
ExpLab
A Tool Set for Computational

Experiments

Susan Hert Lutz Kettner
Tobias Polzin Guido Schäfer

MPI–I–2002–1-004 December 2002

Authors’ Addresses

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
[hert,polzin,kettner,schaefer]@mpi-sb.mpg.de

Acknowledgements

Partially supported by the Future and Emerging Technologies programme of
the EU under contract number IST-1999-14186 (ALCOM-FT).

Abstract

We describe a set of tools that support the running, documentation, and eval-
uation of computational experiments. The tool set is designed not only to
make computational experimentation easier but also to support good scien-
tific practice by making results reproducable and more easily comparable to
others’ results by automatically documenting the experimental environment.
The tools can be used separately or in concert and support all manner of ex-
periments (i.e., any executable can be an experiment). The tools capitalize
on the rich functionality available in Python to provide extreme flexibility
and ease of use, but one need know nothing of Python to use the tools.

Keywords

Computational Experiments, Algorithm Engineering, Performance Bench-
marking

1 Introduction

This document describes a set of tools that support the running, documentation,
and evaluation of computational experiments. We take our cues from the natural
sciences where experiments are performed in a lab that is equipped with tools designed
specifically for the purpose of supporting experimentation and where experiments are
fully documented in a lab book. This is done so the results can be analyzed in the
proper context and others can reproduce the same experiments to verify the results or
perhaps test hypotheses about which parts of the experimental context are responsible
for the observed results. The informational needs of scientists evaluating computational
experiments are exactly the same as those for evaluating other types of experiments:
the context must be known and, to lend credibility to the results, one must be able to
reproduce the same experiment in one’s own lab from the data presented. Such repro-
ducibility is recognized, not only by scientists, as an important part of scientific practice
[Joh96, MPG00], as is the ability to describe precisely the experimental environment
when presenting results [MM99].

1.1 Goals

There are three main goals that motivate the development of this tool set:

• to provide a simple way to set up and run computational experiments;

• to provide a means of automatically documenting the environment in which an
experiment is run so the experiment can be easily rerun (provided the same en-
vironment is still available) and the results can be more accurately compared to
the results of other computational experiments;

• to eliminate some of the tedium involved in collecting and analyzing output by
providing basic text output processing tools.

It must be noted that our goal here is not to replace existing tools that already provide
useful functionality for computational experiments (e.g., gnuplot, make, perl, python).
Rather, the goal is to augment this set with new tools that build on the functionality
already available to provide a comfortable experimentation environment.

1.2 Supported Platforms

We believe the tool set works on most Solaris, IRIX, and Linux platforms on which
Python version 1.6 or greater is installed. We have tested it on

• Solaris 5.8 and 5.9,

• IRIX 6.5, and

• Linux 2.2.19 (Debian).

We may unknowingly support other platforms as well. If you use the tools successfully
on some other platform, please let us know so we can extend this list.

1.3 Supported Experiments

Because we do not want to restrict the user by limiting the set of commands that can
be used in running an experiment, our notion of an experiment is very general; it is,
in fact, simply an executable. This means that a user may supply, for example, a
compiled binary file or an executable shell script as the experiment. This notion of
an experiment supports not only different computational contexts but also different
programming styles.

An experiment generally consists of three separate stages: setup (Section 2), exe-
cution (Sections 3 and 4), and analysis of results (Section 5). Our tool set is designed
with these three stages in mind but allows users to bypass any one of the stages so the
tools could be used, for example, to help in analyzing existing output files. Each of
the tools in our set has a command-line interface following the style of other common
Unix tools (Section 7.1). Recognizing that it can be tedious and error-prone to provide
a large (or even a small) set of command-line arguments that activate the features one
wants to use, all the tools also allow input of some or all arguments from a text file
(Section 6.2).

2 Setting up an Experiment

There are (at least) three things involved in setting up a computational experiment.
The first, very important one, is establishing a revision control repository for the source
files that are used to construct the executable (i.e., the source code and the makefile(s)).
This is necessary to assure that experiments are reproducible. Our tools are designed
assuming CVS is used for this version control. It is possible to use the tools without
source code revision control, but this is, of course, not what we recommend. The
accompanying tutorial for our tools gives a brief introduction to the use of CVS for
those not familiar with it.

The other two things to be set up are the instruments that record the relevant envi-
ronmental context and the executable and its input that will serve as the experiment.
Our tool set provides assistance for both of these setup tasks.

2.1 Recording the Experiment’s Context

For recording environmental context, the tool labsetup is provided. It generates a
resource file that contains information provided by the user in response to queries
about certain commonly relevant environmental data. By default, this configuration
file is called .labrc and is stored in the user’s home directory. If such a file already
exists, it will be modified according to the input provided and the old version of .labrc
will be copied to .labrc.bak. Alternately, the user can indicate that a resource file,
labrc should be created (or modified) in the current directory.

The tools use the information stored in such configuration files, if present, to aug-
ment the data provided via the command line. For options that may have a single
value only, data in the local labrc file has precedence over data in the global file
($HOME)/.labrc, and options given at the command line have precedence over options
provided in a configuration file. For options, such as --cvs for labrun, that may appear

more than once on a command line, the union of the option values from the command
line and the resource files, if any, is used by the tool.

Here is an excerpt from a sample run of labsetup showing how you can specify
that the C compiler and its version should always be logged as well as the name of the
graphics card being used.

labsetup session

labsetup, Revision 1.13, 2002/07/09

For all questions asked, the current value represented by existing
~/.labrc is displayed in square brackets after the question.

If no value is set in ~/.labrc, the default value is shown
in brackets. To keep the value shown, simply hit return.

To reset a flag not corresponding to a yes-no question to the default
use ’use default’ as the input value.
--

[...]

Change settings for labrun? [y]
y

[...]

Environment variables whose values should be noted
Enter new values one per line.

Use a ’+’ at the beginning of the first line to add to the current
list; otherwise any new values given will replace the current ones.

An empty line ends the input.
[None]
CC

Additional comments to be recorded in log file
Enter new values one per line.

Use a ’+’ at the beginning of the first line to add to the current
list; otherwise any new values given will replace the current ones.

An empty line ends the input.
[None]
Compiler version=‘$CC -v‘:version
Graphics card=‘hinv‘:Graphics\sboard

[...]

2.2 Specifying the Executable and Its Parameter Sets

Though our tool set is general enough to support a myriad of experiments, we imagine
the most common experiments will be one of the following three kinds:

• compiling programs with different compilation flags and running them on the
same input;

• running programs on different input sets;

• running one of the above two types of experiments on different machines.

We provide specific means to make these types of experiments easier.

2.2.1 The labmex Tool

The tool labmex (for “Make and EXecute”) supports the first kind of experiment. As
its name implies, this tool can be used to compile and execute a given program. By
default, the command make is used, together with any user-supplied options for make, to
build a certain target (or targets). If compilation succeeds, then the specified executable
is run with any given command-line arguments. If compilation fails, a compilation log
is generated with the name <executable>-<date>-<time>.clog. By default, this file
will reside in the current directory, or, if called by labrun it will reside in the directory
in which labrun’s log files are stored.

For example, the command

labmex fun 123

would translate into the commands

make fun
fun 123

If the make fun command fails, a file with a name like fun-2002-05-09-205405.clog
would be created containing the output from the make command, and fun 123 will
obviously not be executed. In addition, a link to the compile log file with the name
current.clog will be created in directory containing the log file, thus making it easier
to access the latest compile log.

Other command-line options for this tool allow one to specify a different directory for
the compilation log file, target or targets other than the executable for the compilation
command, a command other than make for building the targets and that a make clean
should be done before, after, or before and after the target is built.

The labmex tool can be used outside the context of computational experimentation
as a general shortcut tool for compiling and executing any program.

2.2.2 Multiple Data Sets, Compilations, or Machines

Though conducting an experiment using multiple data sets or multiple sets of compi-
lation flags can be easily accomplished by issuing multiple separate experiment com-
mands, it is a bit tedious to do things this way. One can easily forget which data sets
have been tested and which have not. We have therefore provided ways around (some
of) the tedium and (some of) the forgetfulness. For the tools labrun (Section 3) and
labrerun (Section 4), the keyword NEX (for “new experiment”, or simply “next” if you
prefer) can be used in the command line to indicate that what follows is the input for
a new experiment. Thus multiple experiments can be specified at once. See Section 6.2
and the examples accompanying the description of labrun in Section 7.3 for examples.

Any number of NEX’s are possible. This feature is most useful when command-line
arguments are provided via a file instead of on the command line itself (Section 6.2).

For running experiments on different machines, our tools can be used quite easily
in conjunction with the ssh command. For example, one could compile and execute a
program on a specific machine turing using the command

ssh turing labmex fun 123

See the documentation for ssh for more details on remote execution of commands.
Using ssh in conjunction with the NEX keyword allows one to run an experiment on
several different machines quite easily. See the examples accompanying the description
of labrun in Section 7.3 for an example.

2.2.3 The labschedule Tool

For more elaborate scheduling of multiple experiments, the tool labschedule is pro-
vided. This tool provides an easy means to

• loop through sets of input values,

• start several experiments simultaneously on one machine,

• distribute a set of experiments among a cluster of machines.

This tool’s extreme flexibility comes through the use of loops and variables. Variable
names begin with a % and loops are designated using the --for option.

Each loop has an associated variable that is simply the number of the loop in the
command line preceded by a %. For example, to run several experiments that differ
only in the arguments given to the program, a single for loop will suffice.

labschedule --for=’10 20 30’ bench %1

This command will cause the three experiments

bench 10
bench 20
bench 30

to be started in succession on the local machine. More precisely, the following three
labrun commands will be issued:

labrun --name=schedule-10 bench 10
labrun --name=schedule-20 bench 20
labrun --name=schedule-30 bench 30

The --print option of labschedule will show you the commands that are to be exe-
cuted with all variable names replaced with the corresponding values. Any number of
--for options are possible, and the result will be a nested loop structure, with the first
--for command corresponding to the outermost loop. For example,

labschedule --for=’10 20 30’ --for=’a b’ bench %1 %2

will, in essence, cause the following to be executed:

for %1 in [10, 20, 30] do
for %2 in [a, b] do

labrun --name=schedule-%1-%2 bench %1 %2

and thus six experiments will be started in succession.
There is a rich syntax available for specifying the ranges of the for loop variables.

One can use python expressions (e.g., range(5) specifies the range 0 1 2 3 4), the
results of commands (e.g., ‘find . -name *.in -print‘), the contents of files (e.g.,
@input), and the values of environment variables (e.g., $DATA DIR/*.dat). The last
example also shows that words containing a ’*’ or ’?’ will be replaced by files matching
the pattern. Sytnax is also available for selecting regular expressions from any of these
values.

In addition to the loop variables, several variables (e.g., %currdir, %host, %name)
are predefined and will be expanded to their appropriate values upon execution of the
loop command. The flag --macro allows the you to define other variables appropriate
to your expeirments.

When scheduling many experiments at once, one may want to avoid the creation of
many individual labrun calls, each of which will create its own .log file (See Section 3).
You can therefore limit the amount of nesting of the loops with the --nesting flag. If
the value set with this flag is smaller than the number of loops specified, the executable
given to labrun will itself be a call to labschedule containing the remaining loops .
This labschedule call will not issue calls to labrun but will execute the commands
give to it directly (achieved through the use of the --direct flag). For example,

labschedule --for=’x y’ --for=’A B’ --nesting=1 bench %1 %2

will result in the following two calls to labrun

labrun --name=schedule-x labschedule -d --nesting=1 --for=’A B’ bench x %2
labrun --name=schedule-y labschedule -d --nesting=1 --for=’A B’ bench y %2

If the various experiments being scheduled could be run on any one of a cluster
of machines, you can specify the names of the machines with the flag --hosts and
labschedule will schedule the tasks on these machines as they become idle. For ex-
ample, the effect of

labschedule --for=’10 20 30’ --hosts=’localhost turing’ bench %1

is that the following two commands would be issued immediately:

labrun --name=schedule-10 ssh localhost cd %curdir; bench 10
labrun --name=schedule-20 ssh turing cd %curdir; bench 20

Then, when one of these two runs finshes, the third call to labrun for bench 30 would
be issued using ssh to the idle machine.

If it is possible to have more than one instance of your experiment running at a time,
the flag --maxtasks can be used to increase the maximum number of simultaneous
experiments per machine. By default, each machine is assigned the number of tasks
specified by --maxtasks (which is, by default, 1), but it may be desirable to check other
conditions (such as the load of the machine) to determine if a host can accept a new
task. For this, the flag --check, with which you can specify a condition to be checked,
is available as well as the variable %idle that determines a host’s idle percentage and
%check that determines if a host’s idle percentage is above 5.

In the course of running multiple experiments, it may happen that some of them fail
for one reason or another. By default, labschedule will abort after such a failure. This
behavior can be changed (with --ignore) such that the remaining experiments will con-
tinue to be scheduled. To rerun any failed experiments, it suffices to call labschedule
once again in the same way it was originally called. The experiments that did not
successfully finish will be rerun, but experiments for which a log file exists in which a
successful completion is recorded are not rerun. Alternatively, one can indicate that all
experiments should be rerun (--noskip), and/or that the log files of failed experiments
will be preserved (--keep).

Further options for this tool allow one to specify the location of the log files (by
default, this is ./lab log); the prefix of the name to be passed to labrun (by default,
this is schedule); a command other than ssh %host cd %curdir; to insert before the
labrun call; further options to be passed to labrun; that the command should be run
without using labrun or run in the background.

In addition to the log and output files produced by labrun, labschedule keeps
track of its own actions in three files: a .log file that logs all relevant actions, a .out
file that holds the output of all successful runs, and a .err file that holds the output of
all failed runs. Note that this is in contrast to the meaning of .out and .err used for
labrun. The files will be located in the same log directory as the files of labrun, and the
names will be as follows: <exp_name>-<date and time>.<ext>, where <exp_name> is
schedule by default and otherwise the name given as an arugment with the --name
flag.

3 Running an Experiment

Once the lab environment has been set up, one needs to run the experiment and record
the data necessary to be able to reproduce the experiment later. The tool labrun
accomplishes this. There are three main tasks performed by labrun

• it assures that the source code has been “fixed”;

• it records the context of the experiment;

• it runs the experiment.

In its simplest form, labrun is executed in a directory containing the source code
for the experiment’s executable. For example:

labrun steiner -v closed 41 30

will cause the following two things to happen:

• a command cvs status is issued in the current directory to assure that the
source code in the current directory (which presumably is the source code used
to produce the program steiner) is up to date.

• if the source is up to date, the program steiner will be executed using the
arguments -v closed 41 30.

The labrun tool will generally create at least two files: one that contains the output
of the experiment (the .out file) and another that records the information about the
environment in which the output was created (the .log file; see Section 6.3). Addi-
tionally, a file with extension .err may be generated if the experiment program writes
output to the error stream. The .out and .err files are generated only if the pro-
gram writes output to the standard output and standard error streams, respectively.
The .log file is always generated. The names of the generated files all have the same
format: <exp_name>-<date and time>.<ext>, where <date and time> has the for-
mat YYYY-MM-DD-HHMMSS and <exp_name> is, by default, the name of the executable
used by logrun. By default, these files are created in a subdirectory lab log in the
current directory. For the example above, the name of the log file would be some-
thing like ./lab log/steiner-2002-05-21-093412.log. This file is also accessible as
./lab log/current.log, which is a link to the most recent log file. Such a “current”
link is created for each of the three possible files generated by labrun, thus making it
easier to examine the results of the last experiment or to observe the progress of the
current experiment as it is running.

Some of the options available for labrun allow one to specify

• the location of the CVS directories corresponding to this experiment,

• a different location for the .log, .out, and .err files,

• a name other than the executable to use for the experiment in the created output
files,

• a tag other than the <date and time> to use in the files created.

For example, altering the above command as follows:

labrun --cvs .:/home/hert/src --log ../lab --name example
--tag closed_41_30 steiner -v closed 41 30

will check if the code in the current directory as well as the directory /home/hert/src
is up to date and, if so, will execute the program steiner in the current direc-
tory. It will place the created log and output files in a subdirectory lab in the cur-
rent directory’s parent directory, creating this subdirectory if it does not already ex-
ist. The files created will use example for <exp_name> and closed 41 30 instead of

<date and time> in the name. Thus the name of the log file for this experiment would
be ../lab/example-closed_41_30.log.

Other options for labrun allow one to indicate: that no CVS directories should be
checked; that the program should be executed in a different directory; that a specific
version of the source code should be used instead of the current one (particularly useful
in conjunction with labmex); additional things to be recorded in the .log file; that all
output from the experiment should be recorded in a single file (the .log file) instead of
spread over possibly three files (the .log, .out, and .err files); and that the experiment
should be run in the background and should notify the user upon completion.

Options may also be specified via a local or global resource file (Section 2.1). Such
resource files are searched for when processing the input for labrun and, if present, the
information recorded there will be used to augment the input provided at the command
line. In cases of conflict, command-line arguments take precedence over data provided
in the local labrc file, which takes precedence over data provided in the global .labrc
file.

4 Rerunning an Experiment

Because one of our goals is to enable experiments to be rerun from the data recorded, we
provide a tool, labrerun, that does precisely that. In particular, given a log file created
by our experimentation tool (or by some other means following the same syntax; see
Section 6.3), this tool will run the experiment described in this log file using a context
as close to the one described in the original log file as possible. For example, one may
rerun an experiment with a command as simple as:

labrerun ../lab/example-closed_41_30.log

A string of command-line arguments for labrun are constructed from the information
recorded in the given log file together with the arguments given to labrerun. If envi-
ronment variables were recorded in the input log file, the same values for these variables
will be used in the call to labrun. If this is not desirable (e.g., because a certain path
has changed or software available previously has been upgraded), it is possible, through
the --ignore option, to tell labrerun to ignore the value of an environment variable
recorded in the log file and simply record the current value of this variable for the
rerun of the experiment. Global and local resource files, if they exist, are ignored by
labrun when it is called from labrerun since all information relevant to an experiment
is recorded in its log file and need not be supplemented by data in a resource file.

Once the list of command-line arguments has been constructed and all environment
variables are set, the tool will attempt to change to the directory that was current when
the log file was created and execute the labrun command from there. If that directory
no longer exists, the tool will issue a warning and try to proceed in the current directory.

The CVS date tag recorded in the given log file is used to tell labrun to check
out the version of the code that was current when the original experiment was run.
This affects the running of the experiment, of course, only if the experiment involves
recompiling the program from its sources. After the rerun of the experiment is finished,
the current version of all relevant files under CVS will be restored. If you wish to keep
the old files after the rerun, the --keep option for labrerun can be used. There is also

a --nocvs option for labrerun, which allows you to rerun an experiment with the same
settings as an old experiment but using the current version of the source code (e.g., to
see the effect of certain code changes).

The name of the log file from which the environmental information was taken is
noted in the new log file created for the new run. Environmental differences, if any, can
then be discovered using, for example, diff with the current log file and the old log
file.

The default location of the files created from the experiment is the location of the
log file given on the command line, and the files are named in the same way as for
labrun. A subset of the options available for labrun are also available for labrerun.
They allow one to specify a directory other than the default in which to store the
output files, a different directory in which to run the program, a different name to use
for the experiment when creating the log file, additional environmental information to
be recorded in the new experiment’s log file, that all output should be stored in the
log file, and that the experiment should be run in the background and notify the user
upon completion. There is also an option that allows one simply to print the labrun
command generated from a log file without executing it and an option to edit the
command constructed from the log file before execution.

5 Analyzing the Output

5.1 The Sus Filter Tools

Output generated by experimentation programs can come in a myriad of forms. How-
ever, the output desired for analyzing or presenting results of experiments generally has
one of two forms: a table of values or a graph.

Again, we do not wish to restrict users unnecessarily by insisting on a particular form
of output that may be difficult to produce for certain programs. Instead, we provide
a set of tools that can process text given in any form to produce a particular internal
data format. This internal format, called sus (for “Script-readable User Statistics”),
is text-based and easily readable by humans (Section 6.4) so users can produce this
format directly with their programs if they wish. The tools that convert from the
internal format can also process the data by performing mathematical calculations.

Users are asked to specify which data values to extract from a given input file
using key words and regular expressions. The Sus Filter Tools use the powerful
Python language expressions for specifying regular expressions and reformatting data.
For details on Python, see http://www.python.org.

Two programs, table2sus and text2sus, convert data to the sus format. The
first program can be used to convert an ASCII table to the internal format and the
second converts a text file in any format to the sus format by selecting from the file
the data values indicated by the user. For converting from the sus format, we provide
programs that produce

• an ASCII table (sus2text),

• a LATEX table (sus2latex),

• a plot using gnuplot (sus2plot),

• or another sus file (sus2sus).

All these programs act as filters by default (reading from standard input and writing
to standard output), making it easy to convert any given data file to one of the supported
output file formats.

cat prog.out | text2sus num_nodes time | sus2plot

Alternatively, input and output files can be specified for each program using the --input
and --output options, respectively. For example, the above command could be rewrit-
ten as:

text2sus --input prog.out num_nodes time | sus2plot

Multiple --input commands are possible and effect a merging of the input files as if
the files were catenated together one after another.

The other command-line options for these tools allow one to specify which data to
extract from the file and the format in which to display the output. In the simplest
form, the user specifies simply the keyword labels for the desired data, as with the above
example. The program will then extract the next word or number after the label as the
value to associate with this label in each data record. If you wish to extract a value other
than the next word or number to associate with this label, regular expressions can be
used on the command line to express the desired value. See the Python documentation
or Section 7.7 for more information on forming regular expressions. See Sections 5.2.2
and 5.2.5 for examples.

The tools that convert from a sus file allow you to manipulate the data in several
ways. In particular, one can

1. add a new field (command-line option: --add).
This can be useful to perform mathematical operations on the data values, or to
reformat the output for pretty printing.

2. sort the data (command-line option: --sort).
The records are sorted according to the sorting expression. Records with the same
key are merged (in accordance with the value given for the --combine option).
By default, the average of numeric values is taken; string values are always simply
concatenated.

3. filter out data (command-line option: --filter).
Only records where the expression gives a nonzero value (not "" or 0) are pro-
cessed.

The switches --add, --sort, and --filter are processed in the same order they
appear on the command line. For filtering, sorting, or adding new data fields, the full
expresion power of Python can be used. This includes numerical expressions:

sus2sus ’--filter=float(upperbound) > float(lowerbound)*100’

(filter out all records for which the upper bound is more than 100 times the lower bound,
the quotes “’” prevent that special characters (“(”, “)” and “>” in this example) are
interpreted by the shell, see Sections 6.2 and 7.1 for more information on quoting and
special characters),
formatting expressions similar to printf in C:

sus2sus ’--add=formattedOpt="%-20f"%float(opt)’

(add a formatted opt value, left-justified in a field of 20 characters),
and string manipulation expressions, using Python’s string module:

sus2sus ’--sort=float(split(time,":")[0])’

(sort the records based on the number of hours in a time field with format HH:MM:SS.
Note the float-function that has to be used to sort, e.g. 9 and 10, in the correct order).

This string module, providing functions such as join, split, strip, and replace,
is particularly useful for formatting output. We also provide some extensions:

iff(exp,then,else):

returns <then> if <exp> is not empty (’’, ’0’ or not defined), otherwise <else>.

Example:

sus2sus ’--add=solvedText=iff(solved,"solved","not solved")’

format(val): Formats a number. Optional parameters:

length: minimal length of the output (negative values produce left-justified out-
put),

digits: number of digits after the decimal point,

mindigits: as digits, but numbers near zero have enough digits to be distin-
guished from zero,

min: minimal value,

max: maximal value,

pad: padding character, may be:
’0’ for zero padding,
’+’ for +/-,
’-’ for left-justified output.

Examples:
Print opt left-justified in a field of minimal length 20 (produces the same result
as the example illustrating string formatting above).

sus2sus ’--add=formattedOpt=format(opt,length=-20)’

Round the time to two digits with a minimum value of 0.01

sus2sus ’--add=formattedTime=format(time,digits=2,min=0.01)’

savediv(a,b): Divides a by b, returning ’division by zero’ if b is not a nonzero
number or a string representig a nonzero number

Example:

sus2sus --add ’gap=savediv(float(upVal)-float(loVal),loVal)’

If a variable that is used in an expression is not defined, it will take on ’000’ as a
default value. The switch --eval changes this behaviour:

--eval=strict undefined variables cause an error,

--eval=warn undefined variables produce warnings,

--eval=debug print out every expression evaluation, this is very useful for debugging
sus file transformations

--eval=invalid use ’---’ as default (nice for sus2plot).

5.2 Examples

The following examples are extracted from the file sus-tools-demo, which is dis-
tributed with the tool set in the directory examples.

5.2.1 table2sus

The following table is converted to a sus file. The labels of the table are recognized
automatically.

Command: table2sus < steinerTab1.txt > steinerTab1.sus

steinerTab1.txt
instance size opt

steiner1 123 123
steiner2 432 434
steiner3 33 44
steiner4 44 33

steinerTab1.sus
{’labels’: [’instance’, ’size’, ’opt’],
’table’: [{’size’: ’123’, ’instance’: ’steiner1’, ’opt’: ’123’},
{’size’: ’432’, ’instance’: ’steiner2’, ’opt’: ’434’},
{’size’: ’33’, ’instance’: ’steiner3’, ’opt’: ’44’},
{’size’: ’44’, ’instance’: ’steiner4’, ’opt’: ’33’}]}

A table is found in the input file by looking for the last non-commented, non-blank
line in the file and determining how many space-separated columns it contains. Then,
if no arguments are given to table2sus, it attempts to find the labels for the table by
looking for the first line containing the correct number of words that could be labels
(i.e. alphanumeric words beginning with a letter). If no labels are found in this way,
default labels (col1, col2, etc.) will be used. Leading #’s are ignored when looking for
the labels.

Thus, the same table would result from this input file and we can use sus2text to
see the output as a text table.

Command: table2sus < steinerTab2.txt | sus2text

steinerTab2.txt

gnuplot file of data
#
generated 12-Jul-2002 14:32:04
#
#instance size opt

steiner1 123 123
steiner2 432 434
steiner3 33 44
steiner4 44 33
#
ignore me

output

instance size opt

steiner1 123 123
steiner2 432 434
steiner3 33 44
steiner4 44 33

5.2.2 text2sus

Given a simple text file, a table can be constructed by giving simply labels or la-
bels followed by regular expressions. The following input file is scanned for instance,
running_time, value, and something more complex: the last word of a line with more
at the beginning. This word gets the label complex. Additionally, we want the values
of time as hours and minutes.

Note that the order of the labels does not matter and it is not necessary to have all
lables in each of the records. An exception is the first label: It defines when to start a
new record. (Alternatively one could use the --next switch.)

Command:
text2sus instance running_time value ’complex=^more.* (\w+)’

’time: (?P<hours>.*):(?P<minutes>.*)’ < text2sus.txt >
text2sus.sus

The reason for the ’ ’ in this command is that otherwise the shell gets confused by
the * and the spaces.

text2sus.txt

instance: steiner1.stp
time: 11:23
blablabla
more complicated, we want the last word in this line! 23
value: 123

running_time: 123

instance: steiner2.stp
more 44
time: 11:44
value: 312
running_time: 323

instance: steiner3.stp
time: 11:55
more 45
value: 32
running_time: 532

instance: steiner4.stp
time: 12:04
more 46
value: 44
running_time: 954

text2sus.sus

{’labels’: [’instance’, ’running_time’, ’value’, ’complex’, ’hours’,
’minutes’],

’table’: [{’running_time’: ’123’, ’value’: ’123’, ’minutes’: ’23’,
’complex’: ’23’, ’instance’: ’steiner1’, ’hours’: ’11’},

{’running_time’: ’323’, ’value’: ’312’, ’minutes’: ’44’, ’complex’:
’44’, ’instance’: ’steiner2’, ’hours’: ’11’},

{’running_time’: ’532’, ’value’: ’32’, ’minutes’: ’55’, ’complex’:
’45’, ’instance’: ’steiner3’, ’hours’: ’11’},

{’running_time’: ’954’, ’value’: ’44’, ’minutes’: ’04 ’, ’complex’:
’46’, ’instance’: ’steiner4’, ’hours’: ’12’}]}

5.2.3 merging files and adding fields

This example features merging of different sus files and creating new data fields
(columns) in the table.

Command:
sus2text --sort instance --add solved=opt==value --input

steinerTab1.sus --input text2sus.sus instance running_time
The input values come from steinerTab2.sus and text2sus.sus, the output of the

two previous examples. As index variable, the label instance (common to the two input
files) is used. The additional label solved is introduced, set to the value opt==value,
where opt is a label in demofile1.sus and value a label in demofile2.sus.

output

instance running_time solved

steiner1 123 1
steiner2 323 0
steiner3 532 0
steiner4 954 0

5.2.4 filtering

When converting from a sus file to another format, certain records can be filtered out
using the --filter option.

Command: sus2text ’--filter=instance<"steiner3"’ < text2sus.sus
The ’ ’ are needed because of the " and <, which would be interpreted by the shell
otherwise.

output

instance running_time value complex hours minutes

steiner1 123 123 23 11 23
steiner2 323 312 44 11 44

For comparison, the unfiltered output is:
Command: sus2text < text2sus.sus

output

instance running_time value complex hours minutes

steiner1 123 123 23 11 23
steiner2 323 312 44 11 44
steiner3 532 32 45 11 55
steiner4 954 44 46 12 04

5.2.5 command option file

This example features an option file and different ways to define new labels. Notice
that the table in the output is not a complete table. The last two entries don’t really
have a lastword because the last word is used as the value for the free: label already.
The default value of 000 is used for the third label in these entries.

Command: text2sus @testfree.dat < testfree.txt | sus2text

testfree.data

This is a command-line file for text2sus
Each option is defined in a line, empty lines or lines
beginning with "#" are ignored.

--next=\n
This indicates that each line is a separate record

test
We want to parse for the keyword test.

freetext=free:\s*(\w+)
And for the first word after "free:", the label for this will be
"freetext".

(?P<lastword>\w+)$
And for the last word in the line, getting the label "lastword"

testfree.txt

test: 123, free: sadds, ewrwre
test: 444, free: dfgf, trwret
test: 123, free: sadds
test: 444, free: dfgf

output

test freetext lastword

123 sadds ewrwre
444 dfgf trwret
123 sadds 000
444 dfgf 000

5.2.6 sorting and combining values in different ways

When converting from a sus file to another format, by default all entries are extracted
in the order given. If one wishes to sort the entries according to the value of a certain ex-
pression, multiple entries with the same value must be combined somehow. By default,
the average of the numeric values is taken (string values are simply concatenated).

Command: table2sus < graph.out | sus2text --sort ’float(vertices)’

graph.out

#vertices edges run1 run2

10 20 123.6 141.3
20 80 2321.4 842.9
10 40 432.8 832.0
20 40 943.1 314.2

output

vertices edges run1 run2

10.0 30.0 278.2 486.65
20.0 60.0 1632.25 578.55

One can combine multiple entries using the minimum, maximum, mean, sum, or
product of the values using the --combine option. Here we take the minimum.

Command:
table2sus < graph.out | sus2text --sort ’float(edges)’

--combine min

output

vertices edges run1 run2

10 20 123.6 141.3
10.0 40.0 432.8 314.2
20 80 2321.4 842.9

One can also sort the entries according to some expression. Here we sort the records
based on the total time for both runs.

Command:
table2sus < graph.out | sus2text

’--sort=float(run1)+float(run2)’

output

vertices edges run1 run2

10 20 123.6 141.3
20 40 943.1 314.2
10 40 432.8 832.0
20 80 2321.4 842.9

5.2.7 adding fields with formatting

This example shows some of the possibilities for reformatting data. An additional field
avg_time, which is a average of two existing fields run1 and run2, is added to each
record. Since all values in a sus file are stored as strings, a conversion to a number is
necessary before using these in arithmetic expressions. The computed value is formatted
in a field of width 6 with only one digit after the decimal point. This is done using the
built-in string formatting from Python, which is similar to printf in C.

Command:
table2sus < graph.out | sus2sus ’--add=avg_time="%6.1f" %

((float(run1)+float(run2))/2)’ > avgrun.sus

avgrun.sus

{’labels’: [’vertices’, ’edges’, ’run1’, ’run2’, ’avg_time’],
’table’: [{’vertices’: ’10’, ’avg_time’: ’ 132.4’, ’run2’: ’141.3’,

’edges’: ’20’, ’run1’: ’123.6’},
{’vertices’: ’20’, ’avg_time’: ’1582.2’, ’run2’: ’842.9’, ’edges’:

’80’, ’run1’: ’2321.4’},
{’vertices’: ’10’, ’avg_time’: ’ 632.4’, ’run2’: ’832.0’, ’edges’:

’40’, ’run1’: ’432.8’},
{’vertices’: ’20’, ’avg_time’: ’ 628.6’, ’run2’: ’314.2’, ’edges’:

’40’, ’run1’: ’943.1’}]}

5.2.8 sus2plot

Now we plot the values in the input file used in the previous example. We plot run1,
run2, and avg_time against edges. The values of several lines with the same number
of edges are combined by taking the average. The option --combine can be used to
provide another combining rule as illustrated previously.

Command:
sus2plot --sort ’float(edges)’ run1 run2 avg_time <

avgrun.sus

0

500

1000

1500

2000

2500

20 30 40 50 60 70 80
edges

run1
run2

avg_time

5.2.9 sus2latex

This simple example illustrates what the tables produced by sus2latex look like.
Command: sus2latex < avgrun.sus

output

%%sus2latex, Revision 1.105, 2002/11/14
% \begin{tabular}{|l|l|l|l|l|}
% vertices & edges & run1 & run2 & avg_time \\ \hline

10 & 20 & 123.6 & 141.3 & 132.4 \\
20 & 80 & 2321.4 & 842.9 & 1582.2 \\
10 & 40 & 432.8 & 832.0 & 632.4 \\
20 & 40 & 943.1 & 314.2 & 628.6 \\

% \end{tabular}

6 File Formats

6.1 labrc Files

The format of the two configuration files (~/.labrc in the user’s home directory, and
labrc in the current working directory) created by labsetup and read by the tools is
as follows:

• Lines beginning with # and empty lines are ignored.

• Lines beginning with + are joined with the previous line.

• Different options are placed on different lines.

• The files can have different sections for the different programs. The sections are
separated by lines containing the name of the program in square brackets (e.g.,
[labrun]). The first section, before the first separator, contains global settings
for all programs.

For each tool, it is possible to tell the tool to ignore the ~/.labrc and ./labrc file
by using the switch --nolabrc.
Example:

~/.labrc

global settings for all tools
--verbose

end of global settings

[labrun]
--comment=A comment from ~/.labrc

[labmex]
--Make=gmake

Switches and arguments for the lab-commands are searched for in three places:

1. the command line,

2. a labrc file in the current directory,

3. a .labrc in the user’s home directory.

Usually, switches found first override switches found later, e.g., a -x ~/foo in ~/.labrc
is overridden by a --exec=~/bar from the command line. Exceptions are switches that
accumulate (e.g., the --comment, --cvs, and --env switches of labrun). They are just
collected from all sources.

6.2 Command Input Files

As some of the tools provide a lot of switches and parameters, it is possible to
store the command-line arguments in files and load them into the command line with
@<filename>. This also has the advantage that there is no need to quote and escape
special characters that are usually interpreted by the shell.

A command input file has the same format as the configuration files (Section 6.1).
Additional notes:

• The input read from the file simply replace @<filename> in the command line.
Thus, it is possible to specify both switches and arguments in command input
files.

• Command input files may be nested.

• Every line yields a single argument of the command line.

• Each argument is passed to the tools as a single “word” with spaces in the argu-
ment escaped to glue the word together and special characters escaped to preserve
their integrity. Two exceptions are:

1. Switches that require a value:
(See 7.1 for more information about the format of command-line switches.)
Usually one must put the value directly after the short switch name:

-lnew_log

or after an = when using the long switch name:

--log=new_log

For convenience, white space is allowed in command input files between the
name of the switch and its value:

-l new_log
--name new_name

2. The first line that is not a switch:
If this line contains spaces, it will be split into several words (see example
below).

Example:

labrun.opt

command-line options for labrun
--cvs=~/steiner_c
--log=~/tmp/exptest
--exec=~/steiner_c
--name=test

--env=LD_LIBRARY_PATH
--comment=tagtest2
--comment=EnvTest=$PATH
--comment=FileTest=@~/.cshrc:PATH\s+(.*)
--comment=ExecTest=‘head -1 ~/.cshrc‘:.*\s(.+)
-v
steiner
grid_solve.str
problem=dmxa1200.stp
There are different ways to specify the command to be executed. You
need not indent it. And you can put everything on one line:
#
steiner grid_solve.str problem=dmxa1200.stp
#
As it is the first argument for labrun and it contains spaces, this
line will be split into three lines. The following is equivalent:
#
steiner grid_solve.str
+ problem=dmxa1200.stp
#
Note that only the first line is split. Thus, the following won’t
work; it calls "steiner" with one argument containing a space.
#
steiner
grid_solve.str problem=dmxa1200.stp
#
Because we don’t want to have the same mess with special characters
as with the shell, the following is illegal in command-line files
and will be rejected:
#
steiner ’some argument containing a space’ ’another argument’

NEX
with NEX starts the next experiment
-v
--cvs=~/steiner_c
--log=~/tmp/exptest
--exec=~/steiner_c

--name=grid_solve2
steiner grid_solve2.str problem=dmxa1200.stp

Notice that, though section separators (e.g., [labrun]) are possible in command
input files, they are not necessary if the file contains options for only a single tool since
all commands before the first separator are used by all tools.

6.3 .log Files

6.3.1 labrun

The .log file generated by labrun is a plain text file. It should be possible for anyone
reading the file to understand it immediately, but a particular format is required by the
labrerun tool, and this is described here.

A .log file consists mainly of a set of label-value pairs. Labels and values are both
character strings and a colon is used to separate a label from its value. This implies
that labels cannot contain colons in their names; values may however. Values can be
spread over multiple lines by using a + at the beginning of continuation lines.

A value may be followed by an indication of how the value was produced (to facilitate
reproducing this value from the labrerun tool). This means, the following three formats
of label-value pairs are possible in a .log file:

1. label: value

2. label: value {cmd}

3. $label: value

Formats 2 and 3 are for labels provided exclusively by the user (either on the command
line or via a configuration file). Format 3 is used for environment variables recorded in
response to the --env option for labrun. Format 2 is for all other kinds of comments.
Pairs using format 1 may be provided by the user or by the labrun tool. The following
table lists the labels reserved for use by labrun together with explanations of their
values.

label explanation
labrun Release release number of labrun
Start date format: weekday month day HH:MM:SS timezone year
OS operating system
Hardware hardware information
Machine hostname
Processor speed and name
Memory size base memory size
L2 data cache L2 data cache size
CVS dirs colon-separated list of directories checked with CVS
CVS date tag current date stamp
Previous logs present if the run was produced by labrerun
Command command line
Exec dir execution directory
Current dir working directory
Output file name of the output file
Error file name of the error file
Error level exit code if command failed
User time estimate of the user time spent for the command (in seconds)
Stop date format: weekday month day HH:MM:SS timezone year

Comments, which will be ignored by labrerun, can be added to a log file in the following
ways.

• All lines beginning with a # are regarded as comments and ignored.

• All lines following a line containing only hyphens are ignored. (This is useful for
adding long comments at the end of a file or for using labrerun with a log file
created using the --one option for labrun.)

Example:

sample.log

labrun Revision: 1.92

Start date: Fri Aug 2 15:49:42 CEST 2002
OS: Linux 2.2.19 #4 Tue Aug 7 16:06:42 CEST 2001
Hardware: i686
Machine: mpino1109
Processor: 225 MHz Pentium III (Coppermine)
Memory size: 257920 kB
L2 data cache: 256 KB

Compiler version: 3.1 {‘$CC -v‘:version}
$CC: gcc
$CXXFLAGS:

CVS dirs: .

CVS date tag: 2002-08-02 13:49 GMT

Command: labmex ’--Make=gmake’ --clean=both --log=lab_clog
+ --Make=gmake sort-demo 1000 10
Exec dir: /home/hert/talks/tool_set/tutorial/sort
Current dir: /home/hert/talks/tool_set/tutorial/sort
Output file: ./lab_log/sort-demo-2002-08-02-154942.out

User time: 0.9 sec
Stop date: Fri Aug 2 15:49:44 CEST 2002

6.3.2 labschedule

The log file produced by labschedule has a format similar to that produced by labrun.
It contains, however, information relevant only to the scheduling of the different tasks.
In uses therefore a different set of labels and values as described in the following table.

label explanation
labschedule Release release number of labschedule
Start date format: weekday month day HH:MM:SS timezone year
Hosts the set of hosts labschedule had to choose from
Current dir the directory in which labschedule was called
Output file the output file, containing output of successful experiments
Error file the error file, containing output for unsuccessful experiments
Command line the labschedule command
Command the executable command for the tasks scheduled
Stop date format: weekday month day HH:MM:SS timezone year

Between Command and Stop date there are two lines for each experiment that is run
with the following format:

HH:MM:SS: <host>: started ’%1-%2-...’.
HH:MM:SS: <host>: finished ’%1-%2-...’ [<error message>].

where HH:MM:SS is the time a particular job was started or finished and the variables
%1, %2, etc. are substituted with their values for each particular experiment. If an
experiment fails, a message containing its error code and the command that caused this
failure will be repeated. Experiments that are skipped are also so noted in the log file.
Example:

schedule-sample.log

labschedule Release: 0.6

Start date: Thu Nov 7 14:59:23 CET 2002
Hosts: mpino1109
Current dir: ~/tool_set/explab/example/tutorial

Output file: ./lab_log/schedule-2002-11-07-145923.out
Error file: ./lab_log/schedule-2002-11-07-145923.err
Command line: /home/hert/bin/labschedule -f range\(100,200,50\) -f
+ 10\ 20 labmex sort-demo %1 %2

Command: labrun --log=/home/hert/example/tutorial/lab_log
+ --name=schedule-%1-%2 labmex sort-demo %1 %2

14:59:23: mpino1109: started ’100-10’.
14:59:28: mpino1109: finished ’100-10’.
14:59:28: mpino1109: started ’100-20’.
14:59:32: mpino1109: finished ’100-20’.
14:59:33: mpino1109: started ’150-10’.
14:59:38: mpino1109: finished ’150-10’.
14:59:38: mpino1109: started ’150-20’.
14:59:42: mpino1109: finished ’150-20’.

Stop date: Thu Nov 7 14:59:43 CET 2002

6.4 sus Files

The sus (standing for ”Script-readable User Statistics”) file is a text file with a Python-
syntax dictionary with two entrys:

table This is a list of dictionaries. Each dictionary represents one data record, which
consists of label :value pairs. All labels and values are strings (enclosed in single
quotes).

labels This is a list of labels used in the table. It is used mainly to specify the order
of the labels, as the keys of a dictionary are not ordered.

There may be some ’newline’ characters in the sus file to improve readablility.
When writing a sus filewith sus2sus, text2sus or table2sus, one can add the

switch --binary. The sus filewill then be written in a binary format. The format is
produced by the python standard module “pickle” and is much faster to parse by the
computer, but unreadable for humans.

Example:

test.sus

{’labels’: [’instance’, ’size’],
’table’: [{’size’: ’450’, ’instance’: ’test1’},
{’size’: ’694’, ’instance’: ’test2’},
{’size’: ’90’, ’instance’: ’test3’}]}

is a sus file representing the table

instance size
test1 450
test2 694
test3 90

7 The Current Tools

7.1 Command-line Options

Each of the tools in our set has a command-line interface following the style of other
common Unix tools and also allows command-line options to be specified in a file
(Section 6.2), whose name is given on the command line. As for most Unix tools, almost
all command options have both long and short forms. The short forms start with a single
“-”, the long ones with two. Some options take additional parameters. With the short
form, these parameters can be put directly after the command option (“-nnewname”) or
can be separated from it by a blank (“-n newname”). With the long form, there may be
a “=” (“--name=newname”) or a blank (“--name newname”) separating the parameter
from the command option. The long forms may be abbreviated (“--na=newname”) as
long as the prefix is unique among the switches available for the tool in question.

If some parameters contain special characters, such as “*”, “(” or “"”, this can lead
to conflicts with the shell, which tries to interpret these characters in its own way. The
interpretation of a character can be prevented in most shells, by either putting a “\”
before the character or by quoting the word (or parts containing the special characters)
with “’”. For example:

sus2sus ’--filter=int(points)>100’ --add quad=simp*simp

Notice that when an option is enclosed in quotes, the “=” separator between the option
name and the value is necessary.

Another way of getting around the problem of these special characters is the use of
command input files (Section 6.2). Every character is such a file is treated literally,
which means that special characters need not (indeed must not) be quoted. You can
insert the parameters of a command inpu file at any point in the command line using
“@ <filename>” or “@<filename>”. All styles of input on the command line can be
mixed:

labrun --cvs=~/dir --name test -ccomment1 -c comment2 @optfile

All lab-programs start other programs. This gives rise to the additional problem
that when passing the commands via a shell command, the special characters have to
be quoted again. For this reason the characters “[]<>()$␣*?\"’\|;&” are quoted by
a backslash once read in by the tools. If you want the characters to be interpreted by a
shell, you have to include a “sh -c” command explicitly. (See page 40 for an example.)

7.2 labsetup

Purpose:

Generate an ASCII configuration file that stores information about the context
of a certain (set of) experiment(s).

Usage:

labsetup [<options>]

Options:

-h, --help print a help message

-l, --local create the file labrc in the current directory instead of .labrc in
the user’s home directory.

-v, --verbose verbose mode

--version print version information

Description:

When the program is run, the user will be asked to provide information about
the lab environment that is being set up. By default, this is the global environ-
ment, and for each question asked the current value represented in any existing
($HOME)/.labrc file will be displayed. If no value is set in this file, the default
value will be displayed. The user can then accept the current (possibly default)
value or change the value as desired. Changing back to a default value can be
done using the string “use default” as the answer to a non-yes/no question.

When the -l option is used, indicating that a local environment is being set up,
the values displayed with each question represent the settings from the global
resource file as well as any labrc file in the current directory with the settings in
the local file taking precedence over those in the global file when conflicts arise
(i.e., the settings labrun would use). Questions corresponding to options that
are set in the global file and cannot be changed in the local file will not be asked.

Result:

A file containing the corresponding command-line options for the tools. By de-
fault, the file is called ($HOME)/.labrc.

7.3 labrun

Purpose:

Tool for running benchmarking or other non-interactive tests

Usage:

labrun [<option>] ... <program> [<argument>] ...

Options:

-a, --autocvs automatically ’commit’ and ’update’ CVS if necessary

-b, --batch run in background

-C, --cvs=<DIRS> check CVS in <DIRS> (colon-separated lists and multiple en-
tries are allowed) (default: ’.’)

--nocvs do not check CVS

-c, --comment=<TAG> specifies a tag that will be recorded in the .log file. The
format of <TAG> is:

[<LABEL> =] <STRING>
Inside the <STRING> the following expressions are possible:

$<ENVVAR> will be replaced by shell variable <ENVVAR>,

@<FILE> will be replaced by file <FILE>,

‘<COMMAND>‘ will be replaced by output of <COMMAND>.

% will be replaced by the output file’s name

Each of the first three statements may be followed by a modifier:
:<PATTERN>

If the regular expression <PATTERN> contains parentheses, only the match
corresponding to the parentheses will be taken. Otherwise the first word
after the regular expression will be taken. The <PATTERN> may not contain
spaces. Use \s instead. Some documentation for regular expressions is given
in Section 7.7. If <STRING> begins with 0x, the number following this will
be converted from hexidecimal to decimal.

Examples:
OS=‘uname -srv‘
Processor Speed=@/proc/cpuinfo:cpu.MHz MHz
Processor Name=It’s a @/proc/cpuinfo:model.name[\s:]+(.*)
Solution=@%:final.value

-d, --date=<DATE> use the CVS versions current on the given date (<DATE>
should be in a format understandable by CVS)

--keep keep old files (in conjunction with --date)

-e, --env=<ENV> record the value of environment variable <ENV> (will be re-
stored when using labrerun.)

-h, --help print a help message

--help-comment print help message for formulating comments

-i, --info just give environment info (and evaluate --comment switches)

-l, --log=<DIR> where to put log files (default: ’./lab_log/’)

-n, --name=<TAG> name to use instead of program name in file names

-1, --one just produce one .log file with different sections

-t, --tag=<TAG> use <TAG> instead date-time stamp in file names

-v, --verbose verbose (multiple -v increases verbosity)

--version print version information

-x, --exec=<DIR> where to execute program (default: ’.’)

--nolabrc do not read ~/.labrc and ./labrc

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

As mentioned in Section 2.2.2, the keyword NEX (for “new experiment”) can be
used in the command line to indicate that what follows is the input for a new
experiment. For an example of this, see Section 6.2.

Result:

Files <NAME>-<TAG>.log and <NAME>-<TAG>.out will be produced in the log di-
rectory (unless the --one option is used). If there was some output to standard
error, a file <NAME>-<TAG>.err will also result. For each of the .out, .log and
.err files created, a link will be created in the log directory by the name of
current.<ext>.

Examples:

• labrun steiner -v closed 41 30

Executes the program steiner with arguments -v closed 41 30, creating a log
file and an output file in the default log directory lab log.

• labrun --cvs .:/home/hert/src --log ../lab --name example
--tag closed_41_30 steiner -v closed 41 30

(The command should be all on one line, of course.) Overrides the default CVS
directory (adding a directory in addition to the current one), the default log
directory (using ../lab instead of ./lab_log) and the default file name prefix
(using example-closed_41_30 instead of steiner-<date-time>).

• labrun -e CC -c ’Compiler version=‘$CC -v‘:version\s+(\S*).*’ timings

Records the value of the environment variable CC (the compiler) and the version
number of this compiler in the log file. Notice that the version number is achieved
by executing the command $CC -v and then looking for the first set of non-spaces
following the word “version” in the resulting text. Notice also the different quoting
required. The quotes (’) around the argument to -c are required because of the
space in the label for the value and the stars used in the regular expression. The
quotes (‘) around the command are required to indicate that it is a command to
be executed.

• labrun -n timings labmex -x benchmark -m CC=gcc ~/src/timings

Uses labrun in conjunction with labmex. Without the -n argument to labrun,
the name of the experiment would be labrun, which is probably not what you
want. See Section 7.5 for explanation of the labmex arguments.

• labrun ssh turing labmex fun 123 NEX ssh oracle labmex fun 123

Runs two experiments. The first compiles the program fun on the machine turing
and then executes it with arguments 123. The second experiment compiles the
same program on the machine oracle and executes it using the same arguments.
Without additional arguments all commands are executed in the user’s home
directory on these two machines.

• labrun ssh turing ’cd benchmark; labmex fun 123’

Runs the experiment above on the machine turing in the directory benchmark.

7.4 labrerun

Purpose:

rerun an experiment using information recorded in a .log file

Usage:

labrerun [<option> ...] <log file>

Options:

-b, --batch run in background

-c, --comment=<TAG> will be stored in the .log files (see
’labrun --help-comment’ for details)

-e, --env=<ENV> record the value of environment variable <ENV> (will be re-
stored, when using labrerun)

-h, --help print a help message

-i, --ignore=<ENV> ignore the value of environment variable <ENV> recorded in
the log file; use the current setting instead

-l, --log=<DIR> where to put log files (default: location of <log file>)

-n, --name=<TAG> name to use instead of program name in file names

-t, --tag=<TAG> use <TAG> instead date-time stamp in file names

--keep keep old files that were checked out to rerun the experiment

--nocvs do not revert to CVS version recorded in log file; use current version
instead

--nolabrc do not read ~/.labrc and ./labrc

-1, --one just produce one .log file with different sections

-p, --print print the labrun command that would be created but don’t execute
it

-v, --verbose verbose mode

--version print version information

-x, --exec=<DIR> where to execute program (default comes from log file)

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

Result:

The same as for labrun.

Examples:

• labrerun lab_log/current.log

Reruns the last experiment

• labrerun --nocvs lab_log/current.log

Reruns the last experiment using the current version of the code

• labrerun -e LD_LIBRARY_PATH -l ../log -n new -t 20_5 lab_log/current.log

Reruns the last experiment (lab log/current.log) recording the value of the
environment variable LD LIBRARY PATH in the new log file. The log file is stored
in the directory ../log and has the name new-20 5.log.

• labrerun -i LD_LIBRARY_PATH ../log/new-20_5_10.log

Reruns the previous experiment, using the current value of LD LIBRARY PATH
instead of the one recorded in the log file.

7.5 labmex

Purpose:

make and execute a program

Usage:

labmex [<option>] ... <executable> [<arguments>]

Options:

-c, --clean=[before|after|both] do a ’make <make_options> clean’ be-
fore, after, or before and after compiling the target

-h, --help print a help message

-l, --log=<DIR> specifies the directory in which the compile log will be created
(default is ’.’ or, if called by labrun, the directory in which labrun’s log
files are stored). This log file is not created if compilation succeeds.

-k, --keep always keep the compile log

-m, --makeflag=<OPTION> pass the given option to each call of make; use mul-
tiple -m options for multiple make options

-M, --Make=<COMMAND> use <COMMAND> instead of ”make” when compiling the
executable

--nolabrc do not read ~/.labrc and ./labrc

-t, --target=<TARGET> target for make (default is <exectuable>); multiple -t
options are allowed

-v, --verbose verbose mode

--version print version information

-x, --exec=<DIR> where to execute <executable> (default is ’.’)

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

Result:

Program is compiled and run. If the --keep option is used or the compilation
fails, a compile log and a link to this file called current.clog is created in the
current directory, the log directory of labrun if called from labrun, or the log
directory specified on the command line.

Examples:

• labmex --clean both timings 10 20 5

Performs a make clean and then a make timings. Runs the program timings
with arguments 10 20 5. Then does a second make clean.

• labmex -x benchmark -m -DCXXFLAGS=-O3 -t timings ~/src/timings

Performs a make -DCXXFLAGS=-O3 timings in the current directory. Moves to the
directory benchmark and executes the command ~/src/timings in that directory.

• labmex -M gmake -m -C.. -m ’-DCXXFLAGS=-NDEBUG -NDEBUG2’
-x .. -t all timings

Performs a gmake -C.. ’-DCXXFLAGS=-NDEBUG -NDEBUG2’ all command in the
current directory, which compiles the target all in the parent directory (the -C..
option of gmake). Moves to the parent directory and executes the command
timings.

7.6 labschedule

Purpose:

starts multiple commands (possibly on multiple hosts or on a multiprocessor en-
vironment)

Usage:

labschedule [<option>] ... <executable> [<arguments>]

Options:

-f, --for=<WORDLIST> loop through all words from <WORDLIST>; in the com-
mand line the corresponding loop variable (%1, %2, ...) will be replaced by
words from <WORDLIST>. (See the ’for-loop’ section below for details.)

--nesting=<N> only the first <N> loops will form individual ’labrun’ calls;
the remaining loops will incorporated into one experiment (with executable
labschedule --direct ... <executable> ...)

--macro=<LABEL=WORDLIST> define macro (%LABEL will be expanded to
WORDLIST)

--hosts=<HOSTLIST> execute on hosts <HOSTLIST> (default: localhost)

--maxtasks=<N> maximum tasks started on one host (default: 1)

--check=<EXP> condition to test to determine if host can accept another task
(typically for multi-user hosts; see the ’check’ section below)

-n, --name=<TAG> <TAG> for log files (default: ’schedule’)

-l, --log=<DIR> <DIR> for log files (default: ./lab_log)

-i, --ignore ignore error codes from failed experiments, continuing with the rest
of the loop (default: abort)

--keep keep old (incomplete, failed) log files (default: delete them)

--noskip don’t skip previously performed runs (default: skip)

--prefix=COMMAND prefix for each command (default: ssh %host; cd %curdir)

--nolabrun don’t use ’labrun --log=%logdir --name=%name-%1-%2-...’ as
command executed

--labrunflag=<OPTION> additional labrun option; use multiple --labrunflag
options for multiple labrun options

-d, --direct execute loops directly (see ’direct’ section below)

-b, --batch run in background

-p, --print do not perform the commands, just print them

-v, --verbose verbose mode

--nolabrc do not read ~/.labrc and ./labrc

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

Result:

For every combination of the words in each of the --for commands, an exper-
iment is started. In addition to the log and output files produced by labrun,
labschedule keeps track of its own actions in three files: a .log file that logs
all relevant actions, a .out file that holds the output of all successful runs, and a
.err file that holds the output of all failed runs.

Defining For-Loops: The word lists for the for-loops can be defined in several ways.
The following expressions are possible:

$<ENVVAR> will be replaced by shell variable <ENVVAR>,

@<FILE> will be replaced by file <FILE>,

‘<COMMAND>‘ will be replaced by output of <COMMAND>.

Each of the three statements may be followed by a modifier:
:<PATTERN>

If the regular expression <PATTERN> contains parentheses, only the match cor-
responding to the parentheses will be taken. Otherwise the first word after the
regular expression will be taken. The <PATTERN> may not contain spaces. Use \s
instead. Some documentation for regular expressions is given in Section 7.7.

Furthermore, the characters ~,* or ? in words will be interpreted as a shell would.

eval(EXPRESSION) will be replaced by the evaluation of the python EXPRESSION,
range(X) is a shortcut for eval(range(X)) and will be replaced by the words
0, 1, 2, 3, . . . , (X− 1).

Expansion of Variables: Some variables are expanded before executing a command.
These can be used in --check, --labrunflag, --prefix, --for, and in the
arguments to the experiment.

%curdir the current directory

%logdir full path to the log directory

%host the host for the current experiment

%prefix either ssh %host cd %curdir; or an empty string

%name the name, provided by --name (default: schedule)

%maxtasks number of tasks per host, provided by --maxtasks

%nesting nesting level, provided by --nesting

%1, %2, ... will be replaced by the current word from the first, second, and so on
--for word list. Here one can use modifiers similar to those of tcsh, (e.g.,
%1:h). Example (if %1 gives /dir/name.ext):

h)ead (directory) %1:h /dir

t)ail (name) %1:t name.ext
e)xt (extension) %1:e ext

r)oot (skip ext) %1:r /dir/name

s)ubst (regular expression sub-
stitution /from/to/, any
character may be delimiter)

%1:s-e(.)-\1E- /dir/nam.ExEt

More variables can be defined by the --macro=LABEL=WORDLIST option. Valid
LABELs are alphanumeric and begin with a letter. Two predefined macros are:

• %idle=‘%prefix vmstat 1 2‘:(?s).*\D(\d+)
reads the host’s idle percentage (useful for --check) ((?s) makes .* match
also newlines, \D is [^0-9] and (\d+) returns the last number printed by
vmstat.)

• %check=%idle > 5
(useful for --check=%check on multi-user systems, see below)

Checking Idle Time:

By default, every host gets assigned %maxtasks tasks. On multiuser systems it
may be advisable to check if the host can accept a further task. This can be done
with the --check switch:

--check=<EXP> expression to check, if host can accept another task.

The results of commands, contents of files, and values of environment vari-
ables can be incorporated into EXP in the same way they can for for loop
values. (See two sections above).

Example:

• --check=‘ssh %host w‘:load.average < %maxtasks
reads the load of the host using the w command.

• --check=‘ssh %host vmstat 1 2‘:[^@]*([0-9]+) > 5
--check=‘%prefix vmstat 1 2‘:[^@]*([0-9]+) > 5
--check=%idle > 5
--check=%check
reads the idle percentage of the host using the vmstat command (all variants
resolve to the same command).

Using the --direct switch: The --direct switch is used internally for perform-
ing multiple runs of a program as one experiment when --nesting is used. If
both --direct, and --nesting=<LEVEL> are given, labschedule assumes that
<LEVEL> loops have already be processed (i.e., the first --for of the command
line will be treated as <LEVEL>+1). The main benefit from using --nesting is
that output of multiple commands is put in one log and output file.

Nevertheless, the switch is useful for completely different things:

• labschedule --direct --for=*.ps ps2pdf %1 %1:r.pdf
call ps2pdf on all *.ps files of the current directory

• labschedule -d -f*.jpg sh -c ’djpeg %1|pnmscale 0.5|cjpeg>sml/%1’
make small jpgs in a different directory (we have to add sh -c because we
want the special characters | and > (see Section 7.1) to be interpreted by
shell)

• labschedule --direct --for=’hert polzin kettner schaefer’ finger %1
finger the explab developers

Examples:

• labschedule --for="def1 def2 def3" --for=range(5) isp %1
Single host: Start the program isp with the three different parameters, and each
command 5 times, summing to 15 executions.

• labschedule --hosts="comp1 comp2 comp3 comp4" --for=*.stp steiner
%1
Compute cluster: For each *.stp file in the current directory, start a command.
Use the four mentioned hosts to perform the runs.

• labschedule --maxtasks=20 --check=%check --for=eval(map(lambda s:
s**2,range(100))) --for=range(2,11,2) calc %1 %2

Multiprocessor, multi-user system: Start calc with the first 100 square numbers,
and for each square number with the five even numbers between 2 and 10 (500
executions in total). Commit maximal 20 tasks at a time, and check if there is
still some idle time on the processors.

• labschedule --for="D E F" --for=/dat/%1/*.stp --nesting=1
--labrunflag=--cvs=~/src --labrunflag=--autocvs steiner %2

For each of the three directories ~/dat/D, ~/dat/E, and ~/dat/F, start an experi-
ment (with the given labrun options. In each of these experiments, start steiner
with every *.stp file in the current directory.

7.7 text2sus

Purpose:

Part of the Sus Filter Tools : Scans a text for keywords and outputs a sus
file.

Usage:

text2sus [<option>] [<label>|<label>=<regexp>|<regexp>] ...

Options:

-i, --input=<FILENAME> read from <FILENAME> (default: ’-’)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’)

-n, --next=<REGEXP> defines when to start a new record. (default: first label).
For example, if you want each line to be a separate record, you can use
--next=\n

-b, --binary store sus file in binary format (default: plain ascii format)

--nolabrc do not read ~/.labrc and ./labrc

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

Defining Labels:

There are three possibilities how to define a label:

<LABEL> Take the first word or number after any occurrence of the <LABEL>.

<LABEL>=<REGEXP> Take the first group defined in <REGEXP>. If there are no
parentheses in <REGEXP>, again take the next word or number.

<REGEXP> (containing groups with labels, ”(?P<label>...)") Take every
labeled group defined in <REGEXP>.

Thus,
"label",
"label=label",
"label:label[:= \t]*(\w+)", and
"label[:= \t]*(?P<label>w+)"

will do the same thing. In fact the regular expression is even a bit more com-
plicated to capture a floating point number if that seems to be the next word:
label[:= \t]*(?P<label>[+-]?\d+\.?\d*([eE][+-]?\d+)?|\w+)

Regular Expressions: 1

A regular expression (or REGEXP) specifies a set of strings that matches it.
1The description of regular expression is extracted and modified from Python’s documentation. For

more detailed information see http://www.python.org.

Regular expressions can be concatenated to form new regular expressions; if A and
B are both regular expressions, then AB is also an regular expression. If a string p
matches A and another string q matches B, the string *pq* will match AB.

A brief explanation of a part the format of regular expressions follows. For further
information and a gentler presentation, consult the Regular Expression HOWTO,
accessible from http://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordi-
nary characters, like ‘A’, ‘a’, or ‘0’, are the simplest regular expressions; they
simply match themselves. You can concatenate ordinary characters, so "last"
matches the string ‘last’. (In the rest of this section, we’ll write REGEXP’s
in "this special style", usually without quotes, and strings to be matched
‘in single quotes’.)

Some characters, like ‘|’ or ‘(’, are special. Special characters either stand for
classes of ordinary characters, or affect how the regular expressions around them
are interpreted.

The special characters are:

‘.’ (Dot.) In the default mode, this matches any character except a newline.

‘^’ (Caret.) Matches the start of the string and immediately after each newline.

‘$’ Matches the end of the string and before a newline. "foo" matches both ’foo’
and ’foobar’, while the regular expression "foo$" matches only ’foo’.

‘*’ Causes the resulting REGEXP to match 0 or more repetitions of the preceding
REGEXP, as many repetitions as are possible. "ab*" will match ’a’, ’ab’,
or ’a’ followed by any number of ’b’s.

‘+’ Causes the resulting REGEXP to match 1 or more repetitions of the preceding
REGEXP. "ab+" will match ’a’ followed by any non-zero number of ’b’s;
it will not match just ’a’.

‘?’ Causes the resulting REGEXP to match 0 or 1 repetitions of the preceding
REGEXP. "ab?" will match either ’a’ or ’ab’.

‘*?’, ‘+?’, ‘??’ The ‘*’, ‘+’, and ‘?’ qualifiers are all ”greedy”; they match
as much text as possible. Sometimes this behaviour isn’t desired; if the
REGEXP "<.*>" is matched against ‘<H1>title</H1>’, it will match the
entire string, and not just ‘<H1>’. Adding ‘?’ after the qualifier makes it
perform the match in ”non-greedy” or ”minimal” fashion; as few characters
as possible will be matched. Using ".*?" in the previous expression will
match only ‘<H1>’.

‘\’ Either escapes special characters (permitting you to match characters like
‘*’, ‘?’, and so forth), or signals a special sequence; special sequences are
discussed below.

If you are not using a command-line file (see section 6.2), remember that
most shells also use the backslash as an escape sequence in the command
line; therefore you have to put the regular expression into ’-quotes to prevent
an interpretation by the shell.

‘[]’ Used to indicate a set of characters. Characters can be listed individually,
or a range of characters can be indicated by giving two characters and sep-
arating them by a ‘-’. Special characters are not active inside sets. For
example, "[!akm]" will match any of the characters ‘a’, ‘k’, ‘m’, or ‘!’;
"[a-z]" will match any lowercase letter, and ‘[a-zA-Z0-9]’ matches any
letter or digit. Character classes such as ‘\w’ or ‘\S’ (defined below) are
also acceptable inside a range. If you want to include a ‘]’ or a ‘-’ inside
a set, precede it with a backslash, or place it as the first character. The
pattern "[]]" will match ‘]’, for example.

You can match the characters not within a range by ”complementing” the
set. This is indicated by including a ‘^’ as the first character of the set; ‘^’
elsewhere will simply match the ‘^’ character. For example, "[^5]" will
match any character except ‘5’.

‘|’ ‘A|B’, where A and B can be arbitrary REGEXPs, creates a regular expres-
sion that will match either A or B. This can be used inside groups (see below)
as well. To match a literal ‘|’, use "\|", or enclose it inside a character
class, as in "[|]".

‘(...)’ Matches whatever regular expression is inside the parentheses, and indi-
cates the start and end of a group. To match the literals ‘(’ or ‘)’, use
"\(" or "\)", or enclose them inside a character class: "[(] [)]".

‘(?...)’ This is an extension notation (a ‘?’ following a ‘(’ is not meaningful
otherwise). The first character after the ‘?’ determines what the meaning
and further syntax of the construct is. Extensions usually do not create a
new group; "(?P<NAME>...)" is the only exception to this rule. Following
are the some of the currently supported extensions.

‘(?P<NAME>...)’ Similar to regular parentheses, but the substring matched by
the group is accessible via the symbolic group name NAME.

‘(?P=NAME)’ Matches whatever text was matched by the earlier group named
NAME.

‘(?=...)’ Matches if "..." matches next, but doesn’t consume any of the string.
This is called a lookahead assertion. For example, "Isaac (?=Asimov)" will
match ‘Isaac ’ only if it’s followed by ‘Asimov’.

‘(?!...)’ Matches if "..." doesn’t match next. This is a negative lookahead
assertion. For example, "Isaac (?!Asimov)" will match ‘Isaac ’ only if
it’s not followed by ‘Asimov’.

The special sequences consist of ‘\’ and a character from the list below. If the
ordinary character is not on the list, then the resulting REGEXP will match the
second character. For example, "\$" matches the character ‘$’.

‘\A’ Matches only at the start of the string.

‘\b’ Matches the empty string, but only at the beginning or end of a word. A
word is defined as a sequence of alphanumeric characters, so the end of a
word is indicated by whitespace or a non-alphanumeric character.

‘\B’ Matches the empty string, but only when it is not at the beginning or end
of a word.

‘\d’ Matches any decimal digit; this is equivalent to the set "[0-9]".

‘\D’ Matches any non-digit character; this is equivalent to the set "[^0-9]".

‘\s’ Matches any whitespace character; this is equivalent to the set
"[\t\n\r\f\v]".

‘\S’ Matches any non-whitespace character; equivalent to the set
"[^ \t\n\r\f\v]".

‘\w’ This is equivalent to the set "[a-zA-Z0-9_]", the alphanumeric characters.

‘\W’ This is equivalent to the set "[^a-zA-Z0-9_]", the non-alphanumeric char-
acters.

‘\Z’ Matches only at the end of the string.

‘\\’ Matches a literal backslash.

Result:

A sus file containing data from the text.

Examples:

See Section 5.2.

7.8 table2sus

Purpose:

Part of the Sus Filter Tools : Converts a (Gnuplot-)ASCII table to sus for-
mat.

Usage:

table2sus [<option> ...] [<label> ...]

If no <label>s are given, they are searched in the ASCII table. The number
of columns is deduced from the number of space-separated words in the last un-
commented line in the file. The first line with this number of words that could
be labels (alphanumeric words beginning with a letter) is considered to contain
the labels. If labels are not found in this way, "col1","col2"... are used. By
default, the command acts as a filter (reads from stdin and writes to stdout).

Options:

-i, --input=<FILENAME> read from <FILENAME> (default: ’-’ for stdin)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’ for stdout)

-s, --separator=<SEPARATOR> use <SEPARATOR> as separator (default: ’ ’)

-b, --binary store sus file in binary format (default: plain ascii format)

-h, --help prints this help

--nolabrc do not read ~/.labrc and ./labrc

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

Result:

A sus file containing data from the ASCII table.

Examples:

See Section 5.2.

7.9 sus2text

Purpose:

Part of the Sus Filter Tools : Converts sus file to a space delimited ASCII
table.

Usage:

sus2text [<option> ...] [<label> | <label>=<expression> ...]

If <label>s are given, only those <label>s will be processed. Otherwise all labels
will be taken. By default, the command acts as a filter (reads from stdin and
writes to stdout).

Options:

-f, --filter=<EXPRESSION> just output records where <EXPRESSION> is nonzero

-s, --sort=<EXPRESSION> sort records according to <EXPRESSION> (by de-
fault, take the average if there are records with the same numeric
value for <EXPRESSION>; string values are always concatenated). Use
float(<EXPRESSION>) to sort according to a numeric expression. Multi-
ple --sort switches are possible.

-a, --add=<LABEL=EXPRESSION> add a new field in each record with label
<LABEL>

-c, --combine=[min|max|average|mean|sum|prod] how to merge multiple en-
tries of the same label from different records with the same --sort
<EXPRESSION>

-e, --eval=[strict,warn,debug,invalid] see section 5.1 for details

-i, --input=<SUSFILENAME> read <SUSFILENAME> (default: ’-’ for stdin) Mul-
tiple input files are possible. The files are merged by effectively catenating
them one after another. See Section 5.2.3)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’ for stdout)

--nolabrc do not read ~/.labrc and ./labrc

--help-expression print help for expressions (see section 5.1)

The switches --add, --sort, and --filter are processed in the same order as in
the command line.

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

Result:

A space-separated ASCII table.

Examples:

See Section 5.2.

7.10 sus2latex

Purpose:

Part of the Sus Filter Tools : Converts sus file to a LATEX table.

Usage:

sus2latex [<option> ...] [<label> | <label>=<expression> ...]

If <label>s are given, only those <label>s will be processed. Otherwise all labels
will be taken. By default, the command acts as a filter (reads from stdin and
writes to stdout).

Options:

-f, --filter=<EXPRESSION> just output records where <EXPRESSION> is nonzero

-s, --sort=<EXPRESSION> sort records according to <EXPRESSION> (by default,
take the average of numeric values if there are records with the same
value for <EXPRESSION>; string values are always concatenated). Use
float(<EXPRESSION>) to sort according to a numeric expression. Multi-
ple --sort switches are possible.

-a, --add=<LABEL=EXPRESSION> add a new field in each record with label
<LABEL>

-c, --combine=[min|max|average|mean|sum|prod] how to merge multiple en-
tries of the same label from different records with the same --sort
<EXPRESSION>

-e, --eval=[strict,warn,debug,invalid] see section 5.1 for details

-i, --input=<SUSFILENAME> read <SUSFILENAME> (default: ’-’ for stdin) Mul-
tiple input files are possible. The files are merged by effectively catenating
them one after another. See Section 5.2.3)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’ for stdout)

--nolabrc do not read ~/.labrc and ./labrc

--help-expression print help for expressions (see section 5.1)

The switches --add, --sort, and --filter are processed in the same order as in
the command line.

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

Result:

The body of a LATEX table (tabular-environment), with a simple header and
footer in comment lines (see Section 5.2.9 for an example).

Examples:

See Section 5.2.

7.11 sus2plot

Purpose:

Part of the Sus Filter Tools : Passes a sus file to Gnuplot.

Usage:

sus2plot [<option> ...] [<label> | <label>=<expression> ...]

If <label>s are given, only those <label>s will be processed. Otherwise all labels
will be taken. By default, the command acts as a filter (reads stdin and prints
stdout).

Options:

-f, --filter=<EXPRESSION> just output records that match the filter

-s, --sort=<EXPRESSION> sort records according to <EXPRESSION> (by default,
take the average of numeric values if there are records with the same value
for <EXPRESSION>; string values are always concatenated). In the plot, this
also defines the x axis. Use float(<EXPRESSION>) to sort acording to a
numeric expression. Multiple --sort switches are possible.

-a, --add=<LABEL=EXPRESSION> add a new field in each record with label
<LABEL>

-c, --combine=[min,max,average,mean,sum,prod] how to merge multiple en-
tries of the same label from different records with the same --sort
<EXPRESSION>

-e, --eval=<[strict,warn,debug,invalid]> see --help-expression for de-
tails

-p, --plotcommand=<COMMAND> insert some gnuplot commands before plotting

-i, --input=<SUSFILENAME> read <SUSFILENAME> (default: ’-’ for stdin) Mul-
tiple input files are possible. The files are merged by effectively catenating
them one after another. See Section 5.2.3)

-o, --output=<FILENAME> instead of displaying the plot, store it as <FILENAME>
in one of the following formats: postscipt, eps, png or pbm (depending on
the suffix of <FILENAME>).

--nolabrc do not read ~/.labrc and ./labrc

--help-expression print help for expressions (see section 5.1)

The switches --add, --sort, and --filter are processed in the same order as in
the command line.

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

Result:

Either a plot (in which you can navigate and zoom), or file with the plot.

Figure 1: sus2plot Navigation Buttons

Examples:

See Section 5.2.

7.12 sus2sus

Purpose:

Part of the Sus Filter Tools : Reformats a sus file.

Usage:

sus2sus [<option> ...] [<label> | <label>=<expression> ...]

If <label>s are given, only those <label>s will be processed. Otherwise all labels
will be taken. By default, the command acts as a filter (reads from stdin and
writes to stdout).

Options:

-f, --filter=<EXPRESSION> just output records where EXPRESSION is
nonzero

-s, --sort=<EXPRESSION> sort records according to <EXPRESSION> (by default,
take the average of numeric values if there are records with the same
value for <EXPRESSION>; string values are always concatenated). Use
float(<EXPRESSION>) to sort according to a numeric expression. Multi-
ple --sort switches are possible.

-a, --add=<LABEL=EXPRESSION> add a new field in each record with label
<LABEL>

-c, --combine=[min,max,average,mean,sum,prod] how to merge multiple en-
tries of the same label from different records with the same --sort
<EXPRESSION>

-e, --eval=<[strict,warn,debug,invalid]> see section 5.1 for details

-i, --input=<SUSFILENAME> read <SUSFILENAME> (default: ’-’ for stdin) Mul-
tiple input files are possible. The files are merged by effectively catenating
them one after another. See Section 5.2.3)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’ for stdout)

-b, --binary store sus file in binary format (default: plain ascii format)

--nolabrc do not read ~/.labrc and ./labrc

--help-expression prints help for expressions (see section 5.1)

The switches --add, --sort, and --filter are processed in the same order as in
the command line.

With @FILE or @ FILE (some) command-line options are read from FILE (see
section 6.2).

Result:

A sus file.

Examples:

See Section 5.2.

8 Downloading and Contact Information

The latest release of the tool set is available for downloading from
http://explab.sourceforge.net

Here you can also report bugs or make requests for new features and learn about work
in progress. We gladly accept constructive feedback, bug fixes, and improvements.

A System Environment Commands

In this appendix we list some commands that report information that may be relevant
for your experiment. We use here the syntax for the --comment option of labrun. If
you have other commands you believe others may find useful, please let us know so we
can add them to this list.

Cache Information

IRIX:

Instruction cache=‘hinv‘:Instruction.cache.size[\s:]+(.*)
L1 data cache=‘hinv‘:Data.cache.size[\s:]+(.*)

Solaris:

Instruction cache=0x‘prtconf -pv‘:icache-size Bytes
L1 data cache=0x‘prtconf -pv‘:dcache-size Bytes

The information from prtconf is in hex. The 0x before the command indi-
cates that labrun should convert the number of bytes reported to decimal.

CGAL version

CGAL version=@$CGALROOT/include/CGAL/config.h:CGAL_VERSION\s+(.*)

Compiler version

Compiler version=‘$CC -v‘: version

Graphics card (IRIX)

Graphics card=‘hinv‘:Graphics\sboard

LEDA version

not using CGAL

LEDA version=@$LEDAROOT/CHANGES:__LEDA__

using CGAL

LEDA version=‘cgal_leda_version‘

Because CGAL may have been installed with a different version of LEDA
than the one pointed to by LEDAROOT, the script cgal leda version is used
to find the correct version number. The script is as follows:

#! /bin/sh -f

cat $CGAL_MAKEFILE |grep "/LEDA.*/incl"|sed -e s:incl:CHANGES: > /tmp/name
if [-s /tmp/name] ; then

file=‘cat /tmp/name‘
cat $file|grep "#define __LEDA__"|head -n 1|sed ’s:#define __LEDA__::’
rm /tmp/name

else
echo "None"

fi

Notice that this script assumes the environment variable CGAL MAKEFILE
has been set. If this makefile does not correspond to one created with LEDA
support, the value ”None” is returned.

Qt version

Qt version=@$QTDIR/README:version\s+(\d+(\.\d+)*)

We also show here the commands used to extract the information automatically
recorded in the log file in case these commands somehow correspond to different in-
formation on your system.

OS

OS=‘uname -s‘

Hardware

Hardware=‘uname -m‘

Machine

Machine=‘uname -n‘

Processor

IRIX: Processor=‘hinv | grep ’.* MHZ .* Processor’ |
awk ’{printf \"%d MHz %s\", $2,$4}’‘

This command should be on a single line.

Linux: Processor=@/proc/cpuinfo:cpu.MHz[:\s]+(\w)+ MHz
@/proc/cpuinfo:model.name[\s:]+(.*)

This command should be on a single line.

Solaris: Processor=‘psrinfo -v | sed -n -e ’1,4 s/.*The \(.*\)
processor operates at \(.*\),/\2 \1/p’‘

This command should be on a single line.

Memory size

IRIX: Memory size=‘hinv‘:Main.memory.size[\s:]+(.*)

Linux: Memory size=@/proc/meminfo:MemTotal[\s:]+(.*)

Solaris: Memory size=‘prtconf -pv‘:Memory.size[\s:]+(.*)

L2 data cache

IRIX: L2 data cache=‘hinv‘:Secondary.*cache.size[\s:]+(.*)

Linux: L2 data cache=@/proc/cpuinfo:cache.size[\s:]+(.*)

Solaris: L2 data cache=0x‘prtconf -pv‘:ecache-size Bytes

References

[Joh96] D. Johnson. A theoretician’s guide to the experimental analysis of algorithms.
http://www.research.att.com/~dsj/papers/exper.ps, 1996.

[MM99] Catherine C. McGeoch and Bernad M. E. Moret. How to present a paper on
experimental work with algorithms. SIGACT News, 30(4):85–90, December
1999.

[MPG00] Max-Planck-Gesellschaft. Regeln zur sicherung guter wissenschaftlicher
Praxis (in German). http://www.mpg.de/pri00/pri0075.htm, December
2000.

Index

~/.labrc, 20

cache size
instruction, 51
L1, 51

CGAL version, 51
command input file, 21
command line file

example, 16
command-line options

--Make, 35
--add, 11, 46–50

example, 15, 18
--autocvs, 30
--batch, 30, 33, 37
--binary, 26, 41, 45, 50
--check, 7, 37
--clean, 35
--combine, 46–50

example, 17
--comment, 30, 33
--cvs, 30
--date, 30
--direct, 37
--env, 30, 33
--eval, 13, 46–50
--exec, 30, 33, 35
--filter, 11, 46–50

example, 16
--for, 5, 37
--hosts, 6, 37
--ignore, 9, 33, 37
--info, 30
--input, 41–50
--keep, 9, 30, 33, 35, 37
--labrunflag, 37
--log, 30, 33, 35, 37
--macro, 37
--makeflag, 35
--maxtasks, 7, 37
--name, 30, 33, 37
--nesting, 6, 37
--next, 41
--nocvs, 10, 30, 33

--nolabrc, 20, 30–50
--nolabrun, 37
--noskip, 37
--one, 30, 33
--output, 41–50
--plotcommand, 48
--print, 6, 33, 37
--sort, 11, 46–50

example, 15, 17
--tag, 30, 33
--target, 35
@, 21
style, 28

compiler version, 51
configuration files

creating, 2, 29
format, 20

current.clog, 4
current.err, 8
current.log, 8
current.out, 8

debugging sus file transformations, 13
defining labels, 41

expressions, 11
example, 11, 15, 16
format, 12
iff, 12
savediv, 12

goals, 1
graphics card, 51

hardware, 52

labmex, 4, 35
labrc, 20
labrerun, 9, 33
labrun, 7, 30
labschedule, 5, 37
labsetup, 29
LEDA version, 51
log file format

labrun, 23
labschedule, 25

55

loops, 5

machine, 52
machine cluster, 6
memory size, 52
multiple experiments, 7
multiple machines, 6
multiple runs, 5

operating system, 52

processor, 52
python

expressions, see expression
regular expressions, see regular ex-

pressions

Qt version, 52
quoting, 21, 28

regular expressions
definition, 41–44
example, 14

setup, 2
special characters, 21, 28
sus file format, 26
sus2latex, 47

example, 19
sus2plot, 48

example, 19
sus2sus, 50

example, 18
sus2text, 46

example, 15, 16

table2sus, 45
example, 13, 18

text2sus, 41
example, 14, 16

✤✜✏
✑

✤✜ ❦

I N F O R M A T I K

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-2002-4-002 F. Drago, W. Martens, K. Myszkowski,
H. Seidel

Perceptual Evaluation of Tone Mapping Operators with
Regard to Similarity and Preference

MPI-I-2002-4-001 M. Goesele, J. Kautz, J. Lang,
H.P.A. Lensch, H. Seidel

Tutorial Notes ACM SM 02 A Framework for the
Acquisition, Processing and Interactive Display of High
Quality 3D Models

MPI-I-2002-2-008 W. Charatonik, J. Talbot Atomic Set Constraints with Projection

MPI-I-2002-2-007 W. Charatonik, H. Ganzinger Symposium on the Effectiveness of Logic in Computer
Science in Honour of Moshe Vardi

MPI-I-2002-1-008 P. Sanders, J.L. Träff The Factor Algorithm for All-to-all Communication on
Clusters of SMP Nodes

MPI-I-2002-1-005 T. Polzin ?

MPI-I-2002-1-004 S. Hert, L. Kettner, G. Schäfer ?

MPI-I-2002-1-003 I. Katriel, P. Sanders, J.L. Träff A Practical Minimum Scanning Tree Algorithm Using
the Cycle Property

MPI-I-2002-1-002 F. Grandoni Incrementally maintaining the number of l-cliques

MPI-I-2002-1-001 T. Polzin, S. Vahdati Using (sub)graphs of small width for solving the Steiner
problem

MPI-I-2001-4-005 H.P.A. Lensch, M. Goesele, H. Seidel A Framework for the Acquisition, Processing and
Interactive Display of High Quality 3D Models

MPI-I-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly Injective
Domain

MPI-I-2001-4-003 K. Daubert, W. Heidrich, J. Kautz,
J. Dischler, H. Seidel

Efficient Light Transport Using Precomputed Visibility

MPI-I-2001-4-002 H.P.A. Lensch, J. Kautz, M. Goesele,
H. Seidel

A Framework for the Acquisition, Processing,
Transmission, and Interactive Display of High Quality
3D Models on the Web

MPI-I-2001-4-001 H.P.A. Lensch, J. Kautz, M. Goesele,
W. Heidrich, H. Seidel

Image-Based Reconstruction of Spatially Varying
Materials

MPI-I-2001-2-006 H. Nivelle, S. Schulz Proceeding of the Second International Workshop of the
Implementation of Logics

MPI-I-2001-2-005 V. Sofronie-Stokkermans Resolution-based decision procedures for the universal
theory of some classes of distributive lattices with
operators

MPI-I-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher Order
Natural Deduction using Type Theory

MPI-I-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms on
Completely Unimodel Hypercubes

MPI-I-2001-2-002 P. Maier A Set-Theoretic Framework for Assume-Guarantee
Reasoning

MPI-I-2001-2-001 U. Waldmann Superposition and Chaining for Totally Ordered
Divisible Abelian Groups

MPI-I-2001-1-007 T. Polzin, S. Vahdati Extending Reduction Techniques for the Steiner Tree
Problem: A Combination of Alternative-and
Bound-Based Approaches

MPI-I-2001-1-006 T. Polzin, S. Vahdati Partitioning Techniques for the Steiner Problem

MPI-I-2001-1-005 T. Polzin, S. Vahdati On Steiner Trees and Minimum Spanning Trees in
Hypergraphs

MPI-I-2001-1-004 S. Hert, M. Hoffmann, L. Kettner, S. Pion,
M. Seel

An Adaptable and Extensible Geometry Kernel

MPI-I-2001-1-003 M. Seel Implementation of Planar Nef Polyhedra

MPI-I-2001-1-002 U. Meyer Directed Single-Source Shortest-Paths in Linear
Average-Case Time

MPI-I-2001-1-001 P. Krysta Approximating Minimum Size 1,2-Connected Networks

MPI-I-2000-4-003 S.W. Choi, H. Seidel Hyperbolic Hausdorff Distance for Medial Axis
Transform

MPI-I-2000-4-002 L.P. Kobbelt, S. Bischoff, K. Kähler,
R. Schneider, M. Botsch, C. Rössl,
J. Vorsatz

Geometric Modeling Based on Polygonal Meshes

MPI-I-2000-4-001 J. Kautz, W. Heidrich, K. Daubert Bump Map Shadows for OpenGL Rendering

MPI-I-2000-2-001 F. Eisenbrand Short Vectors of Planar Lattices Via Continued
Fractions

MPI-I-2000-1-005 M. Seel, K. Mehlhorn Infimaximal Frames: A Technique for Making Lines
Look Like Segments

MPI-I-2000-1-004 K. Mehlhorn, S. Schirra Generalized and improved constructive separation
bound for real algebraic expressions

MPI-I-2000-1-003 P. Fatourou Low-Contention Depth-First Scheduling of Parallel
Computations with Synchronization Variables

MPI-I-2000-1-002 R. Beier, J. Sibeyn A Powerful Heuristic for Telephone Gossiping

MPI-I-2000-1-001 E. Althaus, O. Kohlbacher, H. Lenhof,
P. Müller

A branch and cut algorithm for the optimal solution of
the side-chain placement problem

MPI-I-1999-4-001 J. Haber, H. Seidel A Framework for Evaluating the Quality of Lossy Image
Compression

MPI-I-1999-3-005 T.A. Henzinger, J. Raskin, P. Schobbens Axioms for Real-Time Logics

MPI-I-1999-3-004 J. Raskin, P. Schobbens Proving a conjecture of Andreka on temporal logic

MPI-I-1999-3-003 T.A. Henzinger, J. Raskin, P. Schobbens Fully Decidable Logics, Automata and Classical
Theories for Defining Regular Real-Time Languages

MPI-I-1999-3-002 J. Raskin, P. Schobbens The Logic of Event Clocks

MPI-I-1999-3-001 S. Vorobyov New Lower Bounds for the Expressiveness and the
Higher-Order Matching Problem in the Simply Typed
Lambda Calculus

MPI-I-1999-2-008 A. Bockmayr, F. Eisenbrand Cutting Planes and the Elementary Closure in Fixed
Dimension

MPI-I-1999-2-007 G. Delzanno, J. Raskin Symbolic Representation of Upward-closed Sets

MPI-I-1999-2-006 A. Nonnengart A Deductive Model Checking Approach for Hybrid
Systems

MPI-I-1999-2-005 J. Wu Symmetries in Logic Programs

MPI-I-1999-2-004 V. Cortier, H. Ganzinger, F. Jacquemard,
M. Veanes

Decidable fragments of simultaneous rigid reachability

MPI-I-1999-2-003 U. Waldmann Cancellative Superposition Decides the Theory of
Divisible Torsion-Free Abelian Groups

MPI-I-1999-2-001 W. Charatonik Automata on DAG Representations of Finite Trees

MPI-I-1999-1-007 C. Burnikel, K. Mehlhorn, M. Seel A simple way to recognize a correct Voronoi diagram of
line segments

MPI-I-1999-1-006 M. Nissen Integration of Graph Iterators into LEDA

MPI-I-1999-1-005 J.F. Sibeyn Ultimate Parallel List Ranking ?

MPI-I-1999-1-004 M. Nissen, K. Weihe How generic language extensions enable “open-world”
desing in Java

MPI-I-1999-1-003 P. Sanders, S. Egner, J. Korst Fast Concurrent Access to Parallel Disks

