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Synthetic lethality (SL), an important type of genetic interaction, can provide useful insight

into the target identification process for the development of anticancer therapeutics.

Although several well-established SL gene pairs have been verified to be conserved in

humans, most SL interactions remain cell-line specific. Here, we demonstrated that the

cell-line-specific gene expression profiles derived from the shRNA perturbation

experiments performed in the LINCS L1000 project can provide useful features for

predicting SL interactions in human. In this paper, we developed a semi-supervised

neural network-based method called EXP2SL to accurately identify SL interactions from

the L1000 gene expression profiles. Through a systematic evaluation on the SL datasets

of three different cell lines, we demonstrated that our model achieved better performance

than the baseline methods and verified the effectiveness of using the L1000 gene

expression features and the semi-supervise training technique in SL prediction.

Keywords: synthetic lethality, L1000 gene expression profiles, machine learning, semi-supervised neural network,

target identification

INTRODUCTION

Two genes are considered a synthetic lethal (SL) pair if perturbation of both genes induces a defect

in cell viability, while perturbation of either gene is not harmful to cell survival (Boone et al., 2007).

Different types of perturbations were considered to trigger SL in previous studies, including

knockdown, knockout, mutation, aberrant gene expression, copy number variation, and drug

treatment (Whitehurst et al., 2007; Jerby-Arnon et al., 2014; Han et al., 2017; Sinha et al., 2017).

Studying synthetic lethal interactions may help gain novel insights into target identification. Many
cancer cells carry specific mutations in one gene (e.g., a tumor suppressor gene) of a synthetic lethal

pair, and thus its synthetic lethal partner becomes a promising drug target (O'Neil et al., 2017). For

example, the known synthetic lethal interactions between the tumor suppressor gene BRCA1/2 and

the drug target gene PARP1 can be used to selectively kill cancer cells by triggering fatal DNA

damages (Bryant et al., 2005; Farmer et al., 2005). To this end, PARP1 inhibitors have been

approved to treat certain types of BRCA-mutated cancers (Fong et al., 2009).
SL gene pairs can be experimentally screened by developing double-knockout strains in model

organisms and human cell lines. The synthetic lethality network in yeast has been well constructed

using synthetic genetic arrays (SGA) (Tong et al., 2001) and diploid synthetic lethality analysis with

Frontiers in Pharmacology | www.frontiersin.org February 2020 | Volume 11 | Article 1121

Edited by:

Alex Zhavoronkov,

Biogerontology Research Foundation,

United Kingdom

Reviewed by:

Feng ZHU,

Zhejiang University, China

Vasileios Stathias,

University of Miami, United States

Qi Zhao,

Shenyang Aerospace University,

China

Jihye Kim,

University of Colorado Anschutz

Medical Campus,

United States

Bhaskar Roy,

Beijing Genomics Institute (BGI),

China

*Correspondence:

Dan Zhao

zhaodan2018@tsinghua.edu.cn

Jianyang Zeng

zengjy321@tsinghua.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Translational Pharmacology,

a section of the journal

Frontiers in Pharmacology

Received: 27 October 2019

Accepted: 28 January 2020

Published: 28 February 2020

Citation:

Wan F, Li S, Tian T, Lei Y, Zhao D and

Zeng J (2020) EXP2SL: A Machine

Learning Framework for Cell-Line-

Specific Synthetic Lethality Prediction.

Front. Pharmacol. 11:112.

doi: 10.3389/fphar.2020.00112

ORIGINAL RESEARCH
published: 28 February 2020

doi: 10.3389/fphar.2020.00112

https://www.frontiersin.org/articles/10.3389/fphar.2020.00112/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00112/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.00112/full
https://loop.frontiersin.org/people/817217
https://loop.frontiersin.org/people/858002
https://loop.frontiersin.org/people/858009
https://loop.frontiersin.org/people/828045
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhaodan2018@tsinghua.edu.cn
mailto:zengjy321@tsinghua.edu.cn
https://doi.org/10.3389/fphar.2020.00112
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.00112
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.00112&domain=pdf&date_stamp=2020-02-28


microarrays (dSLAM) (Pan et al., 2007). Nearly one million gene

pairs covering 90% of the whole yeast genome were screened in a

recent study (Costanzo et al., 2016). Compared to yeast strains,

which can undergo sexual reproduction to generate double-

knockout offspring from parents bearing different single

knockouts, it is more challenging to develop double-knockout
human cell lines in an efficient manner. Thus, a relatively low

number of human gene pairs (about hundreds or thousands) can

be screened by RNA interference (Whitehurst et al., 2007; Barbie

et al., 2009) and CRISPR-Cas9 (Shen et al., 2017; Han et al.,

2017) based double-knockout experiments. Due to the difficulty

in the establishment of large-scale double-knockout systems in
human cell lines, the currently screened gene pairs only account

for a small fraction of all possible combinations of human genes.

To overcome the current difficulty in experimental screen and

generate more SL interactions in human, computational methods

have recently been proposed to predict novel human SL pairs

recently. The most direct idea is to leverage the abundant SL pairs
characterized in yeast to infer human SLs through ortholog

mapping (Deshpande et al., 2013; Wu et al., 2013; Srivas et al.,

2016). The application of these methods was limited, as a large

number of human genes do not have evolutionarily close yeast

orthologs. Network-based methods predict human SLs through

analyzing the protein-protein interaction (PPI) networks,

metabolic networks, or signaling pathways (Folger et al., 2011;
Kranthi et al., 2013; Zhang et al., 2015; Apaolaza et al., 2017).

Statistical methods were also developed to identify SL gene pairs

from human cancer cells based on the principle that the

perturbations (e.g., mutation, aberrant gene expression, and copy

number variation) of both SL genes should be subject to negative

selection and exhibit a mutually exclusive pattern (Jerby-Arnon
et al., 2014; Srihari et al., 2015; Jacunski et al., 2015; Sinha et al., 2017;

Lee et al., 2018). Besides, there exist severalmachine-learning-based

approaches for predicting SL gene pairs. Most of these approaches

learn from the adequate amount of supervised information of yeast

(Wong et al., 2004; Pandey et al., 2010; Li et al., 2011). Only a few

machine learning methods for predicting human SLs were

developed. For example, Das et al. used a Random Forest
classifier with multi-omics features (e.g., differential expression,

expression correlation, mutual exclusivity and shared pathways) to

predict SL pairs in human cancer (Das et al., 2018); and Liu et al.

proposed a logistic matrix factorization model regularized by the

PPI similarity network and the gene ontology (GO) semantic

similarity network to predict SL pairs (Liu et al., 2019).
Although a number of SL interactions are conserved in humans,

most of them are only observed in specific cell lines or tissues (Ryan

et al., 2018). A recent study detected SL pairs in three cell lines and

found that onlyabout 10%ofSL interactionswere sharedby twocell

lines, and no SL pair was identified in all the three cell lines (Shen

et al., 2017). Despite the extensive applications of the above

computational methods in SL prediction, most of them make
predictions for the human genetic network without considering

the cell line or tissue context. Although one of the aforementioned

methods (Das et al., 2018) can predict SL in different human cancer

types, it is difficult to directly apply this method to cell lines, as the

homogenous genetic background of cell lines cannot provide

enough mutation-related omics data. To provide a feasible tool

for capturing the unique SL interaction networks for individual cell

types, we aim to develop a computationalmethod to learn from the

experimentally measured SL interactions through considering the

cell-line specific genetic information.

In this paper, we have proposed a novel computational method,
EXP2SL, to predict cell-line specific SL interactions in human. The

cell-line specific gene expression profiles resulting from the shRNA

knockdownexperiments in theLINCSL1000project (Subramanian

et al., 2017)were used to capture the informationof cell-line specific

genetic background. Since the available labeled data in single cell

lines are limited, a semi-supervised objective function is used to
exploit the large amount of unlabeled data. Tested on the

combinatorial CRISPR-Cas9 perturbation-based SL datasets in

three different cell lines, our model showed competitive

prediction ability compared to the baseline methods. We also

verified the effectiveness of the features derived from the L1000

geneexpressionprofiles and the semi-supervisedobjective function.
Furthermore,we evaluated the importance of each gene included in

the L1000 gene expression profiles and found that the cell viability

related functions were enriched among the top attributing genes.

METHODS

Data Processing
The L1000 Gene Expression Profiles
The LINCS L1000 project (Subramanian et al., 2017) measured the

expression levels of 978 landmark genes under different

perturbations (i.e., shRNA or compounds) and control conditions

(i.e., empty vectors or solvents) in different human cell lines. Here,
we used the gene expression profiles resulting from shRNA

perturbations to construct the features of the corresponding

shRNA target genes, which were 978-dimensional vectors.

Specifically, the raw data from the LINCS L1000 project were

preprocessed based on the pipeline in the original paper

(Subramanian et al., 2017) with minor modifications; We first

directly obtained the Level 3 data from L1000, which contained
the quantile normalized gene expression profiles. The shRNA

profiles perturbed after 96 hours were used, as the data amount

for this time point was the largest. Based on this dataset, we

calculated the z-score for each dimension of a shRNA perturbed

profile x∈R978 by

z =
x −median Vð Þ

1:4826 ∗MAD Vð Þ
, (1)

where z is a 978-dimensional z-score of the shRNA perturbation

profile x, V is the set of vector control profiles from the same

plate, median(V) and MAD(V) stand for the median value and

the median absolute deviation of V, and 1.4826 is a scaling factor
to make the resulted z-scores close to normal distribution.

Notably, in the original L1000 preprocessing pipeline

(Subramanian et al., 2017), the control profiles were replaced

by all the profiles on the plate, called population control. Here,

we argue that this data preprocessing scheme may cause a biased
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control distribution due to the specific perturbation design.

Thus, we use the expression levels treated with empty vectors

as the control for the shRNA perturbed profiles.

For each gene, typically more than one types of shRNA were

designed to knock down the expression of the corresponding gene

product. To eliminate the off-target effects of shRNAs and obtain a
robust signature for each single gene, the z-scores obtained fromthe

replicated trials of the same shRNA were first processed using an

algorithm with L1000 Level 5 data (Subramanian et al., 2017), then

the same protocol was used to reduce the shRNAs targeting the

same gene. More specifically, the z-scores were weighted and

averaged according to the Spearman correlations to obtain a final
978-dimensional L1000 gene expression profile for each gene,

which was then used as the input gene features for our model and

other baseline models.

SL Labels
The SL labels in our datasets were constructed from the CRISPR

double-knockout experiments performed in human cell lines (Shen

et al., 2017; Zhao et al., 2018;Najmet al., 2018).A recently proposed
computational approach called GEMINI (Zamanighomi et al.,

2019) was used to identify SL interactions from the combinatorial

CRISPR perturbation based cell viability studies. We adopted the

GEMINI scores to select the positive and negative SL pairs for

constructing our datasets. Inparticular, for eachcell line, positive SL

pairs were selected from gene pairs satisfying two criteria: 1)

GEMINI “strong” scores larger than zero, which indicates the
existence of the synergic lethal effect, and 2) GEMINI “strong”

scores ranking among top5%, to reduce the potential false positives.

Themain reason for choosing this threshold is that the top 5% gene

pairswere considered as “themost significant hits in each screen” in

the GEMINI paper (Zamanighomi et al., 2019). To more

thoroughly evaluate the performance of our method, we also
tested another threshold (i.e., 10%) for choosing the positive SL

pairs (Tables S1-S2). Negative SL pairs were those gene pairs

satisfying 1) a GEMINI “strong” score less than zero, which

means that there exists no synergic lethal effect between these two

genes, and 2) a GEMINI “strong” score among the bottom 50%, to

remove the potential false negatives. The gene pairs that were not

selected as positive or negative SL pairs were considered as
unknown pairs. Finally, cell lines with adequate numbers (>100)

of genepairswith bothSL labels andL1000gene expressionprofiles,

including A549, A375, and HT29, were used in our study. The

numbers of training samples for the cell lines are summarized in

Table 1.

The Workflow of EXP2SL
The basic idea of our EXP2SL model is to extract useful
information from the L1000 expression profiles to accurately

predict cell-line specific SL interactions. To achieve this goal, a

semi-supervised objective function was designed to fully exploit

the large amount of unlabeled data (Figure 1).

The Network Architecture of EXP2SL
For a given cell line, suppose that there areN genes (marked as the

indices 1, 2,…, N) with measured shRNA data from the LINCS

L1000project (Subramanian et al., 2017).The correspondingL1000
gene expressionprofiles canbe represented as a set offeature vectors

ffi ∈ R
978gNi=1.

For a given cell line, our model first encodes the gene features

through E sequential fully-connected layers, that is,

hei = ReLU We
encoderh

e−1
i + beencoder

� �

,

e = 1, 2,…, E, i = 1, 2,…,N ,

(2)

where h0i = f i, ReLU(x) stands for the rectifier linear activation

function ReLU(x) = max(0,x), W1
encoder ∈ R

d�978,We
encoder ∈

R
d�d(e = 2,…, E), and beencoder ∈ R

d(e = 1,…, E) denote the
learnable parameters (d is the dimension of the hidden layers).

After E encoding layers, the updated gene features fhEi g
N
i=1 are

then used to predict SL interactions. More specifically, for a gene

pair (i, j), i, j = 1,2,…, N and i ≠ j, a confidence score is calculated

through a linear layer to predict the potential of SL interaction

between this gene pair, that is,

si,j =
1

2
Wout h

E
i , h

E
j

� �

+Wout h
E
j , h

E
i

� �� �

+ bout , (3)

where Wout∈R
1×2d and bout∈R stand for learnable parameters.

Note that the pairs (i, j) and (j, i) are equivalent to each other, so

we calculate the average prediction scores of concatenations of

½hEi ,  h
E
j � and ½hEj ,  h

E
i � to obtain the equivalent prediction results

for input pairs (i, j) and (j, i).

The Semi-Supervised Objective Function
As described in SL Labels, the gene pairs with different SL labels

can be classified into positive, negative, and unknown sets,

denoted as P, N, and U, respectively. Here, we designed a

semi-supervised loss function that utilizes information from all

three sets to optimize the parameters of our model. More
specifically, our loss consisted of three parts:

The first part of our objective function is the mean squared

error (MSE) of positive and negative samples, calculated as

LMSE = o
i,jð Þ∈P∪N

(̂si,j − si,j)
2, (4)

where ŝi, j = 1 if (i, j) ∈ P, ŝi, j = – 1 if (i, j) ∈ N, and si, j stands for

the potential score of gene pair (i, j) predicted by EXP2SL.

The secondpart of the objective function is inspired by the semi-

supervised Bayesian personalized ranking (BPR) loss (Rendle et al.,
2009), which uses the unknown labels to boost the prediction

performance. In particular, the BPR loss is defined as

LBPR = o
a,bð Þ∈P, c,dð Þ∈U

log s sa,b − sc,d
� �

+ o
c,dð Þ∈U , e,fð Þ∈N

log s sc,d − se,f
� �

, (5)

TABLE 1 | Number of labeled training samples for each cell line.

A549 A375 HT29

Positive SL gene pairs 126 18 18

Negative SL gene pairs 1106 44 123

Total 1232 62 141
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where s stands for the sigmoid function s (x) = 1
1+e−x

. This

objective function aims to enlarge the margins of the predicted

scores between positive SL and unknown pairs, as well as those

between the unknown and negative SL pairs. To calculate this
loss, we sample the negative and unknown pairs with the sample

number equal to the positive pairs during model training.

The above MSE and BPR objective functions are further

combined with an L2 regularizier over all the learnable model

parameters to construct the final objective function of our

EXP2SL model, that is,

L qð Þ = LMSE + l1LBPR + l2jjqjj
2, (6)

where q denotes the model parameters, and l1 and l2 stand for

the weight parameters controlling the contributions of the BPR

loss and the L2 regularization term, respectively.

To train the EXP2SL model, we used the Adam optimizer

(Kingma and Ba, 2014) with the default learning rate 0.001 and
the number of training epochs 1,000.We also clipped the gradient if

it was larger than 5 to stabilize the training process. We

implemented our model with PyTorch 1.0.1 (Paszke et al., 2017).

Hyper-Parameters
The hyper-parameters of our model include the weight of the

BPR loss l1 from [16, 32, 64, 128], the weight of the L2

regularization l2 from [0.1, 0.05, 0.01, 0.005, 0.0001], the

number of encoding layers from [0, 1, 2, 3, 4], and the

dimension of hidden features d from [32, 64, 128, 256]. For

each cell line, a grid search was performed to select the best
combination of hyper-parameter settings from the above

mentioned ranges, according to the AUC scores achieved by

five repeats of 5-fold cross validations under the “split pair”

setting (i.e., gene pairs were randomly split into training and test

sets). Details about the cross-validation settings can be found in

Performance Evaluation. The baseline models were tuned using
the same strategy, and the ranges for hyper-parameters in each

baseline model are described in the Baseline Models.

Extraction of Feature Importance
Here, we used the saliency map-based approach proposed in
(Simonyan et al., 2013) to evaluate the importance of each

position along the 978-dimensional input features ffig
N
i=1. The

basic idea of this method is to calculate the gradients of the

output score with respect the to the input features, and the larger

absolute values of gradients would suggest the more importance

of the corresponding feature dimension. After the training

process, the positive and negative SL pairs of each cell line are
fed into the EXP2SL model, and the corresponding importance

for each input feature dimension is calculated by

FIGURE 1 | Workflow of the EXP2SL model. For a pair of gene, their L1000 gene expression profiles derived from knockdown conditions are the inputs of the

encoding layers. Then, the updated features for both genes in a given pair are concatenated to predict the confidence score of being an SL pair by a linear

combination. In addition, a semi-supervised objective function is used to train the model parameters, which aims to utilize the information from both known (positive

and negative) and unknown SL gene pairs.
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w = o
i,jð Þ∈ P ∪N

j
∂ si,j

∂ f i
+j j

∂ si,j

∂ f j
j, (7)

where si, j is the predicted confidence score of gene pair (i, j), and

w is a 978-dimensional vector containing the importance score of

each dimension of the input L1000 gene expression profiles. To

reduce the variance caused by random initialization of network

parameters and random sampling of the unknown and negative

gene pairs for calculating the BPR loss during the training
process, we also take the summation of w vectors from 10

trained EXP2SL models to obtain the final importance scores

for the 978 feature dimensions. The top 50 ranked features are

then selected for each cell line. We examined the overlaps of the

selected features between cell lines and calculated the over-

representations of functional gene sets and pathways using the
WebGestalt server (Liao et al., 2019).

Baseline Models
Logistic Regression
We used the logistic regression (LR) model implemented based

on scikit-learn (Buitinck et al., 2013). The L1000 expression

profiles were used as input to the LR model. For each pair of
input genes (i,j), the features of genes i and j (denoted as fi and fj,

respectively) were concatenated before being fed into the LR

model. Since LR may produce different results for pairs (i, j) and

(j, i), each of the two pairs were treated as an individual input

with the same label in the training phase. In the test phase, the

prediction values from both inputs were then averaged to obtain
the final prediction score. The inverse of regularization strength

(a hyper-parameter) was chosen from [10, 1, 0.5, 0.1, 0.05, 0.01].

Random Forest
We used the random forest (RF) classifier implemented based on

scikit-learn (Buitinck et al., 2013). The input and output of RF

were the same as those of LR described above. The number of

trees was selected from [32, 64, 128] and the maximum depth of
the trees was selected from [8, 16, None], where “None” means

that the trees will keep expanding until no node can be split.

Support Vector Machine
Weused the support vectormachine (SVM) classifier implemented

basedon scikit-learn (Buitinck et al., 2013). The input and output of

SVMwere the sameas those ofLRandRFdescribedabove.Theonly

hyper-parameter, the inverse of regularization strength, was
selected from [100, 50, 10, 5, 1, 0.5, 0.1].

Gradient Boosting Decision Tree
We used the gradient-boosting decision tree (GBDT) classifier

implemented by the XGBoost project (Chen and Guestrin, 2016).

The input and output of GBDT were the same as other classifiers

described above. The number of trees was selected from [32, 64, 128]
and the maximum depth of the trees was selected from [4, 8, 16].

NetLapRLS
NetLapRLS (Xia et al., 2010) (a semi-supervised regressor) was

implemented basedonpyDTI (https://github.com/stephenliu0423/

PyDTI).AsNetLapRLS treats symmetric gene pairs (i, j) and (j, i) in

the same way, there is no need to average the predictions of both

pairs. Three types of similarity matrices were used as the input to

NetLapRLS: 1) The protein-protein interaction (PPI) similarity

matrix Sp, i.e., the pairwise PPI similarities between all pairwise

genes used in the cell line. The human PPI data were obtained from

the STRING database v11 (Szklarczyk et al., 2014). Protein pairs
marked with STRING scores larger than 0.8 were considered

positive interaction pairs in the PPI network. The PPI similarity

between two proteins (i, j) were calculated as the Jaccard similarity

of their interaction partners in the PPI network, that is,

Sp i, jð Þ =
N ið Þ ∩ N jð Þj j

N ið Þ ∪ N jð Þj j
, (8)

where N(x) stands for the neighbors of protein x in the PPI

network. 2) The L1000 profile similarity matrix Sl, i.e., the

absolute values of the pairwise L1000 profile similarities

between all the genes used in the cell line. The L1000 profile

similarity between two genes were calculated as the Pearson
correlation between their L1000 gene expression profiles. 3) The

combination of both PPI and L1000 similarities, calculated as 1 –

(1 – Sp)(1 – Sl). The best hyper-parameter settings were selected

from all the combinations over gd = gt from [0.0001, 0.001, 0.01,

0.1, 1] and bd = bt from [0.003, 0.03, 0.3,3, 30].

RESULTS

Cell-Line Specificity of SL Interactions
To demonstrate the cell-line specificity of SL interactions, we

examined 378 CRISPR knockout pairs screened in different cell

lines from the Big Papi SynLet library (Najm et al., 2018). Their
SL scores were calculated by GEMINI (Zamanighomi et al.,

2019), a computational tool for identifying SL interactions

from pairwise CRISPR knockout screens. Three cell lines were

used in our performance evaluation, including A549, A375, and

HT29. Among these three cell lines, A549 and A375 exhibited

relatively high correlation (Pearson correlation 0.71, Figure 2A)
in GEMINI scores, which measure the strength of the SL

interactions. Meanwhile, the correlations between HT29 and

the other two cell lines are relatively low (Pearson correlations

0.36 and 0.28, Figure 2A). These results indicate that the SL

interaction patterns between the same gene pairs in different cell

lines can be quite different.

Next, we examined the positive and negative SL samples
selected from the Big Papi dataset according to the criteria

described in SL Labels. By comparing the SL labels of the same

gene pairs in the three cell lines, we found that most gene pairs

have inconsistent labels cross different cell lines (Figure 2B). There

are 38 gene pairs with at least one positive label in the three cell

lines, but only one of them (i.e., the BRCA1-PARP1 gene pair) is
always labeled as a positive SL. Among these 38 gene pairs, 16 have

negative labels in one cell line but positive labels in another one.

Based on the above observation that most SL pairs were not

conserved across different cell lines, we built prediction models

for each cell line separately. In addition to the Big Papi dataset,

we also included the data from other literature (Shen et al., 2017;

Wan et al. EXP2SL: Synthetic Lethality Prediction

Frontiers in Pharmacology | www.frontiersin.org February 2020 | Volume 11 | Article 1125

https://github.com/stephenliu0423/PyDTI
https://github.com/stephenliu0423/PyDTI
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Zhao et al., 2018), which further enlarged the SL data of cell line

A549. The overlaps of gene pairs used as labeled training samples

between the three cell lines are shown in Figure 2C.

Performance Evaluation
We compared the performance of our model to that of several

baseline methods through cross-validation on the aforementioned

datasets for the three cell lines. LR, RF, SVM, and GBDT were

selected as the baseline methods because they are the machine

learning baseline models and accept vector input, which is suitable

for our case. NetLapRLS is also used as a baseline model, as it is a
well-established semi-supervised method that accepts network

input and which can be used to test the effectiveness of other

features, such as thePPInetwork.Two settingswere used to split the

training and test samples. The first one was called “split pair” in

which genepairswere randomly split into training and test sets. The

second one was called “split gene” in which, for each test gene pair,

at least one gene is not seen in training data. The “split gene” setting
wasmainly used to testwhether the prediction can be generalized to

unseen genes, which ismore challenging.Note that the splittingwas

performed over positive and negative SL pairs, and our model also

utilized the unknown pairs during the training process.

Area under the receiver operating characteristic curve (AUC),

area under the precision-recall curve (AUPR), F1 score, accuracy,
precision, sensitivity and selectivity were used to evaluate the

classification performance (Tables 2 and 3). The receiver

operating characteristic (ROC) and precision-recall (PR) curves

achieved by EXP2SL and the baseline models are shown in Figures
S2–S3. Under the “split pair” setting, all the models achieved

relatively high performance, which indicates that the prediction

problem defined under this setting was relatively easy. The

performance of our model was comparable with the top-

performing baseline methods under this setting. However, under

themore practical “split gene” setting inwhichwewished to predict

SL pairs containing novel genes without experimental screen data
(due to the limited existing experimental data), the SL prediction

taskbecamedifficult as all themodels achievedrelatively lowerAUC

andAUPRscores than thoseunder the “split pair” setting.However,

our model exhibited a significantly better performance than that of

all the baseline models under this “split gene” setting. EXP2SL

achieved the best performance in at least 6/7metrics for all the three
cell lines (Table 3). We also tested our model and the baseline

methodswith a less strict threshold for defining the positive SLpairs

(i.e., 10%), and our model also achieved a better performance than

that of the baseline methods (Tables S1–S2).

Ablation Study and Feature Comparison
To evaluate the contribution of the semi-supervised objective

function to the final prediction, we tested our EXP2SL model
without the BPR loss. That is, we modified the objective function

FIGURE 2 | SL datasets for three human cell lines. (A) Correlations of the GEMINI scores between three different cell lines for the same gene pairs measured in the

Big Papi dataset. (B) The binary SL labels for the gene pairs in the Big Papi dataset. The 38 gene pairs measured in all the three cell lines and with at least one

positive SL label are included in the figure. (C) The Venn diagrams of all labeled SL pairs, positive SL pairs, and negative SL pairs used in our dataset, which were

constructed from the Big Papi dataset and other available CRISPR-Cas9 based experimental screens in the literature.
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in Equation 6 and used only the MSE loss and the L2 regularization

term; our model can thus be trained in a supervised manner. An

obvious decrease in performance under the “split gene” setting

could be observed when we removed the BPR loss (see the “EXP2SL
(no BPR loss)” row in Table 3). Therefore, the results demonstrated

that the semi-supervised objective function had an important

contribution to the prediction performance of our model.

One of the baseline models, NetLapRLS, can also incorporate

different similarity matrices (i.e., the L1000 profile similarities,

the PPI similarities, and the combined similarities, as described

in NetLapRLS), thus allowing the comparison between different
settings using different input information. The NetLapRLS

models with L1000 profile similarities and with PPI similarities

as the input features achieved similar performance, and the

combination of both features only led to a slight increase in

performance in most cases. In general, the performance of

NetLapRLS was worse than EXP2SL.
We also incorporated the PPI network into our EXP2SL

framework (denoted as EXP2SL (PPI) in Tables 2 and 3) using

a graph convolution network (Lei et al., 2017), as described in

Supporting Material and Figure S1. In this case, no significant

improvement in AUC and AUPR scores was observed after

adding the PPI network information (p values larger than 0.1

for all the cell lines in both conditions, Wilcoxon rank-sum test).

These results indicate that using only the L1000 gene expression

profiles is adequate to enable the models to capture useful

features for accurately predicting SL interactions.

Feature Importance Analysis
We used the scheme described in Extraction of Feature

Importance to extract the important features based on the

saliency map approach (Simonyan et al., 2013). Those features

(i.e., the corresponding expression levels of 978 genes) ranked

among the top 50 (about 5% from the 978-dimensional features)

were selected as the important features for each cell line. Among
the selected feature sets, there is only one gene shared across all

the three cell lines, that is, AKT1. AKT1 is known as a serine/

threonine protein kinase, which regulates many viability related

cellular processes, including proliferation, apoptosis, and cell

survival (Chen et al., 2001; Lee et al., 2011). Most features were

considered as the top 50 important features only in one cell line

(47, 46, and 46 unique important features for A549, A375, and
HT29, respectively), which suggests that the prediction may rely

on the specific gene expression landscapes in different cell lines.

We also checked the over-representation of functional gene sets

and pathways among the selected important features of the three

TABLE 2 | Performance evaluation in three different cell lines under the “split pair” setting. The mean and standard deviation (in brackets) of metrics over 10 repeats of

5-fold cross-validations are shown. The best results for each cell line and each metric are marked in bold.

Dataset Model name AUC AUPR F1 Accuracy Precision Sensitivity Specificity

A549 LR 0.863 (0.041) 0.556 (0.089) 0.577 (0.068) 0.913 (0.030) 0.622 (0.109) 0.573 (0.033) 0.952 (0.032)

RF 0.854 (0.039) 0.552 (0.076) 0.567 (0.069) 0.912 (0.027) 0.600 (0.104) 0.559 (0.032) 0.952 (0.026)

SVM 0.809 (0.038) 0.505 (0.084) 0.555 (0.060) 0.914 (0.019) 0.610 (0.104) 0.523 (0.037) 0.958 (0.019)

GBDT 0.847 (0.039) 0.520 (0.086) 0.552 (0.065) 0.908 (0.029) 0.573 (0.120) 0.552 (0.037) 0.948 (0.033)

NetLapRLS(L1000)1 0.760 (0.044) 0.344 (0.088) 0.407 (0.068) 0.845 (0.034) 0.357 (0.119) 0.512 (0.039) 0.883 (0.038)

NetLapRLS(PPI) 2 0.760 (0.045) 0.344 (0.090) 0.407 (0.079) 0.845 (0.034) 0.357 (0.130) 0.512 (0.032) 0.883 (0.037)

NetLapRLS(combined) 3 0.827 (0.042) 0.488 (0.091) 0.519 (0.061) 0.898 (0.025) 0.523 (0.100) 0.539 (0.017) 0.938 (0.027)

EXP2SL(no BPR loss) 4 0.866 (0.038) 0.576 (0.086) 0.583 (0.071) 0.916 (0.032) 0.638 (0.135) 0.565 (0.036) 0.955 (0.035)

EXP2SL(PPI) 5 0.870 (0.041) 0.574 (0.078) 0.583 (0.055) 0.915 (0.020) 0.636 (0.081) 0.573 (0.039) 0.954 (0.020)

EXP2SL 0.871 (0.044) 0.573 (0.083) 0.582 (0.070) 0.914 (0.024) 0.634 (0.084) 0.579 (0.063) 0.952 (0.023)

A375 LR 0.994 (0.004) 0.983 (0.006) 0.981 (0.011) 0.989 (0.007) 0.967 (0.018) 1.000 (0.015) 0.984 (0.011)

RF 0.997 (0.004) 0.990 (0.015) 0.987 (0.016) 0.993 (0.007) 0.977 (0.028) 1.000 (0.010) 0.990 (0.010)

SVM 0.991 (0.004) 0.978 (0.017) 0.972 (0.020) 0.984 (0.008) 0.962 (0.033) 0.991 (0.000) 0.983 (0.009)

GBDT 0.999 (0.009) 0.997 (0.013) 0.993 (0.019) 0.996 (0.013) 0.993 (0.020) 0.994 (0.022) 0.997 (0.012)

NetLapRLS(L1000) 1 0.989 (0.005) 0.983 (0.006) 0.969 (0.014) 0.976 (0.013) 0.956 (0.026) 0.990 (0.012) 0.966 (0.022)

NetLapRLS(PPI) 2 0.990 (0.002) 0.985 (0.003) 0.972 (0.012) 0.978 (0.010) 0.956 (0.021) 0.995 (0.000) 0.966 (0.017)

NetLapRLS(combined) 3 0.994 (0.007) 0.990 (0.007) 0.983 (0.016) 0.987 (0.018) 0.971 (0.026) 1.000 (0.000) 0.979 (0.033)

EXP2SL(no BPR loss) 4 1.000 (0.003) 1.000 (0.011) 1.000 (0.013) 1.000 (0.008) 1.000 (0.023) 1.000 (0.000) 1.000 (0.012)

EXP2SL(PPI)5 1.000 (0.008) 1.000 (0.010) 1.000 (0.015) 1.000 (0.014) 1.000 (0.026) 1.000 (0.000) 1.000 (0.023)

EXP2SL 1.000 (0.012) 1.000 (0.029) 1.000 (0.026) 1.000 (0.016) 1.000 (0.043) 1.000 (0.000) 1.000 (0.021)

HT29 LR 0.967 (0.015) 0.861 (0.049) 0.851 (0.032) 0.958 (0.012) 0.855 (0.053) 0.895 (0.048) 0.968 (0.017)

RF 0.955 (0.020) 0.821 (0.067) 0.824 (0.030) 0.947 (0.005) 0.792 (0.039) 0.899 (0.073) 0.955 (0.005)

SVM 0.949 (0.017) 0.765 (0.079) 0.808 (0.065) 0.943 (0.015) 0.744 (0.069) 0.942 (0.100) 0.941 (0.018)

GBDT 0.973 (0.016) 0.880 (0.061) 0.855 (0.029) 0.960 (0.015) 0.861 (0.065) 0.897 (0.040) 0.969 (0.021)

NetLapRLS(L1000) 1 0.935 (0.017) 0.738 (0.094) 0.778 (0.064) 0.941 (0.025) 0.786 (0.139) 0.836 (0.053) 0.954 (0.034)

NetLapRLS(PPI) 2 0.927 (0.024) 0.729 (0.086) 0.772 (0.053) 0.939 (0.008) 0.787 (0.048) 0.822 (0.056) 0.953 (0.009)

NetLapRLS(combined) 3 0.939 (0.019) 0.764 (0.094) 0.784 (0.054) 0.939 (0.020) 0.778 (0.107) 0.850 (0.035) 0.949 (0.026)

EXP2SL(no BPR loss4 0.957 (0.026) 0.834 (0.071) 0.826 (0.043) 0.943 (0.017) 0.779 (0.088) 0.926 (0.051) 0.946 (0.023)

EXP2SL(PPI)5 0.967 (0.018) 0.869 (0.033) 0.851 (0.026) 0.956 (0.011) 0.838 (0.067) 0.912 (0.084) 0.962 (0.022)

EXP2SL 0.969 (0.008) 0.880 (0.027) 0.866 (0.027) 0.959 (0.012) 0.872 (0.055) 0.903 (0.049) 0.968 (0.018)

1The NetLapRLS method using only the L1000 similarity.
2The NetLapRLS method using only the PPI similarity.
3The NetLapRLS method using the combination of L1000 and PPI similarities.
4The EXP2SL model without the BPR loss.
5The EXP2SL model with additional PPI information incorporated by a graph convolution module.

Wan et al. EXP2SL: Synthetic Lethality Prediction

Frontiers in Pharmacology | www.frontiersin.org February 2020 | Volume 11 | Article 1127

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


cell lines using the WebGestalt server (Liao et al., 2019). The gene

ontology (GO) related to biological processes was first used to

examine the enriched functional annotations of the selected

feature sets (Tables S3–S5). The enriched GO terms were

ranked according to the false discovery rate (FDR) scores and p

values. As a result, the top 10 enriched functional annotations for

the selected features of HT29 contains the regulation of cell death,
proliferation, and apoptosis (p values < 10–6 and FDRs < 10–3),

which are cell viability related functions. Then, we also checked the

over-representation of selected genes among the KEGG pathways

using the WebGestalt server (Liao et al., 2019) (Tables S6–S8).

Among the top 10 enriched pathways ranked according to the

FDR scores and p values, we found multiple cancer-related
pathways for cell line HT29 and also cell cycle or cancer-

regulatory pathways for A375 and A549, e.g., the p53 and ERBB

signaling pathways. All these results indicated that the selected

features are probably related to the regulation of cell viability.

CONCLUSION

In this paper, we proposed a semi-supervised neural network

based method, EXP2SL, to accurately predict cell-line specific SL
interactions. Our method exploits the L1000 expression profiles

measured from the shRNA knockdown experiments performed

in different cell lines to learn the cell-line specific SL interactions

from the labeled data generated by CRISPR-Cas9 double-

knockout based screens. In addition, a semi-supervised

objective function is designed to make use of the large amount

of unlabeled data. Tests on three datasets corresponding to three

different cell lines showed that our model achieved better
performance than the baseline models. At the same time, we

verified that the L1000 gene expression profiles and the semi-

supervised objective function are useful in SL prediction.

Moreover, we analyzed the most important genes among the

whole L1000 gene expression profiles, and found that the top

attributing genes are related to the regulation of cell viability,
which suggested that our model may pay more attention to such

meaningful components of the whole gene expression profiles.

The major contributions of our work are the demonstration of

L1000 expression profiles as effective features for SL prediction, and

a novel semi-supervised neural network algorithm to accurately

capture SL interactions. To our best knowledge, our model is the

first computational approach for predicting cell-line specific
synthetic lethal interactions, which may potentially benefit the

target identification for specific tissue or cancer types. However, the

application of our model may be limited in certain cancer types

TABLE 3 | Performance evaluation in three different cell lines under the “split gene” setting. The mean and standard deviation (in brackets) of metrics over 10 repeats of

5-fold cross-validations are shown. The best results for each cell line and each metric are marked in bold.

Dataset Model name AUC AUPR F1 Accuracy Precision Sensitivity Specificity

A549 LR 0.709 (0.039) 0.328 (0.050) 0.373 (0.039) 0.816 (0.044) 0.404 (0.070) 0.435 (0.059) 0.853 (0.058)

RF 0.715 (0.037) 0.348 (0.052) 0.379 (0.038) 0.850 (0.024) 0.461 (0.058) 0.394 (0.038) 0.896 (0.027)

SVM 0.708 (0.026) 0.340 (0.051) 0.380 (0.032) 0.838 (0.020) 0.433 (0.037) 0.432 (0.060) 0.876 (0.030)

GBDT 0.715 (0.030) 0.333 (0.051) 0.363 (0.032) 0.841 (0.043) 0.401 (0.094) 0.399 (0.057) 0.888 (0.054)

NetLapRLS(L1000) 1 0.668 (0.024) 0.252 (0.038) 0.321 (0.021) 0.815 (0.016) 0.294 (0.057) 0.407 (0.029) 0.858 (0.018)

NetLapRLS(PPI) 2 0.668 (0.030) 0.252 (0.048) 0.321 (0.041) 0.815 (0.016) 0.294 (0.070) 0.407 (0.036) 0.858 (0.019)

NetLapRLS(combined) 3 0.685 (0.032) 0.331 (0.043) 0.371 (0.035) 0.863 (0.021) 0.426 (0.083) 0.368 (0.046) 0.918 (0.027)

EXP2SL(no BPR loss) 4 0.699 (0.032) 0.358 (0.053) 0.389 (0.035) 0.857 (0.033) 0.450 (0.083) 0.401 (0.043) 0.906 (0.042)

EXP2SL(PPI) 5 0.755 (0.024) 0.390 (0.044) 0.419 (0.034) 0.861 (0.041) 0.465 (0.079) 0.450 (0.047) 0.903 (0.054)

EXP2SL 0.756 (0.030) 0.392 (0.043) 0.419 (0.024) 0.863 (0.048) 0.458 (0.073) 0.448 (0.050) 0.907 (0.061)

A375 LR 0.945 (0.026) 0.884 (0.050) 0.874 (0.046) 0.930 (0.034) 0.866 (0.054) 0.897 (0.031) 0.925 (0.033)

RF 0.947 (0.028) 0.886 (0.045) 0.891 (0.038) 0.934 (0.032) 0.865 (0.039) 0.938 (0.025) 0.917 (0.027)

SVM 0.924 (0.027) 0.860 (0.047) 0.873 (0.035) 0.916 (0.026) 0.864 (0.044) 0.915 (0.032) 0.905 (0.030)

GBDT 0.923 (0.019) 0.852 (0.056) 0.875 (0.048) 0.920 (0.022) 0.862 (0.047) 0.926 (0.040) 0.909 (0.047)

NetLapRLS(L1000) 1 0.915 (0.050) 0.822 (0.054) 0.821 (0.085) 0.895 (0.052) 0.827 (0.020) 0.889 (0.112) 0.933 (0.069)

NetLapRLS(PPI) 2 0.915 (0.033) 0.823 (0.063) 0.821 (0.046) 0.895 (0.036) 0.827 (0.047) 0.889 (0.029) 0.933 (0.025)

NetLapRLS(combined) 3 0.921 (0.022) 0.837 (0.054) 0.840 (0.045) 0.912 (0.030) 0.858 (0.063) 0.869 (0.024) 0.955 (0.025)

EXP2SL(no BPR loss) 4 0.952 (0.035) 0.895 (0.052) 0.905 (0.042) 0.943 (0.031) 0.873 (0.045) 0.967 (0.032) 0.922 (0.033)

EXP2SL(PPI) 5 0.976 (0.028) 0.936 (0.028) 0.932 (0.022) 0.966 (0.024) 0.919 (0.046) 0.959 (0.062) 0.961 (0.055)

EXP2SL 0.976 (0.023) 0.935 (0.055) 0.926 (0.046) 0.964 (0.030) 0.902 (0.045) 0.965 (0.038) 0.960 (0.025)

HT29 LR 0.754 (0.056) 0.417 (0.075) 0.531 (0.041) 0.823 (0.050) 0.505 (0.059) 0.709 (0.048) 0.841 (0.067)

RF 0.846 (0.030) 0.494 (0.062) 0.587 (0.037) 0.858 (0.028) 0.524 (0.057) 0.763 (0.057) 0.869 (0.026)

SVM 0.827 (0.034) 0.465 (0.044) 0.595 (0.043) 0.857 (0.032) 0.539 (0.066) 0.792 (0.056) 0.863 (0.036)

GBDT 0.823 (0.057) 0.452 (0.071) 0.546 (0.044) 0.822 (0.046) 0.495 (0.055) 0.758 (0.026) 0.839 (0.057)

NetLapRLS(L1000) 1 0.801 (0.043) 0.441 (0.056) 0.542 (0.042) 0.826 (0.042) 0.475 (0.079) 0.755 (0.070) 0.837 (0.055)

NetLapRLS(PPI) 2 0.794 (0.026) 0.423 (0.047) 0.525 (0.030) 0.818 (0.022) 0.458 (0.069) 0.761 (0.040) 0.828 (0.034)

NetLapRLS(combined) 3 0.814 (0.029) 0.464 (0.081) 0.550 (0.045) 0.840 (0.043) 0.479 (0.062) 0.758 (0.073) 0.853 (0.055)

EXP2SL(no BPR loss) 4 0.788 (0.035) 0.481 (0.040) 0.577 (0.059) 0.830 (0.037) 0.531 (0.086) 0.752 (0.040) 0.835 (0.048)

EXP2SL(PPI) 5 0.865 (0.032) 0.553 (0.038) 0.612 (0.024) 0.872 (0.012) 0.563 (0.049) 0.766 (0.046) 0.882 (0.018)

EXP2SL 0.866 (0.039) 0.558 (0.066) 0.620 (0.046) 0.877 (0.028) 0.577 (0.065) 0.756 (0.065) 0.890 (0.035)

1The NetLapRLS method using only the L1000 similarity.
2The NetLapRLS method using only the PPI similarity.
3The NetLapRLS method using the combination of L1000 and PPI similarities.
4The EXP2SL model without the BPR loss.
5The EXP2SL model with additional PPI information incorporated by a graph convolution module.
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with high heterogeneity. Another limitation of our model is the

dependence of the available L1000 gene expression profiles as input

to EXP2SL. Although the L1000 expression profiles of more than

3,500 genes have been measured by shRNA knockdown

experiments in the three cell lines analyzed in this work, there

exist some cell lines with a paucity of data, whichmay thus limit the
applications of our model on such cell lines.
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