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Expandable Data-Driven Graphical Modeling of
Human Actions Based on Salient Postures

Wanqing Li, Member, IEEE, Zhengyou Zhang, Fellow, IEEE, and Zicheng Liu, Senior Member, IEEE

Abstract—This paper presents a graphical model for learning
and recognizing human actions. Specifically, we propose to encode
actions in a weighted directed graph, referred to as action graph,
where nodes of the graph represent salient postures that are used to
characterize the actions and are shared by all actions. The weight
between two nodes measures the transitional probability between
the two postures represented by the two nodes. An action is en-
coded as one or multiple paths in the action graph. The salient pos-
tures are modeled using Gaussian mixture models (GMMs). Both
the salient postures and action graph are automatically learned
from training samples through unsupervised clustering and ex-
pectation and maximization (EM) algorithm. The proposed action
graph not only performs effective and robust recognition of actions,
but it can also be expanded efficiently with new actions. An algo-
rithm is also proposed for adding a new action to a trained action
graph without compromising the existing action graph. Extensive
experiments on widely used and challenging data sets have verified
the performance of the proposed methods, its tolerance to noise
and viewpoints, its robustness across different subjects and data
sets, as well as the effectiveness of the algorithm for learning new
actions.

Index Terms—Action graph, Gaussian mixture model (GMM),
human action, salient posture, silhouette, Viterbi path.

I. INTRODUCTION

T
HE human body is often viewed as an articulated system

of rigid links or segments connected by joints and human

motion can therefore be considered as a continuous evolution

of the spatial configuration of the segments or body posture [1].

Accordingly, effective characterization of the posture (shape)

and its dynamics (kinematics) has been central to the research of

recognition of human motion. Researchers have so far explored

various types of visual information to describe human motion,

including motion trajectories [2]–[4], sequences of silhouettes

or contours of the human body [5], [6], spatio–temporal salient

points [7], hierarchical configuration of body parts [8], [9],

such as torso, arms, and legs, and shape volumes [10]–[12].

Among them, silhouettes have gained increasing attention in

the recent years due to the advances in background modeling
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for the extraction of silhouettes, their ability to capture the

spatio–temporal characteristics of human motion, and possibly

lower complexity of computation. This paper is about the

recognition of human motion based on sequences of silhouette

images. In particular, we focus on the recognition of human

actions, the smallest recognizable semantically meaningful

motion units, such as run, walk, and jump.

An action recognition system is desired to be independent of

the subjects who perform the actions, independent of the speed

at which the actions are performed, robust against noisy extrac-

tion of silhouettes, scalable to large number of actions, and ex-

pandable with new actions. Despite the considerable research

in the past few years, such a system is yet to be developed. In

this paper, we propose an expandable graphical model of human

actions that has the promise to realize such a system. Specif-

ically, we characterize actions with sequences of finite salient

postures and propose to model the dynamics or kinematics of

the actions using a weighted directed graph, referred to as ac-

tion graph, and to model the salient postures with Gaussian mix-

ture models (GMM). In the action graph, nodes represent salient

postures that are shared by the actions and the weight between

two nodes measures the transitional probability between the two

postures represented by the two nodes. This transitional proba-

bility is effectively governed by the kinematics of the human

body. An action is encoded in one or multiple paths in the ac-

tion graph. The GMM model of the salient postures provides a

compact description of the spatial distribution of the contours

belonging to the same salient posture and robust matching to

imperfect or noisy silhouettes. Furthermore, the GMM together

with the graphical model of actions create a mechanism for a

trained system to learn a new action with small number of sam-

ples without compromising the existing system. In other words,

our model is expandable to incorporate new actions into an ex-

isting system without the need for retraining the entire system.

The proposed modeling system is substantially differentiated

from and possesses advantages over the previously proposed

methods based on postures (or key frames) [13]–[16] and hidden

Markov model (HMM) [17]–[19]. First, our model shares pos-

tures among the actions and, hence, enables efficient learning

from a small number of samples rather than modeling each ac-

tion with individual HMM, which often requires large number

of samples to train. Second, we encode one action into multiple

paths (or sequences of salient postures in the graph) to accom-

modate the variations of the action (e.g., performed by different

persons or captured from different viewpoints) as opposed to

one sequence of postures (or key frames) as featured in most

methods proposed so far. Third, there are no specific begin-

ning or ending postures for any action path. This allows con-

tinuous recognition of actions without segmentation. Moreover,

1051-8215/$25.00 © 2008 IEEE
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cyclic and noncyclic actions can be dealt with in the same way.

Fourth, the model facilitates different action decoding schemes

(as described in Section III-B) that require different computing

resources. From this perspective, our model can be considered

as a generalization of the previous works, which usually em-

ploy only one of the decoding schemes. Last, our model can be

easily scaled to incorporate a large number of actions without

adversely impacting on the decoding speed or expanded to new

actions without compromising the actions that have been previ-

ously learned in the model.

A. Contributions

The major contributions of the paper are as follows.

• We propose an action graph to effectively encode the dy-

namics of actions, in which each node represents a salient

posture modeled by GMM. Five decoding schemes are de-

rived. The proposed model offers sharing of knowledge

(salient postures) among the actions and flexible decoding

schemes. It can be trained with small number of samples

and is tolerant to the variations of the actions. More im-

portantly, the graphical model can be easily expanded with

new actions.

• A two-stage method is developed to learn the salient pos-

tures and action graph from training samples: allocate the

salient postures through unsupervised clustering based on

joint shape and motion features and construct the action

graph.

• A method is proposed for learning a new action with small

samples and adding it into the system without the need for

retraining the entire system. The algorithm adaptively uti-

lizes the knowledge that has been already learned in the

system and has little adverse impact on the system perfor-

mance in recognizing the previously learned actions.

• Performance evaluation of the proposed graphical model

and algorithms is carried out on a relatively large data

set currently widely used in the research community not

only through the leave-one-sample-out test, but also the

leave-one-subject-out and cross-data-set test (i.e., training

and test data are from different data sets). The results have

verified that the proposed model is able to recognize ac-

tions effectively and accurately and it can be easily ex-

panded to new actions. Quantitative and qualitative com-

parisons of the five decoding schemes are provided.

B. Organization

The rest of this paper is organized as follows. Section II gives

a review of previous work related to silhouette-based action

recognition. Section III details the proposed graphical model of

actions and the five different decoding schemes derived from the

model. In Section IV, system learning algorithms are described,

which include finding salient postures through automatic clus-

tering, modeling of the salient postures using GMM, and con-

struction of the action graph. In Section V, an algorithm is pro-

posed for adding a new action into an existing trained system

by adaptively utilizing the previously learned postures. Kull-

back–Leibler (KL) divergence is adopted for deciding whether

a posture should be shared by the new action. Experimental re-

sults on a widely used data set are presented in Section VI to

demonstrate the effectiveness of the proposed graphical model

for learning and recognition of actions. Comparison among the

five different decoding schemes is made. Results on new action

learning and the impact on the existing system are also presented

and discussed in this section. Finally, this paper is concluded

with remarks and future work in Section VII.

II. RELATED WORK

A rich palette of diverse ideas has been proposed during the

past few years on the problem of recognition of human actions

by employing different types of visual information. A good re-

view can be found in [6] and [20]–[22]. This section presents

a review of the work related to silhouette-based action recogni-

tion.

Study of the kinematics of human motion suggests that a

human action can be divided into a sequence of postures. The se-

quence is often repeated by the same subject at different times

or different subjects with some variations. Methods proposed

so far for silhouette-based action recognition differs in the way

that the postures are described and the dynamics of the posture

sequence is modeled. In general, they fall into two categories

based on how they model the dynamics of the actions: implicit

and explicit models. In an implicit model, action descriptors

are extracted from the action sequences of silhouettes such that

the action recognition is turned from a temporal classification

problem to a static classification one. The action descriptors are

supposed to capture both spatial and temporal characteristics of

the actions. For instance, Bobick and Davis [18] proposed to

stack the silhouettes into a motion-energy images (MEI) and

motion-history images (MHI). Seven Hu moments [23] are ex-

tracted from both MEI and MHI to serve as action descriptors.

Action recognition is based on the Mahalanobis distance be-

tween each moment descriptor of the known actions and the

input one. Meng [24] extended the MEI and MHI into a hier-

archical form and used a support vector machine (SVM) to rec-

ognize the actions. In the method proposed by Chen et al. [15],

star figure models [25] are fitted to silhouettes to capture the five

extremities of the shape that correspond to the arms, legs, and

head. GMMs are used to capture the spatial distribution of the

five extremities over the period of an action, ignoring the tem-

poral order of the silhouettes in the action sequence. Davis and

Yyagi [19] also used GMM to capture the distribution of the

moments of the silhouettes of an action sequence.

Recently, Yilmaz and Shah [10] treated a sequence of sil-

houettes as a spatio–temporal volume and proposed to extract

the differential geometric surface properties, i.e., Gaussian cur-

vature and mean curvature, to form a descriptor for each ac-

tion, known as an action sketch. Gorelick et al. [12], [26] ex-

tracted space-time features including space–time saliency, ac-

tion dynamics, shape structure, and orientation by utilizing the

properties of the solution to the Poisson equation and employed

-nearest neighborhood (KNN) to classify the actions.

The implicit modeling approach has the advantages that the

recognition is relatively simple and is able to handle small

number of training samples. However, it usually offers weak

encoding of the action dynamics and requires good temporal

segmentation before the actions can be recognized. In addition,

periodic or cyclic actions have to be dealt with differently [27].
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On the other hand, the explicit model follows the concept that

an action is composed of a sequence of postures and usually

consists of two components: description of the postures and

modeling of the dynamics of the postures. Various features

have been employed to describe the postures. They include

binary masks [28], moments [23], Fourier shape descriptors

[16], Kendall’s shape description [29], and shape-context [30].

Strategies that have been proposed to model the dynamics

include direct sequence matching (DSM) [13], [31], dynamic

time warping (DTW) [27], spatio–temporal correlation [13],

[32], HHM [17], [19], [33], [34], and their variants such as pa-

rameterized HMMs [35], entropic HMMs [36], variable-length

HMMs [5], and layered HMMs [37]. Divis and Tyagi [19] used

moments to describe shapes of a silhouette and continuous

HMM to model the dynamics. In [16], Kellokumpu et al.

chose Fourier shape descriptors and classified the postures into

a finite number of clusters. Discrete HMM are then used to

model the dynamics of the actions where the posture clusters

are considered to be the discrete symbols emitted from the

hidden states. Sminchisescu et al. [38] relaxed the HMM

assumption of conditional independence of observations given

the actions by adopting the conditional random field (CRF)

model. Carlsson and Sullivan [39] took an extreme method

to describe and match tennis strokes using single key frames.

Veerarahavan et al. [32] proposed to use autoregressive (AR)

model and autoregressive and moving average (ARMA) model

to capture the kinematics of the actions. They adopted Kendall’s

representation of shape as shape features. Recently, Wang and

Suter [27] employed locality preserving projection (LPP) to

learn a subspace to describe the postures and DTW and tem-

poral Huasdorff distance to classify the actions in the subspace.

Colombo et al. [31] proposed to find the subspace for each type

of actions through principal component analysis (PCA). Wei

et al. [13] clustered the postures into a set of clusters, known

as symbols, based on the shape context. DSM was applied to

the symbolized sequences for recognition. Lv and Nevatia [14]

took the approach a step further. They modeled the dynamics

using an unweighted directed graph, referred to as action net,

where nodes in the graph represented key postures learned

from simulated actions based on the data captured from motion

capture devices. The direct links indicate the allowed transition

between postures. Each action is represented by one path in

the action graph. Given an input sequence of silhouettes, the

likelihood of each frame belonging to every posture is com-

puted and the input is recognized as the action that gives the

maximum accumulated likelihood along the path of the action.

Similar to the implicit model, most proposed explicit modeling

approaches mentioned above also require segmentation of the

actions from the input sequence of silhouettes before an action

can be recognized. In addition, the dynamics of the actions are

modeled individually and separately (i.e., no connection among

actions), such as the conventional HMM-based approach. As a

result, they often require a large number of training samples,

which can be costly and tedious to obtain.

It has to be pointed out that all methods reviewed above are

view dependent. A few attempts have been made to address this

issue by including silhouettes from multiple viewpoints or re-

covering 3-D postures from 2-D image/image sequences. Lv

and Nevatia [14] included simulated multiple view silhouettes

in each node of their action net. Ahmad and Lee [40] built mul-

tiple HMMs for each action, each HMM being for the action

observed from a particular viewpoint. Pierobon et al. [41] used

the 3-D postures recovered from multiple cameras. Green and

Guan [34] recovered 3-D postures from monochrome image se-

quences.

III. GRAPHICAL MODELING AND DECODING OF ACTIONS

Let be a sequence of silhouettes and

be the set of salient postures that

constitute actions. The corresponding posture sequence derived

from is denoted as , where

. Assume that denotes a set

of actions and is generated from one of the actions. The

recognition of the most likely action that generates the observa-

tion of can be formulated as

(1)

where is the prior probability of action , is the

probability of given action , and is the probability

of given and .

Assume that i) is statistically independent of given ,

ii) statistically depends only on , and iii) is independent

of the future states and only depends on its previous state .

Then, (1) can be written as

(2)

where is the probability for to be generated from

state or salient posture . It is referred to as posture or state

model. Contrary to conventional HMM, we assume the set of

postures is known or can be computed from training data, and

the first term of (2) is actually a Markov model with known

states or visible Markov model (VMM) [42].

A. Action Graph

Equation (2) can be represented or interpreted as a set of

weighted directed graphs that are built upon the set of pos-

tures

(3)

where each posture serves as a node,

is the transitional probability

matrix of the action, and is the

global transitional probability matrix of all actions. We refer

to as an action graph.

In an action graph, each action is encoded in one or multiple

paths. Fig. 1 shows an action graph for three actions: run, walk,

and side. The three actions share nine states/postures whose rep-
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Fig. 1. Action graph for three actions with nine postures. In each graph, the
number next to the links is the transitional probabilities: (a) action run; (b) action
walk; (c) action side; and (d) the representative silhouettes of the nine salient
postures (left to right), S0 to S8.

resentative silhouettes are shown in Fig. 1(d). Notice that a par-

ticular action may only undergo a subset of the postures. For

instance, action run may go through postures S1, S4, and S3;

action walk may go through postures S6, S4, S0, S7, and S5;

and action side may undergo postures S6, S2, S4, S7, and S8.

Clearly, the three actions share postures and each action has

multiple paths in the action graph. In addition, action paths in

the graph are usually cyclic and, therefore, there are no spe-

cific beginning and ending postures/states for the action from

the recognition point of view.

With the graphical interpretation, a system that follows the

model (2) can be described by a quadruplet

(4)

where

(5)

B. Action Decoding

Given a trained system , the action of a se-

quence is generally decoded in three

major steps: 1) find the most likely path in the action graph

that generates ; 2) compute the likelihood of each action

; and 3) decode the action as the one having the max-

imum likelihood and its likelihood is greater than a threshold,

otherwise, the action of is unknown. Equation (2) offers a

number of ways to find the most likely path and estimate the

likelihood.

1) Action-Specific Viterbi Decoding: The most obvious one

is to search for an action-specific Viterbi decoding (ASVD) in

the action graph and calculate the likelihood as follows:

(6)

where is the likelihood of belonging

to action and . is decoded as action if

the following condition is met:

if (7)

where is a threshold.

Besides the memory requirement for Viterbi search, ASVD

decoding method can be computationally expensive when the

number of recognizable actions is large because it searches

for the optimal path with respect to every action. A suboptimal,

but computationally efficient, decoding scheme is to search for

a Viterbi path with respect to the global transitional probability

and decode the path with action-specific transitional probabili-

ties. We refer to this method as global Viterbi decoding (GVD).

2) Global Viterbi Decoding: In GVD, the most likely path is

the one, , that satisfies

(8)

The likelihood of an action that generates can be computed

either using uni-gram or bi-gram model as

uni-gram (9)

bi-gram (10)

GVD decoding only requires about computational re-

sources of what is required by ASVD.

3) Maximum-Likelihood Decoding (MLD): Both ASVD

and GVD require memory to buffer previous frames for Viterbi

search. A decoding method that does not require buffering

can be devised by searching for the sequence of most likely

states/postures rather than the most likely sequence of states

(Viterbi path), i.e.,

(11)

The likelihood of an action to generate the path can be

calculated using either (9) or (10).

In all, there are five different decoding schemes: 1) ac-

tion-specific Viterbi decoding (ASVD), 2) uni-gram with global

Viterbi decoding (UGVD), 3) bi-gram with global Viterbi de-

coding (BGVD), 4) uni-gram with maximum-likelihood

decoding (UMLD), and 5) bi-gram with maximum-likelihood

decoding (BMLD)
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Fig. 2. Feature extraction. (a) A typical silhouette. (b) Normalized and resam-
pled points of the contour; (c) The ellipse fitted to the contour and gravity center.

IV. SYSTEM LEARNING

Learning a system from training samples involves the es-

timation of the posture models and construction of the ac-

tion graph . The set of postures can be either derived from

the kinematics and kinetics of human motion or automatically

learned from the samples. In this paper, we adopted the latter.

A simple approach is to cluster the sample silhouettes into

clusters.

A. Posture Models

A posture represents a set of similar poses. Considering the

temporal nature of the human motion, we measure the similarity

between two poses in terms of joint shape and motion, rather

than shape or motion alone as used in most extant work [13],

[14].

1) Shape Features and Dissimilarity: There are many shape

descriptors available as mentioned in Section II. For the sake of

scale invariance and noise tolerance, we choose a set of points

on the silhouette contour after scale normalization as the shape

descriptor. As shown in Fig. 2(b), the contour of a silhouette is

first normalized and then resampled to a small number of points

with two purposes: noise and computation reduction.

Let and be

the two shapes described by a set of points on the contours,

respectively, then their dissimilarity is defined as

(12)

where is the Hausdorff distance between and ;

and are two constants.

2) Motion Features and Dissimilarity: Motion features in-

clude the change of the orientation of the entire body and the

local motion of its gravity center. The orientation of the body is

estimated by fitting an ellipse into the silhouette shape and mea-

sured as the angle (anticlockwise) between the horizontal axis

and the major axis of the fitted ellipse as shown in Fig. 2(c).

Let and be the mo-

tion feature vector of silhouette and , respectively, where

is the locomotion of the gravity center and is the

change of the orientation. The dissimilarity of the and in

terms of motion is measured as follows:

(13)

Fig. 3. GMM representation of a salient posture. (a) The contours of a silhou-
ette cluster. (b) The GMM fitted to the contours in (a) (each ellipse represents
one Gaussian component).

where represents correlation.

3) Unsupervised Clustering: We define the overall dissimi-

larity of two silhouettes as the product of their motion and shape

dissimilarity, i.e.,

(14)

Let be the dissimilarity matrix of all pairs

of the training silhouettes, where is a symmetric

matrix. The silhouettes are then clustered into clusters

by employing a pairwise clustering algorithm, which takes the

dissimilarity matrix of every pair of samples to be clustered.

Choices of such a clustering algorithm include normalized cuts

(NCuts) [43] and dominant sets (DSs) [44]. It is found, how-

ever, that the property of similarity propagation in both NCuts

and DSs works unfavorably in the posture clustering. Therefore,

we adopt the traditional non-Euclidean relational fuzzy (NERF)

C-means [45]. The NERF C-means is derived from conventional

fuzzy C-means specifically for the pairwise clustering where the

dissimilarity measurement does not follow Euclidean proper-

ties.

4) Estimation of : After the clustering, a GMM is

fitted using expectation and maximization (EM) algorithm to

the shape component of a cluster to represent the spatial distri-

bution of the contours of the silhouettes belonging to the same

posture cluster, as shown in Fig. 3, and one Gaussian is fitted to

its motion component to obtain a compact representation of the

posture models.

Let

(15)

(16)

be, respectively, the GMM with components for shape and

Gaussian for motion, where represents the salient posture/

state or cluster of the silhouettes and is a Gaussian func-

tion; represents the motion feature vector; is the mean

motion vector for salient posture ; is a matrix

denoting the covariance of the motion features; represents

the 2-D coordinates of a point on the contours of silhouettes;

is the center of the th Gaussian for state ; is a
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covariance matrix; and is the mixture proportion

.

The posture model can then be defined as

(17)

where is a silhouette and and represent, respectively,

the motion feature and the th point on the resampled contour

of .

B. Action Graph

The action graph is built by linking the postures with their

transitional probabilities. We estimate the action-specific and

global transitional probability matrices and from the

training samples given the statistical independence assumptions

introduced in Section III and the posture models

(18)

(19)

where is the total number of training silhouettes for all

actions and is the number of silhouettes contained in the

training samples for action . The marginalization of

and gives the estimation of and ,

respectively.

V. LEARNING A NEW ACTION

Obtaining training data of human actions can be costly and

tedious [46], [47]. On the other hand, to retain all training data

for retraining in the future would be impractical. It is desirable

that a trained system, whenever needed, be expanded with new

actions without a need for retraining the entire system. Our rep-

resentation of the action graph and GMM postures enables this

expansion. In this section, we present an algorithm to add a new

action to an existing system without compromising the recogni-

tion of the previous learned actions.

Let be the system that has been trained

for actions. Assume that a new action is required to

be added to . The new action has training sequences

of silhouettes , where is the number of frames

in the th training sequence. When the new action is included

into the system, it is, in general, expected that both the action

graph and postures need to be updated. To minimize the impact

to the existing system and also considering that is usually

small in practice, it is reasonable and probably necessary to limit

the update to the insertion of new postures required to describe

, modification of , and insertion of . Let us consider

the following two cases.

• has all the postures that are required to describe action

. In this case, postures should be shared and only new

paths are required to be inserted into the action graph by

updating and .

• does not have all postures that are needed to describe

action . Therefore, new postures have to be created

for and the action graph needs to be expanded by

updating and .

As seen, the key issue is how to judge whether new postures

are required and how to create them if required. A simple ap-

proach is to find the salient postures for the new action first and,

then, decide whether these postures have already been learned

in the system by comparing the new postures to those residing

in the existing system. Following this idea, we propose an algo-

rithm for adding the new action to .

1) Clustering the samples of the new action into pos-

tures, , whose prototypes are

using the same

method as the one used in the system learning.

2) For each new posture, , compare it with

each posture in . If is similar to any one of the posture

in , then discard . Otherwise, keep it in .

3) Set as the union of and and let be the

posture models of .

4) Estimate the transitional probabilities and from

the training samples for based on . Update

as follows:

(20)

where is a weighting factor controlling the con-

tribution of the new action samples to the global transition.

Because the number of training samples for the new ac-

tion would be small compared to the number of samples

used to train , is often much less reliable than , there-

fore, we limit the contribution of to the final global tran-

sitional probabilities by the factor of , which should re-

flect the ratio of size of the new training samples to the size

of the samples used to estimate .

A. Similarity Between Postures

Because postures are modeled by a single Gaussian for mo-

tion and a GMM for shape, the similarity between two postures

can be measured by KL divergence. We adopt the variational

estimation of KL divergence recently proposed by Hershey and

Olsen [48].

The KL divergences for motion and shape between posture

and are, respectively
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where represents the KL divergence between the dis-

tribution and , and is the KL divergence between

two Gaussians of dimension , , and

(21)

will be discarded if the following condition is met:

or

(22)

where , , , and are the means and stan-

dard deviation of the KL divergences of all pairs of postures in

the system before updating, and and

are constants.

B. Estimation of

Estimation of is critical to the recognition of the new

action . When the number of training samples is small, it is

likely that the training samples only capture a small proportion

of possible posture transition that are associated with the new ac-

tion. This phenomenon is called “rare events” in learning gram-

mars in speech recognition. Often, will not be a reliable

estimation of the true transition. Research in speech [49], [50]

has suggested many strategies, known as smoothing, to compen-

sate the small number of samples. Here, we adopt a simple and

linear model to smooth

(23)

where and is the joint probability of

a frame being in posture followed by another frame being in

posture . Equation (23) is actually an interpolation of bi-gram

and uni-gram transitional probabilities. For unseen events, the

transitional probability is set to be the uni-gram probability of

the second posture of the bi-gram. Giving too much weight to

uni-gram probability may result in faulty estimation if is very

frequent. Therefore, the value of the weight decreases exponen-

tially with the number of bi-gram observations.

VI. EXPERIMENTAL RESULTS

A. Data Sets

We evaluated our model on the most widely used data set cre-

ated by Blank et al. [26]. The data set contains 93 low-resolu-

tion video (188 144, 25 fps) sequences for ten actions. These

ten actions are run, walk, wave with one hand, wave with two

hands, galloping sideway, jumping-in-place, jumping, jumping

jack, bend, and skip. Nine subjects played each action once

(with an exception that one subject played three actions twice).

Silhouettes were obtained using simple background subtraction

Fig. 4. Examples of noisy silhouettes.

in color space. Global motion was removed by fitting quadratic

function to the trajectory of the gravity centers. This data set is

currently the most realistic and challenging one publicly avail-

able compared to those employed in other papers (e.g., [51]).

Some silhouettes are noisy as shown in Fig. 4. Action walk

and jumping-in-place appears very similar to action galloping

sideway and jumping, respectively, when the global motion is

removed from the silhouettes.

B. Experimental Setup

As adopted in most previous works [3], [12], [26], [27] using

the same data set, we conducted leave-one-sample-out test

to verify the overall performance of the proposed model. To

evaluate its robustness against various factors including the de-

pendence on subjects, viewpoints, action speed and styles, and

video capturing environment, we also conducted the following

experiments:

• leave-one-subject-out test;

• robust test against viewpoints and action styles for action

walk using the sequences designed by Blank et al. [12],

[26];

• cross-data-set test. In this test, we trained an action graph

using Blank’s data set and employed the action graph to

recognize 68 sequences of actions walk and run extracted

from the video sequences made available by Laptev et al.

[52].

To test the algorithm for learning new actions, we intention-

ally left one action out when training the system and, then, added

this action into the system using the proposed method. Recog-

nition of the new actions and the impact on the performance of

the system with respect to recognizing previously trained ac-

tions were evaluated.

In all experiments, silhouette contours were sampled to 64

points after normalization and GMMs with 32 spherical Gaus-

sians were fitted to the shape of the contours. In the learning of

new actions, both and were set to 0.3 and was set

to the ratio of the number of frames in the training samples for

the new action to the number of frames in the sequences used to

train the existing system. The following summarizes the exper-

imental results.

C. Results

1) Leave-One-Sample-Out Test: In the leave-one-sample-out

test, each sample was taken as the test sample and the residual

samples were used as training samples to train the action graph.

Recognition rate was calculated over all the actions in the data

set. Fig. 5(a) shows the recognition rates of the five decoding

schemes versus number of postures . As expected, the two

bi-gram decoding schemes (BMLD and BGVD) outperformed

the two uni-gram schemes (UMLD and UGVD). The ASVD

consistently outperformed both uni-gram and bi-gram decoding
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Fig. 5. Recognition rates versus number of postures.

schemes for all . Notice that the recognition rates of all de-

coding methods increase as the number of postures increases.

When , the recognition rates are all above 90%.

When , the recognition rates of BMLD, BGVD, and

ASVD have reached 97.8%, which are comparable to the best

rates (96.5%–100%) obtained in [12], [26], and [27] and better

than the rate (92.6%) achieved in [3]. It has to be pointed that

in [12], [26], and [27], all training samples were kept and KNN

was employed to classify the actions.

2) Leave-One-Subject-Out Test: In the leave-one-sample-out

test, the training data set contained the samples of other actions

performed by the same subject. This certainly helps the action

graph to capture the styles of the postures performed by the sub-

ject and, therefore, benefits recognition. In the leave-one-sub-

ject-out test, we purposely took all samples performed by the

same subject as the test samples and the samples performed

by other subjects as the training samples. In other words, the

trained action graph did not have any knowledge about the test

subject. In addition, there was less number of training samples

compared to the leave-one-sample-out test. Fig. 5(b) shows the

recognition rates of the five decoding schemes versus number of

postures . The curves demonstrate similar patterns to those

of the leave-one-sample-out test. BMLD, BGVD, and ASVD

achieved recognition accuracies of 97.8% at . Table I

shows the recognition errors for each action. As seen, jumping

and jumping-in-place are the most challenging actions to recog-

nize and both uni-gram decoding schemes had some difficulties

to recognize them.

Because both leave-one-sample-out test and leave-one-sub-

ject-out test have shown that bi-gram and action-specific

Viterbi decoding schemes are preferred to the uni-gram de-

coding schemes, we excluded the uni-gram decoding schemes

from the following experiments.

3) Robustness Test: Together with the action data set, Blank

et al. [26] also supplied additional 20 samples of the action walk

captured from ten different viewpoints (0 to 81 relative to the

TABLE I
DECODING ERRORS FOR EACH TYPE OF ACTIONS IN LEAVE-ONE-SUBJECT-OUT

TEST WHEN THE NUMBER OF POSTURES IS 60

Fig. 6. Sample silhouettes of action moonwalk.

image plan with steps of 9 ) and ten different styles from zero

degree viewpoint (normal, walking in a skirt, carrying brief-

case, limping man, occluded legs, knees up, walking with a dog,

sleepwalking, swinging a bag, and occluded by a “pole”). We

trained an action graph with 30 postures using the 93 samples

(from about zero degree viewpoint) for the ten actions (none of

the 20 walk samples were included in the training data); BMLD,

BGVD, and ASVD all recognized most samples and only failed

to recognize the action in the cases of 72 and 81 viewpoints.

For different walking styles, “occluded by a pole” was excluded

in the test because the silhouettes in this case consist of dis-

connected regions and our method assumes the silhouette is a

connected region. Among the rest nine different styles, BMLD,

BGVD, and ASVD only failed to recognize the “moonwalk”

(walking with arms being raised to the horizontal position). As

shown in Fig. 6, it is probably not unreasonable to consider the

“moonwalk” as another type of action.

4) Cross-Data-Set Test: We further evaluated the robustness

of the proposed model by conducting a cross-data-set test.

In this test, we trained an action graph using Blank’s data

set and employed it to recognize the action samples from a

different data set. We chose the data set (video sequences) made

available by Laptev [52]. The data set comes as uncompressed

video sequences with spatial resolution of 160 120 pixels

and comprises six actions ( walking, jogging, running, boxing,

hand waving, and hand clapping) performed by 25 subjects.

Each subject performed each action in four different scenarios:

0 viewpoint, scale variations (from different viewpoints with

the subject gradually approaching to or departing from the

camera), different clothes (e.g., big pullovers or trench coats),

and lighting variations. Two of the six actions, walking and

running, overlap with the actions of Blank’s data set. We imple-

mented a simple median-filtering-based background modeling

to extract the silhouettes. Because many sequences have severe

jitter, the median filter failed to extract the silhouettes. Never-

theless, we managed to extract 36 samples of action walk and

32 samples of action run. These samples were performed by six
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Fig. 7. Sample silhouette sequences from Laptev’s data set: (a) and (b) walk;
(c) and (d) run.

TABLE II
CROSS-DATA-SET TEST: RECOGNITION ERRORS (OUT OF 68) VERSUS NUMBER

OF POSTURES FOR BMLD, BGVD, AND ASVD

different subjects. Fig. 7 shows a few examples of the extracted

silhouettes. It can be seen that the silhouettes are noisy and,

in Fig. 7(d), the subject wore a trench coat that distorted the

silhouette shape. Table II is the number of recognition errors

(out of 68) versus number of postures. As seen, the recognition

rates are over 95% for BMLD, BGVD, and ASVD when the

number of postures is 60. Notice that BMLD and BGVD

performed better than ASVD. This is probably because ASVD

is less generalized than BMLD and BGVD.

5) Learning New Actions: With respect to learning new ac-

tions, we first evaluated the significance of smoothing. Fig. 8(a)

shows the recognition errors for the cases of sharing postures

versus not sharing postures and smoothing versus not smoothing

when the number of training samples for the new action is one.

In sharing, we forced the algorithm not to create any new pos-

tures. In the case of not sharing, the algorithm was forced to

create three new postures specifically for the new action. In each

test, one sample of the action was used as training sample and

the rest samples of the same action were used as test samples.

The errors showed in the figure were averaged over all actions

and all samples in each action. It is apparent that sharing and

smoothing significantly reduced the recognition errors and are

essential to learning a new action. Notice that, in the case of

not sharing, the ASVD scheme is equivalent to the conventional

methods where the model for each action is trained indepen-

dently. It is obvious that our method outperforms the conven-

tional ones.

Fig. 8(b) is the recognition errors of the added new action

against the number of training samples. Surprisingly, the BMLD

constantly outperformed BGVD and ASVD. On average, we

achieved over 85% recognition rate for the new action even

though there were only three to four training samples. When

the number of training samples reached eight, the recognition

rate was improved to over 95%.

Fig. 8. Learning new actions. (a) Study on the importance of sharing and
smoothing. (b) Overall recognition rates of new actions versus number of
postures. (c) Impact on the existing system when a new action is added. (d) A
typical case that a new posture (S30) was created whenwalk was added to the
system as a new action.

We also evaluated the impact on the recognition of previ-

ously learned actions when a new action was added. We trained

a system by leaving one action out and tested the trained system

against the training samples at 30. In all cases, the training

samples were recognized without any error. We then added the

left-out action to the system using the proposed method. The
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new system was evaluated against the samples used for training

the previous system. Errors were recorded. Fig. 8(c) shows the

averaged errors over all actions when the number of training

samples for the new action was three and four. The error rates

are around 0.1% for all of the bi-gram decoding schemes. In

other words, the system was only degraded on average by 0.1%

for the previously trained actions after it was updated with a new

action.

Fig. 8(d) shows the action paths for walk and the new posture

(S30) when walk was added as a new action to a system trained

with 30 postures.

D. Discussion on Scalability

Our experiments have demonstrated that on average about

three to five postures per action were required to model the ac-

tions in the data set. The average number of postures per action

indicates the average length of the action paths in the graph. It

is also noticed that an action graph of 30 postures that encodes

the ten actions has sparse global and action-specific transitional

probability matrices. In other words, many paths in the graph

have not been utilized. This leaves much room for the action

graph to be expanded with new actions. For an action graph

with postures that encodes actions, there are on average

paths with postures. For instance, there are about

27 000 paths with three postures in an action graph of

30 and 10, offering large capacity to encode a large

number of actions and their variations.

VII. CONCLUSION AND FUTURE WORK

Recognition of human actions is still in its infancy compared

to other intensively studied topics like human detection and

tracking. This paper has presented a graphical model of human

actions and GMM modeling of postures. Experiments have ver-

ified that the proposed model is robust against the subjects who

perform the actions, tolerant to noisy silhouettes and, to certain

degree, viewpoints and action styles. Most importantly, it is scal-

able and expandable through adaptive sharing of postures. The

scalability and expandability are desirable features for any ac-

tion recognition systems, but these have rarely been studied be-

fore. In addition, the model is easy to train with small number

of samples due to the sharing of the postures among the actions.

It is found that there is no significant difference in performance

between the decoding scheme BMLD and BGVD. ASVD can

outperform BMLD and BGVD when there are sufficient training

samples, but the gain in the performance is at the expense of

more computational complexity with less flexibility for contin-

uous decoding of actions.

The benefit of scalability and expandability becomes dramat-

ically significant in a large scale action recognition system. Our

intention is to further evaluate the proposed model on a larger

data set. Meanwhile, the proposed model of actions opens a

number of theoretical and practical questions to be researched.

For instance, what is the optimal number of postures for a given

set of actions and desired expandability, and how can the pos-

tures be learned from the samples such that the recognition er-

rors can be minimized?

In the proposed algorithm for learning new actions, we only

considered whether a new posture is similar to the postures in

the trained system. It is also important to measure how an added

path for the new action would compromise the existing action

paths when no new postures are required. In addition, we as-

sume that samples for a new action are collected first and then

input to the system for learning. It is possible to relax this con-

dition by letting the system to decide whether a sample is from a

new action and, thus, to launch the new action learning process

automatically. Solutions to these two problems could eventually

lead to an online learning and recognition system for human ac-

tions.
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