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hole solutions are found to exist even for boundary conditions which did not allow a zero-

temperature vacuum flow. Finite-temperature solutions driven solely by the vacuum expec-

tation value of a perturbing operator (zero source) are found and studied. Such solutions

exist generically (i.e. with no special tuning of the potential) in theories in which the

vacuum flows feature bounces. It is found that they exhibit conformal thermodynamics.

Keywords: AdS-CFT Correspondence, Black Holes, Gauge-gravity correspondence

ArXiv ePrint: 1805.01769

1http://hep.physics.uoc.gr/∼kiritsis/.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2018)173

mailto:u.gursoy@uu.nl
mailto:nitti@apc.in2p3.fr
mailto:leandro.silvapimenta@apc.univ-paris7.fr
https://arxiv.org/abs/1805.01769
http://hep.physics.uoc.gr/~kiritsis/
https://doi.org/10.1007/JHEP10(2018)173


J
H
E
P
1
0
(
2
0
1
8
)
1
7
3

Contents

1 Introduction and summary 2

1.1 Summary of results 4

1.2 Discussion and outlook 8

2 Holographic RG flows at finite temperature 11

2.1 Black-hole solutions 11

2.2 Dimensionless thermodynamic parameters 13

2.3 First order formalism 14

2.4 The free energy 15

2.5 The thermal effective potential 16

3 Thermal phase transitions in multi-vacuum theories 17

3.1 Skipping RG flows at zero-temperature 18

3.2 Finite temperature solutions 19

4 Thermodynamics of bouncing RG flows 30

4.1 Bouncing solutions at zero temperature 31

4.2 Bounces at finite temperature and the phase diagram 31

4.2.1 Region I: bouncing black-holes 34

4.2.2 Region II: non-bouncing black-holes 34

5 Sourceless black holes 37

5.1 Thermodynamics of vev-driven flows 39

5.2 Relevant vev flows 40

5.3 Fake zero-T vacua and irrelevant flows 42

5.4 Minimum-to-minimum irrelevant flows 43

A First order formalism 48

A.1 The integration constants for the superpotential equations 48

A.2 Lower bounds on the superpotential 50

A.3 Near-boundary solution: universal part 51

A.4 Dimensionless temperature and entropy 52

A.5 Near-boundary solution: sub-leading term 53

A.6 Superpotentials for vev-driven flows 53

B The on-shell action 54

B.1 Calculation of the free energy 56

B.2 Thermal vev 57

– 1 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
3

C Determination of the free energy using scalar variables 58

C.1 The phase variables 58

C.2 UV and IR asymptotics 59

C.3 The free energy 61

1 Introduction and summary

The gauge/gravity duality [1–3] gives a geometric representation of the renormalisation

group (RG): the RG flow in a d-dimensional field theory is realised as the radial flow of d-

dimensional hyper-surfaces which foliate a solution of a higher-dimensional (super)gravity

theory [4–11]. When the (d+1)-dimensional solution is driven by scalar fields, and when the

d-dimensional radial slices are flat, holographic RG flows with a regular interior geometry

connect two extrema of the scalar potential V (φ), where the geometry approaches AdSd+1.

Usually, a maximum of V maps to the field theory UV, while a minimum corresponds to

the IR (although in special cases there may be exceptions to this rule, [12]).

In this context, the holographic RG flow often captures non-perturbative features of

the dual field theory: phenomena such as IR fixed points, confinement, and the conden-

sation of scalar operators, which are usually inaccessible in perturbation theory around

a UV conformal fixed point, can be realised in holographic RG flow solutions of simple

2-derivative gravitational theories.

Besides reproducing holographic versions of the field-theoretical non-perturbative fea-

tures mentioned above, holographic RG flows have been shown to display some unusual,

or exotic, phenomena. Recently, a systematic exploration of different classes of these ex-

otic features has been initiated in [12] for single scalar field models. This work focused

on the analysis of asymptotically AdS holographic RG-flow solutions in d+ 1-dimensional

Einstein gravity coupled to a single scalar field, dual to renormalisation group flows of a

d-dimensional CFT deformed away from the UV by a single operator. This analysis was

extended in [13] to multi-field models.

Depending on the details of the bulk scalar potential V (φ), some of the following exotic

feature may arise:

1. Multiple vacuum flows. If V (φ) displays several maxima and minima, there may be

several regular flows connecting the same UV maximum to different IR minima. This

corresponds to the existence, in the same UV-deformed CFT, of multiple vacua which

are distinguished (in the UV) by the value of the scalar condensate 〈O〉 and which

reach different IR fixed points. Only one of them (the one with lowest free energy)

is the true vacuum.

2. Bouncing RG flows. These correspond to solutions where the flow of the scalar field

is non-monotonic. For example, after starting off away from the UV fixed point in

the positive direction, the scalar field reaches a maximum (bounce), start decreasing
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again, and eventually reaches an IR fixed point situated on the opposite side of the

initial UV fixed point. At the turning point, the holographic β-function has a square-

root branch singularity.

3. Irrelevant vev flows. Usually, holographic RG flows with a regular interior correspond

to solutions which asymptote in the UV to a maximum of the scalar potential. How-

ever in special cases, if the scalar potential is appropriately tuned, regular solutions

may exist which connect two minima of the bulk potential (one in the UV, one in

the IR). Although they do not exist generically, these flows are interesting because

they correspond to a deformation of the theory by the vev of an irrelevant operator

(for which turning on a source is not an option). These flows have a continuous

moduli space, parametrised by the vacuum expectation value (vev) of the condensate

〈O〉, with degenerate free energy (also degenerate with the fixed-point AdS solutions

where 〈O〉 = 0). For 〈O〉 6= 0, these solutions break conformal invariance sponta-

neously and the presence of a moduli space indicates that there is a massless dilaton

in the spectrum of excitations, [14, 15].

The discussion above refers to vacuum (i.e. Poincaré invariant) solutions. Probing

these features by turning on additional sources, or by considering non-vacuum states, is

important in order to test the robustness and consistency of these solutions, most of which

arise in bottom-up holographic models. A first step in this direction was taken in [16], where

solutions were considered in which the dual field theory lives on a maximally symmetric

curved manifold: in this case, the relevant gravity dual solutions are holographic RG

flows in which each slice transverse to the (holographic) radial coordinate is a maximally

symmetric curved space-time.

Turning on non-zero curvature introduces a new source on the boundary CFT, and

correspondingly a new scale beyond the (dimensionfull) coupling of the relevant CFT de-

formation. As shown in [16], this leads to several interesting new effects. For theories

admitting multiple vacuum RG flows (point 1 above) a curvature-driven quantum phase

transition is found. Also, certain CFT deformations which do not correspond to any regular

vacuum solution become allowed if a sufficiently large curvature is turned-on.

A different way to probe these models is by turning on finite temperature and this

is the subject of the present work. Specifically, we consider black-hole solutions of the

bulk Einstein-scalar theories, like those discussed in [12], which allow “exotic” vacuum

RG-flow solutions.1

In the same way as space-time curvature, a finite temperature introduces a new scale

in the system. Indeed, many of the results we describe here (space of solutions, phase dia-

grams) closely resemble those found in [16], if we simply replace curvature by temperature

as a control parameter.

However there is a very important difference: while a non-zero curvature is a modifica-

tion of the theory itself, i.e. it introduces new sources (in this case non-trivial components

1A specific example of the black hole solution obtained by finite T extensions of these vacuum RG flows

were first studied in [17, 18].
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of the metric, which turns on a relevant deformation proportional to the stress tensor),

going to finite temperature corresponds to considering different states of the same theory

whose vacuum state is a Poincaré-invariant solution.

Indeed, one of the main motivations for considering states beyond the vacuum is to

probe whether the theories displaying exotic behaviours discussed above (and in particular

the “bouncing” geometries) are “good” holographic theories. From the analysis in [12], no

pathology emerged neither in the vacuum (e.g. singular nature of some curvature invariant),

nor in the spectrum of small fluctuations around the vacuum, which was shown in general

to be perturbatively stable. We note however there may be dynamical instabilities found in

the corresponding finite temperature black-hole extensions of these solutions, as was first

observed in [17, 18].

By going to finite temperature, we will probe different states of the theory in a way

which is complementary to turning on small excitations above the vacuum. In this way,

we will test the consistency from the thermodynamic standpoint. As we will see, this will

enable us to detect, in some cases, certain pathologies which indicate that some of the

holographic models under investigation may not be self-consistent after all.

A particularly interesting question concerns the fate of the irrelevant operator flows

discussed in point 3 above. As we will see, at T 6= 0 no regular black hole solutions with the

same UV asymptotics at the minimum of the potential can be found. This does not come as

a surprise as we expect that turning on finite temperature in a theory with a moduli space,

lifts generically the moduli space and the moduli acquire a non-trivial potential. This is

the case, for example, in the Coulomb branch of the original N = 4 AdS/CFT duality.

However, surprisingly, we find that finite temperature allows new irrelevant vev flows

from a minimum to exist for generic (i.e. non-finely tuned) potentials. These solutions

display interesting properties such as a conformal thermodynamics and temperature-driven

operator condensation and they may also have interesting hydrodynamic properties.

1.1 Summary of results

In this work we consider (d + 1)-dimensional Einstein gravity coupled to a scalar field φ.

The action contains a scalar potential V (φ) with several AdS extrema, which play the role

of UV and IR fixed points for asymptotically AdS RG-flow solutions. These are dual to RG

flows driven by deforming a UV CFT by a relevant operator O, of dimension ∆ < d. Its

coupling j is encoded in the leading term of the UV asymptotics of the scalar field about

the fixed point value φUV,

φ(u) ≃ φUV + j ℓ(d−∆) exp [(d−∆)u/ℓ] , u→ −∞, (1.1)

where ℓ2 = −d(d− 1)/V (φUV) is the squared UV AdS length.

We consider the theory at finite temperature by looking at static, planar black hole

solutions, of the form

ds2 =
du2

f(u)
+ eA(u)

[

−f(u)dt2 + δijdx
idxj

]

, φ = φ(u) (1.2)
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where u is the holographic radial coordinate and (t, xi) are the space-time coordinates of

the dual field theory, whose temperature equals the Hawking temperature of the black hole.

The main goal of this paper is to analyse the space of solutions of the form (1.2) and

study their thermodynamics in the canonical ensemble, i.e. at fixed temperature T and

fixed UV coupling j.

The main features of the solutions depend only on the dimensionless parameter T =

T |j|−1/(d−∆). Requiring the solution to be regular, both T and the dimensionless vev

parameter C ≡ 〈O〉|j|−∆/(d−∆) are completely determined by the value the scalar field takes

at the horizon, where f(u) = 0. Therefore, a useful way to scan the space of black hole

solutions is by changing the horizon endpoint φh of the flow, and studying the behaviour of

the functions T (φh) and C(φh). The free energy is then computed by standard holographic

techniques. We should note that φh parametrises in a faithful way the black-hole solutions,

as there is at most a single solution for each value of φh.

After a brief general discussion of the thermodynamics of holographic RG-flows in

section 2, we study black-hole solutions and their thermodynamics in two specific models:

a) The first one admits two distinct regular vacuum RG-flows from the same UV theory

to two different IR fixed points (section 3).

b) Next we turn to a models for which the vacuum RG-flow presents a bounce (section 4).

Finally, in section 5 we consider the special black-hole solutions with j = 0, which corre-

spond to black holes driven only by the vev of the deforming operator, and have special

properties.

In the rest of this subsection we briefly summarise our results.

First order transitions in multi-vacuum theories. The first model we consider has

a potential shown schematically in figure 1. For T = 0, there are two regular solutions

connecting the fixed point UV1 situated at the origin with each of the two IR fixed point

at the two minima. In [12] it was shown that the favoured solution is the skipping one,

i.e. the one that does not stop at IR1 but reaches the next available fixed point IR2. At

finite, fixed temperature T we find there are up to three competing black-hole solutions, all

with UV asymptotics at the origin. Two of them skip IR1, but exist only up to a maximal

temperature Tmax. Calculation of the free energy shows a first order phase transition

at Tc < Tmax above which the non-skipping solution becomes dominant. This solution

continuously connect to the zero temperature flow ending at IR1. Therefore, in this model

there is a transition between skipping and non-skipping behaviour as the temperature is

increased above Tc.

Thermal desingularisation of ill-defined vacua. We next consider the same potential

shown in figure 1, but focusing on the black holes which asymptote in the UV to the fixed

point UV2. For T = 0, there is only one regular RG flow going from UV2 to IR1 (with

j < 0), but no solution with j > 0 reaching IR2 from UV2. From the dual field theory

standpoint, this means that we can only deform the UV2 CFT for j < 0, but there is no
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V(φ)

UV1

IR1

UV2

IR2

φ

Figure 1. Schematic plot of the potential which allows skipping solutions, with a representation

of the corresponding zero-temperature RG flows connecting different fixed points.

well-defined vacuum with j > 0. This is not uncommon in perturbative field theory, i.e.

pure YM theory exists only for g2 > 0 or λφ4 theory exists only for λ > 0.

At finite temperature the situation is richer:

1. For j < 0 we find two black-hole solutions at all temperatures, one of which displays

a bounce (i.e. an inversion in the flow of the scalar field). Calculation of the free

energy shows that the dominant solution is the non-bouncing one at all temperatures

2. For j > 0, although there was no regular solution at T = 0, two black-hole solutions

appear above a minimal temperature Tmin. This implies that, at high enough tem-

perature, the theory with j > 0 may be well-defined, though the zero-temperature

vacuum did not exist.

Theories with bouncing vacua and their thermodynamic (in)consistency. The

second example we analyse in detail is a potential for which, at zero temperature, the

RG-flow solution bounces : the scalar field starts decreasing away from the UV, reaches a

minimum, then it increases again past the starting point to reach an IR fixed point on the

opposite side (see figure 2).

For the potential considered in section 4, the flow represented in figure 2 is the only

regular solution for T = 0 and j < 0 (for j > 0 we have its mirror solution with φ → −φ,
as the potential we are considering is an even function of φ). At finite temperature, for

fixed j, we find up to five different black-hole branches. One of them connects to the

vacuum T = 0 solution, one connects with the AdS-Schwarzschild black hole at the origin

as T → +∞. At low temperature, all solutions exhibit a bounce as in figure 2, while above

a certain temperature, new solutions appear which do not bounce, but have horizon (for

j < 0) on the negative side of the UV fixed point.

The computation of the free energy reveals a puzzling situation. While at high tem-

perature the dominant solution is, as one may have suspected, the large black hole whose

horizon is closest to the UV fixed point, the transition to this solution is discontinuous: the

free energy shows a jump from the bouncing to the non-bouncing solution as soon as the
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V(φ)

UV

IR

φ

Figure 2. Sketch of a bouncing RG-flow at T = 0, with j < 0.

F

Bouncing

Non-bouncing

T

Figure 3. Phase diagram of j < 0 black holes in the model with bouncing vacuum solution.

Bouncing black holes dominate at low temperature, then the free energy F jumps by a finite

amount (dashed blue line) on the non-bouncing branch.

latter one appears (see figure 3). This situation does not allow for a consistent Maxwell

construction of the phase diagram, and it may indicate that this is not a good holographic

theory, albeit the vacuum was found in [12] to be perturbatively stable and the dominant

branch at finite T is also thermodynamically stable (the specific heat is positive). Other

options are also possible, as we discuss in section 1.2, and at this stage we cannot determine

with certainty the reason behind the unusual behaviour.

Vev-driven black holes. When the black-hole horizon φh approaches a UV or an IR

fixed point, this corresponds to a high-temperature or low-temperature limit, respectively.

However, in the space of solutions, new infinite-temperature and zero-temperature limits

appear which are not connect to any fixed point solution and for which the horizon is

far from the extrema of V . These limits signal the existence of vev-driven black holes for

which, at fixed T 6= 0, the source of the deforming operator is set to zero.
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These solutions arise in two different situations:

1. At the interface between bouncing and non-bouncing black holes branches asymptot-

ing to the same UV maximum of V (φ), since at this interface the source j changes

sign;

2. When the bounce in a solution coincides with a minimum of the potential.

In the latter case, the j = 0 solution can be shown to asymptote in the UV to a minimum

of the potential rather than a maximum. The corresponding deformation is driven by an

irrelevant operator, unlike the case in which the UV fixed point is a maximum of V (φ).

Vev-driven black holes are isolated in the space of solutions in the following sense: they

correspond to special values of φh at which the dimensionless temperature T (φh) → 0,+∞.

Vev-driven flows have a very simple thermodynamics, which turns out to be exactly

conformal, with the free energy given, for all T > 0, by

F = −σT d,

where σ is a temperature-independent coefficient. In addition, the vev of the operator dual

to φ is completely determined by the temperature,

〈O〉 = cT∆,

where c is another constant.

Finally, we analysed a particular case (with a specially tuned potential) where a regular

vev-driven flow solution does exist for T = 0, and was constructed in [12]. The correspond-

ing vacuum flow connects two minima of V and it provides a zero-temperature example

of a regular flow driven by the vev of an irrelevant operator. We find that in this case,

after turning on temperature, one cannot find any regular black-hole solution in which the

scalar has a non-trivial flow.

1.2 Discussion and outlook

The results described in the previous section show that the space of black-hole solutions,

built around holographic RG flows may have an extremely rich structure and may display

unexpected phenomena.

The structure of the different branches of solutions at finite temperature closely par-

allel similar structures that were found in [16] when the dual field theory is defined on a

positively curved space-time. Furthermore, as we will discuss below, both curvature and

temperature destroy moduli spaces which can be found at zero temperature for specially

tuned potentials.

This similarity is not surprising, as in some sense the theory responds in the same

qualitative way to the introduction of an additional dimensionfull parameter, be it curva-

ture or temperature. As we have mentioned however, in the case of temperature we are

dealing with different states in the same theory, whereas curvature introduces a change in

the definition of the theory itself. Therefore, the finite temperature analysis can tell us
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something about the consistency of the theory itself, if we require that, given a consistent

QFT, it should always be possible to couple it consistently to a thermal bath.

This consistency criterion puts strong constraints on theories where the vacuum state is

a bouncing RG-flow. These solutions were shown to be regular and free of instabilities [12].

At finite temperature however, the phase diagram shows a jump in the free energy by a

finite amount (figure 3), which should not be allowed in a consistent Maxwell construction.

The interpretation is open to discussion: one possibility is that this kind of potentials

lie in a holographic “swampland” and result from an inconsistent truncation of a more

complete theory, e.g. a multi-field model in which the dynamics of the extra scalar cannot

be neglected. Another possibility is that these models may be consistent but there are

other phases, which we have neglected, and which make the phase diagram well-behaved.

Since we have exhausted all spatially homogeneous solutions, one option is that these new

phases break rotational or translational invariance (e.g. they may be striped phases). An

instability to one such phase may be signalled by unstable quasi-normal modes, as was

indeed found in models with bounces [17]. We leave these questions for future work.

We have also observed the opposite phenomenon: certain deformations of a CFT, which

are not allowed at zero-temperature (because they do not lead to regular solutions), lead

instead to consistent solutions above a certain T . This thermal desingularisation occurs

in our examples around asymmetric extrema, where only one sign of the source leads to a

consistent RG flow.

The possibility that solutions with “bad” singularities, in the sense of [19], may be

regularised by introducing a sufficiently high2 temperature was already contemplated by

Gubser in that work and it would be interesting to better understand the details of this

mechanism from the field theory point of view, and/or in a top-down model.

One possible field theory interpretation is that, the “wrong sign” deformation is in-

consistent because of some infrared instability, which is eliminated at a sufficiently large

temperature. There are perturbative QFT theory examples of such behavior, e.g. the

“wrong sign” λφ4 theory: at zero temperature, the would-be φ = 0 “vacuum” is perturba-

tively unstable, but it becomes perturbatively stable at sufficiently high temperature, as

we discuss in more detail in subsection 3.2

Another possibility is that the theory we study is a truncation of a more complete the-

ory and a regular zero-temperature vacuum would be found by turning on the vevs of addi-

tional fields. If this is the case, the thermal desingularisation we found may resemble what

happens with the Klebanov-Tseytlin solution [20], dual to a cascading SU(N)×SU(N+M)

gauge theory: the vacuum solution is singular, but at high enough temperatures black hole

solutions with a regular horizon cloaking the singularity where shown to exist [21]. How-

ever the Klebanov-Tseytlin setup does allow for a non-singular zero-temperature solution,

i.e. the Klebanov-Strassler geometry, in which the IR is deformed by gaugino condensa-

tion [22], and which is the true vacuum for the theory. In our case, it would be the extra

fields which are not included in the bottom-up description which would get a vev and drive

the solution to a regular IR.

2As opposed to infinitesimal, as it occurs for good singularities.
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A particularly interesting class of special solutions, which can be seen as separating

various different branches of black holes, are the vev-driven black holes with j = 0. These

purely vev-driven black holes are special solutions with a fixed value of the horizon param-

eter φh. They exist at any non-zero temperature and exhibit conformal thermodynamics.

This situation, in the case of a relevant operator, bears some similarity with widely studied

the case of the holographic superconductor [23, 24]. A crucial difference is that in the

latter case, although no scalar couplings are turned on, in the UV there is a non-trivial

UV source in the form of a chemical potential, which forces the solution to have a non-zero

charge density.

Interestingly, at zero temperature, purely vev-driven holographic RG-flows are gener-

ically singular bulk solutions. In other words, for j = 0, the only regular solution is AdS

space, with constant scalar field and 〈O〉 = 0, except if V (φ) has some tuned parameters.

In contrast, for T 6= 0, existence of regular vev-driven black holes does not require tuning

the potential.

Since they have j = 0, vev-driven black holes satisfy the same UV boundary conditions

as the AdS-Schwarzschild black holes with constant scalar field (fixed at an extremum of

the potential) and the same temperature: these solutions are therefore in thermodynamic

competition with each other. In all cases we have considered, it is the Schwarzschild

black hole which dominates the canonical ensemble at all T 6= 0. It is an open (and

interesting) question whether this is generic in Einstein-scalar theories, or whether there

may be cases in which the vev-driven black hole is the dominant solution. Because of

the relation 〈O〉 ∝ T∆ in these solutions, these would provide a holographic example of

temperature-driven condensation of a scalar operator. Examples of this kind for neutral

black holes where first discussed in [25]. In the case of charged black holes they are the

basis for holographic superconductors, where condensation of the scalar operator can be

understood as due to an IR instability of the AdS-Schwarzschild solution [23, 24].

For those models where a regular vacuum vev-driven flow does exist (as in the non-

generic potentials considered in [12], which allow for minimum-to-minimum holographic

RG flow solutions), the situation is quite different from the one described above. At T = 0,

there is a one-parameter family of solutions, parametrised by the arbitrary value of 〈O〉, all
flowing between the same two minima of the potential. All these solutions are degenerate

in free energy, therefore forming a moduli space and admit a massless dilaton excitation

(the Goldstone mode of spontaneously broken conformal invariance). Going to T 6= 0, the

entire moduli space disappears: in the example we have studied, there are no black-hole

solutions with a non-trivial flow of the scalar field, which reach the same UV as the vacuum

solutions. This means that finite temperature destroys the moduli space, and leaves the

AdS-Schwarzschild black hole, with constant φ and 〈O〉 = 0, as the only solution. This has

an analogy in weakly-coupled field theories with a moduli space, where at finite temperature

an effective potential of the form m2(T )ϕ2 may be generated, with ϕ a scalar representing

the appropriate scalar operator. This leaves as the only minimum the one at 〈ϕ〉 = 0. In

holography this is also known to occur: for example, the Coulomb branch of N = 4 SYM

has a moduli space corresponding to the fact that one can place a static extremal D3 brane

anywhere within the AdS5×S5 geometry. This however is not possible when we go to finite
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temperature and put a black hole in AdS. In all these cases the theory at finite temperature

sits at the origin of the moduli space. It is an open question whether there could be models

with another branch of regular vev-driven solutions, with conformal thermodynamics and

〈O〉 ∝ T∆, which would still lift the moduli space but have a non-trivial flow.

The existence of regular j = 0 black holes seems tied to the presence of bounces,

because the transition across j = 0 occurs between bouncing and non-bouncing solutions.

It is unclear at present under which conditions, given a generic extremum of V , regular

vev-driven black holes will or will not exist. For example, in the model with the potential

shown in figure 1, purely vev-driven black holes exist which asymptote the points UV2

and IR1, but not UV1. It would be interesting to understand what features of the scalar

potential determine the existence or non-existence of these solutions.

More generally, it is an interesting but highly non-trivial question to understand which

features of the potential determine whether the vacuum solution will bounce, or skip a fixed

point. Although some qualitative criteria can be roughly guessed by the experience with

different cases (for example, a “steeper” potential is more likely to admit bouncing vacuum

flows) it would be very interesting to obtain some quantitative criteria similar to those

existing for other phenomena (e.g. confinement).

Note added. During completion of this work, we became aware that a study very similar

to ours was being performed independently by Y. Bea and D. Mateos [26]. The results of

that work are in agreement with those presented here.

2 Holographic RG flows at finite temperature

In this section we consider the finite-temperature generalisation of the exotic RG flows

found in [12]. In that paper, solutions of (d+ 1)-dimensional Einstein-Scalar gravity were

considered, which corresponded to holographic RG flows of the dual field theory in the

vacuum, i.e. those solution had full d-dimensional Poincaré invariance. In the following

subsections we review the finite-temperature generalisations of such solutions, which con-

tain a black hole in the interior and are only symmetric under the d − 1 Euclidean group

plus time translations and we discuss the corresponding thermodynamics in terms of the

free energy and of the thermal effective potential.

2.1 Black-hole solutions

We consider the two-derivative action of gravity coupled to a single scalar field, with a

generic potential V (φ).

S = −Md−1
P

∫

M
dd+1x

√−g
[

R− 1

2
gab∂aφ∂bφ− V (φ)

]

+ SGHY + Sct , (2.1a)

SGHY = −2Md−1
P

∫

∂M
ddx

√
γ K . (2.1b)

The sign of the action is the one appropriate for Euclidean signature. SGHY is the

Gibbons-Hawking-York boundary term. Sct is an extra boundary term which is needed for

holographic renormalisation and will be specified later.
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We write the Euclidean black-hole solutions in the form:

ds2 =
du2

f(u)
+ e2A(u)

(

f(u)dt2 + dxidxi
)

, φ = φ(u), i = 1 . . . d− 1, (2.2)

where f(u) is a monotonically decreasing function taking values between zero and one ,

and t ∼ t+ β where β is the inverse temperature.

Einstein’s equations read

fφ̈+
(

ḟ + d fȦ
)

φ̇− dV

dφ
= 0 (2.3a)

(d− 1)ḟ Ȧ+

(

d(d− 1)Ȧ2 − 1

2
φ̇2
)

f + V (φ) = 0 (2.3b)

f̈ + dȦḟ = 0 (2.3c)

2(d− 1)Ä+ φ̇2 = 0 (2.3d)

The equations of motion are invariant under the following transformations:

A→ Ã = A− Ā (2.4a)

u→ ũ = u+ v (2.4b)

(u, f(u)) →
(

ũ, f̃(ũ)
)

=
(

λu, λ2f (u)
)

(2.4c)

where Ā, v and λ are constants.

The metric (2.2) describes planar black holes, whose horizon is located at uh, i.e.

f(uh) = 0. Temperature and entropy density (per unit d − 1-volume Vd−1) are given,

respectively, by:

T =
eA(uh)

4π
|ḟ(uh)|, s = 4πMd−1

p e(d−1)A(uh). (2.5)

Euclidean time is compactified on a circle of length β = 1/T . The zero-temperature case

(no black hole) corresponds to taking f(u) = 1. The AdS black-hole solution corresponds

to taking constant φ = φ0 such that V ′(φ0) = 0. Defining ℓ ≡
√

−d(d− 1)/V (φ0) , this

soluton is

A(u) = −u
ℓ
, f(u) = 1− ed(u−uh)/ℓ, φ(u) = φ0 , (2.6)

and

Tconf =
d

4πℓ
e−uh/ℓ, sconf = 4πMd−1

p e−(d−1)uh/ℓ. (2.7)

In the general case, equation (2.3c) can be integrated once to obtain

ḟ(u)edA(u) = −D, (2.8)

where D is a non-negative integration constant. We can relate it to the black-hole tem-

perature and entropy by evaluating equation (2.8) at the horizon u = uh and using equa-

tion (2.5), leading to

D =
Ts

Md−1
p

. (2.9)
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We restrict to solutions which reach an asymptotically AdS region (UV) where the

scalar field approaches a maximum φUV (which without loss of generality we take to be at

φ = 0) of the potential, i.e.

V (φ) ≃ −d(d− 1)

ℓ2
+
m2

2
φ2 + . . . (2.10)

In this region the solution takes the asymptotic form as u→ −∞,

φ = φ− e
∆−u/ℓ + · · ·+ φ+ e

∆+u/ℓ + . . . , ∆± =
d

2
± 1

2

√

d2 + 4m2ℓ2 , (2.11a)

A(u) = −u
ℓ
+ . . . (2.11b)

f(u) = 1− ℓD

d
edu/ℓ + . . . (2.11c)

The parameters φ− and φ+ are related to the UV coupling j and to the vev of the dual

operator O (whose dimension3 is ∆ = ∆+) by

φ− = j ℓ∆− , φ+ =
〈O〉ℓ∆+

(Mpℓ)d−1(d− 2∆−)
. (2.12)

Finally, the constant D is related to the temperature and entropy by equation (2.9). Gener-

ically φ− 6= 0 and the flows are driven by a deformation of the CFT by adding a source to

a relevant operator. For special solutions with φ− = 0 the asymptotic expansion starts at

sub-leading order with φ+. These flows are driven by a vev of the dual operator, and as

we will see they play a special limiting role in the space of solutions.

2.2 Dimensionless thermodynamic parameters

It is useful to classify black-hole solutions in terms of a dimensionless and diff-invariant

quantity. One useful choice is the horizon value of the scalar field,

φh ≡ φ(uh). (2.13)

As was shown in [17, 27] and explained in detail in appendix A, φh determines the dimen-

sionless quantity

T ≡ T

|j|1/∆−

. (2.14)

Thus, for each φh there is a one-parameter family of black-hole solutions with fixed T , and

fixing either the temperature or the UV source j selects a single solution in this family. In

other words, we can build a map

(φh, j) → T (φh, j) = j
1

∆
− T (φh). (2.15)

3We will only discuss “standard quantisation”, where the dimension of the deforming operator ∆ ≥ d/2.
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In what follows, we will use T itself, rather than φh, as an independent parameter,4

since the former is directly related to the boundary quantities T and j. Similarly, any phys-

ical quantity measured in units of j (entropy, vev, etc) only depends on T (or equivalently

on φh). This is the case in particular for the rescaled entropy density

S(T ) ≡ s

|j|(d−1)/∆−

. (2.16)

2.3 First order formalism

To classify black-hole solutions we will often resort to a first order formalism. This is a

finite-temperature extension, developed in detail in appendices A and C, of the standard

first order formulation of holographic RG flows, [8, 28]. The formulation we use here is

different from the first order formalism one obtains from Hamilton-Jacobi theory, in which

the function A, f and φ all satisfy first order gradient flow equations [29]. In particular,

the superpotential W (φ) is not a solution of the Hamilton-Jacobi equation, which at finite

temperature is not separable.

Black-hole solutions can be classified in terms of a superpotential, a function W (φ)

which determines the scale factor and scalar field profile by the equations

Ȧ(u) = − 1

2(d− 1)
W (φ(u)), φ̇(u) =

dW

dφ
(φ(u)). (2.17)

The superpotential W (φ) and the blackness function f(u) (more precisely, the function

f(φ) defined such that f(u) = f(φ(u))) are determined together by solving a coupled non-

linear third-order system of equations in the independent variable φ, equations (A.2)–(A.3).

Because this system couples W to f , W (φ) depends on temperature.

Below we list the most important properties of the superpotential W (φ) which we will

be useful for our analysis

1. Imposing regularity at the horizon, the functionsW (φ) and f(φ) are completely spec-

ified by assigning a single parameter, i.e. the value φh of the scalar field at the horizon,

or equivalently (at least piecewise) the dimensionless temperature parameter T .

2. The superpotential is monotonically increasing along the flow, as a function of the

holographic coordinate u. However it can be multi-valued as a function of φ if the

scalar field profile φ(u) is non-monotonic [12].

3. For source-driven flows, i.e. solutions with j 6= 0 in equation (2.11a), the superpoten-

tial (denoted in this case byW−(φ)) takes the form of a universal (i.e. T -independent)

analytic expansion around the boundary value φ = 0, plus a one-parameter,

T -dependent, non-analytic contribution controlled by an integration constant C(T )

(or equivalently, C(φh)),

W−(φ) =
2(d− 1)

ℓ
+

∆−
2ℓ

φ2 +O
(

φ4
)

+
C(T )

ℓ
|φ|d/∆−

[

1 +O(φ)
]

+ . . . (2.18)

4Notice that the map T (φh) is singled-valued, but not necessarily invertible. Therefore, we can use T
as an independent parameter piecewise, i.e. there may be more than one black-hole branch with the same

values of T but different φh. This is usually the case when using temperature to parametrise asymptotically

AdS black holes.
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where the ellipsis refers to terms of higher non-analytic order [31, 32] but with no new

free parameter. The value of the source j enters the full solution as the integration

constant of the flow equation (2.17) for φ. The quantity C(T ) determines the sub-

leading term φ+ in the scalar field expansion, and consequently the vev of the dual

operator by equation (2.12), by

φ+ =
d

∆−

C(T )

(d− 2∆−)
|j|∆+/∆−sign(j) . (2.19)

4. For vev-driven flows (j = 0) the superpotential (denoted in this case by W+(φ) con-

sists of a purely analytic expansion in φ, with no additional T -dependent deformation

parameters,

W+(φ) =
2(d− 1)

ℓ
+

∆+

2ℓ
φ2 +O

(

φ4
)

(2.20)

In this case the integration constant of the first order equation for φ(u) is φ+, which

is a free parameter for these solutions.

Alternatively, as explained in detail in appendix C one can define the scalar variables

(that transform as scalars under a diffeomorphism of u):

X(φ) ≡ 1
√

2d(d− 1)

φ̇

Ȧ(u)
, Y (φ) ≡ 1

d

ġ(u)

Ȧ(u)
, (2.21)

where the function g is defined as g = log f . Then Einstein’s equations can be reduced to

two coupled first order equations for X and Y as detailed in appendix C. The functions X

and Y contain all physically relevant information on the system both in the vacuum and at

finite temperature. For example the free energy can be read off directly from the boundary

asymptotics of the functions X and Y . One can think of the boundary values of Y and X

as the enthalpy s T and a combination of energy with the enthalpy, respectively. The first

order formalisms in terms of the superpotential and the scalar variables are completely

equivalent, e.g. X is the logarithmic derivative of W .

2.4 The free energy

The free energy associated to the solution is given by the Euclidean renormalised

on-shell action,

βF = S
(ren)
on−shell (2.22)

Here we will focus on source-driven flows leaving the special case of vev-driven flows for

a later section. An explicit calculation, which is performed with two independent methods

in appendices B and C.3, leads to the expression

F
Vd−1

= −Ts
d

− (Mpℓ)
(d−1)C(T )|j|d/∆− , (2.23)

where T is the black-hole temperature, s the BH entropy density and C(T ) is the param-

eter controlling the sub-leading asymptotics of the superpotential near the boundary, see

equation (2.18).

– 15 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
3

In the canonical ensemble we are using, the boundary data which are kept fixed are T

and j, and F = F(T, j). Black-hole thermodynamics implies that the black-hole entropy

density s and energy density ǫ are

s = − 1

Vd−1

∂F
∂T

, ǫ =
F
Vd−1

+ Ts (2.24)

The dual operator vev is the conjugate variable to j,

〈O〉(T, j) = − 1

Vd−1

∂F(T, j)

∂j
(2.25)

and it can be shown (see appendix B.2) that the right-hand side of the equation above

agrees exactly with the definition of 〈O〉 from the holographic dictionary, equation (2.19).

The pressure p = F/Vd−1 obeys the differential relation

dp = −sdT − 〈O〉dj. (2.26)

Taking the conformal limit j → 0 in (2.23) we recover conformal thermodynamics, F =

Vd−1Ts/d, which implies s ∝ T d−1 as found by integrating the differential relation (2.24).

Finally, at T = 0 we recover the known result [31, 33]:

FT=0 = − (Mpℓ)
d−1 Vd−1C0|j|d/∆− = −∆−

d
Vd−1 〈O〉T=0 j, (2.27)

where C0 is the value of C(T ) in the zero-temperature vacuum.

It is convenient to rewrite the free energy in terms of the dimensionless variables

introduced in section 2.2,

F(T, j)

Vd−1
= T d

(

−σ(T )

d
+ γ(T )

)

, (2.28)

where we have defined the dimensionless quantities

σ(T ) ≡ s

T d−1
=

S(T )

T (d−1)
, γ(T ) ≡ (Mpℓ)

d−1C(T )

T d
. (2.29)

Apart from the overall T d scaling, all the non-trivial dependence on T and j in the

free energy only appears through the combination T defined in equation (2.14).

2.5 The thermal effective potential

From the free energy, we can define the finite temperature effective potential by a Legendre

transform. First, we trade j for its conjugate variable, i.e. the dual operator vev O (in this

section we omit the brackets for simplicity of notation): inverting the relation (2.25) to

obtain j(T,O), the effective potential is then defined as

Veff(T,O) = F +Oj, dVeff = Vd−1

[

− sdT + jdO

]

, (2.30)

and it satisfied the relations:

1

Vd−1

∂Veff
∂O

= j,
1

Vd−1

∂Veff
∂T

= −s. (2.31)
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φUV1 IR1 UV2 IR2

Figure 4. Schematic structure of a field theory which presents multiple RG-flows: in particular,

there are two flows starting at the fixed point UV1, one going to the closer IR fixed point IR1, the

second skipping IR1 and ending at IR2. On the other hand there is no flow from UV2 to IR2.

As for the temperature, we can introduce a dimensionless vev parameter,

O =
O

T∆+
. (2.32)

Starting from equation (2.28) it is then easy to show that one can write (2.30) in the form

Veff(T,O) = T dV(O), (2.33)

where V(O) is the Legendre transform of F/T d with respect to T −∆− (which is indeed the

dual variable to O).

Equation (2.33) is useful because it allows the treatment of theories in which the source

j = 0, i.e. the case of pure vev flows: these are the values of O which extremise the function

V. We will see examples of these flows in the following sections, and we will discuss them

in detail in section 5.

3 Thermal phase transitions in multi-vacuum theories

In the previous section we have developed a general expression for the free energy of any

black-hole solution, in terms of the UV source, temperature, entropy and vev of the operator

dual to φ.

We are now ready to study the phase diagram of black-hole solutions in situations

where the zero-temperature RG flow displays exotic features.

In this section we concentrate on situations where skipping flows are present: in the

presence of several maxima and minima of the scalar potential, these are flows which skip

an intermediate potential IR fixed point and end at a fixed point further away in field

space, as schematically represented in figure 4.

Vacua of the dual field theory correspond to IR-regular flows. In the models at hand

there may be multiple distinct IR-regular RG flows with the same UV boundary conditions.

These are interpreted, under the holographic map, as different vacua of the same theory,

with different β-functions and different IR endpoints. At zero temperature, the true vacuum

is the one with the lowest free energy. In [12] it was shown that this is the flow where the

parameter C(T = 0) is the largest, i.e. the one with the largest vev at fixed source j (cfr.

equation (2.27)). This guarantees that the relevant solution has the lowest free energy.
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V(φ)

UV1

0

IR1

φ0

UV2

φ1

IR2

φ2 φ

Figure 5. Plot of the degree-12 potential which allows skipping solutions. This potential has

several extrema which are denoted as UV1, UV2, IR1 and IR2.

3.1 Skipping RG flows at zero-temperature

As an example of the behaviour described above, in [12] the following 12th-order potential

was considered,

V (φ) = −d(d− 1)

ℓ2
+

∫ φ

0
V ′(x)dx. (3.1)

where

ℓ2V ′(φ) := −φ
(

φ2 − φ20
) (

φ2 − φ21
) (

φ2 − φ22
) (

φ2 − φ23
)

(

φ2 − ∆(∆− d)

φ20 φ
2
1 φ

2
2 φ

2
3

)

, (3.2)

The potential has extrema at the points 0 < φ0 < φ1 < φ2 < φ3. We make the spe-

cific choice:

d = 4 φ0 = 1.0837 φ1 = 1.1316

∆ = 2.8 φ2 = 1.9200 φ3 = 2.1500 . (3.3)

With these choices, the operator dimensions at the various fixed points are given by:

∆UV1 = 2.8, ∆UV2 = 3.1, ∆IR1 = 4.5, ∆IR2 = 11.6. (3.4)

The potential is shown in figure 5, where the correspondence between the values φi and the

UV and IR fixed points is made manifest. The explicit expression of V (φ) can be found in

appendix A of [12].

At T = 0 there are several IR-regular RG-flow solutions, displayed schematically in

figure 6, which shows the zero-temperature superpotential of each flow.5

• UV1 → IR1. This solution is the standard holographic RG flow which connects a

maximum of the potential (UV) to the nearest minimum (IR).

5Figure 6 displays the superpotentials and the critical curve B ∼
√
−V (which bounds the space

of solutions, see [12]). Therefore what is presented as a maximum (minimum) in that figure actually

corresponds to a minimum (maximum) of the potential in figure 5.
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φ

W (φ)

UV1

0

IR1

φ0

UV2

φ1

IR2

φ2

W12(φ)

W11(φ)

W21(φ)

B(φ) =
√

−3V (φ)

Figure 6. The vacuum RG flow solutions arising from the potential (3.1). All flows interpo-

late between one of the UV fixed points and one of the IR fixed points. The plotted lines are

the superpotentials corresponding to each flow (see appendix A). The arrows represent the direc-

tion of the flow from the UV to the IR. The blue area is the forbidden region below the curve

B(φ) =
√

−4(d− 1)V (φ)/d (where we set d = 4), which bounds from below any solution to the

superpotential equation at T = 0 (as explained in appendix A.2).

• UV1 → IR2. This solution on the other hand skips the first minimum and ends at

the next available IR fixed point at IR2. This kind of solution is not found in generic

potentials admitting several extrema: for it to exist the extremum IR1 has to be

sufficiently shallow.

• UV2 → IR1. This solution corresponds to a standard flow with a negative source

from the second maximum of V (φ), reaching the closest available IR fixed point.

Notice that there is no solution connecting UV2 to IR2. The reason is that there

already is a regular flow arriving at IR2 (the one from UV1: since flows reaching

(from a given direction) a minimum of the potential are isolated, this prevents other

flows to reach the same IR.

The two solutions leaving UV1, correspond to two vacua of the same UV theory. The

one with the lowest free energy (2.27) is the skipping one UV1→ IR2, since it has the

largest vev parameter C0, as can be seen immediately from the fact that the corresponding

superpotential (W12 in figure 6) increases faster close to the origin.

3.2 Finite temperature solutions

We now move to finite T by considering black-hole solutions, of the form (2.2) in the model

with the same potential in figure 5. These black holes are uniquely characterised by a
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φ

W (φ)

UV1

0

IR1

φ0

UV2

φ1

IR2

φ2

Wskip(φ)

WNon−skip(φ)

Figure 7. Finite temperature solutions arising from the potential (3.1) and connecting to UV1.

dimensionless number: the value φh of the scalar field at the horizon. If we keep the value

of the UV source j fixed, we expect φh to determine all other quantities, (temperature,

entropy, free energy, etc.) Therefore we are interested in constructing all solutions with φh
ranging from zero (UV1) to φ2 (IR2). Indeed, we will see that for every value of φh there

exists at most one black-hole solution with all other UV data fixed.

It has to be stressed that, in order to be considered as different states in the same dual

QFT, two solutions must connect to the same UV fixed point, with the same value of the

source parameter j.

As we will see below, depending on the value reached at the horizon by the scalar

field, integrating the solution “backwards” away from the horizon may lead either to UV1

or to UV2. These represent two disconnected classes of solutions, since they have dif-

ferent boundary conditions at the UV boundary. From the dual field theory standpoint,

they represent thermal states in different (deformed) CFTs. For this reason, we analyse

them separately.

Flows from UV1

We first consider solutions connecting to the UV1 fixed point at φ = 0. The two zero-

temperature vacuum flows are the black and red curves in figure 6. Turning on temperature,

the situation is represented in figure 7, where the endpoint of each flow is now at the horizon,

where φ = φh.

There are now up to three branches of solutions at fixed T , whose (dimensionless)

temperature and entropy density as a function of the horizon value φh are is represented

in figure 8. The corresponding vev parameter C(φh) is shown in figure 9. As one can
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φh

T

UV1

0

IR1

φ0

UV2

φ1 φ∗

IR2

φ2

Tmax

(a)

φh

S

UV1

0

IR1

φ0

UV2

φ1 φ∗

IR2

φ2

Smax

(b)

Figure 8. The dimensionless temperature (a) and the entropy density (b) as a function of the

scalar field horizon value φh for black holes connecting to UV1.

observe, there is a range of horizon values, φh, (between φ0 and a critical point which we

denote by φ∗) for which no solution exists which continuously connects to UV1.

1. Solutions with φh < φ0. These are black holes continuously connected to the non-

skipping vacuum flow from UV1 → IR1. As the temperature is increased, the horizon

moves closer and closer to the UV fixed point of the vacuum solution. This is the

standard behaviour at finite temperature for the simplest RG flows, connecting two

consecutive extrema of the scalar potential.

2. Solutions with φ∗ < φh < φ2. These solutions all skip IR1 and flow to the region

between UV2 and IR2. As one can see from figure 8, these solutions have a maximal
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-5

0

5

10

φh

C

UV1

IR1

φ0

UV2

φ1 φ∗

IR2

φ2

Figure 9. The (dimensionless) vev parameter C as a function of the scalar field horizon value φh
for black holes connecting to UV1. As the horizon approaches the UV fixed point at φ = 0, the

parameter C → −∞.

temperature Tmax and entropy Smax. For each T < Tmax there are two solutions.

Of the two, the one with the larger φh is the deformation of the zero-temperature

skipping flow UV1 → IR2, for which the temperature increases as the horizon moves

away from the IR fixed point. The second solution is a new branch, which has no

zero-temperature analogue, and for which the temperature increases as the horizon

moves towards the IR fixed point IR2. At the critical value corresponding to Tmax,

the two solutions merge. Both branches extend to arbitrarily low temperature, but

only one of them (the one with higher φh) actually connects to a horizonless zero-T

solution. The fate of the other branch as T → 0, φ→ φ+∗ , will be discussed separately

at the end of this section.

Given the situation described above, it is clear that at T > Tmax there is a unique black

hole solution, which belongs to the non-skipping branch. At zero temperature however, as

we discussed at the beginning of this section, the true ground state is the skipping branch

which reaches IR2. Therefore, a skipping solution is expected to continue to be the ground

state for small but finite temperature. In other words, there should be a phase transition

between the skipping and non-skipping black holes at some finite temperature Tc < Tmax.

This is indeed confirmed by a numerical analysis, and it is clearly visible in figure 10,

where we display the free energy, as a function of the temperature, of the three branches

of solutions connecting to UV1.

Flows from UV2

Solutions with scalar field horizon values φh in the range φ0 < φh < φ∗ connect to UV2,

rather than UV1. This explains the empty gap in horizon values in figures 8 and 9. These

solutions belong to a different dual field theory (a deformation of a different UV CFT)

from those flowing from UV1.
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0.1 0.2 0.3 0.4 0.5
T

-13.0

-12.5

-11.5

-11.0

F

Tmax

Tc

T = 0, non-skipping
T = 0, skipping
non-skipping BH
skipping BH

Figure 10. The figure shows the free energy density as a function of temperature for the solutions

connecting to UV1. The units were fixed such that j = 1 (so that T = T ). The black curve

corresponds to the non-skipping branch, and it extends from T = 0 to infinity. The red curves

are the two skipping branches. The dashed horizontal lines represent the free energy of the zero-

temperature skipping (red) and non-skipping (black) solutions. Of the two skipping black-hole

solutions, the one with lower free energy connects to the true vacuum skipping flow as T → 0 (The

curves shown here do not reach all the way to zero temperature due to limitations in the numerics).

Both skipping branches disappear at a maximal temperature, which is numerically found to be

Tmax ≃ 0.37 in units where j = 1. The phase transition occurs at the temperature Tc ≃ 0.3, where

the skipping and non-skipping branches cross.

The set of flows emerging from UV2 is represented schematically in figure 11. These

flows can be divided into three different classes: those with positive source (represented in

blue), those with negative source which bounce (i.e. where the scalar field inverts its direc-

tion along the flow, dashed purple curve) and do not bounce (solid purple curve). Bouncing

solutions of this kind where discussed at zero-temperature in [12], and examples where stud-

ied in a model with a different bulk potential, which will be the subject of section 4. Here

we see a new feature: although in the current example with the potential in figure 5 there

are no bouncing solutions at zero-temperature, these may appear at finite temperature. A

similar phenomenon was observed in [16] in the case of a non-zero boundary curvature.

All these solutions can be classified according to the endpoint value φh. Their dimen-

sionless temperature, entropy density, and vev parameter are represented as a function

of φh in figures 12 and 13 (the complement of figure 8 and 9). Notice the existence of a

special point φc, whose value lies between φ1 and φ∗, which separates positive-source and

negative-source black holes.

1. Solutions with φ0 < φh < φ1 (solid purple curve in figures 11 and 12). These black

holes are the finite temperature continuations of the vacuum flow from UV2 to IR1
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Figure 11. Finite temperature solutions arising from the potential (3.1) and connecting to UV2.

shown in figure 6. As the temperature is increased, the scalar field endpoint moves

from IR1 to higher values towards UV2. These flows have a negative value of the UV

deformation parameter j, since φ(u) decreases along the flow.

2. Solutions with φ1 < φh < φc (blue curve in figures 11 and 12). These solutions flow

from UV2 to larger values of φ, and therefore, although they originate from the same

fixed point, they do not belong to the same class of deformed CFT as those in the

previous class, since they differ by the sign of the source of the deformation. Solutions

in this class have no zero-temperature analogue (recall that a regular flow from UV2

with positive source does not exists at zero temperature), and in fact they only exist

above a minimum temperature Tmin, as can be seen from figure 12. At both ends of

this range, the temperature asymptotes to infinity.

3. Solutions with φc < φh < φ∗ (dashed purple curve in figures 11 and 12). These

solutions display a bounce in the flow: they start out from UV2 with decreasing scalar

field, (i.e. they have j < 0 and therefore belong to the same UV theories as those in

class 1 above). Before they reach IR1, the scalar field reaches a minimum, the flow

inverts its direction and starts running towards IR2. The horizon lies somewhere

in between the critical points φc and φ∗, beyond which we find solutions in the

other classes.

Below we discuss several properties of the space of solutions which asymptote UV2.
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φ1 φc φ∗

j > 0

j < 0, Non-bouncing

j < 0, Bouncing

(a)

φh

S IR1

φ0

UV2

φ1 φc φ∗

j > 0

j < 0, Non-bouncing

j < 0, Bouncing

(b)

Figure 12. The temperature (a) and entropy density (b) as a function of the scalar field horizon

value φh for black holes connecting to UV2. The colours and dashes correspond to the flows shown

in figure 11.

Negative source phase diagram. From figure 12 (a) we see that, for j < 0, there are

two black-hole solutions for any given temperature T > 0. By computing their free energies

numerically, we have shown that the thermodynamically favoured black hole (the one with

lowest free energy) is, at all temperatures, the non-bouncing solution, i.e. the one with

horizon between IR1 and UV2, which continuously connects to the vacuum flow ending at

φ0 at zero temperature. This result is shown in figure 14, where we plot the free energy

difference between the non-bouncing and bouncing solutions.
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Figure 13. The dimensionless vev parameter C as a function of the scalar field horizon value φh
for black holes connecting to UV2.

1 2 3 4
T0

FNon−Bouncing −FBouncing

Figure 14. Free energy difference as a function of the (dimensionless) temperature between the

two branches of black holes emanating from UV2 with negative source (dashed and solid purple

curves in figures 11 and 12).

Positive source phase diagram. We now turn to the black-hole solutions starting at

UV2 with positive source. Recall that no such regular solutions exist at zero temperature:

as one can see from figure 6 the only regular flow vacuum flow from UV2 is the one ending

at IR1, and it has negative source. As was already noted in [12], this means that for j > 0

the dual field theory is ill defined.6

Interestingly, at finite temperatures larger than a minimal temperature Tmin, black-

hole solutions with j > 0 start to exist, as one can see in figure 12. In other words, it is only

by turning on a sufficiently high temperature that we obtain regular solutions with this

sign of the source. A possible interpretation from the field theory point of view would be

6examples of this behaviour in perturbative field theories are common, e.g λφ4 theory is defined only for

λ > 0, and the same can be said for the sign of the ’t Hooft parameter λ = g2N in Yang-Mills theory.
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the fact that temperature provides an IR regulator which eliminates some IR pathologies

which made the vacuum theory ill-defined.

In field theory, there exist weakly coupled examples of this behavior. Consider a

unstable scalar theory with a potential

V (φ) = −λ
4
φ2 − m2

2
φ2 , m2 > 0 , λ > 0 (3.5)

It is clear that at zero temperature, this theory does not exist as the potential is unstable.

However at finite temperature there is a one-loop thermal correction to the mass, that with

the appropriate field content is positive, so now the effective potential becomes

VT (φ) = −λ
4
φ2 − m2

2
φ2 +

κ

2
T 2φ2 , κ > 0 (3.6)

Now, for T > m√
κ
, this effective potential has three extrema. One is still at φ = 0, but this

extremum is now stable. There are two more extrema at φ = ±
√

κT 2−m2

λ where φ has a

non-trivial vev but they are unstable. The theory is perturbatively stable around φ = 0

(but of course non-perturbatively unstable). Moreover, the stable minimum with zero vev

has the lowest energy of all three minima.

This can be made into a large N adjoint theory using NB adjoint matrices φI , as well

as NF adjoint fermions ψI , with an action of the form

S =

∫

d4x





1

2

NB
∑

I=1

Tr
[

∂φI∂φI,†
]

+

NF
∑

I=1

Tr
[

ψ̄I∂/ψI
]

+
∑

I,J,K

(

gIJKTr
[

φI ψ̄JψK
]

+ cc
)

−
NB
∑

I=1

[

−λ
4
Tr[(φIφ†,I)2] +

κT 2 −m2

2
Tr[φIφ†,I ]

]

]

(3.7)

where the numbers NB,F can be adjusted so that the one-loop correction κ > 0.

Returning to our phase diagram, we observe that at any temperature above Tmin

there are two black-hole solutions. Computing their free energy, we found that the one

which dominates the ensemble is always the one with smaller φh (the solid blue branch

in figure 12). This is shown in figure 15. The dominant branch is the one which, as the

temperature rises, approaches the AdS-Schwarzschild black hole with constant scalar field

φ = φ1 (see discussion in the following paragraphs).

Infinite temperature limits. There are three situations in which the dimensionless

temperature T → ∞: when the horizon approaches one or the other UV fixed points, and

at the point φc. The first case is easy to understand, as it corresponds to the limit of

large AdS-Schwarzschild black holes in which the scalar is approximately constant. The

divergence of the temperature at φh = φc is more interesting: across this point the UV

source changes sign. From the definition (2.14), the divergence in T can be interpreted

in this case as the limit j → 0 with T finite. This means that one should be able to

find a black-hole solution with zero source but finite temperature and with horizon exactly

at φc. These flows are driven by the sub-leading term in the UV scalar field expansion,

corresponding to a vev of the dual operator in the absence of a source. They will be

discussed in detail in section 5.
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Figure 15. Free energy difference as a function of the (dimensionless) temperature between the

two branches of black holes emanating from UV2 with positive source (dashed and solid purple

curves in figures 11 and 12).

Zero temperature limits. The limit T → 0 occurs when φh coincides with one of the

IR fixed points (in which case we recover the two zero-temperature vacuum flows, skipping

and non-skipping. Additionally, T → 0 as φh → φ∗, which is somewhere in the middle

between UV2 and IR2. This may seem puzzling as there is no zero-temperature solution

which ends at φ∗, since this does not correspond to an extremum of the potential. The

puzzle can be resolved by tracking how the horizon approaches φ∗ from both sides. This

is represented in figure 16 in terms of the superpotentials of the various branches:

• approaching φ∗ from the left (φh < φ∗), we have solutions starting at UV2 with

negative source, bouncing before IR1 and ending close to φ∗. These are represented

as the blue and violet flows in figure 16. The closer the horizon is to φ∗, the closer

the bounce is to IR1.

• from the right (φh > φ∗), solutions start at UV1, skip IR1 and end beyond φ∗. These

are represented as the red and orange flows in figure 16. The closer the horizon is to

φ∗, the closer the solution approaches IR1 without touching it.

One can see that, in the limit φh → φ∗ (represented in figure 17), both classes of solutions

(starting from UV1 and UV2) actually reach IR1 from both sides, and coincide with the

ones represented in figure 6. These flows stops at IR1 as the scale factor goes to zero there,

and the solution is approaching asymptotically the Poincaré-AdS horizon. The remaining

leftover piece (dashed black line in figure 17) starts from IR1 and arrives to a horizon

exactly at φh = φ∗.

However, for this last flow the point IR1 is seen as a UV fixed point : recall that the

superpotential always increases along the flow. These black holes therefore are thermal

states in a different theory, the one for which IR1 is a UV fixed point and have finite

temperature as defined in the UV theory sitting at IR1.

To summarise, in the limit φ→ φ∗, each black-hole solution from UV1 and UV2 splits

into two disconnected solutions: a zero-temperature flow ending at IR1 (red and purple
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Bouncing flows from UV2

Figure 16. The approach to φh = φ∗ from both sides. The curves show the superpotentials of the

corresponding flows. Here we display flows with different temperatures (longer flows correspond to

lower temperatures).

curves in figure 17), and a finite temperature (vev-driven) flow starting in the UV from

IR1 and having its horizon at φ∗ (dashed black curve in figure 17).

Like those ending at φ = φc, these black holes are also driven by a vev, and they will

be discussed in more detail in section 5.

We make one last comment about an interesting feature of the solutions with horizon

approaching φ∗: as can be observed in figure 9, although the solutions approaching the

“gap” from the left and from the right are disconnected, it appears that the vev parameter

C takes the same value on each side of the gap, i.e. C(φ0) = C(φ∗). This implies continuity

of the free energy across the gap, since temperature and entropy approach zero at both φ0
and φ∗. This can indeed be understood analytically. Indeed, consider one of the solutions

starting from UV1 in figure 16. As φh → φ+∗ , we can regard it as composed by a flow W1

which stops just above φ0 plus a flow W2 which starts just above φ0 and reaches around

φ∗. In the limit φh → φ∗, the flow W1 reduces to the non-skipping zero-temperature flow

(red line in figure 17) while W2 reduces to the flow from IR1 to φ∗ (dashed black line in

figure 17). The free energy can be then written as a sum of the two contributions,

F(φh → φ+∗ ) = F1 + F2 (3.8)

By construction, in the limit we are considering, F1 approaches the free energy of the

zero-temperature non-skipping solution with endpoint at φ0,

F1 = F(φ0). (3.9)

As we will now show below, the contribution F2 is vanishingly small as φh → φ∗. In fact,

the flow W2 can be also approached, in this limit, by the upper branch of the flow W ′
1+W2
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Zero-T flow UV2 → IR1

Finite-T vev-flow

Zero-T flow UV2 → IR1

Figure 17. In the limit φh → φ∗ the solutions reduce to the two zero-temperature flows ending

at IR1, plus a finite-temperature flow starting at IR1 in the UV and having its horizon at φ = φ∗
(dashed black curve). This solution has a finite temperature and entropy since it has a regular

black-hole horizon.

in figure 17, which starts from UV2, and bounces very close to IR1: this is the limit of the

blue and purple curves in figure 16 when the bounce point approaches IR1. We can view

the branch W2 after the bounce as a flow from a finite UV cut-off scale (with cut-off energy

proportional to eA(ub)) to the horizon at φh ≃ φ−∗ . Its contribution to the total free energy

of the solution is finite, and given by (see appendix B for details):

F2

Md−1
p Vd−1

= edA(ub)W (φb)
√

f(ub) (3.10)

where ub is the radial coordinate of the bounce and φb is the corresponding value of the

scalar field. Similarly, the bounce acts as an IR cut-off (with the same scale eA(ub)) for the

lower branch W ′
1, connecting to UV2. Now, as φh → φ−∗ , the bounce point φb approaches

the IR fixed point φ0, the cut-off scale eA(ub) → 0 and the contribution (3.10) to the free

energy vanishes,

F2 → 0, φh → φ∗. (3.11)

Putting together equations (3.8), (3.9) and (3.11) we conclude that

F(φ∗) = F(φ0). (3.12)

4 Thermodynamics of bouncing RG flows

In this section we discuss another “exotic” kind of behaviour, which is unusual from the per-

turbative field theory standpoint, but which can be found in holographic RG flows [12, 17].
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This consists in solutions where the flow inverts its direction at some φ = φb (“bounce”).

Although the corresponding β-functions are non-analytic at this point, β(φ) ∼
√

|φ− φb| ,
the corresponding gravity solutions are regular and can be continued past the point ub
where the bounce takes place. Specifically, around u = ub the zero-temperature solutions

have the expansion,

A(u) = A
(0)
b + (u− ub)A

(1)
b +O

(

(u− ub)
2
)

,

φ(u) = φb +
V ′(φb)

2
(u− ub)

2 +O
(

(u− ub)
3
)

,
(4.1)

where A
(0)
b , A

(1)
b are constants. From equation (4.1) it is clear that bounces can occur at

any point in field space such that V ′(φb) 6= 0, in a such a way that φ has a maximum at

φb if V
′(φb) < 0, and a minimum if V ′(φb) > 0.

4.1 Bouncing solutions at zero temperature

In [12], several examples were presented of vacuum holographic RG flow solutions exhibiting

bounces. Some of them interpolate between a UV and an IR fixed point, and go through

one or more bounces somewhere in the middle. In other examples, the potential had a

single extremum (a UV maximum at φ = 0 and the solution reaches φ → ±∞ after a

bounce at a finite φb. The latter case corresponds to the zero-temperature solution in a

model which was already considered at finite temperature7 in [17].

Bounces in the ground state solution occur when the dilaton potential is sufficiently

steep. For example, if the potential behaves as V (φ) ∝ exp(Γφ) for large φ then one finds

a bouncing zero T solution as the exponent is larger than a critical value Γ > Γc. To be

concrete, we consider the potential

V (φ) = −d(d− 1)

ℓ2

(

cosh(Γφ)− 1

2
φ2Γ2

)

+
1

2ℓ2
φ2∆−(∆− − d)

− c

ℓ2

(

e−
(φ−φ0)

2

2σ + e−
(φ+φ0)

2

2σ + φ2e−
φ20
2σ

(

1

σ
− φ20
σ2

)

− 2e−
φ20
2σ

)

. (4.2)

This corresponds to a potential with a cosh and a quadratic term modified with two

gaussian peaks with width σ and amplitude c added at φ = φ0 and φ = −φ0. Without the

gaussian modification, φ would run from the UV conformal fixed point at φ = 0, to the

IR region at φ → +∞ but the gaussians introduce an IR conformal fixed point at φ ≈ φ0
hence the IR behaviour is conformal. The quadratic terms in the potential above adjust the

UV dimension of the perturbing operator to be ∆+ = d−∆−. We plot this potential for a

particular choice of parameters in figure 18, and we show the bouncing zero-temperature

(vacuum state) solution in figure 19.

4.2 Bounces at finite temperature and the phase diagram

As in section 3, one has to determine T as a function of φh to describe all the black-hole

solutions at a given T . Figure 20 shows a comparison of the bouncing vacuum solution, a

non-bouncing finite T solution with φh = 0.7 and a bouncing finite T solution with φh = 1.7.

7The corresponding bouncing RG flow in the vacuum state has been also worked out but not dis-

cussed in [17].
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Figure 18. Example of a dilaton potential that leads to bouncing solutions. The potential is as in

equation (4.2) with a choice of parameters d = 4, ∆− = 1.7, φ0 = 4, Γ = 2/
√
3 , c = 400, σ = 1/20.

The UV fixed point corresponds to φ = 0 and the IR fixed point corresponds to φ ≈ 2.00566.
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Figure 19. Bouncing zero-temperature solution for the potential shown in figure 18.
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Figure 20. Comparison of the vacuum solution (solid), a bouncing finite T solution with φh = 1.7

(dashed) and a non-bouncing finite T solution with φh = 0.7 (dotted) that arise from the potential

shown in figure 18.

Because there can be more than one φh corresponding to the same value of T , one

needs the free energy to distinguish between these multiple black-holes and to determine

the dominant one with the lowest free energy.

Calculating T as a function of φh reveals the different black-hole solutions at a given

temperature. This can be obtained either by constructing the geometry and using equa-

tion (2.5) or more directly from the potential using the method of scalar variables explained

in appendix C, see equation (C.12). Following the latter method we obtain the function

T (φh) shown in figure 21.

There are four separate intervals of φh that we label from I to IV in this figure.

First, we note the symmetry T (φh) = T (−φh). It is not hard to see that this is an

immediate consequence of the symmetry V (φ) = V (−φ) of the dilaton potential. Moreover,

there exists a critical value of φh, that reads φc = 1.507 for the choice of parameters in

figure 18, above which the black-hole solution becomes bouncing. This is demonstrated

in figure 20 where we show a bouncing type black-hole for φh = 1.7 and a non-bouncing

type for φh = 0.7. These two solutions belong to regions I and IV in figure 21. It is

important to realise that these two regions I and IV do not belong to the same theory : as

φ = j ℓ∆−e∆−u/ℓ+ · · · near the boundary, the solutions in region IV have j > 0 whereas the

solutions in region I have j < 0 because of the bounce. Therefore the solutions in regions

I and IV belong to different boundary theories.

Similarly, the solutions in region II have j < 0 and region III have j > 0. In the fol-

lowing, we will choose |j| = 1 with no loss of generality (with this choice, the dimensionless

temperature parameter T defined in equation (2.14) coincides with the temperature T ).

To simplify the presentation, we further define two reference scales Tref and Fref are defined

in (C.16).
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Figure 21. T as a function of φh for a particular choice of the reference scale Tref .

The symmetry of V (φ) under parity implies that we may only consider the solutions

in regions I (bouncing) and II (non-bouncing). The physics of regions III and IV are the

same except for the sign of j.

4.2.1 Region I: bouncing black-holes

First consider region I. As shown in figure 21, this region is further divided into three

subregions, between φc ≤ φh < φmin,I, φmin,I ≤ φh < φmax and φmax ≤ φh < φIR, labelled

on the figure as “c”, “d” and “e” respectively, where for our choices of parameters we have

φmin,I = 1.901 and φmax = 2.005. The corresponding temperatures read Tmin,I = 5.209Tref
and Tmax = 8.685Tref .

As clear from figure 22 there are three different black-hole solutions in this region at a

given temperature between Tmin,I and Tmax.

Below Tmin,I and above Tmax there is a single type of black-hole solution. The free

energy of these solutions can be calculated following the method described in appendix C.

The result is shown in figure 23. There is a first order phase transition at Tc ≈ 6Tref . This

conclusion however will change once we consider the solutions in region II.

Another point to note is the free energy of the branch between T = 0 and T = Tmax,

as shown figure 21 (b). The free energy of this branch is almost constant (with almost

vanishing entropy) as shown in figure 23. In the limit T → 0 this branch should smoothly

turn into the vacuum solution. Indeed, the limiting value of the free energy as T → 0

coincides precisely with the free energy of the vacuum solution.

4.2.2 Region II: non-bouncing black-holes

In this region there are three black-hole solutions. One observes at least two branches of

solutions in figure 21, for 0 ≥ φh > φmin,II and for φmin,II ≥ φh > −φc where φmin,II =

−0.649. The corresponding temperature reads Tmin,II = 6.545Tref .
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Figure 22. Blowing up the figure 21 at very small temperatures reveals existence of there different

blackhole solutions for T fixed between a Tmin,I and a Tmax.
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Figure 23. Free energy of bouncing type solutions in region I as a function of T that follows from

the potential in figure 18. Latin letters label the different branches shown in figure 21.
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However, there is a hidden third branch in this region, that is unveiled when one

plots the entropy as a function of T . This is shown in figure 24 (a) and (b). Because of

the shape of the function s(T ) near the minimum, the aforementioned second branch for

φmin,II ≥ φh > −φc is further divided into two, as Tmin,II < T < Ts and Ts < T <∞ where

Ts corresponds to the minimum of s in figure 24 (b), with the value Ts = 6.560Tref . The

corresponding value of φh is φs = −0.691. Therefore, we need to divide the branch “b” in

figure 21 further into two: the branch for φmin,II ≥ φh > φs and for φs ≥ φh > −φc.
The need for this further division of branches becomes more apparent upon consider-

ation of the speed of sound in the plasma. The speed of sound can be expressed in terms

of entropy and temperature as

c2s =
s

T ds
dT

. (4.3)

As s and T are positive definite everywhere, and that dS/dT vanishes (diverges) at T = Ts
(T = Tmin,II) one finds that c2s ranges between 0− and −∞ between Tmin,II < T < Ts.

The reason that c2s → −∞ as φh → φ+s is because ds/dT → 0− there. On the other

hand c2s → +∞ as φh → φ−s , thus c2s of this solution jumps by an infinite amount at

T = Ts. Therefore one has to characterise the solutions for T < Ts and T > Ts differently.

That ds/dT < 0 between Tmin,II < T < Ts implies that this branch is thermodynamically

unstable: it has negative definite specific heat8 per unit volume Cv = Tds/dT .

To complete the discussion of the speed of sound, we find that c2s ranges between9

1/3 and 0+ in branch “a” on figure 21 with 0 ≥ φh > φmin,II and it ranges between +∞
and some positive value (which should be determined by precise numerics near −φc) in

the branch with φs ≥ φh > −φc. The fact that the speed of sound can exceed 1 in this

branch most probably means that this branch is dynamically unstable, in analogy with the

example studied in [17].

Comparison of the free energies of the blackhole branches that belong to region I and

II are shown in figure 26. One observes that the solutions in region II are always dominant.

We observe that, as T is increased first there is a first order transition between the blackhole

branches “e” and “c” in region II at Tc/Tref = 6.1 and then there seems to be a jump in

the free energy at T = Tmin,II = 6.545Tref from branch “c” to branch “b”. This jump in

the free energy may indicate that the finite temperature extension of bouncing holographic

RG flows is ill defined.

Finally in figure 27 we plot and compare the vacuum expectation values of the scalar

operator 〈O〉 on the blackhole branches in regions I and II.

8Therefore there exists a very small thermodynamically unstable region on the (generically thermody-

namically stable) upper branch of solutions shown in figure 25 between the cusp at T = Tmin,II and Ts. At

Ts Cv changes sign and becomes positive for T > Ts. This does not imply any non-analyticity for the free

energy at Ts however.
91/3 because the plasma becomes conformal as φh → 0 and 0+ as φh → φs because dS/dT diverges there.
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Figure 24. (a) S as a function of T in region II. (b) Blow up of the figure around the minimum

of S.
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Figure 25. Free energy of non-bouncing type solutions in region II as a function of T that follows

from the potential in figure 18. Latin letters label the different branches shown in figure 21.

5 Sourceless black holes

As we have seen in the previous two sections, there are some special values of the horizon

position in field space, φh, which correspond to singular limits:

• Approaching the values φc which separates between bouncing and non-bouncing so-

lutions, the dimensionless thermodynamic quantities diverge;

• In the case considered in section 2, there is a special point φ∗ where (at fixed source)

the temperature goes to zero, though this value does not obviously correspond to the

endpoint of any vacuum RG flow.

In this section we clarify the meaning of these special points. As we will see, they are

new families of solutions, which correspond to flows driven by the vev of a relevant (in the
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Figure 26. Comparison of the free energies of the solutions that belong to region I (blue, solid)

and II (red, dashed).
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Figure 27. Comparison of the VeVs of the scalar operator on the various black hole branches in

region I (blue, solid) and region II (red, dashed). Latin letters label the separate branches shown

in figure 21.
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case of φc) or an irrelevant (in the case of φ∗) operator. Finally, we will analyse the fate,

at finite temperature, of solutions in special (fine-tuned) theories which at T = 0 admit

regular sourceless flows from a minimum to a minimum of the bulk potential, an example

of which was presented in [12].

5.1 Thermodynamics of vev-driven flows

It is useful to analyse vev-driven flows in terms of the superpotential formalism developed

in appendix A. In this language, a sourceless flow is a solution of the first order equations

governed by the superpotential of the type W+, of the form given in equation (2.20),

Ȧ = − 1

2(d− 1)
W+(φ), φ̇ =

dW+

dφ
. (5.1)

Unlike W−, which contains the vev-related constant C(φh) as an integration constant

(see equation (2.18)), the W+ solution is unique and does not admit continuous deforma-

tions. Therefore the solution, when expressed in terms of the scalar field as an independent

variable in the superpotential formalism, is completely fixed, including the horizon position.

The integration constant of the first order equation, φ+, is the only remaining integration

constant of the solution, (recall that the integration constant in A is fixed by the require-

ment that the boundary metric is ηµν without any scaling factor). Therefore, vev-driven

flows form a one-parameter family of solutions, parametrised by either T or φ+. This is

to be contrasted with source-driven flows, which are parametrised by the two independent

data (T, φ−).

To make this more explicit, we can now repeat the scaling argument of section A.4,

which shows that solutions with different values of φ+ are generated by the transformation

φ+ → e∆+vφ+, T → Tev, (5.2)

which is the analog of the symmetry (A.29)–(A.31) in the case of non-zero source. This

transformation leaves φ+/T
∆+ invariant, therefore this quantity must have the same value

for all vev-driven flows.10 We conclude that, for vev-driven black holes attached to the

same UV fixed point, the vev and the temperature are not independent parameters but

they must obey

〈O〉 = O T∆+ (5.3)

where O is a fixed, temperature-independent, dimensionless constant.

Finally, it is useful to repeat the calculation of the free energy in the case of sourceless

flows. The calculation follows the same steps detailed in appendix B, except that instead

of the solution W− (equation (2.18)) we have to use the superpotential of the type W+

given in equation (2.20). The crucial difference in this case is the absence of the Cφd/∆− ,

which contributed the second term in the free energy (2.23): in this case there is no finite

term coming from the sub-leading non-analytic part of the superpotential.

10This applies for vev-driven flows which are connected to the same UV fixed point. If there are multiple

UVs, there can be several vev-driven solutions, but there is at most one for each UV fixed point.
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Therefore, for sourceless flows governed by the superpotential W+, we simply have

Fvev = −Ts
d
Vd−1. (5.4)

This implies that vev-driven flows have conformal thermodynamics: integrating the relation

s = −(1/Vd−1)∂F/∂T gives

s = σ T (d−1), Fvev = −σ
d
Vd−1 T

d , (5.5)

where σ is a fixed constant which only depends on the details of the bulk potential.

The fact that sourceless black holes display conformal thermodynamics is expected

since, for zero source, conformal invariance is always softly broken. An alternative deriva-

tion of this result, based on the effective potential, will be presented in the next subsection.

5.2 Relevant vev flows

First, we consider the black holes for which the dimensionless temperature (defined

in (2.14), T → ∞ as the horizon approaches a critical value φc, which is in between

extrema of the potential. As explained in the previous sections, the value φc separates

between bouncing and non-bouncing solutions, which have opposite values of the source.

This change of sign of the source is perceived as a divergence in the dimensionless temper-

ature T , which can be interpreted in two different ways depending how we approach φc in

the (T, φ−) space:

1. If we consider the theory with fixed, finite source, then none of the solutions can have

a horizon at φh = φc. As we approach this limit, the temperature T → ∞ and so do

the entropy and the free energy. There is no regular solution in this limit.

2. On the other hand, we can approach the φh = φc by keeping T fixed and sending

φ− → 0. Then we obtain regular black-hole solutions with finite free energy, a horizon

exactly at φc, and zero source. For these black holes, the flow is driven instead by

the vev of the (relevant) operator dual to φ.

In the rest of this subsection, we will examine further these critical black-hole solutions

with horizon at φc.

We start by noting that the limit in which the flow becomes vev-driven corresponds

to the following scaling limit in the parameters entering the solution (see equation (2.19))

φ− → 0, C → +∞,
d

∆−

C|φ−|∆+/∆−

(d− 2∆−)
sign(φ−) = φc+ fixed (5.6)

In this limit, the vev 〈O〉 = (d− 2∆−)φc+ remains finite. As we will see shortly, the value

φc+ is not free but it is determined by the temperature.

The most transparent way to understand the thermodynamics of the vev-driven so-

lutions ending at φc is to use the effective potential derived in section 2.5. From equa-

tions (2.31) and (2.33), we see that solutions with φ− = 0 correspond to extrema of the

effective potential (2.33), for which

V ′(O) = 0 ⇒ O = Oc (5.7)
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where O = 〈O〉/T∆+ and Oc is a constant. This equation therefore fixes the vev in terms

of the temperature,

〈O〉 = Oc T∆+ (5.8)

Therefore, there is a one-parameter family of black holes, parametrised by T , all having a

horizon at φ = φc, zero source, and vev given by equation (5.8).

On-shell, since the source is zero, the effective potential is the same as the free energy,

and both are given by

F = Veff(T,Oc) = Vc T
d (5.9)

where Vc = V(Oc) is a temperature-independent constant. We have recovered the gen-

eral fact, discussed in subsection 5.1, that this family of black holes displays conformal

thermodynamics, equation (5.5). Comparing equation (5.9) with (5.5) we can read-off

Vc = −σ
c

d
Vd−1 (5.10)

where σc is the (fixed) ratio s/T d−1.

Notice that, for fixed T and j = 0, the theory has another black hole solution with

the same UV asymptotics: it is the AdS-Schwarzschild black hole with constant scalar

field φ = φUV, sitting at the maximum of the potential. This solution also has conformal

thermodynamics, with

FAdSS = −σconf
d

Vd−1T
d, σconf =

(4π)d

dd−1
(MpℓUV)

d−1 (5.11)

where we have expressed σconf using equation (2.7). The question then arises, which of

these two solutions is thermodynamically favored. Because of the simple scaling behaviour

of the free energy, the answer is the same at all T 6= 0, and it boils down to comparing the

values of σconf and σ
c. A numerical computation shows that, in the particular models we

considered here, σc < σconf , meaning that the AdS-Schwarzschild solution is the dominant

one. For relevant vev flows ending at φc in the model in section 3, we find σc = 0.95σconf ;

we come to the same conclusion for the corresponding solutions in the model considered in

section 4, where we find σc = 0.635σconf .

Finally, we can go slightly off-shell and analyse the behaviour of the effective potential

around the critical value Oc. Using the scaling property (5.6) it is easy to show that, as

T → ∞, the quantities γ(T ) and σ(T ) in equation (2.29) behave as

σ(T ) → σc, γ(T ) ≃ T −∆− → 0. (5.12)

Performing the Legendre transform of equation (2.28) explicitly close to φ− = 0 we find,

as O → Oc,

T ≃ − k

O −Oc
, V(O) ≃ Vc +

|O − Oc|∆−+1

(∆− + 1)k∆−

, (5.13)

where k is a constant.
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5.3 Fake zero-T vacua and irrelevant flows

We now turn to another kind of special flows, which correspond to black holes ending at

the point φ∗ found in section 3 and represented in figure 17. As we have explained at the

end of section 3, these black holes correspond to flows starting from the point IR1, located

at φ = φ0 in figure 17, which in this case plays the role of a UV fixed point.

Since the UV is at a minimum of the potential, the conformal dimension of the de-

forming operator is ∆+ > d, the operator is irrelevant, and a source term is not allowed.

Therefore, the solutions with horizon at φ∗ are driven by a vev, as those discussed in the

previous section. This is consistent with the fact that, if we start from the UV at φ0, there

is a unique value φ∗ the scalar can take at the horizon: it is fixed by the unique solution

W+ starting at φ = φ0.

By the general discussion at the beginning of this section, there is a one-parameter

family of black holes, labeled by the temperature T , for which the vev given by

〈O〉 = O∗T∆+ , (5.14)

where O∗ is a constant.

The free energy is given by the conformal result

F = −σ
∗

d
Vd−1 T

d (5.15)

where σ∗ = s/T (d−1) is temperature-independent

Notice that the free energy is defined by renormalising with respect to IR2, i.e. the

counter-term must be chosen to be

Sct =Md−1
p

∫

ddx
√
g
2(d− 1)

ℓ2(φ0)
, ℓ(φ0) ≡

√

−d(d− 1)

V (φ0)
. (5.16)

Since they have a different UV boundary condition (and different counter-terms) than those

connecting to either UV1 or UV2, the black holes ending at φ∗ belong to a boundary theory

different from the ones considered in section 3 and in the previous subsection. Therefore,

unlike the case considered in the previous section, we cannot describe the free energy in

terms of an effective potential at criticality, since there is no well-defined conjugate variable

to O which we can use to define a Legendre transform.

It is instructive to understand why these solutions seem to arise as a zero-temperature

limit. As we have seen in section 3, when measuring the temperature as defined in UV1 or

UV2, the free energy receives a vanishing contribution from the part of the solution which

connects φ0 to φ∗, and the limit φ→ φ∗ looks like a zero-temperature limit. This is due to

the fact that, from the point of view of, say, UV1, any solution starting from IR1 is seen as

describing the far infrared. Therefore, any finite temperature as measured in units of IR1

will be rescaled to zero in units of UV1.

Notice that there is no sense in “glueing together” the two solutions composed of the

flow from 0 to φ0 and the flow to φ0 to φ∗ to obtain a new, exotic, zero-temperature

solution: indeed, the vev-driven solution from φ0 to φ∗ reaches an asymptotically AdS UV
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Figure 28. A minimum to minimum flow is displayed. The left figure (a) shows a schematic picture

of the superpotential (yellow curve) and the bulk potential (green curve). The curve B(φ) is defined

via equation (A.18) and is the boundary of the forbidden region below which the zero-temperature

superpotential cannot go. The right figure (b) shows a sketch of solutions of the superpotential

equation with critical point at a local minimum of the potential (local maximum of B(φ)). The

W+(φ) and W−(φ) solutions correspond each to two asymptotically AdS geometries in the UV and

IR, respectively. The corresponding geometries are not connected, as each flow stops (or starts) at

the fixed point. The arrows onW−(φ) andW+(φ) indicate the direction of the holographic RG flow.

boundary as φ → φ0, where e
A → +∞. This geometry is locally geodesically complete,

and it cannot be glued across the horizon of the flow reaching φ0 in the IR (where eA → 0).

Finally, a numerical computation of σ∗ shows that, also in this case, the free en-

ergy (5.15) is larger than the free energy of the AdS-Schwarzschild solution of the same

temperature and constant scalar field φ = φ0. The latter is therefore the dominant solution

at any temperature for j = 0.

5.4 Minimum-to-minimum irrelevant flows

In this section, we consider the finite-temperature generalisation of the flows connecting

two minima of the potential (one serving as a UV fixed point, the other as an IR fixed

point). These flows, discussed in [12], are driven by the vev of an irrelevant operator, in

contrast to the zero-temperature solutions discussed in the sections 3 and 4, for which the

operator was always relevant. They are shown schematically in terms of the associated

superpotential in figure 28.

As we discuss below, at zero temperature, these theories display a moduli space of

vacua.11 We will see that this is lifted when temperature is turned on, and that the only

point in the moduli space that is left is the AdS black hole with constant scalar field profile.

Minimum-to-minimum flows are interesting because they provide the only regular zero-

temperature flows in this setup which are driven by the vacuum expectation value of an

irrelevant operator. Such flows arise from spontaneous breaking of scale invariance of

11A field theory example of such a flow is the flow driven by baryon vevs in the baryonic branch of

N=1 sQCD.
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the boundary theory: the source J of the UV theory operator O is zero as it is non-

renormalisable and, yet, this operator acquires a non-zero VEV which is related to the

asymptotic behaviour of φ(u) through

φ(u) = φ+ ℓ
∆+e∆+u + . . . , 〈O〉 = (Mpℓ)

d−1 (d− 2∆−)φ+ . (5.17)

Equation (5.17) is valid for both zero and finite temperature. For generic potentials and

at zero temperature, the bulk geometries in the class (5.17) are singular. However, for

special potentials, it is possible to make the flow reach a second minimum of V in the IR,

providing a regular solution with IR AdS asymptotics [12].

The first-order or superpotential formalism of appendix A provides a single description

of all zero-temperature flows of the form (5.17) as well as an easy implementation of the

regularity condition. The flows of the form (5.17) with non-zero 〈O〉 which start from a

given minimum of V (seen as a UV fixed point) are associated with a unique superpotential

of the type W+(φ), with an asymptotic expansion of the form (2.20). This is the yellow

curve in figure 28 (b)), where, for comparison, we also displayed the W−-type solution

arriving at the same minimum for which this point is seen as an IR fixed point.The blue

curve in figure 28, B(φ), is defined though equation (A.18) and it is the lower bound on

W at zero temperature: the shaded blue region is not allowed, as a consequence of the

superpotential equation (A.2) with f ≡ 1 (see appendix A.2 for more details).

At T = 0, these models display a moduli space of vacua, parametrised by φ+. The

reason is that the superpotential which describes these flows is of the type W+ which, as we

explained in subsection 5.1, does not contribute a finite part ∼ Cφd/∆− to the renormalised

on-shell action. Equation (2.27) then implies that the zero-temperature free energy F = 0

for any value 〈O〉.
This one-parameter degeneracy of vacua is continuously connected12 to the AdS vac-

uum of the unbroken theory, which corresponds to 〈O〉 = 0 and to a constant scalar field

profile and also has vanishing free energy.13

At finite temperature, as we have seen in subsection 5.1, we generically expect for

vev-driven black holes a relation between 〈O〉 and T of the form (5.8). This means that

at any fixed temperature at most one solution is expected, and the moduli space is lifted.

Moreover, taking the T → 0 limit we only obtain an AdS solution with 〈O〉 = 0 i.e. these

black holes, if they exist, are connected only to the constant-φ solution and to no other

solution in the moduli space.

The previous considerations suggest that the solutions with non-zero 〈O〉 and non-

trivial scalar field profile do not have any finite-temperature generalisation: to obtain a

finite 〈O〉 at T = 0 one would need the constant O in equation (5.3) to be infinite, in which

12The limit φ+ → 0 is not uniform however: for any non-zero φ+, eventually the scalar field reaches its

fixed IR value, φ(u = +∞), which is different from the UV value φ(u = −∞). As φ+ → 0, a significant

departure from the UV value φUV happens for larger and larger u: the domain wall “moves to infinity”

leaving the UV-AdS solution at any finite u.
13More precisely, the free energy is zero in our renormalisation scheme, in which we have chosen Cct = 0

in the counter-term action, see equation (B.11). In a more general scheme F will be a non-zero, 〈O〉-
independent constant.
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case the finite temperature VEV would diverge. Since the W+-type potential admits no

continuous deformations close to the UV [12, 34], there cannot be regular black holes with

〈O〉 = 0 starting from the same UV minimum as the zero-temperature regular flow. The

reason is that there exists a W+ regular solution for f = 1 and therefore any other regular

solution with non-trivial f will “miss” the UV fixed point and flow somewhere else.

We will now move to a concrete example in which we find that these expectations are

correct: in the theory that admits a regular minimum-to-minimum flow at T = 0, there

are no black-hole solutions which start from the same UV.

To be concrete, we consider the model presented in reference [12], which we will sub-

sequently study at finite temperature. In d boundary dimensions, the following family of

superpotentials parametrised by k, v and W∗,

W (φ) = kv2
(

φ

v

)

[

1− 1

3

(

φ

v

)2
]

+W∗ (5.18)

allows for very simple kink scalar field profiles:

φ(u) = v tanh(k (u− u∗)) . (5.19)

Each superpotential in (5.18) solves (A.2) with f(φ) = 1 and with the potential

V (φ) =
(kv)2

2

[

1−
(

φ

v

)2
]2

− d

4(d− 1)

{

kv2
(

φ

v

)

[

1− 1

3

(

φ

v

)2
]

+W∗

}2

. (5.20)

The flows of the form (5.19) interpolate between the extrema of V (φ) at φ = −v and φ = v.

A region of parameter space which includes the point

v = k = 1, d = 4 and W∗ = 1.8 (5.21)

is such that the extrema of V (φ) at φ = ±v are both local minima. The potential (5.20)

is not everywhere negative, however it is negative between −v and v for the values (5.21)

of the parameters. As we argued in [12], the sign of V (φ) outside the range of definition

of a superpotential W (φ) does not affect the existence of this kind of flow because the

equations of motion are local in field space. In this particular model, the maximum of V in

between the two minima violates the BF bound, so it does not provide a consistent UV for

the theory. This is inconsequential as far as the minimum-to-minimum flow is concerned.

At finite temperature, we need to solve the system (A.2)–(A.3). Contrary to the

zero-temperature case where the bound (A.18) holds as long as the potential is strictly

negative, at finite temperature even strictly negative potentials allow a positive W (φ) to

cross into the forbidden region and to be arbitrarily small, as follows for example from

equation (A.19).

To scan for black-hole solution numerically, we choose a set of values of horizon po-

sition φh in the interval (−v, v) and solve numerically the system (A.2)–(A.3) providing

boundary conditions at φh+ δφ using the relations (A.8). What we find is that no solution

reaches the would be UV point φ = −v, but all of them bounce at some larger φ. The
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Figure 29. The blue curve bounding the shaded region represents the curve B(φ) which bounds

superpotentials at zero temperature (see (A.18)). It is presented here to locate the extrema of the

potential between which the zero temperature solution flows. The green curve which starts at -1 with

value B(−1) and extends until φ = 1 where its value is B(1) corresponds to the zero-temperature

solution. The remaining curves correspond to finite-temperature superpotentials solving (A.2)

and (A.3) with boundary conditions (A.8)–(A.9) for the potential (5.20)–(5.21). The values of W

increase as the horizon position takes values closer and closer to the IR extremum at φ = v. None

of the black-hole solutions reach the local minimum of V at φ = −1, they all bounce for φ > −1.

The position of the bounces and their progression as φh approaches v is clearer when looking at

W ′(φ), as is done in figures 30 and 31.

resulting superpotentials are displayed in figure 29, where only the branch above the bound

is displayed and we set v = 1. The closer the horizon position φh is to φ = v, the larger W

and the closer the bounce is to φ = −1. No finite-temperature solution reaches φ = −1,

no matter how close to v = 1 we set the horizon. This is further emphasised in figures 30

and 31 which display W ′(φ) for different values of φh.

The conclusion is that all the black holes in this model miss the UV minimum at

v = −1 and flow towards the intermediate maximum. The latter however violates the BF

bound, so these states are not part of healthy theory. A part from this, conceptually they

are in the same class as the black holes with UV asymptotics at a maximum of V , which

were discussed in the previous sections.
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Figure 30. This figure shows the first derivative of the functions displayed in figure 30. The curve

which extends from −1 to 1 corresponds to the zero-temperature solution. The remaining curves

are the derivatives with respect to φ of the finite-temperature superpotentials displayed in figure 29.

The rightmost zero (or the tendance of W ′ to vanish) corresponds to the horizon position which

approaches φ = 1 without reaching it and the leftmost zero corresponds to the bounce position.

The closer the horizon is to φ = 1 the closer the bounce gets to φ = −1 but the superpotential never

reaches −1. This means that the zero-temperature minimum-to-minimum flow is not associated

with a black hole. The bouncing points are better visualised in figure 31.
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Figure 31. A closer look at the near-bounce region of figure 30. The leftmost curve corresponds to

the zero temperature solution and the remaining curves are superpotentials at finite temperature.

The derivative of each finite-temperature superpotential vanishes at a different bouncing point,

where the each solution is glued to the next branch. The closer to −1 the zero of dW/dφ is, closer

the horizon is to φ = 1 and lower is the black-hole temperature. No finite-temperature solution

reaches φ = −1, thus showing that the minimum-to-minimum zero temperature flow from [12] does

not have an associated black-hole solution with a running scalar.
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A First order formalism

As for the zero-temperature solutions, we can introduce a functionW (φ) such that, on-shell

Ȧ(u) = − 1

2(d− 1)
W (φ(u)), φ̇(u) =

dW (φ(u))

dφ
(A.1)

This can always be achieved piecewise in any region where φ(u) is monotonic, by inverting

the relation φ(u) → u(φ). With the definition (A.1) equation (2.3d) is identically satisfied,

and the remaining equations (2.3a)–(2.3c) become a system of scalar equations for the

functions W (φ), f(φ) ≡ f(u(φ)) [31],
(

1

2

(

dW

dφ

)2

− d

4(d− 1)
W 2

)

f +
W

2

df

dφ

dW

dφ
= V , (A.2)

d2f

dφ2
dW

dφ
+
df

dφ

d2W

dφ2
− d

2(d− 1)
W
df

dφ
= 0. (A.3)

For f(φ) = 1, equation (A.2) becomes the usual superpotential equation.

Among the transformations (2.4) which leave the original equations of motion invariant,

only (2.4c) affects (A.2) and (A.3). The corresponding transformations for W (φ) and

f(φ) are
(

f̃(φ), W̃ (φ)
)

→
(

f(φ),W (φ)
)

=
(

λ2f̃ (φ) , λ−1W̃ (φ)
)

(A.4)

and φ is left invariant.

A.1 The integration constants for the superpotential equations

The system (A.2)–(A.3) is third order14 and can be solved in terms of three integration

constants which can be chosen in different ways. It is most convenient to view it as a

boundary value problem for f(φ) and an initial value problem (at the black-hole horizon)

for W (φ), and fix the integration constants by

f(0) = 1, f(φh) = 0, W (φh) =Wh. (A.5)

The first equation follows from the requirement that the leading asymptotic boundary

metric is the same for all solutions. This leaves the two arbitrary parameters φh and Wh.

As we will show below however, Wh is also fixed uniquely by the choice the horizon position

φh, resulting in a one-parameter family of solutions parametrised by the value of φh.

A very simple way to see that the system (A.2)–(A.3) is third order and which is

helpful to give boundary conditions for solving the system numerically goes as follows. By

differentiating equation (A.2) with respect to φ, a term with f ′′(φ) is generated and can

be used to eliminate f ′′(φ) from (A.3). The resulting equation is:

W ′(φ)

[

f(φ)

(

dW (φ)

2− 2d
+W ′′(φ)

)

+ f ′(φ)W ′(φ)

]

= V ′(φ), (A.6)

14Since both ∂2
φW and ∂2

φf appear, at fist sight it may look as the system is fourth order, but this is not

the case, as one can easily realise by algebraically solving equation (A.2) for ∂φW and inserting the result

into equation (A.10).
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Equations (A.2) and (A.6) demand three integration constants which completely specify

W (φ) and f(φ). Evaluating (A.2) and (A.6) at the horizon we obtain

[

Wf ′W ′]
φh

= 2V (φh), (A.7a)
[

W ′f ′W ′]
φh

= V ′(φh) . (A.7b)

For any choice of the integration constant f ′(φh) and imposing that W is positive, the

system (A.7) completely specifies W (φh) and W
′(φh). Therefore one can chose boundary

conditions close to the horizon as follows:

f(φh + δφ) = δφ f ′(φh) +O(δφ2) with f ′(φh)δφ > 0, (A.8a)

W ′(φh + δφ) =

√

V ′(φh)

f ′(φh)
+O(δφ) , (A.8b)

W (φh + δφ) = − 2V (φh)
√

f ′(φh)V ′(φh)
+ δφ

√

V ′(φh)

f ′(φh)
+O(δφ2) . (A.8c)

The boundary conditions (A.8) will typically lead to f(φUV) 6= 1, however this apparent

inconvenience is immediately circumvented with a rescaling of the form (A.4) with param-

eter

λ = (f(φUV))
−1/2 . (A.9)

Another way to specify the integration constants is to explicitly identify the boundary

theory source in f(φ) and the product TS in W (φ), making a more explicit contact with

the thermodynamics. To proceed, we chose a value φh. First, notice that equation (A.3)

can also be written equivalently as

d

dφ

[

df

dφ

dW

dφ
edA(φ)

]

= 0 (A.10)

where

A(φ) = − 1

2(d− 1)

∫ φ

dφ̂
W

W ′ (A.11)

The function A(φ) depends on an arbitrary additive constant but clearly this does not

affect equation (A.10), and in fact it can be reabsorbed in one of the other integration

constants. Integrating equation (A.10) gives

df

dφ
= − D̃

W ′ e
−dA(φ), (A.12)

where D̃ is a constant. As we mentioned above, an additive constant in A(φ) can be

absorbed in a redefinition of D̃ and we can fix this redundancy (which does not correspond

to one of the integration constants of the system (A.2)–(A.3)) so that A(φh) = 0:

A(φ) = − 1

2(d− 1)

∫ φ

φh

dφ̂
W

W ′ (A.13)
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Equation (A.12) can be further integrated to give

f(φ) = F̃ − D̃

∫ φ

0

dy

W ′(y)
e−dA(y). (A.14)

As we will see in a moment, the second term vanishes as φ → 0. Therefore, imposing the

boundary conditions for f(φ) from equation (A.5) fixes

F̃ = 1, D̃ =

(
∫ φh

0

dy

W ′(y)
e−dA(y)

)−1

. (A.15)

Finally, evaluating equation (A.2) at φh and using (A.12) we find

W (φh) = −2V (φh)

D̃
. (A.16)

This condition is equivalent to the requirement that the horizon is regular, and it fixes the

remaining free parameter Wh in the initial conditions (A.5).

To summarise we have found that, for regular asymptotically AdS black holes, solutions

to the system (A.2)–(A.10) depend on a single continuous free parameter, which we can

be taken to be the horizon position φh. In the next subsection we will clarify the physical

meaning of the quantity D̃(φh).

A.2 Lower bounds on the superpotential

At zero temperature, an important property of W (φ) is that it is bounded from below.

This can be shown by considering equation (A.2) with f(φ) ≡ 1 and algebraically solving

for W :

|W (φ)| =
√

4(d− 1)

d

(

1

2
W ′2 − V (φ)

)

>

√

−4(d− 1)

d
V (φ) ≡ B(φ) > 0. (A.17)

When V (φ) is negative, W can never approach zero, meaning that the branches with

W > 0 and W < 0 which solve (A.17) are disconnected. Furthermore, they are physically

equivalent as one can pass from one to the other by the transformation (u,W ) → (−u,−W ).

Therefore, without loss of generality we can choose a positive W , meaning that Ȧ(u) is

negative, and see (A.17) as a lower bound on W and not just on its absolute value:

W (φ) > B(φ) ≡
√

−4(d− 1)

d
V (φ) > 0. (A.18)

Another useful property to understand the numerical results shown in figures 29, 30 and 31

which is related to the normalisation of f(φ) is thatW can lie below B(φ) defined in (A.18).

It is instructive to algebraically solve equation (A.2) for W (φ) keeping into account the

positivity of W which is necessary for Ȧ to be negative

W (φ) =
(d− 1)

d

f ′W ′

f
+

√

(

(d− 1)

d

f ′W ′

f

)2

+
2(d− 1)

d

(

W ′2 − 2V

f

)

(A.19)
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As long as V (φ) is negative, it is guaranteed that W is real at stationary points, i.e. when

W ′ vanishes. Negativity of V (φ) also guarantees that giving W a positive value at any

fixed φ = φ0 implies the positivity of W for all φ. In contrast to the zero temperature case,

the function f(φ) permits the existence of solutions such that the limit

(

f ′W ′

f

)2

≫ 2d

d− 1

(

W ′2 − 2V

f

)

(A.20)

holds, thus including arbitrarily small superpotentials in the space of solutions. On the

other hand, from (A.19) it follows that the value of W (φ) at critical points, i.e. those where

W ′(φ) vanishes, is set by f(φ) and V (φ),

W ′ = 0 and
f ′W ′

f
= 0 =⇒ W =

√

−4(d− 1)

d

V

f
(A.21)

one of the few remaining properties from the zero temperature setup.

A.3 Near-boundary solution: universal part

To obtain the solution close to the boundary, we solve the system of equations (A.2)–(A.10)

perturbatively close to φ = 0, where f ≃ 1. To lowest order we obtain the analytic part

W0 of the superpotential,

W±
0 (φ) =

2(d− 1)

ℓ
+

∆±
2ℓ

φ2 +O(φ4), (A.22)

which coincide with the perturbative expansion in the vacuum solution, see e.g. [12, 33, 34].

The two choices, ∆− or ∆+, in the quadratic term, correspond respectively to a flow driven

by a source or by a vev of the operator dual to φ. Generically we will be describing flows

with non-zero source, therefore from now on we will choose W0 = W−
0 . Vev-driven flows

will play an important role however, and will be discussed separately later on.

Up to higher order corrections, we can replace W by W0 in A in (A.12) and close to

the boundary we find

A(φ) = A0 −
1

∆−
log |φ|+O(φ) (A.23)

where A0 is a constant which is also completely determined by equation (A.13) and depends

only on φh.

Using equations (A.22) and (A.23) we can approximate equation (A.14) for close

to φ = 0,

f(φ) = 1− D̃e−dA0ℓ

d
|φ|

d
∆
− . (A.24)

As announced, the φ−dependent part vanishes as φ→ 0, and f satisfies the correct bound-

ary condition.

Finally, integrating equations (A.1) give the expected leading order scaling,

A(u) = −u
ℓ
+O(eu), φ(u) = j ℓ∆−e∆−u/ℓ + . . . , u→ −∞, (A.25)
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and introduces as additional free parameter j, the constant corresponding to the source

of the dual operator, whose choice is part of the boundary data one has to give to fix the

holographic theory. The other piece of boundary data is the leading asymptotic behaviour

of the boundary metric: in writing equation (A.25) we have chosen the constant term in

A to vanish, so that in the holographic dictionary the dual field theory metric is ηµν with

unit coefficient.

Thus, the full solution (A(u), φ(u), f(u)) depends on only two parameters: the value of

the source j and the horizon position φh. The black-hole temperature and entropy density

are therefore determined by these two quantities. In the next section we will make this

dependence more explicit.

A.4 Dimensionless temperature and entropy

Equations (A.24)–(A.25) reproduce the expected scaling (2.11) near the boundary. Com-

paring equations (A.24) and (2.11c), and using the relation (A.12) we can relate D̃ to the

black-hole temperature T and entropy density s:

D̃e−dA0 =
1

Md−1
p

Ts

|j|d/∆−

. (A.26)

As the right hand side depends only on φh, the same must be true for the combination on

the right hand side. In fact we will now show that the two quantities

T ≡ T

|j|1/∆−

, S ≡ s

|j|(d−1)/∆−

(A.27)

are function of φh only. They represent the temperature and entropy density in units of

the UV source j.15

To see that the T and S defined above depend on φh only, and not on both φh and j,

we use the invariance property (2.4a)–(2.4b),

u→ u′ = u+ v, A(u) → A′(u′) = A(u′) + Ā. (A.28)

Starting from a solution, these transformation produces a new solution of the same

form (2.2) but with different UV data, temperature and entropy: the source term trans-

forms as

j → e∆−vj (A.29)

and the horizon data as

uh → uh + v, eA(uh) → eA(uh+v)+Ā, ḟ(uh) → ḟ(uh + v) (A.30)

However if we want to keep the boundary metric fixed to be ηµν we have to choose Ā = v/ℓ,

as we have to cancel a constant term in the asymptotic expansion of A(u), equation (A.25).

Taking this into account, we find that under (A.28)

T → evT, s→ e(d−1)vs (A.31)

15They are the finite-temperature analog of the dimensionless curvature parameter R used in [16].
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On the other hand, the horizon value φh is unaffected by this transformation, so all solu-

tions related by the transformation (A.28) have the same φh and the same values of the

combinations (A.27). We conclude that both T and S are determined solely by the horizon

field value φh. Since T (as opposed to φh) is directly related to the horizon data (T, j, it is

useful to invert the relation T (φh) (at least piecewise) and use T to parametrise black-hole

solutions with the same φh.

A.5 Near-boundary solution: sub-leading term

The sub-leading, non-analytic contributions to W (φ) beyond the leading behaviour (A.22)

contains the information about the vevs, see [12, 34] and gives finite contributions to the

free energy. It can be obtained by setting W =W0+δW , linearizing equation (A.2) around

the solution (A.22) and keeping in mind that f = 1 +O(φd∆−). The resulting equation is

W ′
0δW

′ − d

2(d− 1)
W0δW0 = (f0 − 1)V + f ′0W

′
0W0 (A.32)

Using the expression for f0 in equation (A.24) and evaluating V at the origin (recall V (0) =

−d(d− 1)ℓ−2) we find that the right hand side vanishes at the lowest order φd/∆− , and it

starts at order φd/∆−+2. To lowest order the solution for δW is

δW = ℓ−1C(φh)|φ|d/∆−

(

1 +O(φ2)
)

(A.33)

where C(φh) is an integration constant which, following the discussion in section A.1, is

determined by the horizon value φh. Equation (A.33) has exactly the same form as the

generic non-analytic part of the superpotential at zero temperature, the only difference

being that the integration constant is fixed by the horizon position in field space.

Rather than φh, we will find it convenient to consider T (φh) as the independent pa-

rameter, since it directly relates to the boundary quantities T, j. Therefore we will often

write C(T ) instead of C(φh).

In terms of the domain-wall coordinate u, using the leading order behaviour φ ≃ je∆−u,

we find that δW scales as edu. More precisely,

δW ≃ ℓ−1C(T )|j|∆+/∆−edu/ℓ, u→ −∞. (A.34)

Finally, we can integrate the first order equation φ̇(u) =W ′(φ(u)) to sub-leading order as

u→ −∞, to find

φ(u) = j ℓ∆−e∆−u + . . .+ φ+ ℓ
∆+e∆+u, φ+ =

d

∆−

C(T )

(d− 2∆−)
|j|∆+/∆− sign(j). (A.35)

Therefore, C(T ) plays the role as a dimensionless vev parameter, 〈O〉/|j|∆+/∆− , which

depends on T (or equivalently, on φh) only.

A.6 Superpotentials for vev-driven flows

To conclude this appendix we discuss solutions with j = 0 which nevertheless describe a

non-trivial flow. For these solutions, the appropriate (analytic part of the) superpotential
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corresponds to the choice ∆+ in equation (A.22),

W+ =
2(d− 1)

ℓ
+

∆+

2ℓ
φ2 +O(φ4) (A.36)

In this case, a similar analysis to the one in section A.5 shows that a sub-leading, non-

analytic part is not allowed (see [12, 34] for a more extended discussion). Therefore the

solution of the kind W+ is unique, it is completely fixed by its analytic expansion, and

does not admit a continuous parameter family of deformations.

Since they have, j = 0 these solutions correspond to taking the limit T → +∞, which

occurs (at most) at isolated special values of φh.

After integrating the first order flow equations for A(u) and φ(u), the full solution

is parametrised by the vev φ+ (which now is a free integration constant), and the near-

boundary expansion of φ(u), solving φ̇ =W ′, is

φ(u) = φ+ ℓ
∆+e∆+u + . . . , 〈O〉 = (Mpℓ)

d−1 (d− 2∆−)φ+. (A.37)

Fixing φ+ also fixes the temperature of the solution since, by a similar argument as the one

presented in section A.1, it is easy to show that for all such solutions16) the ratio T/φ
1/∆+

+

is fixed.

B The on-shell action

The on-shell Euclidean action is finite if we include the appropriate counter-term action

in equation (2.1). It was systematically analysed in [31]. Here we discuss the three terms

in (2.1) separately. In doing so, each term is finite only if we introduce a UV cut-off

u = uUV in the asymptotic boundary region. In the final step one removes the cut-off by

taking uUV → −∞.

Bulk action. This can be written in terms of the UV asymptotic data, as follows. The

trace of the Einstein’s equations of motion following from (2.1) lead to the following ex-

pression for the Ricci scalar:

R =
φ̇2

2f
+
d+ 1

d− 1
V, (B.1)

which can be used to eliminate R from the bulk part of the action Sbulk, i.e. the first term

in equation (2.1), leaving

Sbulk = −2Md−1
P

d− 1

∫

M
dd+1x edA(u)V (φ(u)) (B.2)

Using equation (2.3b) to eliminate V and equation (2.3d) to eliminate φ̇2 we find

Sbulk = 2Md−1
P

∫ uh

uUV

∫

ddx edA
[

ḟ Ȧ+
(

dȦ2 + Ä
)

f
]

= 2Md−1
P βVd−1

[

edAȦf
]uh

uUV

(B.3)

16That is, all solutions with the same value of φh corresponding to one of the special points in parame-

ter space.
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where Vd−1 is the d − 1-dimensional spatial volume (which we take to be finite, e.g. by

considering the system in a spatial square box of size L). Because f(uh) = 0, the horizon

does not contribute, and the contribution from the bulk part of the action is:

Sbulk = −2Md−1
P βVd−1

[

edAȦf
]

u=uUV

(B.4)

Gibbons-Hawking-York term. To compute the Gibbons-Hawking-York boundary

term SGHY from (2.1) we define the outward-oriented unit normal vectors to the boundary

at u = uUV. Notice that we should not include a GHY term at the horizon, since this is a

regular point in the interior of the Euclidean geometry, rather than a boundary.

The unit normal to the boundary is given by

na = −
√

f δcu at u = uUV (B.5)

and the extrinsic curvature is

K = ∇an
a = − 1√

f

(

ḟ

2
+ dȦf

)

(B.6)

The on-shell expression for SGHY from (2.1) for solutions of the form (2.2) is then

Son−shell
GHY =Md−1

P βVd−1

[

edA
(

ḟ + 2dȦf
)]

u=uUV

. (B.7)

Combining the two terms (B.4) and (B.7) we obtain the regularised on-shell action,

Sreg
on−shell =Md−1

P βVd−1

[

edA
(

ḟ + 2(d− 1)Ȧf
)]

u=uUV

. (B.8)

This expression is divergent as we let uUV → −∞. Before we remove the cut-off we must

add appropriate counter-terms, which we discuss below.

Counter-term action. The counter-terms are universal, and are written in the general

form [34, 35]

Sct =Md−1
p

∫

u=uUV

ddx
√
γ
[

Wct(φ) + Uct(φ)R
(γ)
]

(B.9)

where uUV is a UV cut-off, γ is the induced metric on u = uUV, R
(γ) its intrinsic curvature,

and W and U are appropriate functions of the scalar field.

In the case at hand, the u = const. hyper-surfaces are flat, so R(γ) = 0 and the

curvature counter-term vanishes identically. The appropriate function Wct(φ) must solve

the superpotential equation,

1

2

(

dWct

dφ

)2

− d

4(d− 1)
Wct = V (B.10)

In the case d/2 > ∆− > d/4, to which we restrict here, the solution for W close to the

boundary has the universal form:

Wct(φ) =W0(φ) +
Cct

ℓ
|φ|

d
∆

− + . . . , (B.11)
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up to term which vanish faster than e−dA as φ → 0. In the expression above, W0 is the

analytic solution whose expression can be found in equation (A.22), taken up to quadratic

order; Cct is an arbitrary constant which encodes the scheme dependence of the subtraction.

We choose to work in a minimal scheme, in which we set Cct = 0. The resulting counter-

term is quadratic in φ and we will denote it by

Evaluating the counter-term on-shell gives:

Sct =Md−1
p βVd−1

[

edA
√

f W0

]

u=uUV

. (B.12)

B.1 Calculation of the free energy

The renormalised Free energy is found by adding the counter-term (B.12) to the regularised

on-shell action (B.8),

βF =Md−1
P βVd−1

[

edA
(

ḟ + 2(d− 1)Ȧf +W0

√

f
)]

u=uUV

(B.13)

Let us look at the two terms in the square brackets separately.

1. Using equations (2.8) and (2.9) we can rewrite the first term simply as follows:

Md−1
P βVd−1

[

edAḟ
]

uUV

= −βTs Vd−1. (B.14)

2. The second term can be recast in a simpler form if we revert to the first order

formalism developed in appendix A, and we write Ȧ in terms of the finite temperature

superpotential W using equation (A.1):
(

2(d− 1)Ȧf +
√

f W0

)

= −
√

f
(

W
√

f −W0

)

edA. (B.15)

As shown in appendix A, close to the boundary the superpotential takes the form

W =W0(φ) +
C(T )

ℓ
|φ|d/∆− + . . . (B.16)

up to terms which vanish faster than edu/ℓ as u→ −∞. In the equation above, W0(φ)

is the same universal power-series which solves the zero-temperature superpotential

equation (B.10), and which enters the counter-term (B.11).

We now expand
√
f and edA using (2.11),

√

f ≃ 1− ℓD

2d
edu/ℓ +O

(

e2du/ℓ
)

, edA ≃ e−du(1 +O(e2∆−u/ℓ)). (B.17)

Inserting the expansions (B.16) and (B.17), the right hand side of equation (B.15)

takes the form,
√

f
(

W
√

f −W0

)

edA≃−W0
ℓD

2d
−C(T )

ℓ
|φ|d/∆−edA→ (d−1)

d

Ts

Md−1
p

−C(T )ℓd−1|j|d/∆−

(B.18)

where in the last step we have taken the limit uUV → −∞ and we have expressed D

in terms of Ts by equation (2.9).

Putting everything together we finally arrive at the expression for the free energy,

F = −Ts
d
Vd−1 − (Mpℓ)

d−1C(T )|j|d/∆−Vd−1. (B.19)
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B.2 Thermal vev

In this appendix we show the validity of the relation

∂F(T, j)

∂j
= −〈O〉Vd−1 (B.20)

where the dual operator vev 〈O〉 is related to C(T ) and j by equation (A.35),

〈O〉 = (Mpℓ)
d−1 d

∆−
C(T )|j|∆+/∆− sign(j). (B.21)

For simplicity of notation we suppose j > 0, but the final result holds for either sign of j.

We start from the expression (2.28),

F = T d

(

−σ(T )

d
+ γ(T )

)

, γ(T ) ≡ (Mpℓ)
d−1Vd−1

C(T )

T d
, T =

T

j∆−

. (B.22)

First, we differentiating F with respect to T , and use the identities

∂T
∂T

=
1

j∆−

,
∂T
∂j

= − 1

∆−j
T , (B.23)

to obtain
∂F
∂T

= −T d−1

[(

σ′

d
+ γ′

)

T + d
(σ

d
+ γ
)

]

, (B.24)

where a prime denotes a derivative with respect to the argument, T . On the other hand,

we make use of the thermodynamic relation

s = − 1

Vd−1

∂F
∂T

, (B.25)

to replace the left hand side of equation (B.24) by −T d−1σ. This leads to the relation

(

σ′

d
+ γ′

)

= −dγ. (B.26)

Next, we differentiate equation (B.22) with respect to j,

∂F(T, j)

∂j
= T d

(

σ′

d
+ γ′

) T
∆−j

= − d

∆−

T d

j
γ, (B.27)

where we have used the result (B.26) in the second equality. Finally, using the definition

of γ from equation (B.22), we obtain,

∂F(T, j)

∂j
= −(Mpℓ)

d−1Vd−1
d

∆−
C(T )j∆+/∆− (B.28)

Comparing the right hand side with the equation above with the relation (B.21), we obtain

the desired result (B.20).
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C Determination of the free energy using scalar variables

C.1 The phase variables

We define the two phase variables X and Y as:

X(φ) ≡ γ

d

φ′

A′ , Y (φ) ≡ 1

d

g′

A′ , (C.1)

where the function g is defined as g = log f and the constant γ is given by,

γ =

√

d

2(d− 1)
. (C.2)

These functions satisfy:

dX

dφ
= −γ (1−X2 + Y )

(

1 +
1

2γ

1

X

d log V

dφ

)

, (C.3)

dY

dφ
= −γ (1−X2 + Y )

Y

X
. (C.4)

This second order system is sufficient to determine all of the thermodynamic properties

(and dissipation) of the gravitational theory [27]. This is a reduction of the fifth order

Einstein-scalar system to an equivalent second order system.

It is straightforward to show that these equations combined with the following three,

dA

du
= −1

ℓ
e−γ

∫ φ

0 X(t)dt, (C.5)

dφ

du
= −1

ℓ

d

γ
X(φ)e−γ

∫ φ

0 X(t)dt, (C.6)

dg

du
= −1

ℓ
d Y (φ)e−γ

∫ φ

0 X(t)dt, (C.7)

solve the original Einstein equations in the domain-wall variables defined by the

ansatz (2.2). The solution in the conformal coordinates is found by the change of vari-

ables du = exp(A)dr,

ds2 = e2A(r)
(

f−1(r)dr2 + dx2d−1 + dt2f(r)
)

, Φ = Φ(u). (C.8)

One can also express g and A in terms of the phase variables directly from the defini-

tions (C.1):

A(φ) = A(φc) +
γ

d

∫ φ

φc

dφ̃

X
, (C.9)

f(φ) = exp

(

γ

∫ φ

0

Y

X
dφ̃

)

. (C.10)

Here Φc denotes a surface near the boundary where we will apply the UV matching condi-

tions of the TG and the BH solution in the following. Another useful equation relates the

scalar potential to the phase variables, that follows from (C.3):

V (φ) =
d(d− 1)

ℓ2
(

1 + Y −X2
)

e
−2γ

∫ φ

0 (X(t)− Y (t)
2X(t)

)dt
. (C.11)
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The precise form of the overall coefficient follows from inserting (C.5), (C.6) and (C.7) in

the Einstein’s equations.

The temperature T and the entropy density s of the black-hole are given by

T (φh) =
ℓ

4π(d− 1)
eA(φh) V (φh) e

γ
∫ φh
0 X(φ) dφ, (C.12)

s = 4πMd−1
p e(d−1)A(φh). (C.13)

In the first equation we used

− 4πT = f ′(rh) =
df

dφ

dφ

du

du

dr

∣

∣

∣

∣

φh

=
d

ℓ
Y (φh)e

A(φh)+γ
∫ φh
0 ( Y

X
−X)dφ̃ , (C.14)

and the fact that Y (φ) diverges as φ → φh to express it in terms of the same limit of

the potential (C.11). As A(φ) from (C.9) diverges as the cut-off φc is removed, equations

that explicitly involve A(φh) are not very efficient practically. Instead, one can derive the

following equations with no reference to A(ϕ) after a little bit of algebra:

T = Tref

(

V (φh)ℓ
2eγ

∫ φh
0 X

)1− 1
d

Y0(φh)
1
d , s = sref

(

Y0(φh)
−1V (φh)ℓ

2eγ
∫ φh
0 X

)

1
d
−1

,

(C.15)

where Tref and sref are constants given by:

Tref =
d

1
d (d− 1)

d
d−1

4π
|j|

1
∆

− , sref = 4π(d(d− 1))1−
1
d (MP ℓ)

d−1|j|
d−1
∆
− . (C.16)

Finally we note that the variable X is related to the superpotential defined in section A as

W (φ) =
2(d− 1)

ℓ
e−γ

∫ φ

0 X(t)dt . (C.17)

C.2 UV and IR asymptotics

We first discuss the UV asymptotics in the zero T solution. Equation (C.3) near φ = 0

yields

X0(φ) = −X±φ+O(φ2) (C.18)

where

X± =
γ

2

(

1±
√

1 +
4m2ℓ2

d2

)

. (C.19)

Here the integration constant of equation (C.3) is not visible in the Taylor expansion near

the UV. In fact it is given by a non-analytic term. As discussed in [27] this integration

constant is completely fixed by the choice of asymptotics in the IR. In passing we note

the relationship:
γ

X±
=

d

∆±
. (C.20)

As mentioned above the relevant deformations correspond to m2 < 0. The BF bound can

be read off from (C.19) as,
m2ℓ2

d2ξ
≥ −1

2
. (C.21)

– 59 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
3

By computing the expansion of φ near the boundary one learns that the choice X → −X−φ

corresponds to a deformation of the UV conformal theory by a source, and X → −X+φ

corresponds to a VeV, hence spontaneous breaking of conformal symmetry. We will assume

deformation by a source below.

At finite temperature, solution of (C.3) and (C.4) near φ yields,

Y (φ) = Y0(φh) φ
d

∆
− + · · · (C.22)

X(φ) = X0(φ) + δX0(φh) φ
d

∆
−

−1
+ · · · (C.23)

Here, δX is defined as the deformation due to the presence of the BH, i.e. δX = 0 for the

TG solution. We indicated the dependence of the integration constants in the UV on the

location of the horizon φh.

Using these asymptotics in (C.5) and (C.6) we find

φ(u) = φ−e
∆−

u
ℓ + · · · (C.24)

A(u) = Ã0 −
u

ℓ
+ · · · (C.25)

where u→ −∞ corresponds to the boundary and φ0 and Ã0 are the integration constants.

Because the equations of motion are invariant under the change of variables u→ u+const,

the integration constant Ã0 can be set to zero. This is what we will do in the following.

Changing to the conformal frame near the boundary where r/ℓ = exp(u/ℓ), we have

φ(r) = jr∆− + φ+r
∆+ · · · (C.26)

A(r) = − log
r

ℓ
+ · · · (C.27)

We further note the constant limit

lim
φ→0

eA(φ)φ
γ

dX
− = ℓ|j|

1
∆
− . (C.28)

UV asymptotics of X and Y cannot depend on any other integration constant by the

following simple argument. One solves (C.3) and (C.4) starting from the horizon. A priori

one expects two integration constants. Location of the horizon can be viewed as one,

therefore there remains one. However, demanding a regular horizon of the form

f(φ) = const.× (φh − φ), near φh, (C.29)

from the equations (C.10) and (C.4) means that this remaining integration constant is

completely fixed, as one should require,

X(φ) = − 1

2γ

V ′(φh)

V (φh)
+O(φh − φ); Y (φ) = − X(φh)

γ(φh − φ)
+O(1), (C.30)

near φ ≈ φh. In general, this argument shows that one does not have to worry about the

other integration constant which can be thought of as the source j — that we discuss below

— if one derives the thermodynamics directly from the X, Y system. Below, we show this

in more detail.
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C.3 The free energy

One can calculate the free energy directly from the on-shell value of the GR action by using

the solution expressed in terms of the phase variables above. The blackhole metric in the

φ frame reads,

ds2BH = B2(φ)

(

dt2F (φ) + d~x2 +
dφ2

F (φ)D(φ)2

)

. (C.31)

Here the various metric functions are defined as follows:

B(φ) = B(φ0)e
γ
d

∫ φ

φc

dφ̃
X , (C.32)

D(φ) = − d

γℓ
X(φ)B(φ)e−γ

∫ φ

0 dφ̃X , (C.33)

F (φ) = eγ
∫ φ

0 dφ̃ Y
X , (C.34)

where φc is a UV cut-off that we will remove at the end of the calculation. They are

obtained directly from the expressions for the metric functions defined in the text in terms

of the radial variable r, viz. (C.9), (C.10) and (C.5)–(C.7). We call the metric functions

in λ with the capital letters to distinguish them from the analogous functions of r. The

relations are explicitly given by B(φ) = b (r(φ)), F (φ) = f (r(φ)) where r is determined by

r(φ) =

∫ φ

0

dφ̃

D(φ̃)
.

The expressions above completely determine the map between the r-frame and the φ-frame.

Einstein contribution. We first compute the Einstein (bulk) contribution to the free

energy, i.e. the first term in equation (2.1). The bulk on-shell action Sbulk (after using the

Einstein’s equations) is generally given by the frame-independent expression,

Sbulk =
2

d− 1
Md−1

∫

M

√
g V. (C.35)

M is the manifold with a boundary. We regulate the integral in the φ-frame by placing

a cut-off at φc. Thus, using the metric functions defined above, one obtains the following

expression in the φ variable

Sbulk =
2

d− 1
Md−1βVd−1

∫ φh

φc

B(φ)d+1V (φ)D(φ)−1. (C.36)

We now substitute the expression for D(φ), B(φ) and V (φ) from (C.33), (C.32) and (C.11),

and obtain,

Sbulk = −2γ

ℓ
Md−1βVd−1B(φc)

de−γ
∫ φc
0 (X− Y

X
)dφ̃

∫ φh

φc

dφ
1−X2 + Y

X
eγ

∫ φ

φc
dφ̃ 1−X2+Y

X .

(C.37)

Integrand is a total derivative, thus

Sbulk = −2

ℓ
Md−1βVd−1B(φc)

de−γ
∫ φc
0 (X− Y

X )dφ̃eγ
∫ φ

φc
dφ̃ 1−X2+Y

X

∣

∣

∣

∣

φh

φc

. (C.38)
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This can be simplified further: using (C.4), one realises that the integrand in the exponent

is a total derivative of log Y (φ). Thus, one has,

Sbulk = −2

ℓ
Md−1βVd−1B(φc)

de−γ
∫ φc
0 (X− Y

X )dφ̃
(

Y (φc)

Y (φh)
− 1

)

. (C.39)

But Y (φh) = ∞ by regularity condition at the horizon (see section C.29), hence we have

the final expression for the Einstein contribution on the BH geometry:

Sbulk =
2

ℓ
Md−1βVd−1B(φc)

de−γ
∫ φc
0 (X− Y

X )dφ̃. (C.40)

Gibbons-Hawking contribution. We move on to the Gibbons-Hawking term that is

given by the frame-independent expression, the second term in (2.1):

SGH = −2Md−1

∫

∂M
ddx

√
h K (C.41)

with

Kµν ≡ ∇µnν =
1

2
nρ∂ρhµν , K = habKab (C.42)

where hab is the induced metric on the boundary and nµ is the (outward directed) unit

normal to the boundary. In the φ-frame (C.31), it is given by

nµ = − 1
√
gφφ

(

∂

∂φ

)µ

=
δµφ√
gφφ

. (C.43)

The determinant of the induced metric on the boundary and the extrinsic curvature now are

√
h = B(φc)

d
√

F (φc) , (C.44)

and

K =
γD(φc)

√

F (φc)

X(φc)B0(φc)

(

1 +
Y (φc)

2

)

. (C.45)

Therefore one finds,

SGH = −2d

ℓ
Md−1βVd−1B(φc)

dF (φc)e
−γ

∫ φc
0 X

(

1 +
Y (φc)

2

)

. (C.46)

Counter-term. The counter-term action is expressed in terms of the superpotential in

equation (B.12). Using equation (C.17) we obtain

Sct =
2(d− 1)

ℓ
Md−1βVd−1B(φc)

de−γ
∫ φc
0 Xct− Y

2X , (C.47)

where Xct is the analytic solution to (C.3) obtained in terms of odd powers of φ. We will

only need the first term Xct = −X−φ+ · · · in what follows.
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The total free energy. The total free energy now can be obtained as the sum of (C.40),

(C.46) and (C.47). Using the relation between the free energy and the on-shell gravity

action F = S/β, equations (C.23), (C.22) and (C.28) we find in the limit φc → 0,

F = (Mpℓ)
d−1Vd−1|j|

d
∆
− (2(d− 1) sgn(j)X−δX0(φh)− Y0(φh)) . (C.48)

The physical meaning of the constants δX0 and Y0 are as follows. Solving (C.6) near the

boundary and matching onto (2.11a) and using (2.12) one finds that the VeV is given in

terms of δX0 as,

〈O〉 = d

γ
|j|

d
∆

−

−1
δX0(φh) . (C.49)

On the other hand solving Y from (C.1) near the boundary using the near boundary

expansions, and the definitions of T and s from (2.5) we find Y0 in terms of enthalpy as

Y0(φh) =
Ts

d
(Mpℓ)

1−d|j|
d

∆
− . (C.50)

Then the free energy (C.48) can directly be expressed in terms of the enthalpy and the

VeV as in (2.23).
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