DMM) mouse OA models and monosodium iodoacetate (MIA)-insulted rat
joints [45]. Besides, ADSC-derived exosomes decreased the activity of senescence-related β-
galactosidase in OA osteoblasts and the accumulation of γ H2AX foci, which were probably
attributed to the protective effects on mitochondria [62]. Exosomes derived from UC-MSCs,
which contained a high level of LncRNA H19, promoted chondrocyte proliferation and
inhibited apoptosis in vitro; the exosomes also improved macroscopic assessment and
relieved pain levels in a rat model of cartilage defect [42]. Furthermore, exosomes extracted
from the conditioned medium of PDLSCs showed anti-inflammatory effects on chondro-
cytes, synoviocytes, and meniscus cells, mediating the inflammatory processes in various
tissues in the joint [63]. AFSC-derived exosomes were found to increase pain tolerance and
induce the restoration of hyaline cartilage with good surface regularity in an MIA-induced
OA model [46]. An in vivo study showed that miR-100-5p-abundant IPFP-MSC-derived
exosomes (IPFP-Exos) had chondroprotective effects and ameliorated gait abnormalities
via inhibiting mTOR-autophagy pathway in an OA mouse model [44]. In vitro studies
suggested that IPFP-Exos promoted chondrogenesis in periosteal cells via upregulating
the expression of miR-221 and miR-145 and suppressing the production of proinflamma-
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tory cytokines [43]. Exosomes derived from kartogenin-pretreated IPFP-MSCs showed
a stronger ability to induce stem cell chondrogenesis and promoted the proliferation of
chondrocytes and the repair of articular cartilage defects both in vivo and in vitro [64].
Detailed information is summarized in Table 1.

2.2.2. Exosomes Derived from Chondrocytes and Chondrogenic Progenitor Cells

Exosomes released by chondrocytes participate in the pathologic mineralization of
OA cartilage and cell–cell communication [67,68], affecting cartilage maintenance and OA
pathogenesis [19]. These exosomes have dual roles in OA, depending on the cell condition
and cell types. Exosomes from healthy chondrocytes had high bioactivity in the elimina-
tion of mitochondrial dysfunction and restoration of immune reaction by regulating M2
macrophage penetration, thus delaying OA progression [31]. These chondrocyte-derived
exosomes contained miR-8485, which inhibited the expression of glycogen synthase kinase
(GSK)-3β and activated the Wnt/β-catenin pathway, promoting the chondrogenic differen-
tiation of BMSCs [69]. On the contrary, exosomes derived from OA chondrocytes enhanced
chondrocyte apoptosis, inhibited cell proliferation, stimulated the activation of inflamma-
some, and upregulated the production of mature interleukin (IL)-1β in macrophages via
promoting miR-449a-5p/ATG4B-mediated autophagy [30].

The chondrogenic progenitor cells (CPCs) are a type of resident cells in cartilage with
high chondrogenic differentiation potential and a strong ability to self-renew and possess
a regenerative ability in both diseased and healthy articular cartilage tissues [70]. CPC-
derived exosomes enhanced the proliferation and migration of chondrocytes and alleviated
OA in a DMM mouse model, probably via upregulating miRNA 221-3p [48].

2.2.3. Exosomes Derived from SFBs and Macrophages

Synoviocytes generally refer to SFBs and synovial macrophages, and SFBs are the ma-
jor cell type in synovium [71]. Except for SMSC, SFBs and synovial macrophages also secret
exosomes that regulate cartilage homeostasis and osteophyte formation [72]. Exosomes
released by IL-1β treated SFB induced OA-like changes in articular chondrocytes by increas-
ing the expression of catabolic genes, such as ADAMTS-5 and matrix metalloproteinases
(MMP)-13, and downregulating the expression of anabolic genes, such as collagen type II
(COL2) and aggrecan (ACAN) [71]. Exosomes from other synovial cells, including immune
cells (e.g., macrophages, lymphocytes, and T cells) and endothelial cells, though not widely
studied, are also believed to participate in the regulation of OA development [73]. Zeng
et al. found that long non-coding RNA (lncRNA) prostate cancer gene expression marker 1
(PCGEM1) was overexpressed in exosomes from OA fibroblast-like synoviocytes (FLSs).
FLS-derived exosomal PCGEM1 aggravated IL-1β-caused apoptosis and cartilage matrix
degeneration in chondrocytes by sponging miR-142-5p and upregulating RUNX2 [49]. FLS-
derived exosomal lncRNA H19 enhanced cell migration and proliferation, inhibited matrix
degradation as well as alleviated OA progression by suppressing the miR-106b-5p/TIMP2
axis [74]. Though cytokines produced by macrophages and the imbalance between M1
and M2 macrophages are critical in OA pathogenesis, the effects of macrophage-derived
exosomes on OA have been rarely studied thus far [75].

2.2.4. Exosomes Derived from Osteoblasts and Osteocytes

The remodeling of subchondral bone is a critical feature of OA and strongly associated
with disease severity and joint pain in clinical OA patients [76]. Altered crosstalk between
articular cartilage and the subchondral bone, which can be modulated by exosomes in
OA progression, has attracted much attention but not been well studied. Wu et al. found
that exosomes produced by osteoblasts in osteoarthritic, sclerotic subchondral bone con-
tained a high level of miR-210-5p, which decreased the rate of oxygen consumption by
chondrocytes, altered their bioenergetic state, and accelerated the progression of cartilage
degeneration [32]. Exosome-like EVs have been extracted from osteoblasts harvested from
OA subchondral bones. The OA osteoblast-derived exosomes were found to have up-
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regulated expression of five miRNAs—hsa-miR-885-3p, hsamiR-4717-5p, hsamiR-210-5p,
hsa-miR-135a-3p, and hsa-miR-1225-5p—than those obtained from the healthy controls;
the physiological and pathological roles of these molecules still remain unclear [19].

Osteocytes release miRNA-containing exosomes, which deliver their components via
blood circulation to the recipient cells to regulate biological processes [77]. In addition,
osteocytes are sensitive to mechanical strains. Cultured under cyclic stretch of 8% shape
variable at a frequency of 0.1 Hz for 30 min, osteocytes produce exosomes containing
differentially expressed miRNAs compared with those from non-loading groups. These
exosomes promoted the proliferation and osteogenesis of human PDLSCs by activating
the miR-181b-5p/PTEN/AKT signaling pathway [78]. Myostatin, a myokine secreted by
muscles, suppressed the expression of miR-218 in osteocyte-derived exosomes. Treated
with these exosomes, osteoblasts showed decreased osteoblastic differentiation and down-
regulated activity of the Wnt signaling pathway [79]. Osteocyte exosomes were also found
to accelerate benign prostatic hyperplasia development by promoting cell proliferation [80].

2.2.5. Exosomes Derived from Adipose Tissue

IPFP is intraarticular adipose tissue that functions to reduce mechanical loading and
absorb shock, and act as an abundant source of cytokines, lipid mediators as well as
regenerative cells for cartilage repair [81]. IPFP is primarily comprised of adipocytes,
and other cell types, including IPFP-derived MSCs and immune cells, are also found.
As discussed earlier, intense interest has been spurred in IPFP-derived MSCs and IPFP-
Exos [65].

Given the regulatory roles of adipose tissue in immune and nonimmune functions,
compositional and functional analyses of adipocyte-derived exosomes can provide valuable
information on the communications between adipocytes and other cells, such as immune
cells, in the joint. A proteomic analysis of exosomes from obese diabetic and obese non-
diabetic rats has been conducted. Among the 509 proteins identified, 200 of them were
differentially expressed [82]. Sano et al. characterized the proteomic profiles of exosomes
obtained from differentiated 3T3-L1 adipocytes and found that hypoxic culture upregulated
the total protein amount in the exosomes and enriched the enzymes related to de novo
lipogenesis [83]. According to Kita et al., adipose-derived exosomes can function as
signaling packages and waste disposal bags [84]. Several lines of evidence support the
role of adipose-derived exosomes in modulating macrophage polarization and hence
inflammation [85–87]. Considering that obesity is a major risk factor for OA, investigations
into adipose-derived exosomes may shed light onto molecular mechanisms underlying OA
pathogenesis and the concurrent crosstalk between joint tissues.

2.2.6. Exosomes Derived from PRP

Blood-derived products, including plasma- and serum-based whole blood derivatives,
have been applied to OA treatment via IA injection for years [88]. IA injection of PRP has
been reported to promote the proliferation and differentiation of chondrocytes and facilitate
matrix synthesis [89]. Three types of platelet granules have been defined: dense granules,
α-granules, and lysosomes, and they differ in size, content, biomarker, synthesis process,
and function [90]. Extracting exosomes from other types of granules is mainly based on size
and specific membrane proteins [91]. Previous studies showed that exosomes originating
from platelets were sufficient to enhance anabolic marker expression and prevent the
release of proinflammatory cytokines in chondrocytes derived from OA patients, showing
the same regulatory effects as the full blood product [51]. In addition, the therapeutic
effects of PRP-derived exosomes in inhibiting apoptosis and promoting proliferation of
chondrocytes were achieved by activating the Wnt/β-catenin signaling pathway [17]. The
PRP-derived exosomes are relatively easy to prepare, do not require cell culture, and have
minimal risks of disease transmission, making PRP-derived exosomes highly promising in
OA treatment.
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2.2.7. Exosomes Derived from Other Cells

Exosomes derived from vascular endothelial cells (EC-Exos) were found to promote
the progression of OA; EC-Exos increased the susceptibility of mouse chondrocytes to
anoxidative stress by inhibiting p21 expression and autophagy, leading to more apoptotic
chondrocytes in the mouse OA model [29]. The serum of OA patients was found to
have elevated levels of T cell-derived, CD3- and CD4-positive exosomes, and platelet-
derived EVs positive for annexin V and CD61+ and negative for CD45, as compared to
that of healthy controls [92,93]. Exosomes from immune cells, such as B cells, T cells, and
dendritic cells, caused the production of several cartilage-degrading enzymes (including
MMP-1, MMP-3, MMP-9, and MMP-13) and inflammatory cytokines and chemokines
(including IL-6, IL-8, monocyte chemoattractant protein (MCP)-1, and MCP-2) in SFBs
from OA patients [94–97]. Exosomes from tenocytes were found to facilitate the tenogenic
differentiation of MSCs, promoting the healing of injured tendons and increasing the
maximum loading and ultimate stress in tendons [53]. Cyclic stretch force-induced PDL
cells secreted exosomes that suppressed the production of IL-1β by inhibiting the NF-κB
pathway in macrophages [54]. Human PDL fibroblast (hPDLFs)-derived exosomes induced
inflammation and inhibited osteogenesis by osteoblasts [55]. Static compressive force
stimulated the production of exosomes in PDLFs. These exosomes, containing a high level
of the Yes-associated protein (YAP), promoted macrophage polarization toward the M1
phenotype [56]. Research on exosomes derived from these cells is just the beginning. More
research is needed on their roles in OA pathogenesis and treatment.

3. Extraction, Bioengineering Modification, and Delivery of Exosomes

EVs are heterogeneous, cell-secreted membranous structures, which can be classified
into exosomes, microvesicles, and apoptotic bodies based on biogenesis, size, and release
pathways [98]. Depending on the intrinsic functions and conditions of source cells, unique
protein profiles are exhibited by exosomes derived from different cells [99]. Due to the
similarities between different kinds of EVs, it is vital to isolate and identify high-purity
exosomes to understand their biological functions and elucidate their mechanisms of action.
In addition, naturally occurring exosomes have several drawbacks, such as insufficient
targeting ability and efficacy. Therefore, bioengineering processes are required to overcome
these limitations. Figure 3 depicts the general steps of cargo loading, isolation, and delivery
strategies for engineered exosomes, which are discussed thoroughly in the following
sections.

3.1. Extraction, Identification, and Storage of Exosomes

Conditioned cell culture media are the most common source for exosome collec-
tion. Different methods based on the physical, chemical, and biological properties of exo-
somes have been developed to optimize the extraction, but standard operation procedures
have not been established. Ultracentrifugation, immunoaffinity capture, ultrafiltration,
size-exclusion chromatograph, charge neutralization-based polymer precipitation, and
microfluidics-based techniques are commonly used methods for exosome extraction [100];
various precipitation- and column-based exosome isolation kits have also been developed
(Figure 3) [101]. Whether a certain method or a combination of different methods should
be selected depends on sample properties and research objectives. Whichever methods
are applied, the goal for extraction remains the same, i.e., to maximize yield and purity
while minimizing changes in protein content, size distribution, and surface charge during
extraction. An in-depth discussion of different collection methods is beyond the scope of
this article. Detailed extraction processes have been elaborated thoroughly in the published
literature [102,103]. Several publications discussed the strengths and weaknesses of differ-
ent methods to extract, characterize, and purify exosomes, and the selection of the most
appropriate method(s) depends on the application and origin of exosomes [23,100,103,104].
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molecules, such as nucleic acids, vectors, plasmids, drugs, ions, and other compounds were added in
the cell culture medium. Exogenous cargo can be loaded into exosomes by several methods, such
as electroporation, lipofection, sonication, and CaCl2 treatment. Cells loaded with exogenous cargo
secreted exosomes containing these bioactive molecules into cell culture medium. Cells expressing
target peptides by plasmid transfection produce exosomes that can target specific cell populations.
These engineered exosomes were isolated and purified from the culture medium via different methods.
Through co-incubation or other strategies, exosomes loaded with endogenous and/or exogenous
cargo can be taken up by recipient cells for the regulation of gene expression and cell function.

There are two major types of exosome characterization methods: external characteriza-
tion and inclusion characterization [105]. External characterization refers to the examination
of morphology and particle size. Transmission electron microscopy (TEM) and scanning
electron microscopy (SEM) are common methods for observing exosome morphology. SEM
reveals the exosome surface microstructure, while TEM shows the internal structure and
morphology of exosomes [106]. Nanoparticle tracking analysis (NTA) technology is applied
for measuring the concentration and size of exosomes. Inclusion characterization is gener-
ally employed to detect membrane proteins, lipid rafts, and phospholipids present in the
lipid bilayer, which can be detected by dynamic light scattering (DLS), flow cytometry, and
western blotting [105]. Exosomes exhibit unique protein and lipid profiles that reflect the
nature of donor cells and could be used as biomarkers for exosome identification. Common
protein components include cytoskeletal proteins (e.g., actin), heat shock proteins (e.g.,
Hsp70 and Hsp90), bioactive proteins (e.g., GTPases, annexins, and flotillin), cytosolic
proteins (e.g., GAPDH), antigen presentation proteins (major histocompatibility complex
(MHC)-I, -II), tetraspanin membrane proteins (e.g., CD9, CD63, CD81, and CD82), proteins
involved in multivesicular body biogenesis (e.g., Alix and TSG101), and vesicle trafficking
(e.g., Tsg101) [19]. Membrane lipids vary in different exosomes and include cholesterol,
ceramide, sphingolipids, phosphoglycerides, glycolipid GM3, and glycerophospholipids
with saturated fatty-acyl chains [107]. Besides the methods described above, DLS, tunable
resistive pulse sensing, and atomic force microscopy can also be employed to identify
exosomes [108].

The preservation technologies of exosomes mainly include cryopreservation, freeze-
drying, and spray-drying. Low temperature helps to maintain the quantity and contents of
exosomes. It is recommended by the International Society of Extracellular Vesicles that exo-
somes be suspended in phosphate buffered saline and stored at −80 ◦C [109]. The addition
of permeable and non-permeable antifreeze protects exosomes from ice crystal formation
inside the vesicles and the imbalanced osmosis in the freezing process [110]. Freeze-drying,
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as a widely used method for preserving heat-sensitive materials, can dehydrate and dry
exosomes at low temperatures under vacuum conditions [111]. Lyophilized exosomes
can be stored at room temperature and conveniently reconstituted without affecting their
pharmacokinetics [112]. Unlike lyophilization, which requires three continuous stages,
spray drying is a single-step process. It is more economical but brings the risk of changing
exosomal morphology [113]. Compared with cell-based therapies, the storage conditions
of exosomes are generally less strict. Besides, frozen cells require recovery and function
restoration prior to their clinical application, making them less convenient and more time
consuming to handle compared to exosomes [114,115].

3.2. Contents and Loading Strategies for Exosomes

The constituent molecules of exosomes, including nucleic acids, lipids, proteins, and
metabolites, differ in different exosomes, depending on the biogenesis mechanism, the cel-
lular origin, developmental phase, environment, and epigenetic modification [116]. In vitro
intracellular exosome loading during exosome biogenesis can be achieved by changing the
culture condition and gene expression of the origin cells. For example, physical factors, such
as low intensity pulsed ultrasound, moderate mechanical stress, and hypoxia have been
found to convert exosomal contents to a chondroprotective mode [117–119]. Pretreatment
with pharmacological agents, such as curcumin and kartogenin, enhances the exosomes’
ability to induce chondrogenesis by stem cells, promotes chondrocyte proliferation, and
facilitates the repair of articular cartilage defects [64,120,121]. Biological factor-treated
exosomes, such as those pretreated with transforming growth factor (TGF)-β1 or modified
with activated transcription factor 4 mRNA, protect cartilage and alleviate OA progres-
sion by promoting the M2 polarization of synovial macrophages and inducing autophagy,
respectively [122,123].

Genetic alteration is another widely used method to change exosomal content and
function. miRNAs incorporated in exosomes participate in the intercellular communication
in osteoarthritic joints [124]. The SF of OA patients was found to have upregulated miRNAs
such as miR-155-3p, miR-16-2-3p, miR-504-3p, and miR-210-5p, and downregulated ones
including miR-6878-3p, miR-146a-5p, and miR-26a-5p [125]. Available techniques to load
therapeutic RNA mimics into exosomes include co-transfecting producer cells with plas-
mids, viruses, or bicistronic vectors, electroporating cells to facilitate the migration of small
RNAs, and transient transfection with commercially available transfection reagents [126].
By using genetically modified parent cells, therapeutic agents were integrated into the
corresponding exosomes [127]. Usually, non-coding RNA such as microRNA and lncRNA
are induced to overexpress in the parent cells. These cells, usually MSCs, secrete exosomes
containing high levels of desired RNAs that perform different roles in OA progression
according to the gene properties [128]. Thus far, genetically modified cells have been em-
ployed to generate exosomes that are chondroprotective, anti-inflammatory, anti-apoptosis,
and promote chondrocyte proliferation and migration [33,129,130].

The widely applied ex vivo extracellular exosome loading strategy refers to directly
co-incubating exosomes with therapeutic agents and mixing them under appropriate condi-
tions (Figure 3). For example, doxorubicin was successfully loaded onto pancreatic stellate
cell-, pancreatic cancer cell-, and macrophage-derived exosomes via co-incubation [131].
Mixed with milk-derived exosomes, paclitaxel was loaded on the vesicles and showed
significant therapeutic effects with low systemic and immunologic toxicities [132]. Co-
incubation requires no special equipment, possesses high reproducibility, and does not
compromise the integrity of exosome membrane structure. However, because of the rel-
atively low loading efficiency, a large quantity of therapeutic agents is required [23]. To
improve the drug loading efficiency on exosomes, electroporation, thermal shock, ultrasonic
treatment, freeze-thaw cycles, transgenesis, pH gradient method, extrusion, hypotonic
dialysis, transfection, and saponin-assisted treatments are applied to the synthesis process
and show promising results (Figure 3) [133–136].
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3.3. Bioengineered Modification and Delivery Strategies of Exosomes

Exosomes can be taken up by cells via endocytosis, direct membrane fusion, and
pinocytosis [137]. The endocytic pathway is the main route by which exosomes enter
the cell, release the contents, and exert their biological effects. However, direct delivery
of exosomes, such as IA or subcutaneous injections, is associated with quick clearance
in vivo and limited effective period [138]. Chondrocyte-targeted drug delivery is even
more challenging due to the biological barrier formed by a dense matrix of proteoglycans,
collagen, and highly negatively charged glycosaminoglycans in the cartilage [66], which
requires more exosomes in a higher concentration. To improve yield, elongate retention
time, and optimize treatment effects, several strategies have been proposed and studied,
such as the development of exosome-mimetic nanovesicles (EMNVs), alteration of the
culture condition, membrane surface modification, and controlled release with biomaterial
platforms [103,139].

As mentioned above, appropriate cell culture conditions promote the production
of exosomes. For example, UC-MSCs grown in 3D microcarrier-based scaffolds yielded
20-fold more exosomes than 2D cultures. If combined with tangential flow filtration (TFF)
for exosome extraction, the production of exosomes could be further improved 7-fold more
than 3D cultures [140]. A rotary cell culture system (RCCS) simultaneously provides shear
stress, hydrostatic pressure, and buoyancy force, creating an environment of microgravity
that benefits cell adhesion, proliferation, and aggregation; exosome secretion by UC-MSCs
was significantly promoted at 36 rpm/min within 196 h [42]. EMNVs are another method
to achieve a large-scale production of exosomes. The generation of EMNVs via serially
extruding cells through micro-sized filters boosted the yield of exosomes by over 100 folds
and kept the biological functions similar to naïve exosomes [141,142]. When applying
EMNVs, attention should be paid to the changed lipid species as well as altered membrane
compositions compared with naïve exosomes, as such changes may affect the PK/PD
behavior of EMNVs in vivo [143].

Several strategies modifying exosomal surface structures have been put forward to
improve the entry of exosomes to cells that might be applied in OA studies. For exam-
ple, chondrocyte-targeting exosomes were prepared by fusing the lysosome-associated
membrane glycoprotein 2b (Lamp2b) protein present on the exosome surface with the
chondrocyte-affinity peptide (CAP). These exosomes effectively encapsulated miR-140
and specifically entered chondrocytes to deliver the cargoes in vitro [47]. Equipping exo-
somes with cell-penetrating peptides (CPPs), such as arginine-rich CPPs (e.g., octa-arginine
peptides, oligoarginine peptides, and human immunodeficiency virus type 1 Tat (48–60)
peptide), facilitated exosome entry into the cell by stimulating cell micropinocytosis [144].
Coating exosomes with the amphiphilic cationic CHP (cCHP) nanogel particles is a polymer-
based surface engineering method to facilitate exosome content delivery and increase the
encapsulation of large-size nucleic acids (e.g., plasmid) [145]. One issue concerning hybrid
exosomes is their similar cytotoxicity as liposomes (Lipofectamine). Therefore, further
investigation is required to develop liposomes with less toxicity [146]. Increasing the ef-
ficiency of fusion between exosomes and the targeted cells is another approach. Studies
have shown that an increased fusion efficiency between recipient cells and exosomes was
achieved by enhancing membrane rigidity by enriching cholesterol and sphingolipid [138].
Vascular stomatitis virus (VSV)-G protein, when harbored on the surface of fusogenic
exosomes, facilitates the delivery of membrane proteins into the target cell membranes
in vitro and in a mouse intramuscular injection model [147]. The integration of exosomes
with connexin 43 also promotes direct cytoplasmic transfer of exosome payloads [148].

Biomaterials are applied for exosome encapsulation and sustained-delivery, to extend
the half-life of exosomes and augment their therapeutic effects [149]. Human joints that
may be affected by OA are enclosed in the joint capsule (Figure 1). Therefore, IA injection
of exosomes is preferable, as it is safer than the systematic application and has a low risk
of side effects. By virtue of their affinity and compatibility with cartilage, several kinds of
bioengineered hydrogel scaffolds have been applied to optimize the delivery of exosomes
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to cartilage, such as photoinduced imine-crosslinking hydrogel glue [150], chitosan hydro-
gel [151], light triggerable hyaluronic acid hydrogel [152], alginate-based hydrogel [153],
ECM/gelatin methacrylate composite scaffolds [36], and a highly adhesive hydrogel, the
AD/CS/RSF/EXO hydrogel (alginate-dopamine, chondroitin sulfate, regenerated silk
fibroin, and exosome hydrogel) [154].

Processes for hydrogel-based scaffold preparation and delivery are similar among
different kinds of hydrogels. Take the recently designed AD/CS/RSF/EXO hydrogel as
an example [154]. As shown in Figure 4, exosomes extracted from the BMSCs-conditioned
medium were mixed with the AD/CS/RSF pre-gel solution at 200 µg/mL. Then, horseradish
peroxidase (HRP) and H2O2 were added to initiate crosslink formation and form a hydro-
gel. Subsequently, 500 µL AD/CS/RSF/EXO hydrogel containing 100 µg exosomes were
injected into the cartilage defect of a rat knee joint via a syringe. The injected hydrogel
quickly formed in situ and conformed to the defect shape within 3s. Covalent bonds formed
between the amine and sulfhydryl groups on the surface of surrounding ECM and the
chemical residues of the hydrogel (e.g., phenolic hydroxyl groups, N-hydroxysuccinimide,
and catecholamine). As a result, the hydrogel generated adhesive binding with the sur-
rounding native cartilage tissue due to the formation of covalently crosslinked networks.
Besides, the loaded exosomes could be sustainedly released by the hydrogels, with around
87.51% of the encapsulated exosomes released into phosphate-buffered saline over 14 days.
Exosomes released from hydrogels recruited BMSCs to scaffold implantation sites, pro-
moted the proliferation and differentiation of MSCs, and accelerated ECM remodeling and
cartilage defect regeneration. Hydrogel-based scaffolds are advantageous in controlled
exosome release and operable for injection therapy under arthroscopy.
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Figure 4. Schematic of fabricating AD/CS/RSF/EXO hydrogels for cartilage defect repair in a rat OA
model. BMSCs were aseptically isolated from the bilateral femur marrow cavities of male Sprague-
Dawley (SD) rats. When the cells reached 50–60% confluency in 2D culture flasks, they were rinsed
and incubated for 48 h in serum-free medium. The collected conditioned medium was ultracen-
trifuged and ultrafiltered to obtain exosomes. The exosomes were mixed with AD/CS/RSF pre-gel
solution, and then H2O2 and HRP were added to induce gelation. Subsequently, the cartilage defect
was filled with the exosome-containing adhesive hydrogel. The exosomes released by the hydrogels
recruited BMSCs that migrated and infiltrated the hydrogel and promoted BMSC proliferation and
differentiation into chondrocytes. By inducing ECM production and neo-cartilage formation, the
hydrogel facilitated the regeneration of cartilage defect in situ.
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4. In Vivo Efficacy of Exosomes for OA Treatment

Considerable advances in exosome-based therapies have been demonstrated in several
disease models [16]. However, exosomes have not been utilized in OA-related studies
until recent years. Therapeutic effects, such as pain relief [34], cartilage defect repair [155],
subchondral bone protection [35], and synovitis amelioration [30], have been observed in
OA research. The delivery method of exosomes for in vivo OA treatment reported thus far
has only been intra-articular injection.

Exosomes derived from MSCs and other sources have been tested in vivo to eval-
uate their therapeutic effects in OA treatment. Used in an MIA-induced rat OA model,
exosomes obtained from BM-MSCs effectively enhanced cartilage repair, ECM synthesis,
and joint pain relief [34]. IPFP-MSC-derived exosomes also prevented cartilage damage
and alleviated gait abnormality in a mouse OA model by maintaining cartilage homeosta-
sis [44]. PRP-Exos decreased the apoptotic rate of OA chondrocytes and decreased the
OARSI (Osteoarthritis Research Society International) score of cartilage samples from OA
joints of rabbit models [17]. SFBs overexpressing miR-126-3p generated exosomes that
suppressed cartilage degeneration and inflammation in an OA rat model [50]. CPC-derived,
exosome-containing EVs enhanced the repair of articular cartilage in a surgically induced
mouse OA model and stimulated chondrocyte migration and proliferation in vitro via
upregulating miRNA 221-3p [48]. Such beneficial effects have been attributed to the role of
exosomes in regulating different signaling pathways, such as mTOR, Wnt/β-catenin, YAP,
and non-coding RNAs (Table 1). Besides, treatment of MSCs with engineered exosomes
showed enhanced joint-protective effects in OA animal models. For example, by fusing the
exosomal membrane protein, Lamp 2, with MSC-binding peptide E7, engineered exosomes
(E7-Exo) could be employed in the targeted delivery of kartogenin, a small heterocyclic
molecule, to synovial fluid-derived MSCs (SF-MSCs). E7-Exos induced in vitro and in vivo
differentiation of SF-MSC into chondrocytes. Furthermore, co-intra-articular injection
of SF-MSCs together with E7-Exo in the knee joints showed superior therapeutic effects
compared to SF-MSC injection alone in a rat OA model [121].

5. Discussion

Mediating intercellular communications, exosomes have demonstrated therapeutic
potential in the diagnosis and treatment of various diseases and can be harnessed in
OA-related studies. Published research has confirmed that for OA patients, the produc-
tion and contents of exosomes from chondrocytes, synovial fluid, and serum are largely
changed [156]. Besides, the exosomes derived from aging chondrocytes were found to trans-
mit senescence-associated characteristics to adjacent cells and hinder their chondrogenic
abilities [157].

At present, disease-modifying therapeutic options for OA are rather limited, war-
ranting future explorations and investigations into potential disease-modifying treatment
regimens. Emerging as a trending research area, exosomal therapy has attracted much
attention due to its good biocompatibility as well as unique regulatory roles in immunity,
inflammation, senescence, tumorigenesis, etc. The pathogenesis of OA is closely related to
inflammation and aging. Therefore, injecting bioengineered exosomes or modifying native
cell-produced exosomes to regulate the joint microenvironment and related cell function is
potentially beneficial for OA prevention and treatment.

Exosomes derived from different types of cells regulate and influence the functions
of recipient cells in different ways. Previous studies on the beneficial effects of exosomes
in OA treatment focused on exosomes derived from only one cell source. The observed
beneficial or adverse effects and potential regulatory mechanism of exosomes from different
origins have been illustrated. OA is a degenerative disease of the whole joint, and multiple
types of cells and tissues are involved in OA initiation and progression. The intra-articular
environment is particularly complex and dynamic. Therefore, using exosomes derived from
different cell types to simultaneously target different cells and tissues of the joint could be a
promising approach worth investigating in future studies. For example, exosomes isolated
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from several cell sources exhibited chondroprotective effects. The combined application
of exosomes produced by BM-MSC, ADSC, and synovial fibroblasts can potentially show
synergistic effects on OA treatment as they target different major cell types in the joint.

Although results from preclinical studies have confirmed the chondroprotective effects
of bioengineered exosomes, investigations into the efficacy of exosomes for OA treatment
are still in their early stages. To optimize and extend the application of exosomes in
OA diagnosis and treatment, several issues should be taken into consideration in future
studies. First, the average pore size in the articular cartilage ECM is estimated to be
around 6.0 nm [158]. Only small cationic nanocarriers, usually with a diameter smaller
than 15 nm, can overcome this biological barrier [159]. Considering that the diameter of
exosomes ranges between 30–150 nm, it is important to increase the delivery efficiency of
exosomal contents to chondrocytes. Besides, the thickness of cartilage considerably affects
the delivery of exosomes. In vivo tests of exosomes conducted to date mostly employed
small animals such as mice, rats, and rabbits. The cartilage thickness of these animal
models is significantly lower than human cartilage (~50 µm in mice, 100–150 µm in rats,
and 350–700 µm in rabbits compared to 1500–2000 µm in humans) [160]. In addition,
most in vitro studies were conducted in cultured chondrocytes instead of full-thickness
cartilage explants, limiting the applicability of the results to in vivo scenarios. Existing
extraction methods are limited by the low exosome yield, posing a major challenge to the
clinical applications of exosomes. Undesired RNAs (e.g., retroviral genomes) or proteins
unintentionally incorporated in exosomes, as well as off-target delivery, are also issues
that need to be carefully considered. In addition, although encapsulating exosomes within
a scaffold is a feasible option to achieve controlled release of exosomes and reduce the
number of injections needed [161], material pharmacokinetics and possible toxicity should
be carefully evaluated. Due to a lack of effective methods to separate exosomes from the
other two kinds of EVs, it remains a challenge to explicitly elucidate the functions and
physiochemical properties of exosomes. Besides, extracting homotypic exosomes with
consistent contents is critical for precision therapy and minimum side effects caused by
unintended by-products. In addition, rational designs of exosome delivery tools require a
further understanding of the mechanisms responsible for exosomes targeting recipient cells
and the binding affinities. Lastly, it is unclear in some cases how or why exosomes derived
from different cells have varying biological activities. Therefore, a future research avenue
is to figure out the active factors in various exosomes and their potential mechanisms of
action in OA treatment.

The quick turnover of synovial fluid in the joint and the rapidly decreased transport
efficacy into cartilage with increasing thickness necessitate strategies for enhancing exosome
uptake to maximize the therapeutic effects of exosomes on chondrocytes, which reside deep
within the dense, anionic cartilage matrix [162]. Previous studies reported approaches to
overcoming the biological barrier of cartilage and improving the delivery efficacy of drugs
and biomolecules. For example, controlling the surface charge of exosomes to achieve
desirable electrostatic interactions with ECM could be a promising strategy to enhance
drug penetration and transport through the full thickness of cartilage [163]. Functionalizing
polyamidoamine (PAMAM) dendrimer nanocarriers with poly(ethylene glycol) (PEG)
improved the tissue binding ability, penetration depth, and residence time of PAMAM
dendrimer [159]. It was found that this modified dendrimer, when conjugated with insulin-
like growth factor 1 (IGF-1), penetrated bovine cartilage with comparable thickness to
humans’ within 2 days and significantly enhanced the retention of therapeutic IGF-1 within
rat knees [159]. Another method to deliver large-sized therapeutics is via cationic peptides
and proteins [164–166]. These studies indicate that it is feasible, albeit difficult, to overcome
the biological barrier formed by cartilage ECM for effective exosome delivery.

It is worth noting that most in vivo tests of exosomes were conducted in small animals,
including mouse, rat, and rabbit models. To date, no large animal studies or human clinical
trials have been completed to evaluate exosomal treatment of OA. An ongoing clinical
trial (ClinicalTrials.gov NCT04719793) evaluates the efficacy of umbilical cord-derived
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Wharton’s jelly (UC-WJ) for knee OA treatment. While exosomes are present in UC-WJ, it
also contains various other components, such as hyaluronic acid, cytokines, growth factors,
and other EVs [167,168]. The benefits of exosomes alone, therefore, will be unknown in
this clinical trial. Few animal studies conducted thus far described the safety of exosomal
treatment of OA, probably because unlike other pharmacological agents, exosomes are cell-
secreted products and less likely to be toxic. Besides, exosomes are usually injected locally
into the articular cavity, which is much safer than systematic administration. Therefore,
a safety assessment of exosomal treatment is not as crucial as testing other OA drugs.
Nevertheless, future studies are recommended to bridge this knowledge gap. Currently,
insufficient evidence from preclinical research and clinical trials significantly hinders the
translation of exosomal therapies from basic research to clinical applications. However, as
the promising therapeutic effects of exosomes are being revealed in more basic research, an
increasing number of large animal tests and clinical trials can be expected in the future. In
conclusion, though faced with challenges, exosome-based therapies are promising in OA
diagnosis and treatment and worthy of further investigations.
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