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Abstract 

In the past few years there has been an increasing interest in workflow applications as a 

way of supporting complex business processes in modern corporations. Given the nature 

of the environment and the technology involved, workflow applications are inherently 

distributed and pose many interesting challenges to the system designer. In most cases, a 

client/server architecture is used in which knowledge about the processes being executed is 

centralized in one node to facilitate monitoring, auditing, and to simplify synchronization. 

In this paper, we explore a novel distributed architecture, Exotica/FMQM, for workflow 

systems in which the need for such a centralized database is eliminated. Instead, we use 

persistent messages as the means to store the information relevant to the execution of a 

business process. Our approach is to completely distribute the execution of a process so 

individual nodes are independent. The advantages of this approach are increased resilience 

to failures and greater scalability and flexibility of the system configuration. 
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1 INTRODUCTION 

Business processes within large organizations often involve a large number of resources, 

people and tools distributed over a wide geographic area (in what follows, the word pro

cess refers to a business process, or workflow, rather than to the conventional operating 

system process). Workflow management systems are used to automate the coordination 

of all these diverse elements thereby increasing the efficiency of the corporation and 

its ability to monitor its activities. In designing such systems there is a trend towards 

client/server architectures in which a dedicated server provides most of the functional

ity of the system while the computing potential at the clients is barely used. There are 

a number of reasons for this choice: lightweight clients, centralize monitoring and au

diting, simpler synchronization mechanisms, and overall design simplicity. However, an 

architecture based on a centralized server is vulnerable to server failures and offers lim

ited scalability due to the potential performance bottleneck caused by the centralized 

server. Hence, client/server architectures may not be the most appropriate approach in 

certain applications. In "particular, it is not clear how this kind of systems will scale to 

hundreds of thousands of business processes or will be able to provide the high availabil

ity required in mission critical applications. In this paper, we explore a fully distributed 

workflow system and discuss the trade-offs of our approach with respect to a central

ized architecture. The key idea of our approach is to eliminate the need for a centralized 

database by using persistent messages. We use the workflow reference model proposed by 

the Workflow Management Coalition (Hollinsworth, 1994] to guarantee the generality of 

the results. The Workflow Management Coalition is formed by a group of vendors setting 

standards for the interoperability of their systems. Our immediate research, however, has 

been centered around FlowMark [IBM, 1995d], [IBM, 1995a], [IBM, 1995b], [IBM, 1995c], 

[Leymann and Altenhuber, 1994], (Leymann and Roller, 1994], IBM's workflow product, 

and MQI [IBM, 1993], [Mohan and Dievendorff, 1994], an IBM defined API for persistent 

messaging, along with MQSeries, a family of products that supports MQI. This has al

lowed us to check our assumptions and results against a real system and real customer 

requirements. Both Flow Mark and MQI follow closely standards in their respective areas, 

making the issues discussed in this paper pertinent to workflow management systems in 

general. 

The system we have designed, Exotica/FMQM*, Flow Mark on Message Queue Man

ager, is a distributed workflow system in which a set of autonomous nodes cooperate to 

complete the execution of a process. Each node functions independently of the rest of the 

system, the only interaction between nodes is through persistent messages informing that 

the execution of a step of the process has been completed, thus avoiding the performance 

bottleneck of having to communicate with the server during the execution of a process. 

Moreover, the resulting architecture is more resilient to failures since the crash of a sin

gle node does not stop the execution of all active processes. Our main contributions are 

to present a distributed architecture for workflow management using a persistent mes

sage passing system and provide an in-depth analysis of the impact a fully distributed 

architecture has on the workflow model. 

*IBM Almaden Research Center's Exotica project aims at incorporating advanced transaction manage

ment capabilities in IBM's products and prototypes. Exotica also involves IBM groups in Hursley (U.K.), 

Biiblingen (Germany), and Vienna (Austria). 
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Figure 1 A business process example. 
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The paper is organized as follows: in the next section, we describe the model proposed 

by the Workflow Management Coalition and some of the particular details of Flow Mark, 

as well as a generic persistent message mechanism. In Section 3, we present a novel 

architecture for workflow systems based on persistent message passing. Section 4 discusses 

practical aspects of the implementation and the impact of distribution on the overall 

model. In Section 5 .we briefly discuss related work. Section 6 concludes the paper. 

2 BACKGROUND: WORKFLOW AND PERSISTENT MESSAGING 

To establish a common notation, in this section we will present the reference model of 

the Workflow Management Coalition as well as a generic persistent message mechanism. 

To further focus the discussion and cover some implementation details, Flow Mark is also 

briefly described. 

2.1 Workflow Systems 

The work taking place in large organizations is often referred to as business processes. A 

business process is "a procedure where documents, information or tasks are passed be

tween participants according to defined sets of rules to achieve, or contribute to, an overall 

business goal" [Hollinsworth, 1994]. Figure 1 shows an example of a nested business pro

cess [Garcia-Molina et al., 1990]. In the context of information systems, these business 

processes need a suitable representation. This representation is called a workflow. Hence, 

a workflow management system, WFMS, is "a system that completely defines, manages 
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Figure 2 Elements of the Workflow Model. 

and executes workflows through the execution of software whose order of execution is 

driven by a computer representation of the workflow logic" (Hollinsworth, 1994]. 

In more concrete terms, the task of the WFMS is to schedule the execution of activities. 

In scheduling these activities, the WFMS determines what to execute next, locates the 

tools associated with each activity, transfers information from activity to activity, assigns 

activities to users, checks the timeliness of the execution, monitors the overall progress 

and determines when the process has been completed successfully. 

2.2 Workflow Model 

To perform its task, the WFMS needs to be supplied w.ith a description of the business 

process. This is a workflow model. The Workflow Management Coalition has proposed the 

following meta-model [Hollinsworth, 1994]. A business process is represented as a process 

with a name, version number, start and termination conditions and additional data for 

security, audit and control. A process consists of activities and relevant data. Each step 

within a process is an activity, which has a name, a type, pre- and post-conditions and 

scheduling constraints. It also has a role and one invoked application associated with it. 

The role determines who will execute the activity. The invoked application is the tool to be 

used in the execution, which may range from computer programs to human activities with 

no specific tool, e.g., a meeting. Furthermore, activities use relevant data defined as the 

data passed to and produced by the activities. Relevant data includes name and type, as 

well as the path specifying the activities that have access to it. The flow of control within 

a process - what to execute next - is determined by transition conditions, usually boolean 

expressions based on relevant data. The users of the system are represented in terms of 

roles. Invoked applications have a name, type, execution parameters and, in the case of 

programs, a location or access path. All these elements and their relationships are shown 

in Figure 2, which is our own interpretation of the reference model [Hollinsworth, 1994]. 
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2.3 Navigation and Execution in FlowMark 

The reference model does not provide implementation details. To discuss how a process 

is actually executed we need to resort to an existing system. We use FlowMark since 

its model closely follows the reference model of the Workflow Management Coalition. In 

Flow Mark, omitting users and invoked applications, an activity has the following concepts 

associated with it: 

• Flow of Control: specified by control connectors between activities, is the order in 

which these activities have to be executed. This corresponds to the transition conditions 

of the reference model. 

• Input Container: a sequence of typed variables and structures which are used as 

input to the invoked application. 

• Output Container: a sequence of typed variables and structures in which the output 

of the invoked application is stored. 

• Flow of Data: specified through data connectors between activities, is a series of 

mappings between output data containers and input data containers to allow activities 

exchange information. The data containers and the flow of data form the relevant data 

mentioned the reference model. 

• Start Condition, that must be met before the activity is actually scheduled. If the 

condition can never be met, then the activity is marked as having actually terminated. 

The start condition is a boolean expression involving the states of the incoming control 

connectors. It corresponds to the pre-condition of the activity in the reference model. 

• Exit Condition, that must be met before an activity is considered to have completed. 

If the exit condition is not met, then the activity will be rescheduled for execution. It 

corresponds to the post-condition of the activity in the reference model. 

Navigation in Flow Mark takes place through the data and control connectors. Control 

connectors determine the flow of control within the process. A control connector between 

two activities, t 1 and t 2 , implies that h can only start execution after h has terminated. 

Thus, when t 1 terminates, t2 must be notified of the fact - note that the user written code 

for t 2 does not get executed at this point, the notification is internal to Flow Mark. On the 

other hand, if t 1 is never going to be executed, t2 must also be notified of that fact. The 

notification will be done by t 1 upon termination or when it is marked as finished because 

it will not be executed. The process by which activities that will never execute are marked 

off is known as dead path elimination [IBM, 1995a], [IBM, 1995b], [Walk, 1993]. 

Each control connector has a state. Before the activity from where it originates finishes, 

the control connector is unevaluated. Once the activity terminates, the control connector 

is evaluated and its state is set to TRUE or FALSE. The evaluation involves check

ing whether the transition condition for the connector is true or false. Such transition 

conditions are boolean expressions involving data returned by activities in the output 

containers. 

Similar to the flow of control, FlowMark lets the user define the flow of data in a 

given process. The flow of data is expressed via data connectors. Each data connector 

is a mapping between the output container of an activity and the input container of 

another. To avoid race conditions, the data flow must follow the ordering imposed by 

the control flow, except for the fact that an activity can have a data connector between 



6 Information Systems Development for Decentralized Organizations 

----<>- Contra~ connector 

··········'>' Data connector 

Activity 

Packaging 

PURCHASE ORDER 
PROCESS 

Delivery 

Figure 3 The example of Figure 1 formalized using Flow Mark concepts. 

its output container and its input container to provide feedback information in loops. 

Figure 3 illustrates the purchasing example discussed earlier in the context of Flow Mark 

and illustrates the usage of the Flow Mark entities discussed above. Finally, processes are 

independent entities, i.e., there are no inter-process dependencies. 

2.4 The Architecture of FlowMark 

Flow Mark runs across different platforms (AIX, OS/2, Windows) and supports distribu

tion of most of its components. However, in its current version, persistent data resides 

in a single database server, ObjectStore. This has facilitated the design of the overall 

system, but introduces a single point of failure in the architecture. As far as we know, 

most existing systems are also based on a centralized database and, hence, suffer from 

the same problem. Besides the database server, FlowMark is organized into three other 

components: FlowMark Server, Runtime Client and Buildtime Client. These correspond to 

the three functionalities mentioned in the reference model (Hollinsworth, 1994]: Buildtime 

Client for build-time functions, Runtime Client for run-time interactions, and Flow Mark 

Server for run-time control. A FlowMark system can have several of these components 

executing at the same time. A FlowMark server is connected as a client to a database. 

FlowMark servers can reside in remote hosts other than the one where the database is 
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located. Communication between the server and the clients takes place through TCP /IP, 

NetBIOS or APPC, depending on the platform. 

Navigation, as explained above, takes place in the FlowMark server. The creation and 

definition of processes is done using the GUI interface provided by the buildtime clients. 

Finally, users and programs interact with the server through the runtime clients. There 

can be several clients, both buildtime and runtime, attached to a server. 

2.5 Persistent Messages 

In the past few years, there has been a growing interest in message passing/ queuing 

[Mohan and Dievendorff,-1994]. In general, many applications require a communication 

mechanism that hides the complexities of the underlying system and allows communica

tions across heterogeneous platforms and independently of the protocol used. These ser

vices are, preferably, connectionless and accessible through API calls. The most common 

mechanism is to provide a local queue where applications can place and retrieve messages. 

Once left in the local queue, the communication system will take care of delivering it to 

the appropriate queue in a remote machine. This has the advantage of being protocol 

independent since the application just uses queues. Moreover, these queues can be made 

persistent so messages survive crashes, making asynchronous communication possible be

tween applications that run at different points in time. There are even some standarization 

efforts underway lead by the Message Oriented Middleware Association, MOMA. Numer

ous products exist: DEC's MessageQ, Transarc's Recoverable Queuing Services, Novell's 

Tuxedo/Q, and IBM's MQSeries, to name a few. The type of features provided by these 

products is very suitable for connecting highly distributed applications, therefore we will 

rely on the features they provide. 

We base our design on a generic queue system with the following characteristics. Nodes 

will communicate via recoverable queues, i.e., once a message is placed on a queue and the 

corresponding transaction is committed it becomes persistent until it is retrieved. Each 

queue is associated with one node in the system. Messages are added and retrieved from a 

queue using PUT and GET calls, which can be issued both on local and remote queues. 

GET calls can access any message in a queue, not necessarily only the first message in 

the queue. Finally, it is possible to browse through a queue without actually retrieving 

any messages. A key aspect of the messaging system is its ability to support transactional 

semantics for both PUT and GET calls. We will use this property to ensure that messages 

do not get lost when failures or crashes occur. 

3 THE DISTRIBUTED ARCHITECTURE OF EXOTICA/FMQM 

In this section, we describe a distributed architecture for a workflow management system 

with high reliability and scalability. We refer to this system as ExoticajFMQM- Flow Mark 

on Message Queue Manager. 

3.1 Motivation 

As we have already pointed out, the centralized database needs to be replaced in the 

new architecture, both to eliminate it as a single point of failure and a bottleneck. In 
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a workflow system, the execution of a business process is analogous to a distributed 

computation. That is, each node executes its part of the job and synchronizes with other 

nodes by communicating over a network. However, in our case we cannot afford node or 

communication failures affecting the work in the entire system. One more restriction is 

that the nodes, the runtime clients, must be kept simple since they probably will run 

in low-end machines like PCs or laptops, which rules out the possibility of providing 

each node with full database functionality. To overcome these limitations, we propose to 

use a persistent message mechanism and a minimal amount of persistent storage at each 

node. The communication layer is used as persistent storage to maintain workflow related 

information. The storage at each node is used to recover from failures. Moreover, we have 

tried to minimize the need for storage outside of message queues at each node so it can 

be easily implemented in files. 

With this approach, a process is executed in a truly distributed fashion, with each node 

holding only the information it needs to perform its part of the workflow. Failures can 

only lead to blocking behavior on the activities that are being executed at the failed node 

but single failures do not prevent other nodes from working on different parts of the same 

processes or in completely different processes. 

For notational purposes, a process refers to the representation of a business process. 

There can be many instances of the same process running concurrently, these are called 

process instances. Note that some of the information stored at each node will relate to the 

process - static information - while other parts will relate to process instances - runtime 

information. 

3.2 Process Definition and Binding 

According to the reference model, all the procedures related to defining a process are 

performed in the Buildtime Client, an independent module that provides a graphical user 

interface to perform all these tasks. The equivalent to the Buildtime Client in Exot

ica/FMQM is any node that has the appropriate user interface and can check the process 

definition for inconsistencies and errors. We will refer to this node as the process defini

tion node. The nodes where the process instances are executed are the runtime nodes. For 

simplicity, we will refer to them simply as nodes. 

Once a process has been defined, this definition is compiled to determine the information 

relevant to each node, binding activities to the nodes where they will be performed. At 

each node, there is a node manager in charge of communicating with the process definition 

node. The node manager maintains a process table on a per process basis, which contains 

the static information related to the execution of instances of each process. During the 

execution of process instances, communication between nodes takes place through queues. 

At each node there will be a queue for messages related to all the instances of the same 

process. Queues are named with the process id and the node id. Hence, each process table 

corresponds to a queue, and both correspond to a single process. Each node is interested in 

the part of the process that it will have to execute. Therefore, the process definition node 

sends to each involved node's manager only the information pertaining to the activities 

that will execute at that node. The node manager, upon receiving the information from 

the process definition node, creates the process table. 

Once a node manager has all the static information stored in the process table, it starts 

a thread that will be in charge of coordinating the execution of instances as they arrive at 
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the node. We will refer to this as the process thread. The first task of the process thread 

is to create the queue where the messages from other nodes will be received. A process 

thread examines the queue for incoming messages and decides when an activity is ready 

for execution. When this happens, an activity thread is started to manage the execution 

of the activity. 

The process table is a list of what to do to execute the activities that correspond to 

the node. Hence, it is organized according to these activities. Without getting into details 

of how its implementation could be optimized, the process table has an entry for each 

activity in the following form: 

• Process identifier. 

• Activity identifier. 

• List of incoming control connectors, plus the corresponding starting condition. 

• List of outgoing control connectors, plus the associated queue where the result of the 

evaluation of the connector is reported. For instance: t4 , Qv,o, CONDIT ION repre

sents activity t 4 , of process 0, located in node D, and accessible through a queue named 

Qv,o· CONDIT ION is a transition condition, i.e., a boolean expression used to decide 

whether to follow or not the path marked by the connector. 

• Exit condition, which is a boolean function of the values found among the output data. 

• Incoming data connector, plus the filtering information to select the relevant data. For 

instance, tl> FILTER. FILTER specifies which is the relevant data out of all the data 

received. Since many activities may read data from the same output data container, 

each one of them needs a mapping to extract only the relevant data. The filter specifies 

this mapping. 

• Outgoing data connector, which specifies the receiving activity and the queue where 

this has to be reported. For instance, t4, Qv,o. 

• Input data template, where the type of the input data is specified. 

• Output data template, where the type of the output data is specified. 

To summarize, what we have described so far is the per-process data structures, queue, 

threads and algorithms at each node. The sequence of events is as follows: a user first 

creates a process. The process is compiled in the process definition node. After compila

tion, the process is divided in several parts and each part is distributed to an appropriate 

node. The division of the process into parts will be based on the users associated with 

the different nodes and the roles associated with the different activities in the process. 

Upon receiving its part of the process, a node creates a process table to store this infor

mation and starts a process thread to handle the execution of instances of such process. 

Finally, the process thread creates a queue for communicating with other nodes all in

formation relevant to instances of the process. Figure 4 shows all these components and 

their interactions. Specific examples of process tables are shown in Figure 5. 

3.3 Process execution 

During execution, the information regarding the process instances will be stored in an 

instance table handled by the activity threads. These threads are responsible for the 

execution of individual activities within an instance. All PUT and GET calls are executed 

within transactions, i.e., their effects are not permanent until the transaction commits. 
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Figure 4 Distribution of a process among several nodes with three active instances. 

When a process instance is started, for all starting activities of that instance - those 
without predecessors, i.e., without incoming control connectors - messages are sent to 

the nodes where the activities are located. This is done by PUTting the messages in 

the appropriate queues. In a node receiving that message, the sequence of activities that 
take place is as follows. The process thread scans the queue periodically, looking for new 

messages. If there is a triggering facility in the queue system it can be used to receive 
messages more efficiently. When it finds a new message, it browses through it - without 
retrieving it from the queue, this is important in case of failures- and spawns an activity 

thread. The activity thread first checks the process table to find the data pertaining to 

that activity. With this data it creates an entry for that activity in the instance table 

where it will record the progress of the activity. It then checks the start condition of the 

activity. If it cannot be evaluated, because not all incoming control connectors have been 

evaluated, it makes a note in the instance table about what control connector has been 

evaluated - the one to which the message received corresponds - and goes to sleep until 

the process thread awakens it again with new messages. 

If the start condition is false, then the activity is considered terminated. Dead-path 

elimination messages are sent along the outgoing control connectors - PUT calls to the 
corresponding queues - the entry is removed from the instance table and the messages 

corresponding to this activity are retrieved from the process queue- with a GET call. All 

the operations performed upon termination of the activity are one atomic action. This 

cau Le accomplished by using the transactional properties of the GET and PUT calls. 

If the start condition evaluates to true, then the corresponding application is invoked, 

passing to it the data in the input template. When the application terminates, it returns 
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an output data template which is stored in the instance table. Then the activity thread 

evaluates the exit condition of the activity. If it is false, the application is invoked again. If 

it is true, the activity is considered terminated. Upon successful termination, the outgoing 

control connectors' CONDITIONs are evaluated and messages are sent to the appropri

ate nodes with PUT calls to their queues. The output data template is sent to the nodes 

specified in the process table as outgoing data connectors. Then the entry is removed 

from the instance table and all messages corresponding to the activity are retrieved from 

the process queue. Note that each message corresponds to one activity, once the activ

ity successfully terminates there is no need to keep the messages. These operations are 

performed as an atomic transaction as explained above. 

Note that some of the messages received by a node may correspond to data templates 

sent by other nodes. In this case, the activity thread uses the FILTER specified in the 

process table for that data connector to extract the relevant information. This information 

is then stored in the instance table, in the input data template entry for that activity. 

The instance table contains runtime information concerning the evolution of activities 

as different instances are executed. It has the following structure: 

• Process and instance identifiers. 

• Activity identifier. 

• Input data, the actual values for the input data. This will be gradually filled as the 

data becomes available - as messages containing the data arrive. 

• Output data, the actual values of the output data. This is what will be sent to all 

activities specified in the outgoing data connectors. 

• Status of the activity: inactive, in execution, executed, terminated. 

• Start condition, to store the partial results necessary to evaluate the start condition. 

As messages are received, the different parts of the boolean expression are evaluated. 

The instance table is stored in memory, there is no need to keep it in stable storage. 

The process table, however, needs to be in stable storage to allow proper recovery after 

failures. We will elaborate more on these points in the discussion. 

3.4 Example 

To better illustrate the above concepts, the example described in the initial sections can be 

adapted to the new notation. Assume that there are four nodes, A, B, C, and D, involved 

in the processing of a purchase order. The process table for this process at each node is 

shown in Figure 5. For simplicity, we have omitted in this figure the CONDITION of the 

control connectors, the exit conditions of the activities, and the FILTER of the incoming 

data connectors. 

Note that in the process table, the information is expressed in terms of actual queues. 

The notation used is as follows. T2QA,o - outgoing control connector of node A - means 

that there is a control connector between T1 and T2 for process 0, i.e., node A upon 

completing the execution of activity Tt, must notify the node who "owns" activity T2 • 

This can be found in the queue name, QA,o, which specifies that such node is A, reachable 

through queue QA,o· This queue name will be the one used in PUT calls. 

As an example of what happens during runtime, assume activity T4 is executing at node 

B. When this activity terminates, let's assume it is successful, its activity thread has to 
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Figure 5 The example of Figure 1 distributed among four nodes and their corresponding 

process tables. 

send the output data template along the outgoing data connectors, and notify about the 

termination along the outgoing control connectors. All this is done with PUT calls. For 

the control connectors, it will look in the Out.CC column of its process table for activity 

T4 . There it finds the name of the next activities, Ts and Ts, and the queues to which it 

has to send the messages, Qc,o and Qv,0• Hence, it will perform one PUT call to each of 

these queues. For the data connectors, the mechanism is similar. In the column Out.DC 

of the T4 entry in the process table of node B, there are two activities indicated, T5 and 

T6, and their queues, Qc,o and Qv,0 • The output data template is sent to those nodes by 

PUTting it in their queues. 

4 DISCUSSION 

In distributing the execution of a process completely, we had to make certain assumptions 

that are not necessary in a client/server architecture. For instance, with a centralized 

server each process has an owner, who can start process instances, abort their execution, 

and is notified of their termination. When the process is distributed among many nodes, 
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the notion of a process owner is much less obvious. For simplicity, we assume that a 

process instance starts by executing an activity that triggers the execution of all starting 

activities of the process instance. This is similar to the notion of "process owner", in the 

sense that the user assigned to the starting activity is the one who can effectively start 

an instance of the process. Similarly, a process instance is deemed terminated when all of 

its activities have terminated or have been marked as such by dead path elimination. In 

a client/server architecture all this information is centralized in the database, and hence 

checking for the process instance termination event is simple. In a distributed system, 

where the status of each activity is stored in a different node, process termination could 

raise some complicated issues similar to those of snapshots and termination detection 

[Chandy and Lamport, 1985], [Misra, 1983]. To avoid such complexity, we assume that 

all processes have a terminal activity such that when this activity terminates, or it is 

marked as terminated, the process has also terminated. This terminal activity is unique 

within a process and follows all other activities in that process. For notification purposes, 

this activity will have to contain information about the user that needs to be notified of the 

termination of the process instance. Similar problems arise for auditing and monitoring 

the system. 

Another interesting aspect of the distributed architecture is the management of work

lists. Worklists are lists of workitems belonging to one user. In a centralized system, this is 

very easy to maintain since users only need to logon to the central server to retrieve their 

worklist. Once retrieved, the server can update it by sending the updates to the runtime 

client where the user is currently logged on. Moreover, an activity may appear on several 

worklists simultaneously, but only one user will be allowed to execute it. The synchro

nization problem of ensuring that only one user actually executes the activity is solved by 

having the server select the user who contacts it first. These two features are complex to 

implement in a fully distributed environment since activities are associated with nodes. 

The use of remote GET helps to allow an activity to appear in several worklists. Nodes 

will be notified that messages are in a queue, rather than getting the message themselves. 

The first node to GET the message from that queue will be the one to which the activity 

is assigned. Other nodes trying to GET the message will find that it has already been 

retrieved from the queue and therefore discard the activity. 

To achieve resilience to failures we use transactional PUT and GET calls, plus the ability 

to browse a queue without retrieving messages. When a message is received regarding an 

activity, it is not retrieved from the queue until the activity has terminated. In other 

words, messages are kept until they are not needed anymore, and they are removed in an 

atomic operation. In this way, in case of failures which result in the loss of the instance 

table, a recovering node will restart the process thread which will find the messages still 

intact in the queue and, based on them, spawn again the appropriate activity threads 

which will reconstruct the instance table. This is the reason why instance tables do not 

need to be stored in stable storage and why process tables should be kept in stable storage. 

For the sake of completeness, it must be mentioned that an audit log is necessary to keep 

track of which activities have completed execution and to store messages, in case the user 

decides to restart a finished activity. This audit log can be another queue, checkpointed 

every so often. 

Persistent messages may be too expensive in same cases. A system designer should 

consider to use both persistent and non-persistent messages. Persistent messages survive 

crash failures whereas non-persistent messages are lost when a crash occurs. Communi-
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cations between the process definition node and other nodes, for instance, can take place 

through non-persistent messages. The same can be said about other operations such as 

monitoring or auditing. 

There are several aspects to the algorithms and mechanisms presented above that are 

crucial to the implementation of Exotica/FMQM. To provide a generic approach we have 

enumerated the features of the persistent message passing layer that are necessary in 

this implementation. Obviously, we do not expect to find all of these features in every 

message passing system. Therefore, in a real implementation, there are some trade-offs 

to be considered. For instance, IBM's MQI does not support remote GET calls and this 

complicates worklist management. Some other systems, like DEC's MessageQ, may pro

vide only limited transactional semantics which would require the handling of messages 

in a different way to avoid data loss due to failures. Transarc's RQS, for instance, does 

not support non-persistent messages which does not allow one to tune performance by 

using non-persistent messages in cases where there is no risk of data loss. In general, each 

implementation will have to deal with a different set of issues depending on the particular 

system being used. 

5 RELATED WORK 

The concept of workflow management has been around for a number of years. Only re

cently, however, the technology required to implement suitable systems has been available. 

Today there are more than 70 products that claim to be workflow solutions (Frye, 1994]. 

Standarization efforts are underway to guarantee a common reference model across all 

workflow products and platforms. The Workflow Management Coalition has recently pub

lished the Workflow Reference Model (Hollinsworth, 1994], along with other documents, in 

which the basic components of a workflow management system are outlined and described. 

There are many areas that have influenced or are related to workflow management. Doc

ument management, for instance, is concerned with the lifecycle of electronic documents. 

These systems can be traced back to early systems like TLA (Tsichritzis, 1982] where 

form procedures were proposed to organize the flow of forms. Electronic mail systems 

[Goldberg et al., 1992], (Malone et al., 1987], which provide means to distribute informa

tion among individuals. Office automation systems such as DOMINO, where the control 

and data flow in an office is controlled by a mediator that controls the execution of office 

procedures (Kreifelts and Woetzel, 1986], (Kreifelts et al., 1991]. Transaction based appli

cations, like the model based on extended nested sagas (Garcia-Molina et al., 1990] for 

coordinating multi-transaction activities, or the ConTract model, which provides reliable 

control flow between transactional activities (Waechter and Reuter, 1992]. Most of these 

early efforts were limited in their scope and did not address business processes in their 

full generality. More recently, several high level designs have been proposed for model

ing and managing business processes [Tomlison et al., 1993], [McCarthy and Sarin, 1993], 

[Medina-Mora et al., 1993], [Sheth, 1994), but most of them are centralized and fail to 

address issues such as high availability, failure resilience or scalability. Moreover, they 

tend to be transactional in nature and too centered around databases, which contrast 

with the reference model created by software vendors [Hollinsworth, 1994]. Barbara et 

al. [Barbara et al., 1994] proposed INCAS for distributed workflow management. In this 
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model, each execution of a process is associated with an Information Carrier, which is 

an object that contains all the necessary information for the execution as well as prop

agation of the object among the relevant processing nodes. In (Dayal et a!., 1990] and 

[Dayal et al., 1991], a specification language and a transactional model for organizing long 

running activities is developed. Although intended for workflow systems, the primary em

phasis is on long running activities in a transactional framework using triggers and nested 

transactions. The authors present a preliminary design using recoverable queues, which 

have similar semantics to the message queue interface (MQI) used in this paper. 

6 CONCLUSIONS 

Exotica/FMQM's architecture has two concrete goals. The first is to study the effects 

of complete decentralization on the design of a workflow product. The second is to an

alyze the feasibility of replacing a centralized database by persistent messaging. Both 

goals are of interest in workflow environments but they are broad enough to provide some 

insight in other areas. In particular, complete decentralization such as that achieved by 

Exotica/FMQM turns out to have implications that affect not only the underlying archi

tecture but also the expressiveness of a business process, which suggests the importance of 

using models with enough expressiveness but no a priori assumptions about the system. 

The gains obtained from using Exotica/FMQM's architecture are a greater resilience to 

failures, scalability, and the possibility of dynamically configuring the system as processes 

evolve. Since there is no centralized server, there are neither bottlenecks nor single points 

of failure. Node failures will stop the execution of process instances that use that node, 

but will not prevent other process instances from being executed at other nodes. The 

price for all this is more complex algorithms for navigation. Our conclusion is that for 

small or mid-sized business environments, a centralized architecture will probably suffice. 

However, for large or very large business environments, a distributed one provides much 

more flexibility and eliminates bottlenecks, thus appearing as a more promising venue for 

implementation. 

Future work includes using two phase commit protocols to integrate legacy applications, 

using logs for monitoring workflow processes, and exploiting non-persistent messages to 

improve performance. In general, message systems are designed for messages to be con

sumed fast. In our system, messages may remain in a queue for a long time and indexes 

on message header contents may be needed to help performance. Some extensions to the 

message system are necessary to provide an appropriate functionality. 
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