
Expand, Enlarge, and Check

New algorithms for the coverability problem of WSTS?

Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin??

DI, Université Libre de Bruxelles

Abstract. In this paper, we present a general algorithmic schema called
“Expand, Enlarge and Check” from which new efficient algorithms for the
coverability problem of WSTS can be constructed. We show here that our
schema allows us to define forward algorithms that decide the coverability
problem for several classes of systems for which the Karp and Miller
procedure cannot be generalized, and for which no complete forward
algorithms were known. Our results have important applications for the
verification of parameterized systems and communication protocols.

1 Introduction

Model-checking is nowadays widely accepted as a powerful technique for the
automatic verification of reactive systems that have natural finite state abstrac-
tions. However, many reactive systems are only naturally modelled as infinite-
state systems. Consequently, a large (and successful) research effort has recently
focused on the application of model-checking techniques to infinite-state models
such as FIFO channel systems [2], Petri nets [15], broadcast protocols [7], etc.

One of the positive results is the decidability of the coverability problem for
well-structured transition systems (WSTS for short). WSTS enjoy an infinite set
of states that is well-quasi ordered by ≤ and their transition relation is monotonic
w.r.t ≤. Examples of such systems are Petri nets and their monotonic extensions
[5, 15], broadcast protocols [8], lossy channel systems [2]. The coverability problem
asks, given two states c1 and c2, whether there is c3 ≥ c2 (c3 covers c2) that is
reachable from c1.

A general algorithm (i.e. a procedure that always terminates) is known to
solve the coverability problem for WSTS [1, 10]. It symbolically manipulates
upward-closed sets of states, obtained by unrolling the transition relation in a
backward fashion. Unfortunately, backward search is seldom efficient in practise
[12], and the only complete forward approach known so far is the Karp-Miller
algorithm that can only be applied to a small subclass of WSTS: Petri nets.

The Karp and Miller procedure computes, through a combination of a for-
ward exploration strategy and a simple acceleration technique, the so-called
covering set of the net, which is known to be well-suited to decide the cover-
ability problem. After several attempts to generalize this procedure to WSTS

? This research has been partially supported by the FRFC grant 2.4530.02.
?? Supported by a “First Europe” grant EPH3310300R0012 of the Walloon Region.

(which have all produced incomplete approaches [8, 9]), it has been shown in [6]
that Petri nets form the sole class (among the examples cited above) for which
the covering set is constructible in general. However, this set always exists and
is usually finitely representable. Our main contribution is to make the best of
this fact and devise a forward technique that is complete to decide the cover-
ability problem for a large class of WSTS. This class includes, among others, all
the monotonic extensions of Petri nets defined in the literature, as well as lossy
channel systems.

We present a new schema of algorithm: “Expand, Enlarge and Check” that
works by iteratively constructing more and more precise abstractions of the
system. These abstractions (made up of reachable states and limit elements) are
guaranteed to become precise enough to decide the coverability problem after
a finite number of steps. We show how to apply the schema on two classes of
WSTS of practical interest: monotonic extensions of Petri nets (that are useful
to model parameterized systems [11, 15]) and lossy channels systems (that are
useful to model communication protocols [2]).

Due to lack of space, most of the proofs have been omitted. A complete
version of the paper can be found at:
http://www.ulb.ac.be/di/ssd/cfv/TechReps/TechRep CFV 2004 25.pdf

2 Preliminaries

In this section, we recall some fundamental results about well-quasi orderings
and well-structured transition systems (the systems we analyze here). We show
how to finitely represent upward- and downward-closed sets of states (which will
allow us to devise symbolic algorithms), and discuss And-Or graphs (useful to
represent abstractions of systems).

Well quasi-orderings and adequate domains of limits A well quasi ordering ≤
on the elements of a set C (wqo for short) is a reflexive and transitive relation
such that for any infinite sequence c0c1 . . . cn . . . of elements in C, there exist
two indices i and j, such that i < j and ci ≤ cj . In the following, we note ci < cj

if ci ≤ cj but cj 6≤ ci.
Let 〈C,≤〉 be a well-quasi ordered set. A ≤-upward closed set U ⊆ C is

such that for any c ∈ U , for any c′ ∈ C such that c ≤ c′, c′ ∈ U . A ≤-
downward closed set D ⊆ C is such that for any c ∈ D, for any c′ ∈ C such that
c′ ≤ c, c′ ∈ D. It is well-known that any ≤-upward closed set U ⊆ C is uniquely
determined by its finite sets of minimal elements. Formally, the set of ≤-minimal
elements Min(U) of a set U ⊆ C is a minimal set such that Min(U) ⊆ U and
∀s′ ∈ U : ∃s ∈ Min(U) : s ≤ s′. The next proposition is a consequence of wqo:

Proposition 1. Let 〈C,≤〉 be a wqo set and U ⊆ C be an ≤-upward closed set,
then: Min(U) is finite and U = {c | ∃c′ ∈ Min(U) : c′ ≤ c}.

Thus, any ≤-upward closed set can be effectively represented by its finite set
of minimal elements. To obtain a finite representation of downward-closed sets,

we must use well-chosen limit elements ` 6∈ C to represent downward closures of
infinite increasing chains of elements. Thus, we introduce the notion of adequate
domain of limits.

Definition 1. Let 〈C,≤〉 be a well-quasi ordered set and L be a set of elements
disjoint from C, the tuple 〈L,v, γ〉 is called an adequate domain of limits for
〈C,≤〉 if the following conditions are satisfied: (L1: representation mapping) γ :
L∪C → 2C associates to each element in L∪C a ≤-downward closed set D ⊆ C,
furthermore, for any c ∈ C, we impose that γ(c) = {c′ | c′ ≤ c}. In the following,
γ is extended to sets S ⊆ L ∪ C in the natural way: γ(S) = ∪c∈Sγ(c); (L2: top
element) There exists a special element > ∈ L such that γ(>) = C; (L3: precision
order) The elements of C ∪L are ordered by the complete quasi order v, defined
as follows: d1 v d2 if and only if γ(d1) ⊆ γ(d2); (L4: completeness) for any
downward closed set D ⊆ C, there exists a finite set D′ ⊆ C∪L with γ(D′) = D.

Well-structured transition systems and coverability problem A transition system
is a tuple S = 〈C, c0,→〉 where C is a (possibly infinite) set of states, c0 ∈ C

is the initial state, →⊆ C × C is a transition relation. In the following, c → c′

will denote that 〈c, c′〉 ∈→. For any state c, Post(c) denotes the set of one-
step successors of c, i.e. Post(c) = {c′|c → c′}. We require Post(c) 6= ∅ for
any c ∈ C1. This operator is extended to sets of states C ′ ⊆ C as follows:
Post(C ′) = {c|∃c′ ∈ C ′ : c′ → c}. A path of S is a sequence of states c1, c2, . . . , ck

such that c1 → c2 → · · · → ck. A state c′ is reachable from a state c, noted
c →∗ c′, if we have a path c1, c2, . . . ck in S with c1 = c and ck = c′. Given a
transition system S = 〈C, c0,→〉, Reach(S) denotes the set {c ∈ C | c0 →∗ c}.

Definition 2. A transition system S = 〈C, c0,→〉 is a well-structured transi-
tion system for the quasi order ≤⊆ C × C if the two following properties hold:
(W1: well-ordering) ≤ is a well-quasi ordering and (W2: monotonicity) for all
c1, c2, c3 ∈ C such that c1 ≤ c2 and c1 → c3, there exists c4 ∈ C such that
c3 ≤ c4 and c2 → c4.

From now on, S = 〈C, c0,→,≤〉 will denote the well-structured transition sys-
tem 〈C, c0,→〉 for ≤. In the sequel, we need to manipulate WSTS and adequate
domain of limits. In particular, we need the following effectiveness properties:

Definition 3. A WSTS S = 〈C, c0,→,≤〉 and an adequate domain of limits
〈L,v, γ〉 are effective if the following conditions are satisfied: (E1) C and L are
recursively enumerable; (E2) for any c1, c2 ∈ C, we can decide whether c1 → c2;
(E3) for any two finite subsets C ′ ⊆ C and L′ ⊆ L, for any d ∈ C ′ ∪ L′ and any
finite subset D ⊆ C ′ ∪ L′, we can decide whether Post(γ(d)) ⊆ γ(D); (E4) For
any finite subsets D1, D2 ⊆ C ∪ L, we can decide whether γ(D1) ⊆ γ(D2).

Problem 1. The coverability problem for well-structured transition systems is de-
fined as follows: “Given a well-structured transition system S and the ≤-upward
closed set U ⊆ C, determine whether Reach(S) ∩ U 6= ∅ ?”

1 Note that this condition is not restrictive since we can always add a transition to a
dummy state.

To solve the coverability problem, we use covering sets, defined as follows:

Definition 4. Let S = 〈C, c0,→,≤〉 be a WSTS. The covering set of S, noted
Cover(S), is the (unique) smallest subset of C which (CS1) is ≤-downward closed
and (CS2) contains Reach(S).

Property For any WSTS S = 〈C, c0,→,≤〉 with an adequate domain of limits
〈L,v, γ〉 for 〈C,≤〉, by property L4 of Definition 1, there exists a finite subset
CS(S) ⊆ L∪C such that γ(CS(S)) = Cover(S). In the following, CS(S) is called
a coverability set of the covering set Cover(S) and finitely represents that set.

Proposition 2. For any WSTS S = 〈C, c0,→,≤〉, the covering set of S is such
that for any ≤-upward closed set U ⊆ C: Reach(S)∩U = ∅ iff Cover(S)∩U = ∅.

And-Or graph and its avoidability problem An And-Or graph is a tuple G =
〈VA, VO , vi,⇒〉 where V = VA ∪ VO is the set of nodes (VA is the set of “And”
nodes and VO is the set of “Or” nodes), VA ∩ VO = ∅, vi ∈ VO is the initial
node, and ⇒⊆ (VA ×VO)∪ (VO ×VA) is the transition relation such that for any
v ∈ VA ∪ VO , there exists v′ ∈ VA ∪ VO such that (v, v′) ∈⇒.

Definition 5. A compatible unfolding of an And-Or graph G = 〈VA, VO , vi,⇒〉
is an infinite labelled tree TG = 〈N, root , B, Λ〉 where: (i) N is the set of nodes
of TG, (ii) root ∈ N is the root of TG, (iii) B ⊆ N ×N is the transition relation
of TG, (iv) Λ : N → VA∪V0 is the labelling function of the nodes of TG by nodes
of G that respects the three following compatibility conditions (Λ is extended
to sets of nodes in the usual way): (C1)Λ(root) = vi; (C2) for all n ∈ N such
that Λ(n) ∈ VA, we have that (a) for all nodes v′ ∈ VO such that Λ(n) ⇒ v′,
there exists one and only one n′ ∈ N such that B(n, n′) and Λ(n′) = v′, and
conversely (b) for all nodes n′ ∈ N such that B(n, n′), there exists v′ ∈ VO such
that Λ(n) ⇒ v′ and Λ(n′) = v′. (C3) for all n ∈ N such that Λ(n) ∈ VO , we have
that: there exists one and only one n′ ∈ N such that B(n, n′), and Λ(n) ⇒ Λ(n′).

Problem 2. The And-Or Graph Avoidability Problem is defined as follows:“Given
an And-Or graph G = 〈VA, VO , vi,⇒〉 and a set E ⊆ VA ∪ VO , does there exist
T = 〈N, root , Λ, B〉, a compatible unfolding of G, such that Λ(N) ∩ E = ∅ ?”.
When the answer is positive, we say that E is avoidable in G.

It is well-known that this problem is complete for PTIME.

3 A new schema of algorithms

In this section, we introduce our new schema of algorithms to decide the cover-
ability problem for WSTS. We first explain, in subsection 3.1, how to build an
abstraction of a given WSTS, w.r.t. a given finite set of reachable states C ′ ⊆ C

and a given finite set of limit elements L′ ⊆ L. These abstractions are And-Or
graphs whose nodes are annotated by downward-closed sets of states of a WSTS.
We show in subsection 3.2 that any unfolding of this And-Or graph is able to

simulate the behaviours of its associated WSTS (Proposition 3). Moreover, if the
downward-closed sets that are used to annotate the And-Or graph are precise
enough (in a sense that we make clear in Theorem 2), then the And-Or graph
can be used to decide negative instances of the coverability problem. Based on
those results, we propose a new algorithmic schema to decide the coverability
problem of WSTS. It works by iteratively constructing abstractions of the WSTS
which become more and more precise. In parallel, it also explores, in a breadth-
first fashion, the set of reachable states of the system (to be able to decide the
positive instances of the problem). Thus, after a finite number of steps either a
concrete trace to a covering state will be found, or precise enough abstraction
will be computed to prove that no covering state can ever be reached.

3.1 The And-Or Graph Abs(S, C′, L′)

Definition 6. Given a WSTS S = 〈C, c0,→,≤〉, an adequate domain of limits
〈L,v, γ〉 for 〈C,≤〉, a finite subset C ′ ⊆ C with c0 ∈ C ′, and a finite subset
L′ ⊆ L with > ∈ L′, the And-Or graph G = 〈VA, VO , vi,⇒〉, noted Abs(S, C ′, L′),
is defined as follows: (A1) VO = C ′ ∪ L′; (A2) VA = {S ∈ 2L′

∪C′

\ {∅} | @d1 6=
d2 ∈ S : d1 v d2}; (A3) vi = c0; (A4.1) (n1, n2) ∈⇒ with n1 ∈ VA, n2 ∈ VO

if and only if n2 ∈ n1; (A4.2) for any n1 ∈ VO , n2 ∈ VA : (n1, n2) ∈⇒ if and
only if (i) successor covering: Post(γ(n1)) ⊆ γ(n2), (ii) preciseness: @n ∈ VA :
Post(γ(n1)) ⊆ γ(n) ⊂ γ(n2).

The following lemma states that the And-Or graph can be constructed for
any WSTS and adequate domain of limits that are effective.

Lemma 1. Given a WSTS S = 〈C, c0,→,≤〉 and an adequate domain of limits
〈L,v, γ〉 for 〈C,≤〉 that are effective, a finite subset C ′ ⊆ C with c0 ∈ C ′, and
a finite subset L′ ⊆ L with > ∈ L′, Abs(S, C ′, L′) is effectively constructible.

Notice that in Abs(S, C ′, L′) all the nodes have at least one successor. Indeed,
for all n ∈ VA, since n 6= ∅ (following point A4.1 and point A2 of Definition 6),
n has at least one successor. Since And-nodes are subsets of limits that may
contain the > element, with γ(>) = C (following point L2 of Definition 1), we
can always approximate for any n ∈ VO the (non-empty) set of successors of
γ(n), hence we are guaranteed to have at least one successor of n (point A4.2 of
Definition 6).

Given a WSTS S=〈C, c0,→,≤〉, an associated And-Or graph Abs(S, L′, C ′)=
〈VA, VO , vi,⇒〉, and an ≤-upward-closed set of states U ⊆ C, we note Abs(U) the
set of nodes v ∈ VA ∪ VO such that γ(v)∩U 6= ∅, that is, the set of nodes whose
associated downward-closed set of states intersects with U . It is easy to show
that this subset of nodes can be effectively computed for any effective WSTS
with adequate domain of limits.

Degenerated case If an And-Or graph is such that any Or-node has exactly
one successor, the And-Or graph is said to be degenerated. In that case, the
avoidability problem is equivalent to the (un)reachability problem in a plain

graph. From the definition of Abs(S, C ′, L′), we remark that the And-Or graph
will be degenerated if for any d ∈ C ′∪L′, there exists a unique minimal set γ(D)
such that D ∈ VA and Succ(γ(d)) ⊆ γ(D). This motivates the next definition:

Definition 7. Given a WSTS S = 〈C, c0,→,≤〉 and an adequate domain of
limits 〈L,v, γ〉 for 〈C,≤〉, we say that a pair 〈C ′, L′〉, where C ′ ⊆ C with c0 ∈ C

and L′ ⊆ L with > ∈ L′, is perfect if for any d ∈ C ′ ∪ L′, there exists a unique
minimal set D ⊆ C ′ ∪ L′ such that (i) Post(γ(d)) ⊆ γ(D) and (ii) there is no
D′ ⊆ C ′ ∪ L′ with Post(γ(d)) ⊆ γ(D′) ⊂ γ(D).

Lemma 2. Given a WSTS S = 〈C, c0,→,≤〉, an adequate domain of limits
〈L,v, γ〉 for 〈C,≤〉, a finite subset C ′ ⊆ C with c0 ∈ C ′, and a finite subset
L′⊆L with >∈L′ such that 〈C ′, L′〉 is perfect, then Abs(S, C ′, L′) is a degener-
ated And-Or graph.

3.2 Properties of Abs(S, C′, L′)

In this section, we prove important properties of Abs(S, C ′, L′). Roughly speak-
ing, we prove now that the abstraction we have defined above is adequate for
any pair 〈C ′, L′〉 such that c0 ∈ C ′ and > ∈ L′ (Theorem 1) and complete (The-
orem 2) for some pair 〈C ′, L′〉. To establish those results, we first show that
Abs(S, C ′, L′) can simulate for any 〈C ′, L′〉 such that c0 ∈ C ′ and > ∈ L′ its
underlying WSTS.

Proposition 3 (Simulation). Given a WSTS S = 〈C, c0,→,≤〉 with an ade-
quate domain of limits 〈L,v, γ〉 for 〈C,≤〉, the following holds for any C ′ ⊆ C

with c0 ∈ C ′ and L′ ⊆ L with > ∈ L′: for any path c0c1 . . . ck of S and any
unfolding T = 〈N, root, B, Λ〉 of Abs(S, C ′, L′) there exists a path n0n1 . . . n2k of
T with n0 = root and such that ci ∈ γ(Λ(n2i)) for 0 ≤ i ≤ k.

Since any unfolding of Abs(S, C ′, L′) can simulate S = 〈C, c0,→,≤〉 for any
C ′, L′ with c0 ∈ C ′ and > ∈ L′, for any upward-closed set U ⊆ C we know that
if Abs(U) is avoidable in Abs(S, C ′, L′) then U does not intersect with Reach(S).
That is formally stated by the next theorem.

Theorem 1 (Adequacy). Given a WSTS S = 〈C, c0,→,≤〉, an adequate do-
main of limits 〈L,v, γ〉 for 〈C,≤〉, and an upward-closed set U ⊆ C, the follow-
ing holds for any C ′ ⊆ C with c0 ∈ C ′ and L′ ⊆ L with > ∈ L′: if Abs(U) is
avoidable in Abs(S, C ′, L′), then Reach(S) ∩ U = ∅.

Finally, we prove the completeness of our approach. Intuitively, the next the-
orem puts forward that, when the pair 〈C ′, L′〉 is precise enough, Abs(S, C ′, L′)
allows us to decide negative instances of the coverability problem.

Theorem 2 (Completeness). Given a WSTS S = 〈C, c0,→,≤〉, an adequate
domain of limits 〈L,v, γ〉 for 〈C,≤〉 and an upward closed set U ⊆ C, the
following holds for any C ′ ⊆ C with c0 ∈ C ′ and L′ ⊆ L with > ∈ L′ such that
CS(S) ⊆ C ′∪L′: if Reach(S)∩U = ∅ then Abs(U) is avoidable in Abs(S, C ′, L′).

i := 0;
while (true) do

“Expand” Compute Si;
“Enlarge” Compute Li;
“Check” if ∃c1, . . . , ck : c0 → . . .→ ck with cj ∈ Si for all 0 ≤ j ≤ k and
ck ∈ U then return “Reachable”;
else if Abs(U) is avoidable in Abs(S, Si, Li) then return “Unreachable”;

Fig. 1: Abstract algorithm Its inputs are an effective representation of a WSTS

S = 〈C, c0,→,≤〉 with the adequate limit domain 〈L,v, γ〉 for 〈C,≤〉 and a finite
representation of the upward-closed set of states U ⊆ C.

3.3 The new algorithmic schema

Let S0, S1, . . . , Sn . . . be an infinite sequence of finite sets of reachable states
of S such that (i) ∀i ≥ 0 : Si ⊆ Si+1, (ii) ∀c ∈ Reach(S) : ∃i ≥ 0 : c ∈ Si,
and (iii) c0 ∈ S0. Let L0, L1, . . . , Ln, . . . be a infinite sequence of finite sets of
limits such that (i) ∀i ≥ 0 : Li ⊆ Li+1, (ii) ∀` ∈ L : ∃i ≥ 0 : ` ∈ Li and (iii)
> ∈ L0. A schema of algorithm is given at Figure 1 and its correctness is stated
in Theorem 3.

Theorem 3. For any WSTS S with adequate domain of limits 〈L,v, γ〉 that
are effective, for any upward-closed set U represented by Min(U), Algorithm
at Fig. 1 terminates after a finite amount of time and returns “Reachable” if
Reach(S)∩U 6=∅, “Unreachable” otherwise.

Proof. (Sketch) If Reach(S) ∩ U 6= ∅, we have from Theorem 1 that Abs(U) is
not avoidable in Abs(S, Si, Li) for all i ≥ 0. Moreover, since for all c ∈ Reach(S)
there exists j such that c ∈ Sj′ for all j′ ≥ j, there exists i ≥ 0 such that we
have c0 → . . . → ck with cj ∈ Si for all j such that 0 ≤ j ≤ k and ck ∈ U . We
conclude that the algorithm at Fig. 1 returns “Reachable” if Reach(S) ∩ U 6= ∅.

If Reach(S)∩U = ∅, we know that there exists i ≥ 0 and a finite coverability
set CS(S) such that CS(S) ⊆ Si ∪ Li. Hence, from Theorem 2 we have that
Abs(U) is avoidable in Abs(S, Si, Li) and we conclude that the algorithm at Fig.
1 returns “Unreachable” if Reach(S) ∩ U = ∅. �

Remark 1. Note that Theorem 3, that states the adequation and completeness
of our algorithmic schema for the coverability problem of effective WSTS, is
not in contradiction with the result of [6] which establishes that there does not
exist a procedure that always terminates and returns a coverability set for a
large class of WSTS, including ours. Indeed, to establish the correctness of our
algorithm, we only need to ensure that a coverability set will be included at
some point in the sequence of Si’s and Li’s. Nevertheless, given a pair 〈Si, Li〉, it
is not possible to establish algorithmically that this pair contains a coverability
set. Also, given a particular upward-closed set U , our algorithm may terminate
before reaching a pair 〈Si, Li〉 that contains a coverability set, because the set
U is reachable or because the abstraction constructed from a pair 〈Sj , Lj〉, with
j < i, is sufficiently precise to prove that U is not reachable.

Remark 2. Note that the constraints on the sequence of Li’s computed by the
algorithm of Fig. 1 may be relaxed. Indeed, those constraints ensure that the
algorithm eventually considers a set of limits which allows to construct a graph
that is precise enough to decide negative instances of the coverability problem.
However, following Theorem 2, it is sufficient to ensure that there exists i ≥ 0
such that Si ∪ Li contains a coverability set. Hence, only the limits of a cover-
ability set must appear in the sequence of Li’s.

4 Application to Self-modifying Petri nets

Let us show how to apply the approach proposed in the previous section to solve
the coverability problem for a large subclass of Self-modifying Petri nets [14]
(SMPN). SMPN are a general extension of Petri nets that includes almost all
the monotonic extensions of Petri nets defined in the literature and for which,
so far, there was no complete forward procedure.

4.1 Self-modifying Petri nets

A Self-Modifying Petri net [14], SMPN for short, is a tuple 〈P, T, D−, D+,m0〉.
P = {p1, . . . , pkP

} is a finite (non-empty) set of places. A marking is a function
m : P → N that assigns a natural value to each place. In the following, markings
are also seen as tuples in NkP where the ith dimension is the value assigned
to place pi. T = {t1, . . . , tkT

} is a finite (non-empty) set of transitions. For
any 1 ≤ i ≤ kT and any 1 ≤ j ≤ kP , D−

ij : NkP → N and D+

ij : NkP → N
describe respectively the input and output effect of transition ti on place pj .
Namely, D−

ij and D+

ij are functions of the marking m restricted to the form
α+

∑
k=1..kP

βk ·m(pk) where α ∈ N and βk ∈ N for all 1 ≤ k ≤ kP . m0 is the
initial marking of the SMPN.

We define the quasi order 4⊆NkP×NkP on markings such that 〈m1,. . .,mkP
〉4

〈m′
1,. . .,m

′
kP

〉 if mi ≤ m′
i for all 1 ≤ i ≤ kP . It is well-known that 4 is a wqo.

A transition ti is firable from a marking m if m(pj) ≥ D−

ij(m) for all pj ∈ P .

Firing ti from m leads to a marking m′ ∈ NkP , noted m →ti
m′, such that, for

any pj ∈ P : m′(pj) = m(pj) + D+

ij(m) − D−

ij(m). Given a set S of markings
and a transition ti, Post(S, ti) = {m′ | ∃m ∈ S : m →ti

m′}.
A SMPN P defines a transition system TP = 〈NkP ,m0,→〉 where →⊆ NkP ×

NkP is a transition relation and is such that we have 〈m,m′〉 ∈→, noted m → m′,
if and only if there exists ti ∈ T such that ti is firable from m and m →ti

m′.
A SMPN P is 4-monotonic when the underlying transition system TP sat-

isfies the monotonicity property for 4. A SMPN P is strongly monotonic when
for every transition ti and markings m1,m2 and m3, the following holds: if
m1 →ti

m3 and m1 4 m2, there exists m4 such that m2 →ti
m4 and m3 4 m4.

Obviously, all the strongly monotonic SMPN are 4-monotonic.
We say that a transition t is unfirable, whenever there exists no marking m

such that t is enabled in m. In the following, we assume that the SMPN’s we

consider do not contain unfirable transitions. The following lemma defines the
syntactical subclass of SMPN’s that are strongly monotonic.

Lemma 3. Given a SMPN P = 〈P, T, D−, D+,m0〉 without unfirable transi-
tions, P is strongly monotonic if and only if for all ti ∈ T, pj ∈ P : D−

ij = α with

α ∈ N or D−

ij = m(pj).

Although strongly monotonic SMPN is a sub-class of SMPN, it remains a
general class of monotonic systems. Indeed, almost all the monotonic extensions
of Petri nets studied in the literature are syntactical sub-classes of strongly
monotonic SMPN, i.e. sub-classes defined by imposing constraints on the linear
expressions defining the effect of transitions. Examples of such extensions are
Petri nets with transfers [5], with reset [3] and Post self-modifying Petri nets
[14]. On the other hand, the other monotonic extensions of Petri nets are not
syntactical sub-classes of strongly monotonic SMPN, but we can construct (in
polynomial time) a strongly monotonic SMPN with the same set of places that is
equivalent to the original net with respect to the coverability problem. Examples
of such extensions are Petri nets with non-blocking arcs [13] and Lossy Petri nets
[4]. So the algorithm that we propose in the next section is a forward algorithm
that decides the coverability problem for all monotonic extensions of Petri nets
proposed in the literature.

In the following, we define the adequate domain of limits we consider, state its
effectiveness and show how to construct the sequences of Si’s and Li’s. Finally,
we show that we always obtain degenerated And-Or graph.

4.2 A forward algorithm to decide the coverability problem for
strongly monotonic SMPN

Domain of Limits We will consider the domain of limits 〈L, 4e, γ(.)〉 where L =
(N∪{+∞})k\Nk, 4e⊆ (N∪{+∞})k×(N∪{+∞})k is such that 〈m1, . . . , mk〉 4e

〈m′
1, . . . , m

′
k〉 if and only if ∀1 ≤ i ≤ k : mi ≤ m′

i where c < +∞ for all c ∈ N
(≤ is the natural order over N ∪ {+∞}). γ(.) is defined as: γ(m) = {m′ ∈ Nk |
m′ 4e m}. In the following, tuples in L are called extended markings. It is
well-known, see for instance [15], that the following lemma holds.

Lemma 4. 〈L, 4e, γ(.)〉 is an adequate domain of limits for 〈Nk, 4〉.

Notice that in this case the > element such that γ(>) = Nk is the marking that
assigns +∞ to all the places.

Given a strongly monotonic SMPN P , we extend the underlying transition
relation from markings to extended markings by assuming that +∞ + +∞ =
+∞, +∞ · c = +∞ for all c ∈ N \ {0}, 0 ·+∞ = 0, +∞+ c = +∞ for all c ∈ Z.

Since our algorithm requires the WSTS and its associated domain of limits
to be effective (Definition 3), we state the following lemma :

Lemma 5. Any strongly monotonic SMPN P with the adequate domain of limits
〈L, 4e, γ(.)〉 are effective.

i← 1;
while (true) do

if ∃m∈Reachexact(Abs(P, i)),m′∈GU :m4m′ then return Reachable;
else

if @m∈Reach(Abs(P, i)),m′∈GU :m4e m′ then return Unreachable;
else i← i + 1 ;

Fig. 2: A forward algorithm for SMPN Its inputs are P, a strongly monotonic
SMPN and GU , the set of minimal elements of the 4-upward closed set U .

The following definition explains how we construct the Si’s and Li’s. Fol-
lowing Definition 6, this is sufficient to define the And-Or graphs built by our
verification algorithm.

Definition 8. The sequences of Si’s and Li’s are defined as follows: (D1) Si =
{0, . . . , i}k ∪ {m0}, i.e. Si is the set of markings where each place is bounded by
i (plus the initial marking); (D2) Li = {m ∈ {0, . . . i, +∞}k | m 6∈ Nk}.

It is easy to see that the Si’s and Li’s are finite sets and (i) for all i ≥ 0 :
Si ⊂ Si+1 and Li ⊂ Li+1, (ii) for any m ∈ Nk, there exists i ∈ N such that
for all j ≥ i : m ∈ Sj , (iii) for any m ∈ L, there exists i ∈ N such that for all
j ≥ i : m ∈ Lj , and (iv) m0 ∈ S0 and > ∈ L0.

Degenerated And-Or graph Let us show that in the present case, one obtains a
degenerated And-Or graph. For this purpose, we prove, following Lemma 2, that
the pairs 〈Si, Li〉 are perfect pairs.

Lemma 6. Given a SMPN P = 〈P, T, D−, D+〉 with the adequate domain of
limits 〈L, 4e, γ(.)〉 any pair 〈Si, Li〉, with Si ⊆ NkP and Li ⊆ L constructed
following Definition 8, is a perfect pair.

Corollary 1. Given a strongly monotonic SMPN net P with the adequate do-
main of limits 〈L, 4e, γ(.)〉 and the sets Si ⊆ NkP and Li ⊆ L constructed
following Definition 8, Abs(P , Si, Li) is a degenerated And-Or graph.

Algorithm for the coverability problem Let Abs(P , i) be the graph (degenerated
And-Or graph) Abs(P , Si, Li) constructed from P , Si and Li. We note ⇒ its
transition relation. We define Reachexact(Abs(P , i)) as the set {m |m0 ⇒m1 ⇒
. . .⇒mn with ∀1 ≤ j ≤ n : mj ∈ Si,mn = m} and Reach(Abs(P , i)) as the set
{m | m0 ⇒ m1 ⇒ . . . ⇒ mn with ∀1 ≤ j ≤ n : mj ∈ Si ∪ Li,mn = m}.
By applying the schema presented in Section 3 to strongly monotonic self-
modifying Petri nets, we obtain the algorithm at Fig. 2. Remark that this al-
gorithm is incremental: one can compute Reachexact(Abs(P , i + 1)) by extending
Reachexact(Abs(P , i)) for all i ≥ 0. Similarly, one can construct Reach(Abs(P , i))
from Reachexact(Abs(P , i)).

Theorem 4. For any strongly monotonic SMPN, the algorithm of Fig. 2 returns
“Reachable” if Reach(C) ∩ U 6= ∅, “Unreachable” otherwise.

5 Application to Lossy Channel Systems

To show the generality of our new approach, we apply our schema of algorithm
to lossy channel systems, which are systems made up of automata extended with
FIFO channels that may lose messages. We recall the model, define an adequate
domain of limits and show how to construct the sets Si’s and Li’s.

A Lossy Channel System, LCS for short, is a tuple C = 〈Q, qi, F, Σ, T 〉 where
Q is a finite set of locations, qi ∈ Q is the initial location, F is a finite set of
channels, Σ is a finite alphabet, T ⊆ Q×Op×Q where Op : F 7→

⋃
a∈Σ{?a, !a}∪

{nop}. A state is a pair 〈q, W 〉 where q ∈ Q, W : F 7→ Σ∗. In the following, SC

will denote the 3B set of states of the LCS C. We define the order - on states
in SC such that for any s = 〈q, W 〉, s′ = 〈q′, W ′〉 : s - s′ if and only if q = q′

and W (c) is a (not necessarily contiguous) subword of W ′(c) for all c ∈ F , i.e
W (c) is obtained from W ′(c) by deleting characters. It is well-known that - is a
well-quasi order (see for instance [1]). A LCS 〈Q, qi, F, Σ, T 〉 defines a transition
system 〈SC , s0,→〉 where (i) s0 = 〈qi, Wi〉 with Wi(c) = ε for each c ∈ F and
(ii) (〈q, W 〉, 〈q′, W ′〉) ∈→ if and only if there exists t = 〈q1, Op, q2〉 ∈ T and
〈q, W ′′〉 with W ′′ - W such that q = q1, q′ = q2 and for all c ∈ F : Op(c) =?a
implies W ′′(c) = a ·W ′(c). Furthermore, W ′(c) = W ′′(c) · a if Op(c) =!a and
W ′(c) = W ′′(c) if Op(c) = nop. In the following, we always consider a LCS
C = 〈Q, qi, F, Σ, T 〉.

Domain of limits Let L(Σ) be the set of downward closed regular expressions
(dc-re) {(a1 + . . . + an)∗ | ∀1 ≤ i ≤ n : ai ∈ Σ, ∀ai, aj : i 6= j implies that ai 6=
aj} ∪ {(a + ε) | a ∈ Σ} ∪ {ε}. A simple regular expression (sre) is either a
dc-re or an expression a1 · . . . · an where ∀1 ≤ i ≤ n : ai is a dc-re. The size
of a sre is the number of dc-re that compose it. The set of limits is L(Σ, Q) =
{〈q, E〉 | q ∈ Q, E : F 7→ L(Σ)∗ assigns a sre to each channel2} ∪ {>}. For
〈q, E〉 ∈ L(Σ, Q) \ {ε}: [[〈q, E〉]] denotes the set of pairs 〈q, W 〉 ∈ SC such that
W (c) is a word in the language generated by the regular expression E(c) for
all c ∈ F . We define the function γ : SC ∪ L(Σ, Q) → 2SC such that (i) for all
〈q, W 〉 ∈ SC : γ(〈q, W 〉) = {〈q, W ′〉 | 〈q, W ′〉 - 〈q, W 〉}, (ii) γ(>) = {〈q, W 〉 |
q ∈ Q, W (c) ∈ Σ∗ for all c ∈ F} and (iii) for all 〈q, E〉 ∈ L(Σ, Q) \ {>} :
γ(〈q, E〉) = [[〈q, E〉]]. We define v : (SC ∪ L(Σ, Q)) × (SC ∪ L(Σ, Q)) as follows :
c1vc2 if and only if γ(c1) ⊆ γ(c2).

It is easy to see that (L(Σ, Q),v, γ) is an adequate domain of limits for
(SC ,-) and that any LCS C with this domain of limits is effective.

Construction of the Si’s and the Li’s We construct the sequences of the Si’s
and Li’s as follows. Si = {〈q, W 〉 ∈ SC | q ∈ Q, ∀c ∈ F : W (c) = ε or W (c) =
a1 · . . . · an with n ≤ i and ∀1 ≤ j ≤ n : aj ∈ Σ}, i.e. Si is the set of states
where the contents of the channels are words of size at most i. Similarly, Li =
{〈q, E〉 ∈ L(Σ, Q) | ∀c ∈ F : E(c) = ε or E(c) = e1 · . . . · en with n ≤ i and ∀1 ≤

2 We also require that E does not assign ε to all the channels because we require in
Definition 1 that the set of limits be disjoint from SC.

j ≤ n : ej ∈ L(Σ)} ∪ {>}, i.e. Li is the set of limits that assign sre of size at
most i to the channels (plus the > element).

It is not difficult to see that the sequences of Si’s and Li’s satisfy the hy-
pothesis of the algorithm of Fig. 1.

6 Conclusion

In this paper, we have defined a new approach to solve the coverability problem
of WSTS, which we call “Expand, Enlarge and Check”. When applied to a large
class of monotonic counter systems (the strong monotonic Self-modifying Petri
nets), our approach produces an algorithm that uses forward analysis to decide
the coverability problem. Up to now, such a forward approach was known only
for Petri nets (the Karp and Miller algorithm), a restricted subclass of strong
monotonic SMPN. We have demonstrated the generality of our approach by
showing how to apply the algorithmic schema to lossy channel systems.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General Decidability Theo-
rems for Infinite-state Systems. In Proc. LICS’96, pages 313–321. IEEE, 1996.

2. P.A. Abdulla and B. Jonsson. Verifying Programs with Unreliable Channels. In
Proc. LICS’93, pages 160–170. IEEE, 1993.

3. T. Araki and T. Kasami. Some decision problems related to the reachability problem
for petri nets. Theoretical Computer Science, 3(1):85–104, 1977.

4. A. Bouajjani and R. Mayr. Model Checking Lossy Vector Addition Systems. In
Proc. STACS’99, LNCS 1563, pages 323–333. Springer, 1999.

5. G. Ciardo. Petri nets with marking-dependent arc multiplicity: properties and anal-
ysis. In Proc. ICATPN 94, LNCS 815, pages 179–198. Springer, 1994.

6. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability and
Undecidability. In In Proc. ICALP’98, LNCS 1443, pages 103–115. Springer, 1998.

7. J. Esparza, A. Finkel, and R. Mayr. On the Verification of Broadcast Protocols. In
Proc. LICS’99, pages 352–359. IEEE, 1999.

8. E. A. Emerson and K. S. Namjoshi. On Model Checking for Non-deterministic
Infinite-state Systems. In Proc. LICS ’98, pages 70–80. IEEE, 1998.

9. A. Finkel, J.-F. Raskin, M. Samuelides, and L. Van Begin. Monotonic Extensisions
of Petri Nets : Forward and Backward Search Revisited. In Proc. INFINITY’02,
ENTCS 68(6). Elsevier, 2002.

10. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

11. S.M. German and A.P. Sistla. Reasoning about systems with many processes.
JACM 39(3): 675–735, 1992.

12. T. A. Henzinger, O. Kupferman, and S. Qadeer. From prehistoric to postmodern
symbolic model checking. Formal Methods in System Design, 23(3):303–327, 2003.

13. J.-F. Raskin and L. Van Begin. Petri Nets with Non-blocking Arcs are Difficult to
Analyse. In Proc. INFINITY’03, ENTCS 96. Elsevier, 2003.

14. R. Valk. On the computational power of extended petri nets. In Proc. MFCS’78,
LNCS 64, pages 527–535. Springer, 1978.

15. L. Van Begin. Efficient Verification of Counting Abstractions for Parametric sys-
tems. PhD thesis, Université Libre de Bruxelles, Belgium, 2003.

