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Exosomes of pasteurized milk: potential 
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Abstract 

Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial 
effects for human health. Pasteurization of cow’s milk protects thermolabile vitamins and other organic compounds 
including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40–120 nm, which are pivotal 
mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory 
proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes 
play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning 
of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program 
confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in 
this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial 
risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, 
common cancers (prostate, breast, liver, B-cells) as well as Parkinson’s disease. Exosomes of pasteurized milk may rep-
resent new pathogens that should not reach the human food chain.
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Introduction
Exosomes (40–120  nm) are members of a larger spec-

trum of extracellular vesicles (EVs) of up to 1000  nm 

that mediate cell-to-cell communication and cell func-

tion [1–4]. Milk exosomes and milk microvesicles 

(MVs) are released from mammary gland epithelial cells 

(MECs) of all mammals including humans and dairy 

cows [5–9]. Exosomes are formed from inward bud-

ding of endosomes resulting in membrane-surrounded 

multivesicular bodies (MVBs), which are secreted by 

fusion of the MVBs with the cell membrane. MVs are 

released directly by budding of the plasma membrane 

like milk fat globules (MFGs). Both pathways are highly 

regulated and appear to be conserved amongst different 

species [10]. In 2013, Melnik et al. [11] postulated that 

“milk is not just food” but a genetic transfection system 

activating mechanistic target of rapamycin complex 1 

(mTORC1) signaling and microRNA (miR) transfer for 

postnatal growth. Today, compelling evidence confirms 

this functional hypothesis of milk signaling. Milk’s exo-

somal miRs serve as a biomolecular software for mater-

nal-neonatal communication which is important for 

epigenetic gene regulation that is required for devel-

opmental processes of the newborn infant [12]. Abun-

dantly present miRs in milk-derived EVs including 

miR-148a are highly conserved between mammals [13]. 

Various exosome-specific proteins, lipids, mRNAs, cir-

cular RNAs, non-coding miRs and regulatory proteins 

such as transforming growth factor-β (TGF-β) are cru-

cial signaling components delivered by milk exosomes 

[5, 6, 14, 15]. Evidence has been provided that breast 

milk exosomes and their miR cargo play a key role for 

the appropriate maturation of the intestine, develop-

ment of the gut microbiome and programming of the 

intestinal mucosa-associated lymphatic tissue (MALT) 

as well as thymic T cell differentiation [16–26]. �e 

deficiency of milk exosomes in artificial formulas 
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increases the risk for inappropriate metabolic and 

immunological programming of the newborn infant 

[8, 9, 18, 19], a major determinant for the development 

of diseases of civilization in later life such as aller-

gic diseases and obesity [18, 19]. Under physiological 

conditions, the transfer of milk-derived exosomes and 

their miR-mediated impact on epigenetic regulation 

is restricted to the period of maternal lactation in all 

mammals, except Neolithic humans, who are exposed 

to dairy milk exosomes after the nursing period for 

several decades. Since the 1950s, when widely avail-

able refrigeration technology allowed the distribution 

of pasteurized milk and milk products, bioactive bovine 

milk exosomes entered the human food chain in a large 

scale (Fig. 1). It is the intention of this review article to 

provide epidemiological and translational evidence that 

dairy milk-derived exosomes and their cargo contribute 

to the pathogenesis of common diseases of civilization 

and should thus be regarded as critical pathogens, that 

have to be eliminated from the human food chain.

Dairy milk exosomes and their miR cargo are 
bioavailable for the milk consumer
Reinhardt et  al. [27] characterized the proteome of 

bovine milk exosomes and reported a greatly reduced 

presence of MFG membrane (MFGM) proteins in the 

fraction of cow milk exosomes, which suggests that milk 

exosome secretion pathways originate from Golgi and 

differ from that of MFGs, which resemble holocrine 

secretion of lipid droplets directly from the endoplas-

mic reticulum (ER). Bovine milk exosomes (50–100 nm) 

isolated by ultracentrifugation from the 100,000×g pel-

let from the milk of mid-lactation Holstein cows are 

enriched in tumor susceptibility gene-101 (TSG101), a 

protein component of the vesicular trafficking process 

and depleted in MFGM proteins such as lactaderin/

miR-148a

miR-21

MIR148A

Dairy cow

selec�on

miR-148a, miR-21, miR-29b

miR-155, TGF-β

Pasteuriza�on 72-75℃

Refrigera�on 4℃

Bioac�ve milk exosomes Human milk consumer

Enhanced lacta�on performance 

with increased expression of 

miR-148a and miR-21

Milk exosomes

Bioavailable milk exosomes
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Fig. 1 Transfer of dairy milk exosomes to the human milk consumer. Genetic dairy cow selection enhances mammary epithelial cell miR-148a 
expression, a crucial epigenetic mechanism enhancing milk yield that potentially also increases milk exosome miR-148a content. Persistent 
pregnancy of dairy cows further promotes estrogen-stimulated expression of miR-148a and miR-21. Milk exosomes also contain miR-155 and 
transforming growth factor-β (TGF-β), which promotes the expression of miR-155. Pasteurization has no significant effect on milk exosome integrity 
and exosomal miR bioavailability. Large scale pasteurization and cooling technology promoted the persistent entry of dairy milk exosomes and 
their miRs into the human food chain
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MGFE8 [26]. Benmoussa et  al. [28] confirmed that cow 

milk exosomes of the 100,000×g pellet fraction are posi-

tive for the exosome markers TSG101, apoptosis-linked 

gene 2-interacting protein X (ALIX), heat shock protein 

70 (HSP70) and contain bovine miR-223 and miR-125b. 

A large quantity of bovine milk miR-223 and miR-125b 

resisted digestion under simulated gastrointestinal tract 

conditions, which supports their bioaccessibility [28]. 

Recently, a subset of milk MVs (100 nm in diameter) with 

proteins commonly found in MFGM has been charac-

terized that sediments at low speed ultracentrifugation 

(35,000×g) and contains and protects the bulk of milk 

miRs from degradation [29, 30]. At present, there is a lack 

of information on the potential systemic biological effects 

and trafficking characteristics of this 35 K subset of milk 

EVs to the milk consumer.

�is review focuses on milk exosomes of the 100,000×g 

fraction (100 K). It is generally appreciated that exosomes 

participate in cell-to-cell communication and gene 

regulation, facilitated by the transfer of miRs, proteins 

and lipids from donor to recipient cells. Bovine milk 

exosomes contain nearly 400 miRs and selected proteins 

[31–34] that resist the harsh conditions in the gastro-

intestinal tract [14, 28, 32], are taken up via receptor-

mediated endocytosis by intestinal epithelial cells [35], 

vascular endothelial cells [36], and reach distant tissues 

across species boundaries after oral administration [35–

39]. �e most sophisticated and extensively controlled 

study of Manca et  al. [39] recently demonstrated that 

bovine milk exosomes derived from commercial pasteur-

ized skim milk reached the systemic circulation of mice 

and distributed widely among murine tissues. A variety 

of different tracers used in their study suggests that milk 

exosomes and their miR cargo accumulate in the brain, 

an important finding, which is consistent with proven 

exosomal delivery of Cre-recombinase to the brain [40]. 

Bovine miRs were analyzed by RNase H2-dependent 

PCR (rhPCR) in plasma collected from 11 healthy volun-

teers before and 6 h after consumption of 1.0 L of com-

mercial 1%-fat cow’s milk. �is method (rhPCR) is able 

to distinguish between bovine and human miRs with 

small variations in the nucleotide sequence. Notably, 

plasma concentrations of Bos taurus (bta)-miR-21-5p 

and bta-miR-30a-5p were > 100% higher 6  h after milk 

consumption than before milk intake, a finding con-

firming the bioavailability of dairy milk exosomes in 

humans [41]. �e majority of dairy milk miRs including 

miR-148a, miR-21, miR-29b and miR-155 survive pas-

teurization and refrigerated storage but are significantly 

reduced after boiling or ultra-heat treatment (UHT) [32, 

42–45]. Baier et al. [46] demonstrated the bioavailability 

of milk-borne miRs in humans using commercial milk 

(1% fat) that contained 148 ± 42  pmol/L of miR-29b. In 

a dose-dependent manner, human volunteers absorbed 

considerable amounts of miR-29b from cow milk result-

ing in a plasma peak of miR-29b at about 4  h to 6  h 

postprandial associated with an intracellular increase of 

miR-29b in peripheral blood mononuclear cells (PBMC) 

[46]. Furthermore, it has been demonstrated that bovine 

milk exosomes are taken up by human macrophages [47].

Recent evidence underlines that bacterial fermenta-

tion of milk decreases the size, protein- and miR content 

of milk exosomes [48]. It has been demonstrated that 

milk-derived exosomes are taken up by Escherichia coli 

K-12 MG1655 and Lactobacillus plantarum WCFS pro-

moting bacterial growth [49]. In contrast to pasteuriza-

tion (78  °C), boiling (100  °C), and ultra-heat treatment 

(130  °C) of milk decreased the levels of milk miRs [43, 

44].

Taken together, there is compelling evidence that dairy 

milk exosomes of pasteurized commercial milk reach the 

systemic circulation and tissues of the human milk con-

sumer. Whereas human breast milk-derived exosomes 

are of critical importance for infant health and appropri-

ate development, programming and tissue maturation 

[5–7, 11, 16–26], continued exposure of humans to dairy 

milk-derived exosomes after the nursing period may 

exert adverse effects on human health.

Allergic diseases
Exosomes and exosomal miR signaling play a key role 

during postnatal programming and tissue maturation 

of the infant [5–9, 50]. Breastfeeding has a protec-

tive effect on the prevention of allergic rhinitis, aller-

gic asthma and atopic dermatitis [51]. Breastfeeding 

in contrast to commercial artificial formula feeding is 

regarded as the most efficient primary prevention of 

allergic asthma in childhood [52–55]. Allergy-prone 

and allergic individuals exhibit reduced numbers and 

function of regulatory T cells (Tregs) [56]. Forkhead 

box P3 (FoxP3) is the master transcription factor of 

Tregs and controls Treg differentiation and mainte-

nance of Treg-mediated immune tolerance [57–59]. 

Tooley et al. [60] demonstrated that maternal rat milk, 

but not formula, prevented β-lactoglobulin-induced 

allergy in rat pups. �us, maternal milk in contrast to 

formula contains an ingredient conferring an allergy-

preventive effect. Notably, Admyre et  al. [16] showed 

that the addition of human breast milk exosomes to 

PBMCs increased the number of  FoxP3+CD4+CD25+ 

Tregs in a dose-dependent manner. FOXP3 gene 

expression is controlled by epigenetic mechanisms as 

well as TGF-β [61–63]. �e Treg-specific demethyla-

tion region (TSDR) is a critical region of the FOXP3 

promoter, which controls FoxP3 expression. TSDR 

methylation reduces FoxP3 expression, whereas TSDR 
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demethylation promotes FoxP3 expression, respectively 

[61, 62]. In allergic individuals, an increased TSDR 

methylation has been observed [64, 65]. In contrast, 

tolerance induction and cessation of allergy was asso-

ciated with TSDR FOXP3 demethylation [65, 66]. Both 

DNA methyltransferase 1 (DNMT1) and DNMT3B are 

associated with the FOXP3 locus in  CD4+T cells [67]. 

miR-148a directly targets DNMT1, whereas miR-21 

indirectly downregulates DNMT1 expression by target-

ing an important autoimmune gene, Ras guanyl nucleo-

tide-releasing protein 1 (RASGRP1), which mediates the 

Ras-MAPK pathway upstream of DNMT1 [68]. miR-

29b is another miR species that negatively regulates 

DNMT1 expression [69–71]. Importantly, miR-148a, 

miR-21, miR-29b and miR-155 are cargos of human and 

bovine milk exosomes [17, 23, 35, 45, 48, 72]. Golan-

Gerstl et al. [44] demonstrated that incubation of breast 

milk exosomes with intestinal cells increased their 

miR-148a content resulting in decreased expression of 

DNMT1. Importantly, miR levels in dairy milk were not 

significantly affected by pasteurization [43–45].

Consumption of raw cow milk during early infancy 

exhibited a preventive effect on the development of aller-

gic diseases and increased the number of FoxP3 + Tregs 

[73–75]. �e existence of a postnatal window for milk-

induced Treg maturation has been proposed [76]. We 

hypothesized that thymic maturation of Tregs is medi-

ated by milk-derived exosomes [18, 19]. miR-155 plays 

a critical role in the maturation of thymic Tregs [18, 

19]. miR-155 targets suppressor of cytokine signaling 1 

(SOCS1), a critical inhibitor of signal transducer and 

activator of transcription 5 (STAT5), which promotes 

the expression of FoxP3 [77]. Higher amounts of SOCS1 

protein suppress IL-12 and IFNγ signaling inhibiting �1 

cell differentiation, while promoting �2 cell induction 

[78, 79]. TGF-β as well promotes thymic Treg (tTreg) cell 

development by inducing FoxP3 expression repressing 

T cell clonal deletion and peripheral Treg cell differen-

tiation [63, 80]. Notably, bovine milk exosomes contain 

both miR-155 and TGF-β [14, 32, 45], a fact, that further 

supports milk exosome-driven maturation of tTregs [18, 

19]. It is likely that milk exosomes or exosome-derived 

molecules, which reach distant tissue including the brain 

may also accumulate in the thymus [39], an organ exhib-

iting extensive exosome traffic [81–83]. Milk exosomes 

may thus support thymic epithelial cell-derived exosomes 

in tTreg differentiation and maturation, a potential aug-

menting mechanism which may explain allergy pre-

vention early in life by consumption of raw cow’s milk, 

during a period when the infant’s thymus is still func-

tional operative (Fig. 2).

In addition, milk exosomes may have a direct effect 

on MALT homeostasis. TGF-β, a component of milk 

exosomes [14], has been shown to induce miR-155 in 

both freshly isolated and lamina propria T cell lympho-

blasts [84]. miR-155 targets IL-2 inducible T-cell kinase 

(ITK) and decreases ITK and IL-2 mRNA suggesting a 

TGF-β-dependent function for miR-155 in modulating 

cytokine and T-cell immune responses in the gut [84]. 

Intriguingly, the concentration of TGF-β1 in colostrum 

samples from mothers of infants with IgE-mediated cow’s 

milk allergy (CMA) was significantly lower than from 

mothers of infants with non-IgE-mediated CMA [85] 

pointing to an important role of TGF-β/miR-155 signal-

ing in intestinal immune homeostasis.

In contrast to breastfeeding, artificial infant formula 

powder contains no bioactive exosomes and only minor 

amounts of exosomal TGF-β and miRs (for instance < 10% 

of miR-148a) compared to raw cow’s milk [32, 86]. �is 

may be a reasonable explanation for the superiority of 

breastfeeding in allergy prevention compared to formula 

feeding [18, 19]. �ese data strongly indicate that milk 

exosomes are of critical importance for the maturation of 

the immune system during the postnatal period and early 

infancy.

Fetal macrosomia
�e Developmental Origins of Health and Disease 

(DOHaD) hypothesis underlines the impact of prena-

tal and postnatal epigenetic factors in the transmission 

of obesity and cardiovascular diseases [87, 88]. Acceler-

ated fetal growth and increased birth weight are well-

known risk factors for the development of obesity and 

T2DM [89–91]. Disturbances of the intrauterine milieu 

can induce lifelong deviations of metabolic program-

ming [92]. Exosomes have been identified as key players 

for fetal-maternal communication and vice versa [93]. 

As milk exosomes and their cargo products are able to 

overcome tissue barriers including the intestinal and 

blood–brain barrier and are distributed in various tissues 

[39], it is conceivable that they may also reach the pla-

centa of women consuming pasteurized milk. Worldwide 

gynecological societies such as the American College of 

Obstetricians and Gynecologists recommend increased 

milk and dairy consumption during pregnancy as a rich 

source of calcium [94]. During 1996–2002, the Danish 

National Birth Cohort collected data on midpregnancy 

diet of 50,117 mother-infant-pairs and ascertained birth 

outcomes [95]. �is study demonstrated that increased 

milk consumption during pregnancy was associated with 

an increase in placental and birth weight [95]. Maternal 

milk consumption, fetal growth, and the risks of neona-

tal complications have been investigated in the Genera-

tion R Study in Rotterdam including 3405 mothers [96]. 

Maternal milk consumption of > 3 glasses/day was associ-

ated with greater fetal weight gain in the third trimester 
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of pregnancy, which led to an 88  g higher birth weight 

than that with milk intake of none to 1 glass/day. In 

addition, head circumference tended to be 2.3 cm larger 

when mothers consumed > 3 glasses/day. �is associa-

tion appeared to be limited only to milk, whereas protein 

intake from non-dairy food or cheese was not associated 

with an increase in birth weight [96]. A systematic review 

of all studies and case reports supported the conclusion 

that only milk consumption but not the intake of fer-

mented milk/milk products increased birth weight [97, 

98]. �us, some compounds of unfermented milk not 

related to milk proteins, accelerate fetal growth.

Two independent studies confirmed increased expres-

sion of miR-21 in placenta tissue of infants born with 

macrosomia (birth weight > 4000  g) [99, 100]. Milk 

miR-21, a signature miR of commercial dairy milk and 

cargo of bovine milk exosomes [71, 72, 80], most likely 

reaches the placenta and increases placental and tropho-

blast growth. miR-21 plays important roles in growth of 

trophoblastic cell lines [101] and increases PI3K-AKT- 

and mTORC1 signaling by suppression of various key 

inhibitory checkpoints such as PTEN [11]. Stimulation 

of trophoblast mTORC1 activity enhances the transfer 

of branched-chain amino acids (BCAAs) to the fetus, a 

constellation that may promote BCAA-mTORC1-driven 

fetal macrosomia [102–107] (Fig.  3). About 5–10% of 

cases exhibiting Beckwith-Wiedemann syndrome (BWS), 

an overgrowth syndrome characterized by macrosomia, 

macroglossia, and abdominal wall defects, are caused by 

loss-of-function mutations of cyclin-dependent kinase 

inhibitor 1C (CDKN1C, p57kip2) [108–112]. CDKN1C is 

the cyclin-dependent kinase inhibitor of G1 cyclin com-

plexes that functions as a negative regulator of cellular 

growth and proliferation [113]. Notably, miR-21 is one of 

several miRs that directly target CDKN1C [113], a fur-

ther epigenetic mechanism linking dairy milk exosome 

intake during pregnancy to fetal macrosomia.

Adipogenesis and obesity
�e worldwide epidemic of obesity is a growing health 

problem, associated with increased risk of chronic dis-

eases especially type 2 diabetes mellitus (T2DM). Young 

mice who had long-term ad  libitum access to commer-

cial whole cow’s milk in comparison to mice that received 

FoxP3+ Treg
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Allergy preven�on
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FOXP3
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miR-148a

TSDR

FoxP3

STAT5
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miR-155
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Fig. 2 Milk exosomes and allergy prevention. Human breast milk and dairy milk exosomes transfer miR-148a and miR-29b, which both suppress 
DNA methyltransferase 1 (DNMT1). DNMT1 controls the methylation status of the Treg-specific demethylation region (TSDR) on the FOXP3 
promoter. DNMT1 suppression (TSDR hypomethylation) increases FoxP3 expression. Milk exosome-derived miR-155 inhibits suppressor of cytokine 
signaling 1 (SOCS1), a negative regulator of the JAK-STAT pathway that increases the expression of signal transducer and activator of transcription 5 
(STAT5) promoting FoxP3 expression. Milk exosome-derived transforming growth factor-β (TGF-β) enhances SMAD5 signaling that further increases 
FoxP3 expression, especially in the thymus. Milk exosomes thus promote the induction of FoxP3, the master transcription factor of regulatory T cells 
(Tregs), the potential mechanism preventing allergy development by breast feeding or raw farm milk consumption during early infancy



Page 6 of 33Melnik and Schmitz  J Transl Med            (2019) 17:3 

low fat milk or controls that had no access to dairy milk 

exhibited increased body weight and epididymal fat mass 

[114]. �ere is increasing interest in the role of exosomes 

and exosome-transferred miRs in the regulation of mes-

enchymal stem cell (MSC)-derived adipogenesis [115–

120]. miRs regulate adipogenic lineage commitment in 

MSCs and hence govern fat cell numbers [115]. MSCs 

arise from a variety of tissues, including bone marrow 

and adipose tissue and, accordingly, have the potential 

to differentiate into multiple cell types, including osteo-

blasts and adipocytes [117]. An inverse relationship 

exists in adipogenic and osteogenic lineage commitment 

and differentiation, such that signaling pathways induce 

adipogenesis at the expense of osteogenesis and vice 

versa [117]. Peroxisome proliferator-activated receptor 

γ (PPARγ) is known to function as a master transcrip-

tional regulator of adipocyte differentiation, but inhibits 

osteoblast differentiation [117]. In contrast, inducers of 

osteogenic differentiation, such as bone morphogenetic 

protein (BMP) and wingless-type MMTV integration site 

family members (Wnt), inhibit the function of PPARγ 

transactivation during MSC differentiation towards adi-

pocytes [120]. Notably, MSCs differentiated on osteoblast 

extracellular matrix (ECM) with adipogenic exosomes 

showed expression of adipogenic lineage genes, while 

MSCs differentiated on adipocyte ECM with osteoblast 

exosomes showed osteogenic lineage genes [118]. �ese 

findings indicate that exosomes might override ECM-

mediated instructive signals during lineage specification 

of MSCs [118]. Accumulating evidence indicates that 

miRs act as switches for MSCs to differentiate into either 

osteogenic or adipogenic lineages [120]. Based on these 

observations, it is conceivable that dairy milk-delivered 

exosomes and their miR cargo as well may interfere with 

MSC-derived adipogenesis and osteogenesis.

miR-148a, a component of milk exosomes, is increased 

in adipose tissues from obese individuals and mice fed a 

high-fat diet (HFD) [121]. miR-148a suppresses its tar-

get gene Wnt1, an endogenous inhibitor of adipogenesis. 

Ectopic expression of miR-148a accelerated differentia-

tion and partially rescued Wnt1-mediated inhibition of 

adipogenesis, whereas knockdown of miR-148a inhibited 

adipogenesis [121, 122]. In addition, miR-148a has been 

shown to silence Wnt10b, a further endogenous inhibitor 

of adipogenesis during 3T3-L1 cell differentiation [123]. 

A further study demonstrated that increased expression 

of miR-148a via suppression of DNMT1 enhanced adi-

pocyte differentiation [124]. In the absence of DNMT1, 

adipocyte-specific gene expression and lipid accumu-

lation occurred precociously [124]. Yang et  al. [125] 

recently demonstrated that DNA methylation biphasi-

cally regulates 3T3-L1 preadipocyte differentiation [125]. 

Inhibition of DNA methylation at late stage of preadi-

pocyte differentiation promoted lipogenesis and adipo-

cyte phenotype in 3T3-L1 cells. �is is likely mediated 

by induction of sterol regulatory element-binding tran-

scription factor 1c (SREBF1c), whose promoter activity is 

upregulated by DNA demethylation during adipogenesis 

[125]. Persisting transfer of milk exosomal miR-148a may 

thus enhance SREBF1c-mediated lipid accumulation in 

Maternal milk consump�on

during pregnancy

Maternal blood circula�on 

Placenta                    Trophoblast 

Fetal blood circula�onmiR-21 ↑

PTEN
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mediated fetal
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Fig. 3 Dairy milk exosomes and fetal macrosomia. Milk exosome-derived miR-21 may increase placental miR-21 content promoting mTORC1 
signaling via inhibition of phosphatase and tensin homolog (PTEN) and other regulatory checkpoints. Increased mTORC1-mediated placental 
growth enhances the nutrient transfer to the fetus. In the trophoblast, upregulated mTORC1 increases the expression of L-type amino acid 
transporters (LAT) and glucose transporter 1 (GLUT1), thus overstimulating the diaplacental flux of branched-chain amino acids (BCAAs) and 
glucose to the fetus promoting fetal overgrow (macrosomia). miR-21 also targets CDKN1C, a critical checkpoint for fetal growth mutated in 
Beckwith-Wiedemann syndrome
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adipocytes (Fig.  4). Remarkably, the MIR148A gene has 

been identified as an obesity risk gene in humans exhib-

iting single nucleotide polymorphisms which enhance 

miR-148a expression [126–128].

miR-21, another signature miR of bovine milk 

exosomes, is involved in adipocyte differentiation [129–

132]. Kim et al. [129] showed that miR-21 governs human 

adipose tissue-derived MSC differentiation towards adi-

pocytes. Furthermore, a correlation between miR-21 

level and adipocyte numbers in the epididymal fat of 

mice fed a HFD has been observed [129]. Mei et al. [130] 

reported that overexpression of miR-21 in MSCs elevated 

the expression level of the differentiation-associated gene 

PPARγ, whereas miR-21 knockdown reduced PPARγ 

expression. miR-21 modulated ERK-MAPK activity by 

repressing Sprouty 2 (SPRY2), a known regulator of the 

receptor tyrosine kinase signaling pathway, that controls 

the magnitude of ERK-MAPK signaling during MSC dif-

ferentiation [130]. Kang et al. [131] confirmed that miR-

21 promotes adipocyte differentiation. It has recently 

been demonstrated that miR-21 expression was twofold 

greater in adipose tissue of patients with T2DM [132].

miR-29b, another abundant exosome-derived miR of 

cow’s milk, is also involved in adipogenesis [133]. Dur-

ing normal adipogenic differentiation of adipose tissue-

derived stromal cells, upregulation of miR-29b promoted 

adipogenesis. Remarkably, miR-29 family members 

enhance lactation performance in dairy cow MECs via 

suppression of DNMT3A and DNMT3B. In contrast, 

inhibition of miR-29 s caused global DNA hypermethyla-

tion and increased the methylation levels of promoters of 

lactation-related genes, including casein αs1 (CSN1S1), 

E74-like factor 5 (ElF5), PPARγ, SREBF1, and glucose 

transporter 1 (GLUT1) and thereby reduced the secre-

tion of lactoprotein, triacylglycerols and lactose by dairy 

cow MECs [133]. �us, promoter demethylation of lipi-

dogenic genes via miR-mediated DNMT suppression 

enhances both adipogenesis and lactation.

Overexpression of miR-155 in mice has been shown 

to reduce brown adipose tissue (BAT) mass [134]. �us, 

milk exosome-derived miR-155 may attenuate BAT dif-

ferentiation and thermogenesis via BAT, an unfavorable 

condition promoting lipid and energy storage in white 

adipose tissue (WAT) further promoting obesity.

Hyperphagia
Whole cow’s milk consumption in young mice not only 

increased body weight but also caloric intake [114]. �e 

suppression of satiety signals during the period of lacta-

tion may be an intrinsic mechanism of milk signaling to 

enhance anabolism during the postnatal growth phase. 

As milk exosomes and their cargo products pass the 

blood–brain barrier and reach the brain [39, 135, 136], 

they may interfere with hypothalamic control centers of 

satiety feedback regulation. It has recently been shown 

that hypothalamic stem cells control ageing speed partly 
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Fig. 4 Dairy milk exosomes and adipogenesis. miR-21 induces the differentiation of mesenchymal stem cells (MSCs) towards adipocytes via 
activation of peroxisome proliferator-activated receptor PPARγ (PPARγ). miR-148a directly targets and suppresses the inhibitors of adipogenesis 
Wingless 1 (WNT1) and WNT10B increasing the expression of PPARγ and CCAAT/enhancer binding protein α (C/EBPα). miR-148a-mediated 
suppression of DNMT1 via promoter hypomethylation increases the expression of fat mass and obesity-associated gene (FTO), PPARγ and sterol 
regulatory element binding-transcription factor 1 (SREBF1). The mRNA demethylase FTO removes a  m6A mark on RUNX1T1 mRNA generating 
its short splice variant RUNX1T1-S, which relieves RUNX1T1-mediated inhibition of C/EBPβ. Activated C/EBPβ activates the key adipogenic 
transcription factors C/EBPα and PPARγ. miR-148a targets PRKAA1, the catalytic α-unit of AMP-activated protein kinase (AMPK), the key negative 
regulator of mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 activation enhances the expression of PPARγ and SREBF1, key 
lipogenic transcription factors. In addition, miR-148a targets salt-inducible kinase 1 (SIK1), and thereby relieves its inhibitory action on SREBF1. Milk 
exosome-derived miR-148a is thus an adipogenesis promoting factor that operates at pivotal regulatory checkpoints enhancing the risk of obesity
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through exosomal miRs [137]. �e brain-gut-axis is an 

interdependent system affecting neural functions and 

controlling eating behavior [138]. One of the hormones 

sending satiety signals to the hypothalamus is cholecys-

tokinin (CCK), which is secreted from intestinal mucosa 

cells when the duodenum is filled with food [138]. CCK 

binds and signals via CCK1 receptor (CCK1R) and 

CCK2R. CCK2R knock out mice developed obesity 

that was associated with hyperphagia [139]. Suppres-

sion of feeding and concomitantly increased expression 

of hypothalamic proopiomelanocortin after intracere-

broventricular injection of gastrin into control mice dem-

onstrates that hypothalamic CCK2Rs mediate inhibition 

of food intake [139]. CCK2R deletion was associated 

with increased body weight and hypothalamic neuro-

peptide Y (NPY) content, which explains the increased 

food intake in CCK2R knockout mice [140]. Notably, the 

gene expressing CCK2R (CCKBR) is a direct target gene 

of miR-148a [141]. �us, miR-148a of milk exosomes via 

suppression of satiety signals may maintain the state of 

a “hungry brain”, advantageous for postnatal growth but 

critical for long-term energy balance in adults (Fig. 5).

Type 2 diabetes mellitus
T2DM is an increasing epidemic in developed countries 

and is closely linked to obesity (diabesity). Most epide-

miological studies and systematic reviews promote the 

view that milk and dairy products are good for meta-

bolic health and may reduce the risk of T2DM [142–147]. 

Dairy product intake may be inversely associated with 

risk of T2DM, but the evidence is inconclusive for total 

dairy products and sparse for individual types of dairy 

products. �ere are only few epidemiological studies that 

compare the risk of milk versus fermented milk/products. 

�is, however, is of critical importance because fermen-

tation of milk negatively affects the bioactivity of milk 

exosomes and their miR cargo [48]. �e largest study that 

investigated the association of T2DM with intake of milk 

versus fermented milk products is the European Prospec-

tive Investigation into Cancer and Nutrition (n = 340,234) 

[148]. Whereas the consumption of fermented milk and 

fermented milk products confirmed an inverse rela-

tion to T2DM risk, the intake of non-fermented milk 

showed an increased risk for T2DM [148]. Furthermore, 

the Physicians’ Health Study (n = 21,660) demonstrated 

a significant increase in T2DM risk in relation to the 

consumption of whole milk [149]. Data presented from 

the Framingham Heart Study Offspring Cohort demon-

strated a nonlinear correlation between milk consump-

tion and prediabetes (defined by fasting glucose plasma 

levels ≥ 100 to < 126  mg/dl). More than 5 servings of 

milk per week significantly increased the risk of predia-

betes [150]. None of these studies considered thermal 

milk processing (pasteurization versus UHT), which is of 

crucial importance for the bioavailability and function of 

exosomes in commercial milk products.

Milk protein provides abundant essential BCAAs 

including leucine, which activates mTORC1 [151], a key 

driver of anabolism, growth and insulin secretion [152]. 

Elevated BCAA plasma levels correlate with an increased 

risk of insulin resistance and T2DM [153–159].

Cow milk exosomes provide miR-29b, an abundant 

miR of dairy milk that survives pasteurization and exhib-

its the same nucleotide sequence as human miR-29b 

[42]. Consumption of pasteurized cow’s milk by healthy 

volunteers increased plasma levels of miR-29b including 
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Fig. 5 Milk exosomes and hyperphagia. Milk, a feeding and signaling system promoting postnatal anabolism and growth, most likely interferes 
with satiety control in the hypothalamus, which is possible as milk exosomes accumulate in the brain. Cholecystokinin (CCK) is released by 
duodenal I-cell during intestinal nutrient abundance. CKK is an important hormone that induces satiety signals in the hypothalamus via binding to 
CCK receptor 2 (CCKR2). CCKR2 is a direct target of miR-148a. It is thus conceivable that milk exosomes maintain a “hungry brain” to increase milk 
intake during the breastfeeding period. Persistent milk exosome intake by consumption of pasteurized cow’s milk may maintain this hyperphagic 
state, a further mechanism promoting obesity
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intracellular miR-29b levels in PBMCs [46]. Notably, dia-

betes researchers regard the miR-29s as a diabetogenic 

miR family [160–164]. Intriguingly, miR-29b controls 

the expression of branched chain α-ketoacid dehydroge-

nase (BCKD) complex in the cell via targeting the BCKD 

core protein dihydrolipoamide branched-chain acyltrans-

ferase (DBT) [165]. In accordance to a recent study, early-

onset and classical forms of T2DM showed impaired 

expression of BCKD genes involved in muscle BCAA 

catabolism [166]. miR-29b-mediated inhibition of BCKD 

activity decreases BCAA catabolism, a meaningful met-

abolic switch for the newborn mammal. �e essential 

BCAAs are required for the synthesis of many functional 

and structural proteins [167]. �erefore, BCAAs should 

not be wasted for purposes of energy generation during 

postnatal growth [154]. In addition, BCAAs play a key 

role as activators of mTORC1, which orchestrates cell 

growth and anabolism [168–171]. In cells with impaired 

leucine catabolism, mTORC1 signaling towards phos-

phorylation of ribosomal protein S6 kinase 1 (S6K1) was 

significantly increased [172].

Insulinotropic amino acids, especially leucine and glu-

tamine, are amino acids highly enriched in milk proteins 

that are capable to increase insulin secretion [173–175]. 

Leucine supplementation in mice stimulated insulin 

secretion of pancreatic islets, which was associated with 

an activation of the PI3K/AKT/mTORC1 pathway [174]. 

Insulin has growth-promoting effects and binds to insu-

lin- and insulin-like growth factor 1 (IGF-1) receptors. 

Insulin regulates appetite, body temperature, white fat 

mass, and glucose metabolism. Importantly, insulin 

signaling modulates neurotransmitter activity, neuronal 

function and synaptogenesis, critical events during the 

postnatal period [176]. Inhibition of BCKD by exoso-

mal miR-29b may serve to increase β-cells BCAA levels 

further promoting mTORC1-mediated insulin secretion 

during the postnatal growth phase. However, this is a 

critical regulatory switch enhancing endoplasmic reticu-

lum (ER) stress and β-cell apoptosis in the long run [151]. 

In fact, chronic exposure to leucine in  vitro has been 

shown to induce β-cell dysfunction in INS-1E cells and 

mouse islets [177].

Milk miR-29b-mediated increases in BCAA levels and 

BCAA-driven mTORC1 activation in peripheral tissues 

explain insulin resistance by S6K1-mediated inhibitory 

phosphorylation of insulin receptor substrate 1 (IRS-1), 

a key checkpoint of insulin signaling [178–181] (Fig. 6). 

SPARC (secreted protein acidic and rich in cysteine, 

also known as osteonectin or BM-40) may represent 

an important link between obesity and T2DM [182]. 

Overexpression of SPARC in cultured β-cells resulted 

in a 2.4-fold increase in insulin secretion in high glu-

cose conditions [183]. Reduced SPARC expression was 

demonstrated in primary islets from subjects with dia-

betes compared with controls [183]. It has been dem-

onstrated that SPARC is a direct target of miR-29b [184, 

185]. Importantly, overexpression of miR-29s reduced 

glucose uptake and GLUT4 levels [185].

�e Maf basic leucine-zipper-containing transcription 

factor MAFB is required for the generation of functional 

β-cell populations by directly activating insulin gene tran-

scription and key regulators of β-cell differentiation and 

function [186]. Importantly, MAFB increases the expres-

sion of MAFA, which is important to maintain β-cell 

function in adults [187]. Notably, MAFB is a direct tar-

get of miR-148a [188]. Suppressed expression of MAFB 

in murine and human β-cells has been associated with 

decreased glucose-dependent insulin secretion [189].

�us, persistent milk exosome miR-29b-BCAA-medi-

ated overstimulation of insulin synthesis and BCAA-

mTORC1-dependent insulin resistance identify dairy 

milk exosomes as potential promoters of T2DM. Both, 

miR-29b-mediated suppression of SPARC and miR-

148a-mediated suppression of MAFB impair insulin 

secretion, a potential mechanism enhancing ER stress 

and β-cell apoptosis.

Atherosclerosis, cardiovascular and overall 
mortality
Atherosclerosis and cardiovascular disease are the major 

causes of death in industrialized countries. Two large 

Swedish cohorts, one with 61,433 women and one with 

45,339 men determined the association between milk 

consumption and time to mortality [190]. For every 

glass of milk, which in Sweden is primarily pasteurized 

milk, the adjusted hazard ratio of all-cause mortality 

was 1.15 (1.13–1.17) in women and 1.03 (1.01–1.04) in 

men, respectively. A recent study from Northern Sweden 

including 103,256 adult participants reported that high 

consumers of nonfermented milk (≥ 2.5 times/day) had a 

32% increased hazard (HR: 1.32; 95% CI 1.18, 1.48) for all-

cause mortality compared with that of subjects who con-

sumed milk ≤ 1 time/week [191]. In contrast, fermented 

milk intake and cheese intake were negatively associated 

with mortality [191]. A systematic review and updated 

dose–response meta-analysis of prospective cohort 

studies partially funded by dairy associations reported a 

7% lower risk of stroke with an increment of 200 g milk 

daily [192]. �e association of milk with total stroke was 

nonlinear, with the strongest inverse association around 

125  g/day. For milk intake in the range of 125–750  g/

day the inverse association remained significant, but was 

attenuated. Based on the same studies, whole milk intake 

was significantly associated with a higher risk of stroke 

per 200  g/day with no heterogeneity. In contrast, total 

fermented dairy intake (200  g/day) was associated with 
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a 9% lower risk of stroke [192]. �e Prospective Urban 

Rural Epidemiology (PURE) study investigators reported 

no increase in cardiovascular mortality by dairy intake 

including milk consumption in low-income and middle-

income countries. Milk intake > 1 serving vs no intake 

was associated with lower risk of cardiovascular mortal-

ity [193]. �e category > 1 serving vs no intake is not suit-

able to identify a dose-relationship between milk intake 

and mortality risk. Yogurt was associated with lower risk 

of cardiovascular mortality [193]. Again, all these ques-

tionnaire-based studies did not provide information on 

the type of thermal processing (pasteurized vs UHT) of 

milk.

Whereas whole milk consumption appears to be asso-

ciated with an increased risk of mortality, fermented milk 

and fermented milk products are not. �e presence of 

milk-derived bioactive exosomes and their miR content 

may play a key role explaining this discrepancy. Non-

coding RNAs and miRs are in the recent focus of lipid 

and atherosclerosis research [194, 195]. During athero-

sclerosis, the gradual accumulation of lipids into the sub-

endothelial space of damaged arteries results in several 

lipid modification processes followed by macrophage 

uptake in the arterial wall. Cholesterol accumulation 

within monocyte-derived macrophages and their trans-

formation into foam cells make up the characteristic fatty 

streaks observed in the early stages of atherosclerosis 

[196, 197]. Notably, milk-derived exosomes and their miR 

content are taken up by human macrophages [47]. Exo-

some-derived miRs are regarded as potential biomarkers 

of atherosclerosis [198, 199]. It has recently been dem-

onstrated that miR-148a promotes the differentiation of 

monocytes into macrophages and induces M1 but inhib-

its M2 polarization [200]. Macrophages overexpressing 

miR-148a exhibited enhanced ability to engulf and kill 

bacteria, which was mediated by excessive production 

of reactive oxygen species (ROS). Furthermore, PTEN 

has been detected as a direct target gene of miR-148a in 

macrophages. Macrophages overexpressing miR-148a via 

upregulation of AKT signaling increased the production 

of ROS and pro-inflammatory cytokines through upregu-

lation of NF-κB signaling [200]. Peritoneal macrophages 

of organic dust-exposed mice which were fed a milk exo-

some-enriched diet exhibited an M1 shift compared to 
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an M2 phenotype in mice fed a milk exosome-deficient 

diet [201]. In macrophages of mice which received a diet 

enriched in milk exosomes, interleukin 6 (IL-6), TNF, and 

IL-12/23 were significantly elevated [201]. Remarkably, a 

dose-dependent correlation between milk consumption 

and plasma levels of IL-6 has been reported in humans 

[190].

miR-148a directly targets the expression of low density-

lipoprotein (LDL) receptors (LDLR) [202, 203], the pivotal 

regulators of cholesterol homeostasis and hepatic LDL 

clearance [204]. In addition, miR-148a directly targets 

ATP-binding cassette transporter 1 (ABCA1) [202], the 

key player for reverse cholesterol transport [205, 206]. 

For the growing infant, milk exosome-derived miR-148a 

via suppression of LDL-mediated hepatic cholesterol 

uptake and impairment of reverse cholesterol transport 

from peripheral tissues may serve to provide sufficient 

amounts of cholesterol for growth of distant tissues as 

well as steroid hormone biosynthesis. �e persistence of 

this lipid metabolic switch into adulthood may however 

exert atherogenic effects. ABCA1 expression is induced 

during differentiation of human monocytes into mac-

rophages in  vitro [205]. In macrophages, both ABCA1 

mRNA and protein expression are upregulated in the 

presence of acetylated low-density lipoprotein (AcLDL) 

[205, 206]. Milk exosome-derived miR-148a via target-

ing ABCA1 may thus attenuate macrophage cholesterol 

efflux promoting foam cell formation (Fig. 7). In fact, his-

topathologic examination of ABCA1(−/−) mice at ages 

7, 12 and 18 months demonstrated a striking accumula-

tion of lipid-laden macrophages [207]. It has recently 

been demonstrated that when miR-148a/152 was over-

expressed, DNMT1 expression was suppressed, whereas 

the expression of adipose differentiation-related protein 

(ADRP) was enhanced, and the contents of total cho-

lesterol (TC) and cholesteryl ester (CE) were increased 

in cultured macrophage foam cells [208]. Conversely, 

downregulation of miR-148a/152 led to elevated DNMT1 

expression, reduced ADRP expression, and lowered con-

tents of TC and CE [208]. Antisense miR-148a adminis-

tration has recently been proposed as a new treatment 

option of atherogenic dyslipidemia [203].

Several findings connect miRs to cardiovascular 

pathology. Neointimal formation is a common patho-

logical phenotype in diverse cardiovascular diseases such 

as atherosclerosis and coronary heart disease. miR-21 

has been related to vascular neointimal lesion forma-

tion, whereas downregulation of overexpressed miR-21 

decreased neointima formation in rat carotid artery after 

angioplasty [209]. Upregulated miR-21 in endothelial 

cells suppressed apoptosis and increased eNOS phospho-

rylation and nitric oxide production [210]. In all these 

settings, miR-21 upregulation inhibited apoptosis and 

induced proliferation of vascular smooth muscle cells, 

contributing to the formation of neointima thickening 

in vivo [211]. Importantly, it has been demonstrated that 

milk exosomes are taken up by human vascular endothe-

lial cells via endocytosis [36]. It is thus conceivable that 
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systemic uptake of milk exosomes exerts adverse miR-

21-mediated effects on vascular homeostasis.

Taken together, persistent dietary exposure to exo-

somal miR-148a and miR-21 derived from pasteurized, 

unfermented milk could exert atherogenic activities that 

may increase cardiovascular morbidity and mortality.

Bone remodeling, osteoporosis and fracture risk
It is common belief that consumption of cow’s milk, an 

abundant source of calcium, promotes bone strength 

and bone health, a major reason to recommend higher 

milk intake during pregnancy, infancy, adolescence and 

adulthood. However, greater milk consumption during 

teenage years was not associated with a lower risk of hip 

fracture in older adults [212]. Michaëlsson et al. [190] in 

Sweden reported that for every glass of milk in women 

no reduction was observed in fracture risk with higher 

milk consumption for any fracture or for hip fracture. 

However, high milk intake was associated with higher 

fracture incidence in Swedish women [190]. In contrast, 

among US men and women, 1 glass of milk per day was 

associated with an 8% lower risk of hip fracture [213]. 

�us, the role of dairy foods and the quantity of milk 

intake for hip fracture still remains controversial. Recent 

evidence indicates that fermented milk in comparison 

to non-fermented milk exerts a protective effect on hip 

fracture rates and bone mineral density [214, 215]. Biver 

et  al. [216] prospectively followed a cohort of 65-year-

old healthy Swiss women and showed that age-related 

Ct bone loss was attenuated at non-bearing bone sites 

in fermented dairy product consumers, but not in milk 

consumers, independently of total energy, calcium, and 

protein intakes. According to a recent study, there was 

insufficient evidence to deduce the association between 

milk consumption and risk of hip fracture, which was 

however reduced by yogurt and cheese consumption 

[217].

Until today, no epidemiological study considered the 

heat processing (pasteurization vs UHT) of milk and did 

not report on the presence or absence of bioactive milk 

exosomes and their miR cargo [190, 212–225]. �e pres-

ence of bioavailable milk exosomes is however of utmost 

importance to understand the differences in the biologi-

cal function of pasteurized versus UHT milk on bone 

homeostasis.

Bone structure and homeostasis is controlled by MSCs. 

In the bone marrow, multipotent MSCs undergo differ-

entiation into various anchorage-dependent cell types, 

including osteoblasts and adipocytes. At the cellular 

level, the MSC pool in the bone marrow niche shows a 

biased differentiation towards adipogenesis at the cost 

of osteogenesis [226]. �is differentiation shift leads to 

decreased bone formation, contributing to the etiology 

of osteoporosis [226]. Since the identification of the 

v-MAF oncogene in an avian tumor virus, the MAF pro-

tein family has grown rapidly, forming a unique subclass 

of basic-leucine zipper transcription (bZIP) factors. MAF 

family members appear to play important roles in the 

regulation of MSC differentiation [227]. Nishikawa et al. 

[228] demonstrated that decreased expression of MAF 

in mouse MSCs, which regulated MSC bifurcation into 

osteoblasts and adipocytes by cooperating with the oste-

ogenic transcription factor RUNX2 and inhibiting the 

expression of the adipogenic transcription factor PPARγ, 

impaired osteogenesis [228]. �e crucial role of MAF in 

both osteogenesis and adipogenesis was underscored by 

in  vivo observations of delayed bone formation in peri-

natal MAF(−/−) mice, and accelerated formation of fatty 

marrow associated with bone loss in aged MAF(±) mice.

MAF and MAFB are direct target genes of miR-148a 

[188, TargetScanHuman7.2]. Long-term exposure to 

milk exosome-derived miR-148a may thus favor adi-

pogenesis in the bone on the expense of osteogenesis. 

Bone remodeling is a life-long process to maintain bone 

homeostasis. Its imbalance causes bone porosity and 

increases the risk of fracture. �e balance is controlled by 

bone-forming osteoblasts and bone-resorbing osteoclasts 

interacting with blood-vessel-forming endothelial cells 

[229]. �ere is compelling evidence that exosomes and 

their miR cargo play a crucial role in bone remodeling 

[230–236]. Kelch et al. [234] recently reported that miR-

148a and miR-21 are significantly upregulated in serum 

and osteoclasts of patients with osteoporosis. In accord-

ance, increased levels of miR-148a and miR-21 have been 

detected in sera of type 1 diabetes patients (T1DM) ver-

sus non-diabetic subjects. In patients with T1DM, who 

exhibit reduced bone mineral density (BMD) associated 

with an increased risk of fractures, miR-148a expres-

sion showed an inverse correlation with BMD [237]. 

Remember that milk exosomal miRs have been shown 

to increase in PBMCs of milk consumers [46]. In addi-

tion, the uptake of dairy milk exosomes and their miRs 

by human macrophages has also been demonstrated [47]. 

Peripheral blood monocytes (PBMs) are an important 

source of osteoclast precursors and cytokines produced 

by PBMs have profound effects on osteoclast differentia-

tion, activation, and apoptosis [238]. Receptor activator 

of nuclear factor kappaB ligand (RANKL) induces osteo-

clast formation from hematopoietic cells via regulation of 

various transcription factors. MAFB negatively regulates 

RANKL-induced osteoclast differentiation [239]. Intrigu-

ingly, miR-148a targets MAFB, a critical inhibitor of 

RANKL, thereby promoting the differentiation of mono-

cytes to pre-osteoclasts [188]. miR-148a was reported to 

be dramatically upregulated during M-CSF + RANKL-

induced osteoclastogenesis of  CD14+ PBMCs [188]. 
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miR-21, another exosomal signature miR of dairy milk, 

suppresses programmed cell death 4 (PDCD4) [240, 241], 

a critical inhibitor of c-Fos, which is important for the 

differentiation of pre-osteoclasts to osteoclasts [234]. 

Intriguingly, Oliveira et al. [232], demonstrated that dairy 

milk exosomes (100,000×g fraction) promoted osteoclast 

differentiation associated with an increased expression of 

c-Fos (Fig. 8).

Oral administration of dairy milk-derived exosomes 

to female DBA/1  J mice during 7  weeks did not alter 

the tibia trabecular bone area but increased the number 

of osteocytes [242]. �e highest dose of milk exosomes 

markedly increased the woven bone tissue. �e expo-

sure of MSCs to bovine milk exosomes during 21  days 

resulted in less mineralization but higher cell prolifera-

tion. Interestingly, milk exosomes reduced the collagen 

production, but enhanced the expression of genes char-

acteristic for immature osteoblasts [242]. A kinetic study 

showed that milk exosomes upregulated many osteogenic 

genes within the first 4  days. However, the production 

of type I collagen and expression of its genes (COL1A1 

and COL1A2) were markedly reduced at days 21 and 28. 

At day 28, milk exosomes again lead to higher prolifera-

tion, but mineralization was significantly increased. �is 

was associated with increased expression of sclerostin, a 

marker for osteocytes, and reduced SPARC (osteonectin), 

which is associated to bone matrix formation and bone 

mineralization [242].

Earlier studies suggested that TGF-β increases osteo-

clast formation via action on osteoclast precursors [243]. 

TGF-β is a component of dairy milk exosomes [14] and 

has been shown to promote the differentiation of blood 

monocytes into osteoclasts [240]. Addition of TGF-β 

and dexamethasone to peripheral blood (PB) mono-

cytes led to higher number of nuclei in multinuclear 

cells and increased expression of tartrate resistant acid 

phosphatase (TRACP) 5a and 5b, CR and NFATc1 in PB-

derived osteoclasts depicting the higher osteoclastogenic 

potential and responsiveness to TGF-β and dexametha-

sone in PB monocytes [244].

�ere is further evidence that miR-148a inversely regu-

lates adipocyte and osteoblast differentiation [233]. Sup-

plementing miR-148a activity inhibited cell growth and 

induced stromal ST2 cells to differentiate into mature 

adipocytes. By contrast, supplementation of miR-148a 

blunted osteoblast differentiation. Lysine-specific dem-

ethylase 6b (Kdm6b), a recently identified regulator of 

osteoblast differentiation, was shown to be a direct tar-

get of miR-148a. Overexpression of Kdm6b attenuated 

miR-148a-mediated stimulation of adipogenic differen-

tiation. �us, miR-148a reciprocally regulates adipocyte 
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ligand (RANKL), V-Fos FBJ murine osteosarcoma viral oncogene homolog (c-Fos) and transforming growth factor-β (TGF-β) promote osteoclastogenesis. 
miR-148a via targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) increases RANKL expression. miR-21 via targeting 
programmed cell death 4 (PDCD4) increases c-Fos activity. Notably, miR-148a, miR-21 and TGF-β are provided by dairy milk exosomes. Addition of 
commercial milk-derived exosomes to bone marrow-derived osteoclast precursor cells increased osteoclast formation. Overexpression of miR-148a 
triggers mesenchymal stem cells (MCS) to differentiate into adipocytes and attenuates osteoblast differentiation. Persistent intake of dairy milk 
exosomes may thus disturb the delicate balance of bone remodeling favoring osteoclastogenesis over osteoblastogenesis, a critical mechanism 
promoting osteoporosis and fracture risk
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and osteoblast differentiation through directly targeting 

Kdm6b [233].

Collectively, accumulating translational evidence sup-

ports the view that persistent uptake of pasteurized dairy 

milk and their bioactive exosomal miRs after the skeletal 

growth period activate osteoclastogenesis and impairs 

osteoblastogenesis, an unfavorable deviation for adults 

disturbing the appropriate balance for bone remodeling 

and explaining the association of obesity, diabetes melli-

tus and osteoporosis [245] (Fig. 8).

Parkinson’s disease
Epidemiological evidence supports a correlation 

between milk intake and risk of Parkinson’s disease 

(PD) [246–251]. A large meta-analysis reported a linear 

dose–response relationship for milk consumption and 

PD [249]. PD risk increased by 17% for every 200 g/day 

increment in milk intake [249]. Analyses were based on 

data from 2 large prospective cohort studies, the Nurses’ 

Health Study (n = 80,736) and the Health Professionals 

Follow-up Study (n = 48,610) confirmed an increased 

risk of PD associated with consumption of skim and 

low-fat milk [251]. Notably, there is no increased PD 

risk for fermented milk products such as yogurt [248, 

249]. Neuron density in substantia nigra was lowest in 

nonsmoking decedents who consumed high amounts of 

milk (> 473  ml/day) [250]. After removing cases of PD 

and dementia with Lewy bodies, adjusted neuron density 

in all but the dorsomedial quadrant was 41.5% lower for 

milk intake > 473 ml/day versus intake that was less [250]. 

�us, milk intake, but not fermented milk appears to 

exert neurodegenerative effects in PD.

Growing evidence indicates that exosomes are promi-

nent mediators of neurodegenerative diseases. Exosomes 

of PD patients contain neurodegenerative disease-asso-

ciated proteins such α-synuclein (α-syn) and facilitate 

their spread to the extracellular environment [252–255]. 

�ere is increasing evidence that exosome lipids promote 

α-syn aggregation [256]. Aggregation of exogenous α-syn 

was accelerated by exosomes irrespective of whether they 

were derived from control cells or cells overexpressing 

α-syn suggesting that the lipids in exosomes were suffi-

cient for the catalytic effect to arise [252, 256]. As milk 

exosomes have been detected to cross the blood–brain 

barrier and accumulate in the brain [39], it is conceivable 

that dairy milk exosomes may promote α-syn aggregation 

and spreading.

�ere is recent interest in the regulatory role of exo-

somal miRs in the pathogenesis of PD [257], which 

according to recent concepts is related to neuroinflam-

mation [258]. Prajapati et  al. [259] demonstrated that 

TNFα is a potential regulator of miRs which may regu-

late mitochondrial functions and neuronal cell death, 

having important implication in pathogenesis of PD. 

TNFα induced the expression of miR-155 [259]. Recently, 

�ome et al. [260] found significant upregulation of miR-

155 in an in vivo model of PD produced by adeno-associ-

ated-virus-mediated expression of α-syn. Using a mouse 

with a complete deletion of miR-155, they found that a 

loss of miR-155 reduced proinflammatory responses to 

α-syn and blocked α-syn-induced neurodegeneration. 

In primary microglia from miR-155(−/−) mice, they 

observed a markedly reduced inflammatory response to 

α-syn fibrils. Treatment of these microglia with a syn-

thetic mimic of miR-155 restored the inflammatory 

response to α-syn fibrils. �ese results suggest that miR-

155 plays a central role in the inflammatory response 

to α-syn in the brain and in α-syn-related neurodegen-

eration [260]. Importantly, miR-155 is one of the major 

immune regulatory miRs in cow’s milk that most likely 

invades into the brain [39].

Methylation of human α-syn gene SNCA intron 1 

decreased its gene expression, while inhibition of DNA 

methylation activated SNCA expression. Methylation of 

SNCA intron 1 was reduced in DNA from sporadic PD 

patients’ substantia nigra, putamen, and cortex [261]. In 

fact, CpG demethylation in the promoter region of SNCA 

enhances α-syn expression and affects the pathogenesis 

of PD [262]. It has been shown that α-syn sequesters 

DNMT1 from the nucleus, which might be a novel mech-

anism for epigenetic alterations in Lewy body diseases 

[263]. Milk exosome-derived miR-148a may be another 

epigenetic mechanism, which via targeting DNMT1 may 

increase α-syn expression promoting PD pathogenesis [8] 

(Fig. 9).

Collectively, milk exosomes and their miRs, which 

accumulate in the brain after milk consumption [39], 

might be the critical promoters involved in the initiation 

and progression of PD in humans consuming pasteurized 

cow’s milk.

Colorectal cancer
Two large meta-analyses came to the conclusion that 

milk consumption but not the consumption of fermented 

milk products has a protective effect on the development 

of colorectal cancer (CRC) [264, 265]. A recent system-

atic review and meta-analysis of cohort studies confirmed 

that an increase of 200 g/day of milk intake was associ-

ated with a decreased risk of CRC [266]. It has been 

shown that bacterial fermentation attacks the integrity 

of cow milk exosomes associated with a reduction of miR 

recovery [48, 49]. �e protein content and size of bovine 

milk exosomes was significantly reduced in fermented 

cow’s milk associated with a substantial loss of miRs 

(miR-29b, miR-21) compared to unfermented raw milk 

[48]. Malignant epithelial cells of CRC exhibit a reduced 
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expression of miR-148a [267–270], which increases the 

expression of DNMT1 that functions as a tumor pro-

moter in CRC [271–273]. Intriguingly, Golan-Gerstl 

et al. [44] demonstrated that the incubation of CRC cells 

(Lim 1215) with human breastmilk exosomes increased 

the cellular content of miR-148a. In exosome incubation 

experiments with normal intestinal cells (CRL 1831), a 

significant decrease in DNMT1 was observed [44]. It is 

thus possible that milk exosome-mediated uptake of 

bovine miR-148a, which is identical with human miR-

148a (mirbase.org), targets DNMT1 and thereby attenu-

ates the action of this critical promoter of CRC initiation 

and progression. Increased expression of Rho-associated 

coiled coil-containing protein kinase 1 (ROCK1) also 

plays a key role in CRC pathogenesis [274, 275], which as 

well is a direct target of miR-148a [276].

Chronic inflammation triggers cellular events that 

can promote malignant transformation of cells and 

carcinogenesis. Chronic intestinal inflammation is a 

well-known stimulus of CRC cancerogenesis [277]. Sev-

eral inflammatory mediators, especially TNFα, IL-6 and 

IL-10 have been shown to participate in both the ini-

tiation and progression of cancer including colitis-asso-

ciated CRC [277]. miR-148a has a substantial impact 

on immune regulation and cancerogenesis [278]. 

miR-148a inhibits the production of cytokines includ-

ing TNFα, IL-6, IL-12 and impairs innate response 

and antigen presentation of Toll-like receptor (TLR)-

triggered dendritic cells by targeting calcium/calmo-

dulin-dependent protein kinase IIα (CaMKIIα) [279]. 

Furthermore, TGF-β and miR-155, both components of 

milk exosomes, suppressed intestinal T cells and had a 

protective effect on the development of colitis [84].

�us, mounting epidemiological and translational 

evidence indicates that milk exosomes via transfer of 

miR-148a and miR-155 may have a preventive effect on 

CRC cancerogenesis (Fig. 10).

miR-148a         DNMT1      SNCA↑  -synuclein ↑  

miR-155

Neuroinflamma�on

TNF ↑

Exosome-mediated 

spread of -synuclein 

DNMT1

Milk exosomes

Parkinson´s disease

Apopto�c death of 

dopaminergic neurons 

in substan�a nigra 

Fig. 9 Dairy milk exosomes and pathogenesis of Parkinson’s disease. Milk exosomes preferentially accumulate in the brain. Milk exosome-derived 
suppression of DNA methyltransferase 1 (DNMT1) reduces SNCA promoter methylation resulting in increased expression of α-synuclein. 
α-Synuclein promotes nuclear extrusion of DNMT1. Aggregates of α-synuclein induce neuroinflammation and increase tumor necrosis factor-α 
(TNF-α)-mediated upregulation of miR-155, which further enhances neuroinflammation. Milk exosomes via binding of α-synuclein to exosome 
membrane lipids may promote the spread of neurotoxic α-synuclein in the brain. Suppression of miR-155 attenuated α-synuclein-induced 
neuroinflammation in models of Parkinson’s disease



Page 16 of 33Melnik and Schmitz  J Transl Med            (2019) 17:3 

Prostate cancer
Among European men, prostate cancer (PCa) is the most 

common cancer and the third leading cancer cause of 

death [280]. In 2018, there were an estimated 3.91 mil-

lion new cases of cancer including 450,000 cases of PCa 

[280]. In the Physicians’ Health Study (n = 21,660) an 

association between whole milk intake and PCa-specific 

mortality among U.S. male physicians has been dem-

onstrated [149]. A large meta-analysis of 11 popula-

tion-based cohort studies involving 778,929 individuals 

reported a linear dose–response relationship between 

increase of whole milk intake and increase of PCa mor-

tality risk [281]. A recent study confirmed that in com-

parison to men who consumed < 1 servings/day of whole 

milk, those who drank ≥ 3 servings/day had an increased 

hazard of PCa mortality [282]. In 996 African Ameri-

can and 1064 European American men diagnosed with 

PCa, a higher whole milk intake was associated with 

higher odds of high-aggressive PCa [283]. Pettersson 

et al. [284] showed that men with the highest versus low-

est intake of whole milk were at an increased risk of PCa 

progression. A prospective study among 1334 men with 

non-metastatic PCa in the Cancer of the Prostate Stra-

tegic Urologic Research Endeavor (CaPSURE™) reported 

that whole milk consumption after PCa diagnosis was 

associated with increased risk of recurrence, particu-

larly among very overweight or obese men [285]. Milk 

fat contains branched-chain fatty acids, whose metabo-

lism is disturbed in PCa patients. A central role for fatty 

acid oxidation in supplying energy to the PCa cell is sup-

ported by the observation that the peroxisomal enzyme 

α-methylacyl-CoA racemase (AMACR), which facilitates 

the transformation of branched-chain fatty acids to a 

form suitable for β-oxidation, is highly overexpressed 

in PCa compared with normal prostate [286–288]. 

Branched-chain fatty acids in milk and dairy products 

markedly enhance AMACR expression in PCa cells 

in vitro [289].

In contrast to whole milk, total dairy and fermented 

milk products did not correlate with PCa risk [281–285]. 

Milk fat and calcium are obviously not the primary caus-

ative nutritional factors in whole milk for PCa initiation 

and progression, as milk fat is abundant in cheese and 

other fermented milk products. In contrast to fermented 

milk products, pasteurized milk transfers milk exosomes 

to the consumer.

Cancer cells communicate closely with the cells in their 

microenvironment, and this communication promotes 

malignancy via abnormal growth, invasion, drug resist-

ance and metastasis. Increasing evidence illustrates that 

exosomes derived from tumor cells trigger tumor initia-

tion, tumor cell growth and progression, metastasis, and 

drug resistance [290–297]. Exosome release by PCa cells 

modify the tumor microenviroment and play a key role in 

PCa initiation and progression [298–303].

miR-21, a signature miR of dairy milk, is overexpressed 

in PCa cells [304, 305], in blood serum [304, 306], PBMCs 

[307], serum exosomes [308] well as urinary exosomes 

of PCa patients [309, 310]. miR-21 is regarded as an 

oncomir, that inhibits pivotal tumor suppressor genes 

such as PTEN, p57kip2 (CDKN1C), PDCD4, MARCKS 

and others [240, 311–314]. Loss of function of the PTEN 

tumor suppressor, upregulating the phosphoinositide 

3-kinase (PI3K)-AKT signaling network, is recognized as 

one of the most common driving events in PCa develop-

ment [311]. Overexpression of miR-21 has been associ-

ated with chemo resistance and PCa progression [315, 

316]. In accordance, an increase in miR-21 helps PCa 

cells to overcome androgen deprivation [317].

Epithelial–mesenchymal transition (EMT) plays a 

pivotal role in the conversion from benign to malig-

nant phenotypes. �ere is accumulating evidence that 

exosomes via miR transfer prepare the pre-metastatic 

niche [318]. TGF-β signaling plays a further key role in 

EMT-mediated cancer progression [319]. PCa-derived 

exosomes, which in accordance with milk exosomes 

contain TGF-β [14], dominantly dictated a program of 

MSC differentiation generating myofibroblasts with 

functional properties consistent with cancer promo-

tion [320]. Remarkably, it has been shown that human 

breast milk exosomes could promote EMT via TGF-β2 

[15]. Commercial milk exosomes via transfer of TGF-β 

may further augment TGF-β-mediated EMT. Recent 

evidence has been provided that inhibition of DNMT1 

induces EMT and the cancer stem cell (CSC) phenotype 

IEC                            IEC                        IEC

DNMT1  ROCK1↓

IEC                           CRC cell CRC cell a�er milk

exosome uptake 

DNMT1 DNMT1↑
miR-148aDNMT1↑

ROCK1 ↑

Milk exosomes

Intes�nal lumen

CRC preven�on

Fig. 10 Dairy milk exosomes and colorectal cancer prevention. DNA 

methyltransferase 1 (DNMT1) and Rho-associated coiled coil-containing 

protein kinase 1 (ROCK1) are overexpressed in colorectal cancer 
(CRC) cells. DNMT1 is regarded as a tumor promoter in CRC. Milk 
exosome uptake by CRC intestinal epithelial cells (IEC) increases 
intracellular levels of miR-148a, which suppresses DNMT1 and ROCK1, 
a potential mechanism explaining CRC prevention by consumption 
of pasteurized milk
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facilitating tumorigenesis in PCa cells [321]. Notably, 

miR-148a, miR-21 and miR-29b, major miRs of dairy 

milk exosomes, synergistically attenuate DNMT1 expres-

sion [68–71]. Furthermore, DNMT1 negatively controls 

the activity of androgen receptor signaling, which plays a 

key role in PCa pathogenesis [322].

miR-155 is upregulated in PCa tissues and cell lines and 

promotes cell proliferation by targeting annexin 7 [323]. 

SOCS1 functions as a tumor suppressor in PCa and its 

expression is reduced in PCa tissue [324]. miR-221-me-

diated suppression of SOCS1 enhanced cell proliferation 

and metastasis through in PCa [325]. Importantly, miR-

155 as well targets SOCS1 [77]. miR-155 is an impor-

tant exosomal immune regulatory miR of human and 

bovine milk [17, 45, 84]. miR-30d is another suppressor 

of SOCS1 [326]. miR-30d is overexpressed in PCa tis-

sue and is inversely related to SOCS1 expression [326]. 

Remarkably, miR-30d is another signature miR of com-

mercial cow’s milk [84].

Milk consumption has been linked with increased 

expression of fat mass and obesity-associated gene (FTO) 

via miR-148a-mediated suppression of DNMT1 [327]. 

Epidemiology studies show that FTO SNPs (includ-

ing rs9939609, rs17817449, rs8050136, rs1477196, 

rs6499640, rs16953002, rs11075995, and rs1121980) are 

associated with increased FTO expression, overweight/

obesity and increased risk of various types of cancers, 

including PCa [328]. FTO has recently been shown to 

increase the expression of C/EBPα and C/EBPβ [329, 

330], which are upregulated in PCa tissue [331–333]. 

Remarkably, a C/EBP binding motif has been identified in 

the AMACR  promotor [334]. Milk exosome-derived miR-

148a via epigenetic enhancement of FTO-C/EBP-sign-

aling may enhance AMACR expression in PCa allowing 

malignant cells to utilize branched-chain fatty acids as an 

alternative energy source for PCa growth and metastasis.

Bernichtein et al. [335] failed to observe any prolifera-

tive effects of “whole cow’s milk” in two mouse models 

of benign prostatic hyperplasia (probasin-Prl mice, Pb-

Prl) or pre-cancerous PIN lesions (KIMAP mice). �ey 

reported decreased levels of the cell proliferation marker 

Ki-67. Notably, these investigators did not use “whole 

milk” as claimed on their paper’s title but instead used 

powdered milk re-suspended in water [335]. �ere is 

good reason to assume that cow milk powder in analogy 

to infant formula misses bioactive exosomal miRs [86]. 

In contrast, Tate et al. [336] observed a 30% increase in 

proliferation of LNCaP cells in culture after addition of 

commercial cow’s milk, which contains bioactive milk 

exosomes. �e incidence of lactose intolerance, a natural 

protection for milk and milk exosome consumption, in 

PCa patients was significantly less than that in the con-

trol group [337].

Dairy milk exosomes via transfer of oncogenic miRs 

and TGF-β may promote growth and PCa progression in 

consumers of pasteurized whole milk but not fermented 

milk or milk protein preparations (Fig. 11).

Breast cancer
Breast cancer (BC) is the most common cancer in women 

in industrialized countries. In Europe, 523,000 cases of 

female BC have been estimated in 2018 [280]. A pro-

spective study of 25,892 Norwegian women reported 

that consumers of 750  ml or more of full-fat milk daily 

had a relative risk of 2.91 compared with those who con-

sumed < 150  ml [338]. Wang et  al. [339] surveyed risk 

factors for BC in women (n = 122,058) residing in urban 

and rural areas of eastern China. Among women resid-

ing in rural areas, obesity and a high intake of milk were 

identified as risk factors for BC. A case–control study 

in Mexico (97 BC patients, 104 controls) reported that 

high milk consumption increased BC risk by 7.2 times, 

whereas the consumption of meat was not significantly 

associated with BC risk [340]. According to a case–con-

trol study (n = 333) in Uruguay, high intakes of whole 

milk was associated with significant increased risk of BC, 

whereas fermented milk products were associated with 

significant decreased risk [341]. In a large Swedish cohort 

(n = 22,788), people with lactose intolerance, character-

ized by low consumption of milk, had decreased risks of 

BC [342]. In contrast, an older pooled analysis of cohort 

studies (n = 351,041) [343] found no significant associa-

tions between intake of dairy products and risk of BC. 

Notably, at present no epidemiological study clearly com-

pared the effect of whole milk versus fermented milk 

products and there are missing data on the type of heat 

processing of milk in all epidemiological studies.

Although, epidemiological correlations for whole milk 

consumption and BC are less established than those for 

whole milk intake and PCa, tumor-derived exosomes as 

well play a key role in tumor initiation and progression in 

BC [344–349]. �e widespread post-transcriptional regu-

latory role of miRs is of recent interest in estrogen recep-

tor (ER)-positive BC, comprising about 65%–70% of BCs 

[350]. Estrogen/ERα activation can modulate miR expres-

sion, which may contribute to ER+ breast carcinogenesis 

[350]. Estradiol (E2) treatment of BC MCF7 cells doubled 

the expression levels of miR-148a and miR-21 [351]. An 

ER binding site has been demonstrated on the MIR21 

gene [352]. E2 induced miR-148a in MCF-7 and MDA-

MB-231 cells [353]. miR-21 is overexpressed in BC com-

pared with normal breast tissue and has been associated 

with advanced stage, lymph node positivity, and reduced 

survival time [354, 355]. miR-21 is a major miR compo-

nent of exosomes released by cancer-associated fibro-

blasts and cancer-associated adipocytes [356, 357], which 
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promote tumor progression [358, 359]. In BC patients, 

increased miR-21 in the systemic circulation exists either 

freely or in exosomes [360]. Notably, in postmenopausal 

women 6 weeks of tamoxifen treatment decreased miR-

21 levels suggesting that this miR may be important for 

BC tumorigenesis [361]. Circulating levels of miR-21 are 

significantly higher in plasma samples of BC patients, 

when compared healthy controls [360, 361]. miR-21 is 

even regarded as a marker of BC exosomes [362] and was 

found to be selectively enriched in human BC exosomes 

in the plasma of patients with BC [362–364]. A further 

increase of exosomal miR-21 via milk intake is apparently 

not suitable for patients with BC, neither the transfer of 

milk-derived exosomal miR-148a. In BC cell line MCF7, 

a miR-148a mimic increased estrogen receptor-α (ERα) 

expression, whereas a miR-148a inhibitor decreased 

ERα expression [365]. It has been shown that miR-148a 

regulates ERα expression through DNMT1-mediated 

DNA methylation in BC cells [366]. In contrast, it has 

been reported that miR-148a targets B-cell lymphoma 

2 (BCL-2), which is frequently upregulated in BC [367]. 

Nuclear receptor NR4A1 (Nur77) promotes BC invasion 

and metastasis by activating TGF-β signaling [368, 369]. 

NR4A1 binding induces a BCL-2 conformational change 

that exposes its BH3 domain, resulting in conversion of 

BCL-2 from an anti-apoptotic to a pro-apoptotic protein 

[370].

BRCA1, a well-known tumor suppressor, abrogates the 

repression of miR-155, a bona fide oncomir [371]. miR-

155 is overexpressed in BC tissue and accelerates the 

growth of tumor cell lines in  vivo and induces tamox-

ifen resistance [371, 372]. In BC cells, FoxP3 induced 

miR-155 through transcriptional repression of BRCA1. 

Notably, miR-155 is known to induce FoxP3 expression 

[373]. For patients with early stage or localized BC, there 

were high levels of miR-155 in both plasma and blood 

cells [373]. Santos et  al. [374] recently reported that 

exosomes enriched in miR-155 added to BC cells induced 

chemo resistance and promoted EMT. Ectopic expres-

sion of miR-155 significantly promoted the proliferation 
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Fig. 11 Dairy milk exosomes and prostate tumorigenesis. Milk exosome-derived miR-148a, miR-29b and miR-21 suppress DNA methyltransferase 1 
(DNMT1), a critical step in prostate cancer (PCa) epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC) formation. miR-148a-mediated 
suppression of DNMT1 enhances the expression of fat mass and obesity-associated gene (FTO), which increases the expression of CCAAT enhancer 

element binding protein-β (C/EBPβ), a potential mechanism increasing the expression of α-methylacyl-CoA racemase (AMACR). DNMT1 is also a 
negative regulator of androgen receptor (AR) signaling. Milk exosomes provide miR-155 and transforming growth factor-β (TGFβ), which further 
induces miR-155, which inhibits suppressor of cytokine signaling 1 (SOCS1), a pivotal inhibitor of EMT. Milk-derived exosomal miR-21 increases the 
pool of a key oncogenic miR, which suppresses key checkpoint regulators of cell cycle progression and apoptotic signaling including phosphatase 

and tensin homolog (PTEN), cyclin-dependent kinase inhibitor 1C (CDKN1C, p57kip2), programmed cell death 4 (PDCD4), myristolylated alanine-rich 

protein kinase C substrate (MARCKS) and others
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of BC cells, the formation of soft agar foci in vitro, and 

the development of tumors in nude mice [374]. In BC 

cells, RNA interference silencing of SOCS1 recapitulates 

the oncogenic effects of miR-155, whereas restoration 

of SOCS1 expression attenuated the tumor-promoting 

function of miR-155, suggesting that miR-155 exerts its 

oncogenic role by negatively regulating SOCS1 [375]. 

�us, exosomal transfer of miR-155, a miR component of 

colostrum and mature cow’s milk [86, 376], may promote 

BC tumorigenesis.

TGF-β signaling features a growth inhibitory effect at 

an early stage but aggressive oncogenic activity at the 

advanced malignant state [377–379]. Recent efforts in 

BC therapy are directed against growth factor pathway 

including TGF-β signaling in BC [379]. Notably, TGF-

β1 has been shown to promote the expression of miR-

155 [380]. TGF-β2 is significantly upregulated in breast 

milk exosomes during weaning/early involution. Breast 

milk exosomes containing high levels of TGF-β2 induced 

changes in both benign and malignant breast epithelial 

cells, consistent with the development and progression of 

BC, suggesting a role for high TGF-β2-expressing breast 

milk exosomes in influencing BC risk [14]. BC exosomes 

contain TGF-β2, which suppresses T cell proliferation, a 

critical pathway used by BC cells to escape immune sur-

veillance [381]. In addition, exosomes from BC cells via 

TGF-β upregulation converted adipose tissue-derived 

MSCs into myofibroblast-like cells [382].

Collectively, BC-derived exosomes and dairy milk-

derived exosomes both contain and transfer miR-21, 

miR-155 and TGFβ2, which may exert synergistic effects 

in breast cancerogenesis (Fig. 12).

Hepatocellular carcinoma
In the European Prospective Investigation into Cancer 

and Nutrition cohort including 477,206 participants 

showed a significant positive hepatocellular carcinoma 

(HCC) risk for the consumption of milk and cheese but 

not yogurt [383]. Increased expression of miR-148a 

has been reported in hepatitis B virus-induced HCC 

resulting from HBx antigen-induced upregulation of 

von Willebrand factor C and EGF domain-containig 

protein [384]. Hepatitis C virus-induced upregulation 

of miR-155 has been shown to promote hepatocar-

cinogenesis [385]. miR-21 expression was significantly 

upregulated in HCC tissues relative to nontumor livers 
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Fig. 12 Dairy milk exosomes and breast cancerogenesis. Milk exosomes via transfer of miR-148a and miR-148a-mediated suppression of DNA 

methyltransferase 1 (DNMT1) enhances the expression of estrogen receptor-α (ERα). ERα promotes des expression of miR-21, which targets critical 
genes involved in PI3K-AKT signaling and cell cycle control. Exosome-derived transforming growth factor-β (TGF-β) induces the expression of 
miR-155. miR-155 enhances the expression of FoxP3, a critical inhibitor of the tumor suppressor breast cancer 1 gene (BRCA1). Downregulation 
of BRCA1 further enhances the expression of miR-155, which is a pivotal inhibitor of suppressor of cytokine signaling 1 (SOCS1) finally promoting 
epithelial–mesenchymal transition (EMT). Dairy milk exosomes thus contribute to BC tumorigenesis via enhancing key oncogenic components 
involved in the pathogenesis of BC



Page 20 of 33Melnik and Schmitz  J Transl Med            (2019) 17:3 

[386]. Exosome-associated miR-21 is markedly ele-

vated in serum of patients with HCC [387]. It has been 

reported that miR-155 is linked to the recurrence and 

prognosis of HCC following liver transplantation [381]. 

In the HCC cell line Huh-7, miR-155 is overexpressed 

and exhibited altered levels of expression of certain 

cellular adhesion molecules related to EMT [381]. Fur-

thermore, TGF-β1 upregulated the expression of miR-

155 in HCC cells in vitro, which led to the conclusion 

that increased levels of miR-155 in HCC cells, possibly 

due to stimulation by TGF-β1, accelerate EMT in the 

liver. Notably, the liver is a major target of bovine milk 

exosomes [39]. Recent evidence indicates that miR-155 

suppresses p53-induced nuclear protein 1 (TP53INP1), 

a critical step that is involved in liver cancer stem cell 

acquisition and self-renewal [388]. TP53INP1 is a 

p53-inducible gene that regulates p53-dependent apop-

tosis, downregulates the expression of SPARC and is 

repressed by miR-155 [389–391]. Recent findings indi-

cate that loss of SOCS1-dependent control over EMT 

may contribute to MET-mediated migration, invasion 

and metastatic growth of HCC [392].

Translational evidence indicates that milk-derived 

exosomes via transfer of onocogenic miR-148a, miR-21, 

miR-155 and TGF-β may promote the development of 

HCC (Fig. 13).

Di�use large B-cell lymphoma
A recent meta-analysis investigated the relation between 

dairy product consumption and Non-Hodgkin lym-

phoma (NHL). Milk has been identified to increase the 

risk of diffuse large B-cell lymphoma (DLBCL) [393]. �e 

dose–response analysis suggested that the risk of NHL 

increased by 6% for each 200  g/day increment of milk 

consumption but not yogurt [393].

DLBCL have 10- to 30-fold higher copy numbers of 

miR-155 than do normal circulating B cells [394]. Epstein 

Barr virus (EBV)-positive DLBCL is an entity included 

in the 2016 WHO classification of lymphoid neoplasms 

[395]. It has been demonstrated that the expression 

Milk exosomes

EMT

miR-155

Hepatocarcinogenesis

Hepatocytes                HCC CSCs

PTEN ↓            and other miR-21 targets↓

TGF-β

MIR155↑
SOCS1↓             EMT↑

TP53INP1↓        CSC↑

HCV

miR-148a

HCB

miR-21

Fig. 13 Dairy milk exosomes and hepatocellular carcinoma. After oral administration milk exosomes accumulate preferentially in the liver and 
may increase the hepatocellular levels of miR-148a, miR-21 and miR-155, which are upregulated in hepatocellular carcinoma (HCC). In hepatitis 
B virus (HCB)-associated HCC overexpression of miR-148a may be further increased by milk exosome-derived miR-148a. Milk exosome-derived 
transforming growth factor-β (TGF-β) may further increase the expression of miR-155, which downregulates suppressor of cytokine signaling 1 
(SOCS1), thereby enhancing epithelial–mesenchymal transition (EMT). MiR-155-mediated suppression of p53-induced nuclear protein 1 (TP53INP1) 
promotes cancer stem cell (CSC) proliferation in the liver. Milk exosomes may thus increase the risk for HCC. Thus, milk exosomes may augment the 
tumorigenic effects of hepatitis B (HCB) and hepatitis C virus (HCC)-induced upregulation of miR-148a and miR-155, respectively
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of miR-155 is induced by EBV [396]. EBV acts on non-

infected macrophages in the tumor through exosome 

secretion and thereby augments lymphoma develop-

ment [397]. Plasma miR-155 expression was significantly 

upregulated in DLBCL patients compared to healthy 

individuals [398]. DLBCL cases with an elevated level of 

miR-155 had shorter overall survival than those with a 

lower miR-155 expression [398]. Intriguingly, SOCS1, the 

target of miR-155 and miR-30d, is frequently mutated in 

patients with DLBCL [399–401]. One-fourth of DLBCL 

and follicular lymphomas carried SOCS1 mutations, 

which were preferentially targeted to SHM hotspot 

motifs and frequently inactivating mutations [401]. Fur-

thermore, increased serum expression levels of miR-21 

have been detected in patients with DLBCL associated 

with negative prognostic outcome [402]. Exosomal trans-

fer of milk-dervived miR-155 and miR-21 to circulat-

ing B-cells may initiate or promote DLBCL progression 

(Fig. 14).

MIRNA148A and dairy cow lactation performance
Epigenetic regulation of bovine MECs plays a crucial role 

in the biosynthesis of milk lipid and protein components. 

miR-148a targets key mediators involved in triacylglyc-

erol and cholesterol homeostasis such as ABCA1, LDLR 

and CPT1A [403]. All members of the miR-148/152 fam-

ily (miR-148a, miR-148b, and miR-152) share identical 

seed sequences [278, 404]. DNMT1 is a direct target of 

both miR-148a and miR-152 [68, 405]. �e expression of 

miR-152 significantly increased during lactation in MECs 

of dairy cows producing high quality milk compared to 

lower miR-152 levels in cows producing low quality milk 

[406]. Forced expression of miR-152 in dairy cow MECs 

resulted in a marked reduction of DNMT1 at both the 

mRNA and protein levels [406]. In goat MECs, miR-148a 

induced milk triacylglycerol synthesis [407]. miR-148a 

expression can regulate PPARA  and promoted triacyl-

glycerol (TAG) synthesis while the knockdown of miR-

148a impaired TAG synthesis in goat MEC. In addition, 

miR-148a cooperates with miR-17-5p to regulate fatty 

acid metabolism by repressing PPARGC1A and PPARA  

in goat MECs. Lactogenic hormones such as prolactin 

induce cellular and extracellular miR-148a expression in 

bovine MECs [408]. miR-148a belongs to the most abun-

dantly expressed miRs of bovine milk since it accounts 

for more than 10% of the read counts in each stage of 

dairy cow lactation [409]. Directional selection of miR 

regulatory variants was important in the domestication 

and subsequent selection that gave rise to modern tau-

rine cattle. �e MIR148A gene has been identified as a 

candidate of domestication genes of modern cattle [410]. 

Co-expression network and pathway analyses identified 

bovine MIR148A as a major determinant enhancing milk 

yield [411]. Exaggerated miR-148a expression resulting 

in decreased DNMT1 expression is critical epigenetic 

change that induces lactation performance. Furthermore, 

persistent pregnancy of cows via increased E2 produc-

tion may enhance E2-mediated miR-148a- and miR-21 

expression in bovine MECs [333–335], thereby increasing 

the exosomal content of miR-148a and miR-21 (Fig. 15). 

In fact, increased miR-21 levels have been detected in 

skim milk of pregnant versus cyclic cows [354]. �us, 

genetic selection of high performance dairy cows with 

enhanced miR-148a expression and pregnancy-depend-

ent E2 production may be associated with an enrichment 

of miR-148a and miR-21 in milk exosomes enhancing the 

exposure of the human consumer of pasteurized milk to 

oncogenic miRs.

Conclusion
Milk exosomes execute an evolutionary program under 

control of the lactation genome. �ey assist in the regula-

tion of growth, tissue maturation, metabolic and immu-

nological programming of the newborn infant. Obviously, 

this ancient exosome system has developed for maternal-

neonatal communication and operates exclusively dur-

ing the postnatal period of mammals except Neolithic 

humans who are persistently exposed to this system. 

miR-155↑EBV

miR-155       TGF-β

Milk exosomes

SOCS1*    SOCS1↓   miR-21↑

DLBCL B-cell

Tumorigenesis of diffuse large B-cell lymphoma

Fig. 14 Dairy milk exosomes and tumorigenesis of diffuse large 
B-cell lymphoma. miR-155 levels are significantly upregulated in 
diffuse large B-cell lymphoma (DLBCL). Epstein Barr Virus (EBV) 
infection in DLBCL induces miR-155 expression, which attenuates 
the expression of suppressor of cytokine signaling 1 (SOCS1). 
Loss-of-function mutations of SOCS1 (SOCS1*) have also been found 
in DLBCL further reducing SOCS1. Milk exosomes via transfer of 
miR-155 and miR-155-inducing transforming growth factor-β (TGF-β) 
may further promote tumorigenesis of DLBCL
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�e transfer of exosome-protected bovine milk miRs 

to human consumers has been considered to be one of 

the most important miR-based inter-species epigenetic 

communication related to the pathogenesis of human 

diseases [7–12, 412]. �e restriction of milk exosomes 

to the postnatal period has been secured by physiologi-

cal lactose intolerance that appears after weaning in all 

mammals except lactase (LCT)-mutated humans that 

could persistently abuse this postnatal epigenetic doping 

system. Unfortunately, the beneficial growth promoting 

and tissue-supporting effects of milk exosomes during 

early infancy may turn into obesigenic, diabetogenic, 

osteoclastogenic, cancerogenic and neurodegenerative 

signaling in adulthood. Dairy milk-derived exosomes 

should thus be regarded as potential pathogens that have 

spread unnoticeably into the human food chain. Techni-

cal progress with the introduction of pasteurization and 

refrigeration technology selected and preserved bovine 

milk exosomes, because the thermic conditions of pas-

teurization are not sufficient to eliminate bioactive milk 

exosomes [42–44]. Furthermore, pasteurization reduces 

exosome-degrading lactobacteria. Bacterial fermentation 

of milk attacks milk exosome proteins, reduces their size 

and miR content [48, 49].

As the milk exosome system is an archaic and highly 

conserved signaling system of all mammals [44], miRs 

exhibit a high degree of sequence homology [13, 44]. 

Remarkably, seed sequences of human and bovine miR-

148a, miR-21, miR-29b, and miR-155 are identical (mir-

base.org). Manca et al. [39] provided compelling evidence 

that bovine milk exosomes of pasteurized commercial 

milk reach the systemic circulation and distribute in tis-

sues of different species. Efforts of dairy research to 

increase lactation performance and milk yield of dairy 

cows may have increased bovine miR-148a and miR-21 

expression and their transfer to human milk consumer 

via milk exosomes [9].

Translational evidence supports the view that dairy 

milk exosomes are potential pathogens for human health 

(Table 1). �is view is in accordance with epidemiological 

evidence showing adverse health effects for unfermented 

milk but no adverse or even beneficial health effects for 

fermented milk and milk products. Based on transla-

tional evidence, we conclude that milk exosomes should 

not reach the human food chain. Pasteurization of milk 

is an inappropriate method to prevent the spread of milk 

exosomes to the human milk consumer. In this regard, 

UHT is much more effective [43]. Other choices under 

recent investigation are microwave treatment or ultra-

sonication of milk exosomes [39, 413].

Due to their low antigenicity, excellent bioavailability in 

many tissues and easy crossing of tissue boundaries such 

as the intestinal and blood–brain barrier, pharmacology 

became highly interested in bovine milk exosomes as 

therapeutic delivery systems of small interfering RNAs, 

drugs and phytochemicals [38, 414]. However, these new 

milk-exosome-based therapeutic options are a double-

edged sword, because milk exosomes function as a Trojan 

horse not only transferring the new compound of interest 

but also the intrinsic exosome cargo such as oncogenic 

MIR148A ↑

miR-148a↑

miR-21 ↑
miRs

DNMT1 ↓

Decreased promoter methyla�on 

SREBF1↑  PPARG↑  ER ↑ 

Gene�c selec�on

Bovine mammary epithelial cell

E2↑Pregnancy miR export

Milk exosomes 

with increased

miR-148a and 

miR-21 content

Increased lacta�on

performance

Fig. 15 Hypothesized increase in dairy milk exosomal miR content by genetic selection and persistent pregnancy of dairy cows. MIR148A is a 
domestication gene of dairy cows increasing milk yield. Estrogens, which are upregulated in pregnant dairy cows, stimulated the expression of 
miR-148a and miR-21, which attenuate the expression of DNA methyltransferase 1 (DNMT1). Various lipogenesis-inducing genes such as sterol 

regulatory element binding factor 1 (SREBF1), peroxisome proliferator-activated receptor-γ (PPARG) and estrogen receptor-α (ERα). Procedures that 
increase dairy cow lactation performance are associated with an upregulation of lactation-promoting miRs, which may enter the human food chain 
in higher amounts
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miRs and EMT-promoting TGF-β. Furthermore, it is of 

critical concern that exosomes may transfer viral RNA or 

DNA [415]. Novel replication-competent circular DNA 

molecules with potential proliferative activity have been 

detected in commercial milk of dairy cows [416–420], 

that via milk exosome transfer may reach distant tissue 

including the brain. Exosomes and their cargo are also 

involved in the spread of neurotoxic proteins such as 

α-syn, amyloid-β and prions [392, 393, 421–425]. �ere-

fore, dairy milk-derived exosomes, although representing 

an easily accessible and abundant source of exosomes, 

are apparently not suitable for the treatment of human 

diseases. Milk exosomes meet the definition of bioactive 

food compounds and have an impact on human metabo-

lism and gene regulation [426]. Before employing milk 

exosomes as drug delivery systems or supplements of 

infant formula, their unique intrinsic roles in the trans-

mission of exosomal miRs and their potential ability to 

spread viral or neurotoxic pathogens require much more 

attention and most careful studies before introducing 

milk exosomes as carrier systems for the treatment of 

human diseases. Dairy milk exosomes should be regarded 

as potential new pathogens promoting western diseases.
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Table 1 Translational evidence for  dairy milk exosome-

mediated pathologies of western diseases

Milk exosome 
component

Potential pathogenic involvement

miR-148a Atherosclerosis, obesity, type 2 diabetes mellitus, 
hyperphagia, prostate cancer, breast cancer, 
hepatitis B-associated hepatocellular carcinoma, 
osteoporosis

miR-21 Adipogenesis, fetal macrosomia, prostate cancer, 
breast cancer, osteoporosis, hepatocellular carci-
noma, diffuse large B-cell lymphoma

miR-29b Type 2 diabetes mellitus

miR-155 Breast cancer, hepatitis C-associated hepatocel-
lular carcinoma, diffuse large B-cell lymphoma, 
Parkinson’s disease, prostate cancer

TGF-β Breast cancer, prostate cancer, osteoclastogenesis

Exosome lipids Parkinson’s disease
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