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ABSTRACT 

 
The Byrne (1991) model was developed to predict excess pore water pressure for saturated 
sands under cyclic loading. However, the model can also be used to predict seismic compression 
in dry or partially saturated clean sands, which is the focus of this research. The original Byrne 
(1991) model has two primary limitations. One limitation is that calibration coefficients for the 
model have only been developed for clean sand, while seismic compression is a concern for a 
variety of soil types in engineering practice. Another limitation is that the existing calibration 
coefficients are solely correlated with soil relative density. This is in contrast to findings from 
studies performed over the last two decades that show various environmental and compositional 
factors, in addition to relative density, influence seismic compression behavior. To overcome 
these shortcomings and others the model was transformed to allow it to be implemented in 
“simplified” and “non-simplified” manners and systematic model calibration procedures were 
developed by means of MATLAB code. Both “simplified” and “non-simplified” variants of the 
model were used to analyze a site in Japan impacted by the 2007, Mw6.6 Niigata-ken Chuetsu-
oki earthquake. The results from the analyses are in general accord with the post-earthquake 
field observations and highlight the utility and versatility of the models.   
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GENERAL AUDIENCE ABSTRACT 

 
Earthquake shaking can cause compression of volume in soil, which may induce damage to 
various infrastructures. This phenomenon is known as seismic compression. Byrne (1991) 
proposed one model that can be used to evaluate the magnitude of seismic compression. 
However, this model has two significant limitations. One limitation is its coefficient expression 
is suitable for merely one soil type, while seismic compression is a concern for a variety of soil 
types in engineering practice. Another limitation is that the existing model coefficients are only 
correlated with soil density. This is in contrast to findings from research conducted over the last 
two decades that show many other environmental and compositional factors, in addition to soil 
density, affect the magnitude of seismic compression. To overcome these shortcomings and 
others the model was modified and calibrated, where mathematical transformations were 
performed for the model to allow it to be implemented in “simplified” and “non-simplified” 
calculation manners. Also, systematic model modification procedures were established by 
means of codes written by one software called MATLAB. Both the “simplified” and “non-
simplified” calculation methods of the model were used to analyze a site in Japan impacted by 
an earthquake occurred in 2007, named Niigata-ken Chuetsu-oki Earthqauke. The results from 
the analyses are in general accord with the records obtained after the earthquake and highlight 
the utility and versatility of the modified models. 
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 Chapter 1: Introduction 

1.1 Problem Statement 

The objective of the study presented herein is to expand the Byrne cycle shear-volume strain 
coupling model to accurately predict seismic compression for several soil types and to provide 
both simplified and non-simplified versions of the model. Achievement of this objective will 
further the overall goal of providing a framework that can accurately evaluate seismic 
compression, that is scalable based on available data and the importance of the project, and that 
overcomes some of the complexity issues with existing models in implementing non-simplified 
procedures. The Byrne (1991) model developed to predict excess pore water pressure for 
saturated sands under cyclic loading. However, the model can also be used to predict seismic 
compression in dry or partially saturated clean sands, which is the focus of this research. The 
original Byrne (1991) model has two primary limitations. One limitation is that calibration 
coefficients for the model have only been developed for clean sand, while seismic compression 
is a concern for a variety of soil types in engineering practice. Another limitation is that the 
model coefficients are solely correlated with soil relative density. However, recent experimental 
findings indicated that, in addition to relative density, factors such as degree of saturation, 
overburden pressure, and fine content, also impact soil seismic compression behaviors. Since 
none of these factors were considered in the Byrne (1991) model, plus a greatly enlarged 
laboratory test database is now available for more soil types, systematic model calibration 
procedures were developed by means of MATLAB code. 

1.2 Organization 

This thesis is organized into three chapters and four appendices (A-D). The second chapter is a 
manuscript that will be submitted as a technical paper to a recognized journal in the field of 
geotechnical and/or earthquake engineering. The third chapter of this thesis summarizes the 
primary performed work, main findings, and recommendations for future research. The back 
matter of this thesis contains four appendices which offer further detail on: the Byrne (1991) 
model equation derivations, methods of obtaining regressed coefficients, Byrne model 
calibration based on the UCLA models, and the related MATLAB code used in the study.  

1.3 Attribution 

The manuscript contained in Chapter 2 entitled: “Expanded Byrne Model for Evaluating 
Seismic Compression” authored by Yusheng Jiang is expected to be published as a technical 
paper. The contributing co-author and his primary role pertaining to this paper is provided below: 
 
Russell A. Green, Ph.D., Department of Civil and Environmental Engineering, Virginia Tech, 
Blacksburg, Virginia, U.S.A 
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 Research Advisor to the lead author, who provided significant oversight and guidance 
during all phases of this research. Dr. Green is also credited for establishing the adopted 
approaches for computing the number of equivalent shear cycles, stress reduction coefficient, 
and two-dimensional shaking correction factor within this study.
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Chapter 2: Expanded Byrne Model for Evaluating Seismic Compression 

 

2.1 Abstract 

Seismic compression is the accrual of contractive volumetric strain in unsaturated or partially 
saturated sandy soils during earthquake shaking and has caused significant distress to overlying 
and nearby structures. The phenomenon can be well-characterized by load-dependent, 
interaction macro-level fatigue theories. Towards this end, the Byrne cyclic shear-volume strain 
coupling model is expanded and calibrated for evaluating seismic compression for several soil 
types. Additionally, the model was transformed to allow it to be implemented in a “simplified” 
manner, in addition to the original “non-simplified” formulation. Both implementation 
approaches are used to analyze a site in Japan impacted by the 2007, Mw6.6 Niigata-ken 
Chuetsu-oki earthquake. The results from the analyses are in general accord with the post-
earthquake field observations and highlight the utility and versatility of the models.   

 

2.2 Introduction 

Seismic compression is the accrual of contractive volumetric strain in unsaturated or partially 
saturated sandy soils during earthquake shaking (i.e., vibration-induced settlement) (Stewart et 
al. 2004a). Seismic compression has occurred in several earthquakes and can significantly 
distress overlying and nearby structures (e.g., Slosson 1975; Siddharthan and El-Gamal 1996; 
Stewart et al. 2004a). Adopting the terminology used for liquefaction triggering procedures, 
with slight modification, seismic compression evaluation procedures can be broadly classified 
as “simplified” and “non-simplified.” In the context used herein, simplified approaches use 
relatively simple ground motion parameterization to characterize the seismic demand (e.g., 
effective shear strain, eff, and number of equivalent strain cycles, neq), while non-simplified 
procedures use more detailed characterization of seismic demand (e.g., shear strain, , time 
histories computed using numerical site response analyses).  

The majority of the seismic compression evaluation procedures proposed to date are simplified 
procedures, with an evolved form of the Tokimatsu and Seed (1987) procedure defining the 
state-of-practice. Consistent with how simplified procedures are defined, the Tokimatsu and 
Seed (1987) procedure uses a magnitude (M) 7.5 as a reference scenario and quantifies the 
seismic demand in terms of eff and neq. Using these seismic demand parameters, volumetric 
strain is then estimated using correlations derived from the observed trends in laboratory test 
data.  
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To the authors’ knowledge, Finn and Byrne (1976) were the first to propose a non-simplified 
approach for evaluating seismic compression. In their procedure the seismic demand is 
quantified in terms of shear strain time histories acting on horizontal planes at various depths 
within the soil profile, computed by numerical site response analyses. Increments in volumetric 
strain are then computed using a model proposed by Martin et al. (1975) that relates shear and 
volumetric strains. As discussed in Green and Lee (2006) and Lasley et al. (2016a), the Martin 
et al. (1975) model is a load-dependent, interaction macro-level fatigue model, as is the 
subsequently proposed variant by Byrne (1991) (i.e., the nature of the accumulation of 
volumetric strain is a function of the amplitude of the load and is influenced by previous loading, 
e.g., Kaechele 1963). Both the Martin et al. (1975) model and the Byrne (1991) variant were 
calibrated to the same clean sand dataset used by Tokimatsu and Seed (1987). It is difficult to 
state what defines the state-of-practice of non-simplified seismic compression evaluation 
procedures because they have not been widely adopted by practice. However, the non-
simplified procedure by Lasley et al. (2016a) is the latest one to have been proposed, at least to 
the authors’ knowledge.   

The main advantage of non-simplified procedures is that they allow for the use of a more 
detailed characterization of the seismic demand at all depths in the profile. Most notably, this 
allows the variation in induced shear strains over the duration of shaking to be accounted for, 
which influences the resulting volumetric strain in materials that exhibit load-dependent, 
interaction fatigue behavior. Because performing site response analyses needed for 
implementing non-simplified procedures has become state-of-practice in many places, non-
simplified procedures are a viable option for predicting seismic compression in today’s practice. 
The disadvantage of using non-simplified procedures is that they require more effort to 
implement, to include a more-detailed characterization of the site being analyzed, selection of 
appropriate input ground motions for the site response analysis, and the complexity of 
implementing the procedure itself. 

The objective of the study presented herein is to expand the Byrne cyclic shear-volume strain 
coupling model to accurately predict seismic compression for several soil types and to provide 
both simplified and non-simplified versions of the model. Achievement of this objective will 
further the overall goal of providing a framework that can accurately evaluate seismic 
compression, that is scalable based on available data and the importance of the project, and that 
overcomes some of the complexity issues with existing models in implementing non-simplified 
procedures.   

In the following, additional information is provided regarding simplified and non-simplified 
seismic compression evaluation procedures. Next, the Byrne model is expanded to better 
account for observed volumetric strain behavior in laboratory test data and is calibrated for 
different soil types using data from literature and using published simplified procedures. The 
proposed simplified and non-simplified variants of the expanded Byrne model are then used to 
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analyze a well-documented case history from the 2007, Mw6.6 Niigata-ken Chuetsu-oki 
earthquake, with the results discussed in the context of the utility and versatility of the models. 

2.3 Background  

2.3.1 Simplified Procedures 

The first simplified seismic compression procedure was proposed by Seed and Silver (1972). 
In this procedure, the shear strain time histories acting on horizontal planes at various depths 
within in a profile are computed using a numerical site response analysis, from which both eff 
and neq are computed as a function of depth within the profile. Drained cyclic direct simple 
shear tests performed on samples representative of in-situ soil and state are performed to 
develop relationships among eff, relative density (Dr), neq, and volumetric strain (v), where 
Seed and Silver (1972) present such relationships for Crystal Silica No. 20 sand (i.e., a uniform 
angular quartz sand having D10 ~ 0.5 mm and a uniformity coefficient of ~1.5; D10 is the 
effective soil particle diameter corresponding to 10% passing on the grain size distribution 
curve).  

Tokimatsu and Seed (1987) furthered the simplified framework put forward by Seed and Silver 
(1972) in several ways. In the Tokimatsu and Seed (1987) procedure, eff is estimated using an 
expression that was derived similarly to the one used to compute Cyclic Stress Ratio (CSR) in 
simplified liquefaction evaluation procedures:  

 

���� = �������� ≈ �.��∙����� ∙��∙������∙� ���������� (1) 

 

where: av is the average cyclic stress imposed on the soil at given depth in the profile over the 
duration of strong ground shaking; Geff is the secant shear modulus corresponding to eff; amax 
is the peak horizontal ground acceleration at the surface of the soil profile; g is the acceleration 
due to gravity in the same units as amax; v is the total vertical stress at the depth of interest; rd 
is the dimensionless depth-stress reduction factor that accounts for the non-linear response of 
the profile during earthquake shaking; Gmax is the small strain ( < 10-4%) secant shear modulus 
in the same units as v; and (G/Gmax)eff is the ratio of Geff and Gmax. Because eff is a function 
of a Geff (or Gmax·(G/Gmax)eff) which in turn is a function of eff, Eq. (1) needs to be solved 
iteratively or using the chart solution proposed by Tokimatsu and Seed (1987), or similar ones.  

The resulting eff value is used in conjunction with neq, which is estimated using a correlation 
that relates neq to M, amax, site-to-source distance, and/or other parameters, to define the seismic 
demand imposed on the soil at a given depth in the profile. Estimation of eff and neq using this 
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approach avoids the need to perform numerical site response analyses and the associated efforts 
of performing detailed site characterization and selecting appropriate input ground motions for 
the site response analysis.  

Using the laboratory data for Crystal Silica Sand No. 2 from Silver and Seed (1971) and Seed 
and Silver (1972), Tokimatsu and Seed (1987) developed the relationships shown in Figure 1, 
one relating v for neq = 15 (i.e., v,15), relative density (Dr) of the soil, and eff, and the other 
relating the volumetric strain ratio (CN), which is the ratio v for a given value of neq to v,15 
(i.e., CN = v,n/v,15), and neq. The basis for using neq = 15 as a reference condition was likely 
to provide consistency with the simplified liquefaction evaluation procedures which use M7.5 
as the reference condition, with early correlations relating M and number of equivalent stress 
cycles (neq) predicting neq = 15 for M7.5 (e.g., Seed et al. 1975). 

(a) (b) 

Figure 1: Relationships derived from laboratory test data from Silver and Seed 
(1971): (a) relationship between v,15 and eff; and (b) relationship between CN and 

neq. (after Tokimatsu and Seed 1987) 
Several laboratory studies have built on the Tokimatsu and Seed (1987) framework by 
examining the effect of saturation (S), Dr, fines content (FC), mineralogy, fabric, 
overconsolidation ratio (OCR), plasticity index (PI), effective overburden stress (’v), and 
multidirectional shaking on seismic compression (e.g., Pyke et al. 1975; Chu and Vucetic 1992; 
Whang 2001; Hsu and Vucetic 2004; Stewart et al. 2004a; Whang et al. 2004; Sawada et al. 
2006; Duku et al. 2008; Yee et al. 2014; Carter et al. 2016). Also, additional studies have 
developed revised number of equivalent cycle correlations (e.g., Liu et al. 2001; Hancock and 
Bommer 2005; Green and Lee 2006; Stafford and Bommer 2009; Lasley et al. 2017; Lee and 
Green 2017). As a result, the overall simplified framework proposed by Tokimatsu and Seed 
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(1987) has evolved and thus still defines the state-of-practice for evaluating seismic 
compression. 

  
  

As part of the evolution of the Tokimatsu and Seed (1987) procedure, Duku et al. (2008) 
performed extensive laboratory tests on 16 different types of clean sands and proposed the 
following relationships for v,15 and CN: 

 ��,�� = � ∙ ����� − �����
 (2a) 

 �� = � ∙ ln������ + � (2b) 

where a and b are material-specific constants; tv is the volumetric threshold strain (0.01 – 0.03% 
for sand; Hsu and Vucetic 2004); R is the slope of the line fit through CN vs. log(neq) data; and 
c = 1-[ln(15)·R]. Duku et al. (2008) found that the material-specific constant a varied as a 
function of Dr and ’v, and proposed the following relationship for a for ’v = 1 atm (i.e., a1 

atm):    

 �� ��� = 5.38 ∙ ���(−0.023 ∙ ��%) (2c) 

To compute a for different effective overburden stresses, Eq. (2c) is multiplied by following 
overburden correction factor:  

 ��,� = ���� ��� = ���������.��
 (2d) 

 

Duku et al. (2008) found that b and R could be treated as constants for the clean sands tested 
when used in conjunction with the above expression for a: b = 1.2 and R = 0.29. Furthermore, 
they found that mean grain size, uniformity coefficient, particle angularity, soil fabric, 
mineralogy, and void ratio “breadth” (i.e., void ratio minus minimum void ratio: e-emin), S, and 
age do not significantly influence the seismic compression response of clean sands. 
Accordingly, the resulting simplified expression used to compute volumetric strain is:  

 �� = ��,� ∙ �� ��� ∙ ����� − ����� ∙ �� (2e) 

 

Yee et al. (2014) continued the work of Duku et al. (2008) by testing non-plastic to moderately 
plastic silty sands/sandy silts (i.e., PI ≤ 10), with FC ranging from 0 to 60%. In contrast to clean 
sands, Yee et al. (2014) found that FC and S influence the volumetric strain behavior of the silty 
sands/sandy silts tested. For consistency, Yee et al. (2014) used the same functional form of the 
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equations proposed by Duku et al. (2008), but proposed the following “correction” factors for 
FC and S.  

Fines content (FC): 

��� = �������� = �  
1 if 0 ≤ FC ≤ 10%  ���.���∙(�����) if 10% < FC < ~35% (3a) 

0.35 if FC ≥ ~35%  
 

Saturation (S): 

�� = ������ = �  

-0.017∙S + 1 if S < 30%  
0.5 if 30% ≤ S < 50% (3b) 0.05∙S – 2 if 50% ≤ S < 60% 
1 if S ≥ 60%  

 

Accordingly, the resulting simplified expression to compute volumetric strain is:  

 �� = ��� ∙ �� ∙ ��,� ∙ �� ��� & ���� & ��� ∙ ����� − ����� ∙ �� (3c) 

 

Although Yee et al. (2014) found that it was reasonable to assume that b can be treated as a 
constant and having the same values as determined by Duku et al. (2008) for clean sands (i.e., 
b = 1.2), they found that R cannot be treated as a constant. Rather, Yee et al. (2014) found that 
R varied as a function of the imposed shear strain:  

 � = −0.026 ∙ ln����� − ���� + 0.26 (3d) 

 

2.3.2 Non-Simplified Procedures 

As mentioned in the Introduction, only a few non-simplified procedures have been proposed 
for evaluating seismic compression (e.g., Martin et al. 1975; Finn and Byrne 1976; Byrne 1991; 
Nasim and Wartman 2006; Lasley et al. 2016). Most significantly, Byrne (1991) proposed the 
following variant of the Martin et al. (1975) non-simplified model to estimate volumetric strains 
in dry sands: 

 �� = ∑ �∆��,�/����  (4a) 

where v = accumulated volumetric strain in percent at the end of loading; and (v,1/2)i = 
increment in volumetric strain in percent at the end of the ith half-shear strain cycle of loading 
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having an amplitude i. For earthquake loading, i is typically taken as the peak shear strain 
between two zero crossings in the shear strain time history (e.g., Green and Terri 2005). (v,1/2)i 
is computed as: 

 �∆��,�/��� = 0.5 ∙ (�� − ���) ∙ �� ∙ ��� �−�� ���(������)� (4b) 

where C1 and C2 are material-specific parameters; and εvi is the volumetric strain in percent at 
the beginning of the ith load increment. Based on the analysis of the laboratory data for Crystal 
Silica Sand No. 2 from Silver and Seed (1971) and Seed and Silver (1972) (i.e., the same data 
used by Tokimatsu and Seed 1987), Byrne (1991) provided expressions to estimate C1 and C2: 

 �� = 7,600 ∙ ��%��.� (4c) 

 �� = �.���  (4d) 

 

Although neither Martin et al. (1975) nor Byrne (1991) make reference to fatigue theories, their 
models are inherently load dependent, interaction macro-level fatigue models in which v is 
used as the damage metric (e.g., Kaechele 1963). This means that the nature of the accumulation 
of volumetric strain is a function of the amplitude of the load and is influenced by previous 
loading (i.e., sequencing of the pulses in a loading history influences the resulting volumetric 
strain) (Green and Lee 2006; Lasley et al. 2016a, 2017). The basis for this type of model comes 
directly from the observed volumetric strain behavior in laboratory tests, with this behavior 
largely ignored by the procedures used to develop many of the existing neq and neq 
relationships (more details on this are provided in Green and Terri 2005, and Green and Lee 
2006).  

Lasley et al. (2016a) proposed a variant of the macro-level fatigue model by Richart-Newmark 
(1948) (i.e., the R-N model) for evaluating seismic compression. The R-N model has the general 
form:  

 � = �� (5a) 

where: D is the accumulated “damage” (e.g., v); H is the cycle ratio (i.e., the ratio of number 
of applied cycles having a given amplitude to the number of cycles of that amplitude required 
to cause “failure” in the material: H = n/N); and r is a material-specific parameter that varies as 
a function of the amplitude of loading (e.g., ). For evaluating seismic compression due to 
earthquake loading, Eq. (5a) expands to:  

 ��� = ��������� ��⁄ + ���������
 (5b) 

where εvi is the volumetric strain at the end of the ith load increment. To introduce the interaction 
behavior to the model, Lasley et al. (2016a) made r a function of H (i.e., the nature of the 
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accumulation of volumetric strain is influence by previous loading). Unfortunately, this makes 
the model somewhat difficult to implement (e.g., Yee and Stewart 2018), which is a significant 
impediment to its use. As a result, the Byrne (1991) model is used as the basis for advancing 
non-simplified seismic compression procedures herein because it is easier to implement than 
the modified R-N model proposed by Lasley et al. (2016a).   

 

2.4 Expanded Byrne (1991) Model  

2.4.1 Simplified Form of the Byrne Model 

As detailed in the Appendix, the Byrne model can be written in the alternative form:  

 ��� = −��(∏ ��� ) ∙ (������)��  (6a) 

where: 

 �� = � ���.�∙��∙��   �� � = 1(����)����     �� � > 1 (6b) 

and εvi is the volumetric strain in percent at the end of the ith load increment having amplitude 
i (i and tv are both in percent). If the seismic demand is expressed in terms of eff and neq, Eq. 
(6a) can be written in simplified form: 

 �� = −�� �∏ ���∙������� � ∙ ������������  (6c) 

 

Figure 2a shows the computed values of v,15 as a function of eff using Eq. (6c) for two different 
values of tv, plotted in the same form as the relationship proposed by Tokimatsu and Seed 
(1987) (Figure 1a). Recall that both the Tokimatsu and Seed (1987) and Byrne (1991) models 
were calibrated using the same clean sand data from Silver and Seed (1971) and Seed and Silver 
(1972), with this data also shown in Figure 2a. As may be observed from Figure 2a, Eq. (6c) 
predicts v,15 values for a given Dr that deviate from a straight line on log-log scale as the eff 
approaches the tv, when tv > 0. This deviation is supported to some extent by the laboratory 
test data shown. 

Eq. (6c) can be used to compute CN as a function of neq by computing the ratio of v for a given 
value of neq and for neq = 15 for the same eff:    

 �� = �����,�� = ��(∏ ��� )���∏ ������� � (7) 

Recall that i is the number of half cycles, so i = 30 corresponds to neq = 15 cycles.  
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(a) (b) 

Figure 2: Predictions made by the simplified form of the Byrne model, Equations (6) 
and (7): (a) Relationship between v,15 vs. eff for tv = 0 and 0.01%, along with 

laboratory data from Silver and Seed (1971) and Seed and Silver (1972); and (b) 
relationship between CN and neq.  

 

As shown in Figure 2b, the predicted values of CN fall well within the range of values from the 
Silver and Seed (1971) and Seed and Silver (1972) data. 

 

2.4.2 Calibration of the Expanded Byrne Model 

Comparison of Equations (2e) and (6c) implies that: 

 
����∏ ���∙������� ��� = ��,� ∙ �� ��� ∙ ��            

and               

 b = 1  

This forms the basis for expanding and calibrating the Byrne model to evaluate seismic 
compression in soils other than just clean sands. Specifically, to account for soils that exhibit 
seismic compression behavior for b ≠ 1, the simplified form of the Byrne model can be 
expanded to: 
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 �� = −�� �∏ ���∙������� � ∙ ��������������  (8a) 

or 

 �∆��,�/��� = 0.5 ∙ (�� − ���)�� ∙ �� ∙ ��� �−�� ���(������)��� (8b) 

for the non-simplified form. Eq. (8b) is actually proposed in the recent and independent study 
by Chen et al. (2019) based on the analysis of excess pore water generation in undrained cyclic 
triaxial test samples, giving further credence to this expanded form.  

Calibrating Eq. (8a) using the data and model from Duku et al. (2008) for clean sands:  

 �� = ��.���� ∙ ��,� ∙ �� ��� (9a) 

 �� = ��� (9b) 

 �� = 1.2 (9b) 

and using the data and model from Yee et al. (2014) for non-plastic to moderately plastic silty 
sands/sandy silts (i.e., PI ≤ 10), with FC ranging from 0 to 60%: 

 �� = ���(�) ∙ ��� ∙ �� ∙ ��,� ∙ �� ��� & ���� & ��� (10a) 

  ��(�) = 2.149 ∙ ���.���� + 4.337 ∙ ����.��∙� (10b) 

 �� = �(�)��  (10c) 

  �(�) = ��.��� ∙ (� − ���)�.���� (10d) 

 �� = 1.2 (10e) 

where  and tv are in percent. Details about how the calibration was performed are provided in 
the Appendix. The expressions for C1, C2, and C3 given by Equations (9) and (10) can be used 
in conjunction with the simplified and non-simplified forms of the expanded Byrne model, 
Equations (8a) and (8b), respectively. Note that when used in conjunction with the simplified 
form,  in Equations (10a,b,c,d) is eff, and when used in conjunction with the non-simplified  
is i. In the following section, both forms of the expanded Byrne model are used to analyze a 
field case history from the 2007, moment magnitude (Mw) 6.6 Niigata-ken Chuetsu-oki, Japan, 
earthquake. 
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2.5 Case History Analysis  

2.5.1 Background 

The main shock of the Mw6.6 Niigata-ken Chuetsu-oki Japan earthquake occurred on 16 July 
2007. The event affected an ~100-km-wide area along the coastal regions of southwestern 
Niigata prefecture and triggered ground failures as far as the Unouma Hills, located in central 
Niigata approximately 50 km from the shore (Kayen et al. 2009). Of specific interest to this 
study is the seismic compression that occurred during this event at the Kashiwazaki-Kariwa 
Nuclear Power Plant (KKNPP) site (Yee et al. 2011). What makes this case history of particular 
value is that the motions at the site were recorded by a free-field downhole array (Service Hall 
Array, SHA) and the magnitude of the seismic compression was accurately determined from 
the settlement of soil around a vertical pipe housing one of the array seismographs. The 
geometric mean of the peak accelerations at bedrock and the ground surface were 0.55g and 
0.4g, respectively, indicating nonlinear site response. The seismic compression at the site was 
~10-20 cm.     

Yee et al. (2011) performed a detailed site investigation and determined that the profile at the 
strong motion array consists of ~70 m of medium-dense sands overlying clayey bedrock and 
that the ground water table (gwt) is at a depth of ~45 m. Suspension logging and Standard 
Penetration Tests (SPT) with energy measurements were performed at the site, with the former 
providing small-strain shear and compression wave velocities (i.e., Vs and Vp, respectively). 
Additionally, laboratory tests were performed on disturbed and undisturbed samples to classify 
the soil, to determine index properties and shear strength of the soil, and to develop modulus 
reduction and damping (MRD) curves. The geologic log and instrument locations for the SHA 
site are shown in Figure 3. Also, shown in this figure are the results SPT and suspension logging 
geophysical testing and some of their interpretation. 

 

2.5.2 Site Response Analysis 

One-dimensional equivalent linear (EQL) site response analyses were performed for the site 
using the software Strata (Kottke and Rathje 2009) following the modeling details in Yee et al. 
(2011, 2013). The motions recorded by the array were obtained from Professor Jonathan 
Stewart, UCLA; the motions had been processed following the procedures used to process the 
motions in the PEER Ground Motion Database (PEER 2019). The motions were oriented in the 
EW and NS directions, and those corresponding to a depth of 99.4 m were specified as “with-
in” input motions in the EQL analyses. The motions are shown in Figure 4. 
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Figure 3: Geologic log for the SHA site including instrument locations and data SPT and 
suspension logging geophysical testing (Yee et al. 2011). 

 

 

 
(c) 

 

(a) 

 
(b) 

Figure 4: Ground motions at a depth of 99.4 m: (a) EW acceleration time history; 
(b) NS acceleration time history; and (c) corresponding pseudo spectral 
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accelerations.  
The Vs profile used in the analyses is shown in Figure 5, and the total unit weights (t) of the 
soil are listed in Table 1. The Menq (2003) MRD curves were used to model the sandy soil 
above the gwt, with the Yee et al. (2013) strength-adjustment applied and a minimum damping 
of 5% used. To account for the influence of effective confining stress, the reference strain (r) 
used in the Menq (2003) modulus reduction curves (i.e., curves of (G/Gmax)eff vs. eff) were 
adjusted using: 

 �� = ��,� ∙ ��������
 (11) 

where ’o is the mean effective confining stress; Pa is atmospheric pressure in the same units 
as ’o; r,1 is the reference strain for ’o = 1 atm; and n is an empirical soil-specific factor. Based 
on the MRD test data for sandy soils above the gwt from the site, r,1 = 0.0904 and n = 0.4345. 
No samples from below the gwt from the site were tested, and it was assumed that the r,1 and 
n values proposed by Menq (2003) applied for sandy soils below the gwt: r,1 = 0.0684 and n = 
0.4345. The Darendeli (2001) MRD curves were used for the relatively plastic soils and rock 
materials below 70 m. 

 

Figure 5: Small strain shear wave velocity (Vs) profile used in the Strata analyses. 
 

Table 1: Assumed soil types and unit weights used in analysis (Motamed et al. 2016) 

Depth range 
(m) Soil type 

Total unit 
weight, t 
(kN/m3) 

0-4 Sand 16 
4-45 Sand 17.75 
45-70 Sand 20.8 
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70-99.4 Clay 20.8 
To validate the EQL model, computed and recorded motions were compared at depths of 2.4 m 
and 50.8 m. As shown in Figure 6, the PGAs for the recorded and computed motions are in 
good agreement, as are the response spectra. Accordingly, the EQL model was used to compute 
the shear strain time histories at the center of each of the model layers above 45 m (i.e., above 
the gwt). As discussed next, these time histories were used to compute the v in each layer and 
the overall settlement at the site due to seismic compression. 

  
(b) 

  
(a) (c) 

Figure 6: Results used to validate EQL model used to compute shear strain time 
histories at varying depths in the SHA profile: (a) Comparison of computed and 
recorded PGAs; (b) comparison of response spectra for computed and recorded 
motions at a depth of 2.4 m (NS-left; EW-right); and (c) comparison of response 
spectra for computed and recorded motions at a depth of 50.8 m (EW-left; NS-

right). 
 

2.5.3 Seismic Compression 

Yee et al. (2011) performed a series of drained cyclic simple shear tests on samples from the 
KKNPP site and developed soil-specific calibration parameters for the Duku et al. (2008) 
simplified model (Eq. 2) for Dr ≈ 35% and 60%. These calibration parameters are listed in 
Table 2. Using these, the calibration parameters for the expanded Byrne model were computed: 

 �� = ��,� ∙ 1.28 ∙ ���.���∙��% (12a) 

 �� = �.������  (12b) 

 �� = 1.2 (12c) 
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Figure 7 shows a comparison of the v,15 vs. eff and CN vs. neq for the Duku et al. (2008) and 
expanded Byrne model using the KKNPP soil-specific calibration parameters. As may be 
observed from these plots, the model predictions are in very good agreement.   

 

Table 2: KKNPP soil-specific calibration parameters for the Duku et al. (2008) model.  
 Dr ≈ 35% Dr ≈ 60% 

a1 atm 2.15 1.33 
b 1.2 1.2 
R 0.31 0.31 
tv 0.03% 0.03% 

 

 
(a) (b)pe 

Figure 7: Comparison of (a) v,15 vs. eff and (b) CN vs. neq for the Duku et al. (2008) 
and expanded Byrne model using the KKNPP soil-specific calibration parameters. 

 

Dr for the soil were estimated using the relationship: 

 ��% = 100 ∙ ���,����  (13) 

where N1,60 is the corrected SPT blow count, and Cd is a soil-specific parameter. Per Skempton 
(1986), Cd was assumed to be 55 (natural deposit of fine sand). 

The non-simplified expanded Byrne model (Eq. 8b) calibrated using Eq. (12) was used in 
conjunction with the shear strain time histories computed at the center of each of the Strata 
model layers above the gwt. The total settlement at the ground surface (ST) at the site was then 
computed from the resulting v values for each layer: 

 �� = ∑ ��� ∙ ∆���  (14) 
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where vj is the volumetric strain in the jth layer; and zj is the thickness of the jth layer. The EW 
and NS motions were computed to ~3.5 cm and ~1.2 cm of seismic compression, respectively, 
resulting in a geometric mean settlement of ~2 cm. Based on a series of numerical analyses with 
soil elements subjected to multidirectional motions, wherein the soil response was modeled 
using a reduced-order bounding surface hypoplasticity model (Li et al. 1992), Lasley and Green 
(2012) proposed the values tabulated in Table 3 to relate seismic compression in soil subjected 
to geometric mean motions to that resulting from the soil being subjected to two horizontal 
components of motions simultaneously (also see Nie et al. 2017). Based on the Dr shown in 
Figure 3 and computed using Eq. (13), a conversion factor (C2D) of 1.8 is appropriate for this 
site/earthquake. Also, based on the work of Pyke et al. (1975) vertical motions can increase the 
seismic compression between 20% and 50% as the peak vertical accelerations range from 0.15g 
to 0.3g. Yee et al. (2011) recommend using an effective peak vertical acceleration of 0.4g for 
the SHA site. Using this value for vertical acceleration increases the seismic compression by 
50%, and results in a predicted seismic compression of ~5.5 cm (1.8×1.5×2 cm = 5.5 cm).   

 

Table 3: Correction Factor, C2D, for Two-Dimensional Shaking (Lasley and Green 2012). 
Dr (%) 
(N1,60) 

Moment Magnitude, Mw 
5-6 6-7 7-8 

45 (9) 1.5 1.6 1.7 
60 (17) 1.9 1.8 1.8 
80 (30) 2 1.9 1.8 
100 (46) 2 2.1 2.1 

 

The simplified expanded Byrne model (Eq. 8a) calibrated using Eq. (12) was used in 
conjunction with the eff values computed using Eq. (1). Eq. (1) was solved iteratively using the 
shear modulus reduction curves used in the Strata analyses and amax = 0.4g (i.e., geometric mean 
of the recorded peak accelerations at ground surface). The rd relationship proposed by Idriss 
(1999) was used. Although Lasley et al. (2016b) shows that this relationship generally predicts 
too rigid of profile response for liquefaction triggering analyses, the profiles for seismic 
compression analyses tend to be stiffer than sites evaluated for liquefaction due to deeper gwt 
(or higher effective confining stresses). As a result, it is recommended that the Idriss (1999) rd 
relationship be used to compute eff in seismic compression analyses.  

Figure 8 is a plot of the eff computed using Eq. (1) and computed from the shear strain time 
histories from the EQL analyses. For the latter values, eff was computed as 0.65 times the 
geometric mean of the peak shear strains in each layer resulting from the Strata analyses using 
the EW and NS motions. As may be observed from Figure 8, eff computed using Eq. (1) have 
a similar trend with depth as those from the Strata analyses, but are slightly larger in magnitude 
for most depths. 
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Figure 8: Comparison of eff computed using the Eq. (1) and from the Strata 
analyses. 

 

The relationship proposed by Lee and Green (2017) was used to compute neq:  

 �������� = exp(�� ∙ �) + �� ∙ ������ + �� ∙ �� + �� (15) 

where z is depth below the ground surface in m; Rrup is the closest distance to the fault rupture 
plane (km); and b1-b5 are regression coefficients. Yee et al. (2011) give Rrup = 16 km and values 
of b1-b5 are listed in Table 4 for stable continental and active tectonic regimes (e.g., Central-
Eastern US, CEUS, and Western US, WUS, respectively). This relationship is preferred over 
others because it was specifically developed for computing the neq for seismic compression 
analyses. Its use is in contrast to the common practice of using neq relationships developed for 
liquefaction triggering analyses in seismic compression analyses, not recognizing the potential 
differences between neq and neqsee details in Green and Terri 2005. Figure 9 shows a plot 
of the computed neq vs. depth.   

 

Table 4: Regression coefficients and standard deviations of inter-event, intra-event, and total 
error (Lee and Green 2017). 

CEUS 
b1 b2 b3 b4 b5 ln ln ln_total 

-0.020 0.80 0.22 0.19 -1.30 0.26 0.47 0.54 
WUS 

b1 b2 b3 b4 b5 ln ln ln_total 
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-0.0099 0.67 0.21 0.28 -1.79 0.24 0.41 0.48 

 

Figure 9: neq as a function of depth computed using the relationship by Lee and 
Green (2017). 

 
The resulting seismic compression using the expanded simplified Byrne model is ~4 cm. 
However, this value only reflects the seismic compression resulting from the profile being 
subjected to the geometric mean of the two horizontal components of motion (i.e., both the amax 
and neq were based on geometric means of the horizontal components of motion). Accounting 
for multidirectional shaking, the resulting settlement due to seismic compression using the 
expanded simplified Byrne model is ~10.4 cm (1.8×1.5×4 cm = 10.4 cm).  

 

2.6 Discussion and Conclusions  

Together the simplified and non-simplified forms of the expanded Byrne model provide a 
versatile approach for evaluating seismic compression that is scalable based on available data 
and the importance of the project. Both forms of the model use the same calibration parameters, 
which have been developed herein for clean sands and non-plastic to moderately plastic (PI ≤ 
10) silty sands/sandy silts using the extensive laboratory data performed by researchers at the 
University of California at Los Angeles. The non-simplified form is relatively easy to 
implement and thus, overcomes the complexity issues with implementing other non-simplified 
models (e.g., Lasley et al. 2016a). 

Both the simplified and non-simplified expanded Byrne models were used to evaluate seismic 
compression at the KKNPP SHA site during the main shock of the 2007, Mw6.6 Niigata-ken 
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Chuetsu-oki, Japan, earthquake. The non-simplified model was used in conjunction with shear 
strain time histories computed at varying depths in the profile using EQL site response analyses. 
The geometric mean settlement at the ground surface due to horizontal shaking was ~2 cm, but 
this value increases to ~5.5 cm when the influence of multidirectional shaking is considered. 
The simplified model predicts ~4 cm of settlement at the ground surface when the horizontal 
geometric mean motions are considered. However, this value increases to ~10.4 cm when all 
three dimensions of shaking are considered.  

The predicted settlement using the non-simplified, expanded Byrne model is about half of the 
lower end of the range of observed settlements (10-20 cm), while that predicted settlement using 
the simplified variant is about equal to lower end of the observed range. Given that the site was 
very well characterized, the site response model was validated and the motions used in 
modeling were those that were recorded at the site, and the seismic compression model was 
calibrated using soil from the site, it is difficult to identify why the predicted surface settlement 
is on the low end. One potential reason is the Dr values estimated using SPT blow count via 
Equation (13), with the resulting values being ~60% for most depths. This value is about double 
that determined from samples (triple-barrel pitcher samples and frozen samples) which were 
~30%-40%, as shown in Figure 3. Assuming the Dr = 35% for all depths results in predicted 
settlements of 10 cm and 19 cm using the non-simplified and simplified variants of the 
expanded Byrne model, respectively. These predicted values are good accord with field 
observations, giving credence to the Dr estimation being the reason for the initial under-
predictions.   

The larger computed settlements using the simplified vs. non-simplified variant relates to the 
neq estimated using the Lee and Green (2017) relationship, given that the eff values for the 
simplified procedure are approximately equal to those from the site response analyses (Figure 
8). An argument can be made that it is appropriate for simplified models to be somewhat 
conservative in their predictions, providing the impetus for more detailed analyses to be 
performed (i.e., implementation of non-simplified procedures and the inherent more detailed 
site and seismic characterizations). However, it is doubtful that the simplified variant of the 
expanded Byrne model will always predict larger settlements than the non-simplified variant 
because there are not any intentional conservative biases inherent to the simplified variant. 
Accordingly, the non-simplified procedure can be viewed as providing a more accurate estimate 
of the predicted seismic compression, assuming the required inputs to the analysis are accurate, 
not necessarily a lower predicted value of seismic compression. Accounting for the differences 
in the uncertainties inherent to the predictions made using simplified vs. non-simplified 
procedures should be introduced via the criteria used to set acceptable magnitudes of seismic 
compression for the procedures.  

In the author’s view, the greatest uncertainty in the predictions using both forms of the expanded 
Byrne model is accounting for the influence of vertical shaking. This is because few studies 
have examined this issue (i.e., the author is only aware of the study by Pyke et al. 1975), and 
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the resulting adjustments increase the predicted seismic compression by 20% - 50%. Also, the 
Tokimatsu and Seed (1987) simplified procedure for evaluating seismic compression ignores 
the influence of vertical motions, which is interesting given that Professor H.B. Seed was 
directly involved in both the Pyke et al. (1975) and the Tokimatsu and Seed (1987) studies. 
Accordingly, seismic compression evaluations would benefit from a more detailed analysis of 
the influence of vertical motions on seismic compression, as well as the development of 
calibration parameters for additional types of soils/states.  
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Chapter 3: Thesis conclusion 

3.1 Summary 

Together the simplified and non-simplified forms of the expanded Byrne model provide 
a versatile approach for evaluating seismic compression that is scalable based on 
available data and the importance of the project. Both forms of the model use the same 
calibration parameters, which have been developed herein for clean sands and non-
plastic to moderately plastic (PI ≤ 10) silty sands/sandy silts using the extensive 
laboratory data performed by researchers at the University of California at Los Angeles. 
The non-simplified form is relatively easy to implement and thus, overcomes the 
complexity issues with implementing other non-simplified models (e.g., Lasley et al. 
2016a). 
 
Both the simplified and non-simplified expanded Byrne models were used to evaluate 
seismic compression at the Kashiwazaki-Kariwa Nuclear Power Plant (KKNPP) 
Service Hall Array (SHA) site during the main shock of the 2007, Mw6.6 Niigata-ken 
Chuetsu-oki, Japan, earthquake. The non-simplified model was used in conjunction 
with shear strain time histories computed at varying depths in the profile using EQL 
site response analyses. The geometric mean settlement at the ground surface due to 
horizontal shaking was ~2 cm, but this value increases to ~5.5 cm when the influence 
of multidirectional shaking is considered. The simplified model predicts ~4 cm of 
settlement at the ground surface when the horizontal geometric mean motions are 
considered. However, this value increases to ~10.4 cm when all three dimensions of 
shaking are considered. The predicted settlement using the non-simplified variant of the 
expanded Byrne model is lower than that observed in the field, and the settlement 
predicted using the simplified variant is on the lower end of the range observed in the 
field. One possible reason for this might be the relative densities used in the analyses 
that were estimated using the SPT N-values. When Dr values estimated based on 
undisturbed samples were used, the predicted settlement using both variants of the 
expanded Byrne model compared well with the observed settlement at the site of 10-20 
cm.  
 

3.2 Key findings 

Through the investigation of the Byrne (1991) model expansion and calibration of this 
thesis, the key findings were summarized below: 
 

 The Byrne (1991) model was transformed to allow it to be implemented in 
“simplified” and “non-simplified” manners. The transformed equations disclosed 
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various inherent relations among variable and parameters within the Byrne (1991) 
model and allowed parameter-specified coefficient regressions.  
 

 A third coefficient C3 was introduced in the Byrne model expressions, which 
greatly improved its data regression flexibility. 

 
 Three systematic model coefficient calibration procedures were developed (see 

Appendix B) with re-usable MATLAB codes (see Appendix D), which provided 
instructions and convenience for the future model calibrations. 

 
 Two calibrated models available for clean sand and sand with fines of low plasticity 

were proposed based on the UCLA model coefficients regression results.  
 

 Both the simplified and non-simplified forms of the expanded Byrne models were 
used to one case study, from which the uncertainty of the settlement prediction 
caused by vertical shaking was argued. 
 

3.3 Recommendations for future work 

In the author’s view, the greatest uncertainty in the predictions using both forms of the 
expanded Byrne model is accounting for the influence of vertical shaking. This is 
because few studies have examined this issue (i.e., the author is only aware of the study 
by Pyke et al. 1975), and the resulting adjustments increase the predicted seismic 
compression by 20% - 50%. Also, the Tokimatsu and Seed (1987) simplified procedure 
for evaluating seismic compression ignores the influence of vertical motions, which is 
interesting given that Professor H.B. Seed was directly involved in both the Pyke et al. 
(1975) and the Tokimatsu and Seed (1987) studies. Accordingly, seismic compression 
evaluations would benefit from a more detailed analysis of the influence of vertical 
motions on seismic compression, as well as the development of calibration parameters 
for additional types of soils/states. 
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Appendix A: Byrne (1991) Model Equation Derivation 

Appendix A presented the detailed derivations of the Byrne model equations as 
discussed in Chapter 2. In addition, analysis as well as findings for the derived equations 
were also discussed in this Appendix. 
 

1. Model Equation Derivation 
 
If the seismic demand is expressed in terms of eff, the Byrne model can be expressed 
in a simplified form: 
 �∆��,�/����� = 0.5 ∙ ����� − ���� ∙ �� ∙ ��� �−�� ��������������    (A. 1a) ��(���) = �∆��,�/����� + ���           (A. 1b) 

where �∆��,�/��� = increment in volumetric strain in percent at the end of the ith half-

shear strain cycle; ��� is the volumetric strain in percent at the end of the ith half-shear 
strain cycle;  
 
Combining Eq. (A. 1a) and Eq. (A. 1b), results were shown below: 
 
(1) for i = 0, ��� = 0 �∆��,�/��� =  0.5 ������� − ���� ��� = �∆��,�/��� + ��� = 0.5 ������� − ���� 

 
(2) for i = 1, ��� = 0.5 ������� − ���� �∆��,�/��� =  0.5 ������� − �������.� ���� ��� = �∆��,�/��� + ��� = 0.5 ������� − ����(1 + ���.� ����) 

 
(3) for i = 2, ��� = 0.5 ������� − ����(1 + ���.� ����) �∆��,�/��� =  0.5 ������� − �������.� ���� (�����.� ����) 
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��� = �∆��,�/��� + ��� 

=  0.5 ������� − �������.� ���� (�����.� ����) + 0.5 ������� − ����(1 + ���.� ����) 

        ⋯ ⋯ 
 
Using the above gained results and calculating the volumetric strain increment ratio of 

any two adjacent half shear cycle, 
�∆��,�/������∆��,�/��� , the results were: 

 �∆��,�/����∆��,�/��� = ���.� ����   (i = 1) �∆��,�/����∆��,�/��� = ���.� �������.� ����    (i = 2) �∆��,�/����∆��,�/��� = ���.� �������.� �������.� �������.�����
   (i = 3) ⋯ ⋯ 

 
Assuming an intermediate coefficient t = ���.� ����, the volumetric strain increment 
ratio of any two adjacent half shear cycle (� ≥ 1) can be written as: 
 �∆��,�/������∆��,�/��� = ��               (A. 2a) 

 
Where 
 �� = � ���.�∙��∙��   �� � = 1(����)����     �� � > 1           (A. 2b) 

 
The Eq. (A. 2a) can be translated to get the volumetric strain increment ratio between 
the ���  (� ≥ 2) half shear cycle and the first half shear cycle as presented below: 
 �∆��,�/����∆��,�/��� = �∆��,�/����∆��,�/��� × �∆��,�/����∆��,�/��� × ⋯ ⋯ × �∆��,�/����∆��,�/����� = ∏ �������     (A. 3a) 

 
Similarly, ∆��,�/∆��,� (� ≥ 2) is: 
 �∆��,�/����∆��,�/��� = �∆��,�/����∆��,�/��� × �∆��,�/����∆��,�/��� × ⋯ ⋯ × �∆��,�/����∆��,�/����� = ∏ �������     (A. 3b) 

 
Combining Eq. (A. 3a) and Eq. (A. 3b), the volumetric strain increment ratio of any 
two specific half shear cycle can be presented as follows: 
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�∆��,�/����∆��,�/��� = �∆��,�/����∆��,�/����∆��,�/����∆��,�/���
= ∏ �������∏ �������             (A. 3c) 

 
For i = 0 , Eq. (A. 1a) leads to: 
 �∆��,�/��� = 0.5 ������� − ����           (A. 4a) 

 
Combining Eq. (A. 4a), Eq. (A. 1a) and Eq. (A. 3a), the volumetric increment ratio of 
the ��� half shear cycle to the first half shear cycle can be expressed as: 
 �∆��,�/������∆��,�/��� = �� ������������� = ∏ ���            (A. 4b) 

 
Eq. (A. 4b) can be translated as: 
 ��� = −ln (∏ ��� ) ������������             (A. 4c) 

 
According to Eq. (A. 4c), the volumetric strain ratio at any specific half shear cycle end 
(or the normalized volumetric strain) was derived as follows: 
 ������ = ln (∏ ��� )/ln (∏ ��� )            (A. 5a) 

 
When j = 30 (the number of whole equivalent shear cycle neq = 15), using Eq. (A. 
5a), the volumetric strain ratio C� can be expressed: 
 �� = �����,�� = ��(∏ ��� )���∏ ������� �            (A. 5b) 

 
2. Analysis and Findings from the Derived Equations 

 
Eq. (A. 4c) can be regarded as an alternative expression of the simplified Byrne (1991) 
model form. In contrast to the original Byrne (1991) model, Eq. (A. 4c) reflects the 
effect of the half shear cycle number on the predicted seismic compression in a more 
straightforward way. Also, using Eq. (A. 4c) to evaluate seismic compression does not 
consider the volumetric strain increment accumulation, which avoids iterated 
calculation. 
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Even though Eq. (A. 4c) manifests a pure linear dependency between εv and γ��� 
(under given N and model coefficients), in most of the published laboratory test data 
regarding �� vs. ���� at given N, a power-law fit match the data better  than a linear 
fit especially for sands having fine content. Therefore, the third coefficient C�  was 
introduced into Eq. (A. 4c) as an exponent of the item (���� − ���)  to control the 
predicted curve shape and give more fit flexibility in �� vs. ���� regression. Note that 
adding C� did not make significant difference in the Appendix A derivation process of 
the Byrne (1991) model except replacing the item (γ��� − γ��)  with (γ��� − γ��)�� . 
After adding C�, Eq. (A. 4c) can be updated as shown below: 

 ��� = −ln (∏ ��� ) ��������������             (A. 6) 

 
For Eq. (A. 3c), Eq. (A. 5b), and Eq. (A. 6), the parameter t plays a critical role in the 
model composition. Eq. (A. 3c) and Eq. (A. 5b) indicate that, besides shear cycles, the 
intermediate coefficient t determines the value of the model predicted volumetric strain 
increment ratio or volumetric strain ratio of any given shear cycles. As a result, 
laboratory test data of CN vs. neqγ should be usable for obtaining the regressed t values 
using Eq. (A. 5b). 
 
In this thesis, the derived transformation equations have three major contributions. First, 
they disintegrate the complex iteration model into more specific expression forms, 
which reveals the model’s implicated relationships among its contained variables and 
parameters. Secondly, different derived equations enable programing target-specified 
codes flexibly as shown in Appendix D. Relying on these codes, three calibration 
methods were established as presented in Appendix B. Lastly, connections between the 
Byrne model and the UCLA model were made, from which the coefficients back-
calculation calibration method were developed (see details in Appendix C). 
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Appendix B: Methods of obtaining regressed coefficients  

In this Appendix, three systematic methods were developed to obtain the regressed 
coefficients through MATLAB using the derived Byrne model equations. Method-
related reusable codes were presented in Appendix D. These codes can be employed in 
either the Curve Fitting Toolbox or hand-written scripts. The Curve Fitting Toolbox is 
one built-in MATLAB application which can conduct curve fitting for either common 
models (e.g., linear, polynomial, power, and exponential) or  customized models or 
functions. Compared with hand-written scripts, the Toolbox reflects more 
straightforward outcomes, so the subsequent discussions only took the Toolbox curve 
fitting results as examples. Additionally, for the convenience of presentation, the best 
fit prediction corresponded C�, C�, and C� were named as best-fitting C-coefficients, 
among which C� and C� were named as best-fitting C-pair.  
 
In accordance with different presenting ways, the regression used published test data 
can be classified into three categories: (1) Type 1 data display test results in a form of 
v vs. nequnder given eff (e.g., Figure B.1); (2) Type 2 data exhibit test result in a form 
of CN vs. neq (e.g., Figure B.2); (3) Type 3 data present test result in a form of v,15 vs. 
eff (e.g., Figure B.3). As discussed in Appendix A, the Byrne (1991) model can utilize 
Eq. (A. 4c) and Eq. (A. 5a) to characterize relations of v,15 vs. eff  and CN vs. neq 
respectively. Accordingly, Eq. (A. 4c) was coded in MTALAB to perform regression 
based on Type 3 data, and Eq. (A. 5a) was coded as the MATLAB function 
“N_VS_Nor_V” (see Appendix D) to perform regression based on Type 2 data. 
 



34 
 

 

Figure B.1: Type 1 data example of εv vs. neq under given γeff (Silver and 
Seed, 1971) 

 
Figure B.2: Type 2 data example of CN vs. neq(Duku et al., 2008) 
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Figure B.3: Type 3 data example of v,15 vs. eff (Duku et al., 2008) 

 
Doing regression for Type 1 data is the most effortless way to reach the best-fitting C-
coefficients. The regression used model can be Eq. (8a) or Eq. (8b). However, few Type 
1 data were available in the published literature. Whereas, plenty of Type 2 or 3 data 
can be found in papers (e.g., Whang 2001; Stewart et al. 2004b; Duku et al. 2008; Yee 
et al. 2014). However, Eq. (8a) or Eq. (8b) are not suitable for Type 2 or 3 data 
regression. Therefore, to take full advantage of different types of data, the procedures 
for obtaining the best-fitting C-coefficients through the transformation equations were 
developed as presented follows.  
 

1. Method 1: Obtaining the best-fitting C-pair based on Type 1 data  
 

Method 1 was utilized to deal with single suite Type 1 data (v vs. nequnder given eff), 
where the functions “N_vs_V” and “N_half_vs_V” in Appendix D were employed in 
MATLAB as the customized models to execute the regression. To be specific, when 
doing regression in Curve Fitting Toolbox, it was required to import two column 
matrixes of neq vs. v in the Workspace window. These two matrixes were then selected 
as X and Y data in the Toolbox. Additionally, magnitude of shear strain eff as well as 
threshold shear strain tv need to be manually input into the self-defined function in the 
custom equation window. Another function input C� needs to specify its regression 
range (by clicking Fit Options) in the custom equation window or assign a given value 
(under this situation, Method 1 can only obtain the best-fitting C-pair), otherwise the 
Toolbox may not be able to return the regression results. The example of MATLAB 
regression results for Method 1 were shown in Figure B.4. As shown in Figure B.4, the 
input shear strain and threshold shear strain were 0.088 (%) and 0.01 (%) respectively, 
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and the assigned C� was 1. After regression, the best-fitting C-pair were C� = 0.2472 
and C� = 0.8807. 
 

 
Figure B.4: Method 1 curve fitting screenshot example using Curve Fitting 

Toolbox (data from Silver and Seed, 1971) 
 
The greatest advantage of Method 1 is it can get very accurate best-fitting C-pair for 
single set data without considering the dependency between C� and C�. This is helpful 
to examine the potential C-pair dependency if adequate sets of Type 1 data were 
available. However, Method 1 is not compatible with doing regression by processing 
multi-suites of data simultaneously. This may lower data processing efficiency if 
generally suitable regression parameters were intended. Another disadvantage of 
Method 1 is its unstable performance of gaining the regressed C� when the assigned 
regression range of C� was large. To overcome these weaknesses in Method 1, Method 
2 was developed. 
 

2. Method 2: Obtaining the best-fitting C-coefficients by means of 3-D curve 
fitting 

 
Method 2 performs data regression by using a MATLAB function called 
“Three_D_fitting” as presented in Appendix D. Multi-suites of test data can be handled 
by Method 2 at the same time as long as the regressed data include enough number of 
v with its corresponding neq and eff (e.g., Figure B.1 and Figure B.5). When doing 
regression in Curve Fitting Toolbox, it was required to import three column matrixes of 
v, neq, and eff in the Workspace window. These three matrixes were selected as X, Y 
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and Z data in the Toolbox. After then, the Toolbox would generate points in a 3-D space 
with three axis representing neq, γ��� , and ε�  as shown in Figure B.5. Since the 
regression was achieved in a 3-D space, Method 2 was also named as 3-D curve fitting 
method in this thesis. Unlike Method 1 which finally gained one best fitted curve in a 
2-D space, Method 2 was trying to find the best fitted curved surface in a 3-D space 
(see Figure B.7). When using the Toolbox, before regression, it was required to 
manually input the known threshold shear strain into the self-defined function in the 
custom equation window. Figure B.8 was the screenshot of Curve Fitting Toolbox as an 
example of the Method 2 regression results. In Figure B.8, the best-fitting C-
coefficients were C� = 0.1527, C� = 0.4746, and C� = 1.1 and a 0.01% threshold 
shear strain was assigned. 

 

 
Figure B.5: Example of test data (Whang, 2001) that can be processed by 

Method 2 
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Figure B.6: Curve Fitting Toolbox generated test data points in a 3-D space 

(data from Silver and Seed, 1971) 

 
Figure B.7: Method 2 best fitted curved surface in 3-D space (data from 

Silver and Seed, 1971) 
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Figure B.8: Method 2 curve fitting result screenshot example of Curve 

Fitting Toolbox (data from Silver and Seed, 1971) 
 
In contrast with Method 1, Method 2 can deal with groups of test data at the same time, 
which offers efficient way to determine generally applicable C-coefficients including C� . More importantly, Method 2 can completely substitute Method 1 with better 
regression performance in terms of processing Type 1 data. To process Type 1 data, 
besides importing matrixes of neq and �� , Method 2 needs to create matrix of γ���  in 
the Workspace window as the selected Z data in the Toolbox. Specifically, for handing 
same Type 1 data, if identical C� was assigned in the self-defined functions of Method 
1 and Method 2, the two methods will return same regression results. Overall, Method 
2 is more practical and efficient than Method 1. Accordingly, when test data are enough 
and detailed, it is highly recommended performing 3-D curve fitting for obtaining best-
fitting C-coefficients. 

 
3. Method 3: Obtaining the best-fitting C-coefficients based on Type 2 and 

Type 3 data 
 

Method 3 was employed to process the Type 2 and Type 3 data. Only one set of test 
data can be processed by method 3 every time. Unlike Method 1 and Method 2, Method 
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3 not only conducted regression, but also executed analytical calculations. Method 3 
included three steps. 

The first step was performing Type 2 data regression by using a MATLAB function 
“N_VS_Nor_V”. Matrixes of neq and CN were needed to be imported into the 
Workspace window. These two matrixes were then selected as X and Y data in the 
Toolbox. Before regression, it was required to assign a random shear strain value into 
the self-defined function. Otherwise, the curve fitting could not be completed 
successfully. (Note that the randomly assigned shear strain will not impact the 
regression results). One example of Type 2 data regression was shown in Figure B. 9, 
where the returned C-coefficients were C� = 0.7547  and C� = 0.5569  separately. 
Note that the obtained C� or C� here was not the “true” best-fitting C� or C� for the 
Byrne model. They were merely two random figures that had certain constant arithmetic 
product. Through analysis of Eq. (A. 5b), it was easy to find such constant product was 
exactly the best-fitting C-pair product P, because “N_VS_Nor_V” was coded based on 
Eq. (A. 5b) where only parameter t (or P) were the regressed coefficient. Hence, one 
critical usage of “N_VS_Nor_V” is obtaining the best fitting C-pair product P (or 
parameter t). As a result, the inherent regressed results in Figure 2.10 should be � =0.420 or � = 0.811.  
 

 
Figure B.9: Type 2 data curve fitting example of Method 3: screenshot of 

Curve Fitting Toolbox (data from Whang, 2001) 
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The second step of Method 3 was executing regression for Type 3 data by using 
customized equation � = ���. Before regression, matrixes of (γ��� − γ��) and  ε�,�� 
were needed to be imported in the Workspace window and then selected as X and Y 
data in the Toolbox. The coefficients �  and �  in the customized equation are 
corresponded to the item −ln (∏ ��� )/�2 and the exponential item C� in Eq. (A. 6), 
so the regression coefficients � and � here were in reality the regressed −ln (∏ ��� )/�2 and C�. Example of Type 3 data regression using � = ��� was shown in Figure 
B.10, from which a = −ln (∏ ��� )/�2 = 1.703 and b = C� = 1.092. 
 

 

Figure B.10: Type 3 data curve fitting example of Method 3: screenshot of 
Curve Fitting Toolbox (data from Stewart et al., 2004b) 

 
The last step of Method 3 was back calculating the best-fitting C-coefficients. Input the 
regressed value of t (or P) into−ln (∏ ��� )/�2, C� was able to be solved. Note this C� 
should be the best-fitting prediction corresponded coefficient. Then, using the P value 
known from the first step, it is easy to back calculate the best-fitting C�.  
 

4. Regression analysis for currently available published data 
 
Even though three different methods were established for obtaining regressed C-
coefficients, few published Type 1 data were available for Method 1 or Method 2 
analysis. While numerous Type 3 data were available in papers, lacking specific Type 
2 data from the papers makes Method 3 unable to gain the best fitting C-pair. Hence, to 
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investigate the potential coefficient dependency or to update the coefficient correlations 
was not easy based on existing usable data. Even so, this study still gained some 
findings from the currently available regression results. 
 
Because the data from Silver and Seed (1971) were detailed and easy to digitize, using 
their data, a series of Method 1 regression (assuming γ�� = 0  and C� = 1 ) were 
performed. The data details were presented in Figure B.11, where ten sets of cyclic 
shear test results were presented. To investigate the effect of the regression-considered 
shear cycle N scope on the best-fitting C-pair, regressions were executed for data points 
with N ranges from 0-10, 0-25, 0-100, and 0-280 respectively. The regression results 
were summarized in Table B.1. The goodness of fit criteria used in this study was the 
sum of squares due to error (SSE). A small SSE denotes a tight fit of the model to the 
data. 
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Figure B.11: Ten sets of stain-controlled cyclic direct simple shear test for Dr = 60% clean sand (Silver and Seed, 1971) 
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Table B.1: The regressed C1 and C2 with corresponding values of t, P, and SSE for data of Silver and Seed (1971) 
Test information  For test points of 0 ≤ N ≤ 10 For test points of 0 ≤ N ≤ 25 For test points of 0 ≤ N ≤ 100 For test points of 0 ≤ N ≤ 280 

Test 

suite 

# 

σv 
(psf) 

D�(%) γ(%) C1 C2 t P SSE C1 C2 t P SSE C1 C2 t P SSE C1 C2 t P SSE 

1 500 60 0.02 0.23 1.26 -0.14 0.865 4E-07 0.26 1.59 -0.205 0.815 2E-06 0.28 1.76 -0.249 0.780 3E-06 0.28 1.73 -0.239 0.787 8E-06 

2 500 60 0.04 0.18 2.02 -0.19 0.831 1E-06 -  -  -  -  -  0.21 2.48 -0.258 0.773 4E-06 0.19 2.29 -0.221 0.802 1E-05 

3 500 60 0.09 0.31 1.21 -0.19 0.830 8E-05 0.33 1.38 -0.225 0.799 1E-04 0.30 1.27 -0.190 0.827 2E-04 0.22 0.99 -0.109 0.897 1E-03 

4 500 60 0.63 0.21 1.06 -0.11 0.893 2E-04 0.21 1.03 -0.110 0.896 2E-04 0.14 0.57 -0.041 0.960 3E-02 0.11 0.42 -0.024 0.977 7E-02 

5 2000 60 0.01 0.25 8.52 -1.06 0.347 3E-07 0.13 4.75 -0.306 0.736 3E-07 0.30 9.15 -1.359 0.257 3E-06 0.35 11.27 -1.972 0.139 7E-06 

6 2000 60 0.04 0.19 1.80 -0.17 0.845 2E-06 0.20 2.10 -0.213 0.808 5E-06 0.25 2.60 -0.322 0.725 3E-05 0.31 3.11 -0.487 0.614 1E-04 

7 2000 60 0.23 0.93 1.14 -0.53 0.590 6E-05 1.00 1.24 -0.618 0.539 4E-04 0.99 1.24 -0.614 0.541 5E-04 0.98 1.23 -0.602 0.548 5E-04 

8 4000 60 0.01 0.32 1.16 -0.18 0.832 2E-06 0.31 1.33 -0.208 0.812 2E-06 1.07 2.96 -1.585 0.205 1E-05 1.70 3.71 -3.163 0.042 2E-05 

9 4000 60 0.03 0.46 1.39 -0.32 0.728 1E-05 0.47 1.45 -0.342 0.710 1E-05 0.53 1.64 -0.437 0.646 5E-05 0.63 1.84 -0.578 0.561 1E-04 

10 4000 60 0.14 1.61 1.38 -1.11 0.330 8E-06 1.58 1.35 -1.063 0.345 5E-05 1.44 1.25 -0.904 0.405 1E-03 1.00 1.01 -0.505 0.604 1E-02 
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Using the best-fitting C-pairs in table B.1, Figure B.12 were drawn to analyze the 
possible dependency between C�  and C� . Given the Byrne (1991) recommended �� = 0.4/�� in the original model, an inverse proportion relation of C-coefficients was 
examined by a customized equation �� = �/�� in the Curve Fitting Toolbox. After 
the regression for all points in Figure 2.13, � = 0.52 with ��� = 217 was gained. 
Then, excluding some possible outlier-points in figure B.13, the Toolbox gained � =0.37  with ��� = 28 . Both 0.52 and 0.37 were close to 0.4. Since Byrne (1991) 
proposed �� = 0.4/�� based on data from Silver and Seed (1971), the results verified 
the reasonability of the Byrne’s suggestion. However, scattered C�  vs. C�  points 
resulted in very large SSE values of the fit, plus only ten suites of test results were 
regressed, so it was hard to determine if the inverse proportion C-pair dependency was 
generally suitable. Since no other apparent dependency can be found in Figure B.12, 
the scattered C� vs. C� may also implicate that the C-pair were not inter-dependent. 
If this was the case, current available published data would be far more enough to 
calibrate the model coefficients. All in all, no matter how C-pair is dependent or not, to 
get more definitive conclusion on the coefficient dependency, adequate usable data are 
necessary. Otherwise, the model calibration can merely be achieved through alternative 
procedures instead of purely regression analysis.  

 

 
Figure B.12: Best-fitting C-pair for ten sets data with different considered N 

range 
 

According to the results from Table B.12, Figure B.13, B.14, and B.15 were drawn to 
investigate the influence of considered N scope on regression results. Figure B.13 
indicated that the increased considered N will increase the model prediction error or 
lower the model fit. This conclusion was suitable for all ten tests. In Figure B.14, it 
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seemed the varying regression-considered N can not significantly impact most of the 
regressed results, while only few sets of data showed significant regression difference 
due to the varying N. Additionally, the regression-considered N might affect the 
arithmetic product of best fitting C-pair as shown in Figure B.15. Due to the lack of 
adequate analyzed data, it was difficult to determine the definitive N influence on the 
regression results. Given the influence might be non-ignorable sometimes, this thesis 
suggested always mentioning the fitting-considered N scope before regression as a 
necessary precondition to calibrate the Byrne (1991) model.  
 

 
Figure B.13: Regression-considered N vs. SSE (data from Silver and Seed, 

1971) 
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Figure B.14: Regression-considered N vs. best-fitting C1 (data from Silver 

and Seed, 1971) 
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Figure B.15: Regression-considered N vs. best-fitting C-pair product (data 

from Silver and Seed, 1971)  
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Appendix C: Byrne model calibration based on the UCLA models 

This Appendix presented the detailed Byrne model calibration based on the UCLA 
models as discussed in Section 2.4. From 2001 to 2014, researchers from UCLA 
conducted a large body of cyclic shear tests to investigate seismic compression, which 
greatly expanded the volumetric strain material model (VSMM) database (Yee et al., 
2014). However, because this database was not published exhaustively, it was 
impossible to perform a robust regression for the Byrne (1991) model using the three 
developed methods as discussed in Appendix B. Whereas, regression results of the 
UCLA model were well-presented in the papers (e.g., Duku et al. 2008 and Yee et al. 
2014). Through the transformed Byrne model equations, expression connections were 
found between the Byrne (1991) model and the UCLA model. Then the regressed Byrne 
model coefficients were back calculated via the UCLA models. As concluded at the end 
of Appendix B, it was necessary to mention the model regression considered shear cycle 
N. Since all the UCLA model regressed parameters were gained based on 0 ≤ N ≤ 25, 
such N scope was also applicable for the final calibrated Byrne models in this Appendix. 
 

1. Calibrating C-pair product 
 

Is it generally accepted CN was mainly dependent on neq. For example, Tokimatsu and 
Seed (1987) used an empirical correlation table to describe CN vs. neq as shown in Table 

C.1; Pradel (1998) used equation �� = �����/15��.��
 to represent how neq affect CN; 

Stewart et al. (2004b) concluded that the CN vs. neq exhibits little variability for 14 
tested sands as shown in Figure C.1 and Duku et al. (2008) recommended using Eq. (2b) 
to describe a log-linear relation between CN and neq for clean sand. Similarly, as 
presented in Appendix A, the Byrne (1991) model can employed Eq. (A. 5b) to depict 
CN vs. neq. In Eq. (A. 5b), constant t (or P) can be easily obtained by Method 3 
regression using “N_VS_Nor_V”, from which the calibration-desired C-pair 
dependency was indicated, because � = ���.��  and � = ���� . This thesis accepted 
the assumption that CN was primarily a function of neqfor clean sands, so C� and C� 
were interdependent with an inverse proportion relationship in the calibrated Byrne 
(1991) model. Then, the calibration of the C-pair product was achieved by CN vs. 
neqdata regression. Note that for sand with fines of low plasticity, Yee et al. (2014) 
suggested CN relies on both neq and the shear strain γ���. As a result, to calibrate the 
C-pair product for the Byrne model of sand with fines, correlations among CN , neqand γ��� were needed to be determined.  
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Table C.1: Empirical CN vs. neqγ relationship for clean sand (Tokimatsu and Seed, 1987) 

Number of whole shear 
cycles, neq 

Empirical CN 

26 0.89 
15 1.0 
10 1.13 
5 1.32 

2-3 1.5 
 

 
Figure C.1: CN vs. neqγ for the 14 tested clean sands (Stewart et al., 2004b)  

 

2. Calibrating C-coefficients correlations 
 

Both Eq. (A. 6) of the Byrne (1991) model and Eq. (2a) of the UCLA model utilized 
same power function expression form to describe ε�,�� vs. γ���. The parameter a and 
b in Eq. (2a) was exactly corresponded to the item −ln (∏ ��� )/�2 and the exponential 
item C� in Eq. (A. 6). Hence, to obtain the equivalent regressed −ln (∏ ��� )/�2 and C� in the Byrne (1991) model, it was feasible to directly replace them with values of 
the regressed a and b from the UALC model. Via the replacement, the UCLA model 
coefficient correlations with various compositional and environmental factors can be 
transferred to the calibrated Byrne model, from which the C-coefficients correlation can 
be calibrated without performing regression analysis. In fact, gaining ��  or �� 
through such equivalent coefficient back-calculation followed the same principles of 
Method 3 as discussed in Appendix B. The thorough processes of calibrating the Byrne 
(1991) model based on the UCLA model were presented in the following subsections, 
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where a calibrated Byrne model of clean sand and a calibrated Byrne model of sand 
with fines were proposed. 
 

3. The calibrated Byrne model for clean sand based on the UCLA model 
regression results 
 

Using the regressed results of the UCLA model of Duku et al. (2008), one calibrated 
Byrne model of clean sand was proposed in this section. Due to the paucity of detailed 
Type 2 data, this thesis had to use the UCLA model predicted CN vs. neq(ranging from 
0 to 25) by Eq. (2b) to calibrate the C-pair product, where results of � = 1 and � =0.6035 were gained. Therefore, in the Byrne model of clean sand, the updated C-pair 
dependency was �� = 1/�� as presented in Eq. (9b).  
 

When � = 0.6035, Eq. (A. 6) can be written as ��,�� = 2.8001�� × ����� − ������, 

within which −ln (∏ ��� )/�2 = 2.8001C� . Since Duku et al. (2008) suggested � =(��/��)��.��5.38���.�����  in their model, 2.8001�� = (��/��)��.��5.38���.����� . 

By transposition, �� = ��.���� ∙ ��,� ∙ �� ��� = ��������.�� 1.92���.����� as presented in 

Eq. (9a). Even though the regressed b was found varied with different materials, for the 
sake of developing a simplified model, Duku et al. (2008) recommended using constant � = 1.2  in their model. Given the regressed � expression were proposed based on � = 1.2 , in the calibrated Byrne model, C� = � = 1.2  was taken. In summary, the 
simplified form of the calibrated Byrne’s model for clean sand can be written as: 

 �∆��,�/����� = 0.5 ∙ ����� − �����.� ∙ �� ∙ ��� �−�� ��������������.��   (C. 1a) 

 
where �� = (��/��)��.��1.92���.�����  and �� = 1/�� . Since C-coefficients are 
interdependent, Eq. (C. 1a) can be written as an one-coefficient expression: 
 �∆��,�/����� = 0.5 ∙ ����� − �����.� ∙ �� ∙ ��� �− ����������������.��   (C. 1b) 

 
Based on Eq. (C. 1b), a MATLAB function named “Calibrated_clean_sand_model” was 
coded, and the code details were presented in Appendix D. For the convenience of 
checking coefficient for the calibrated Byrne model of clean sand, Table C. 2 was 
proposed. 
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Table C.2: Calibrated model coefficient C1 for clean sand with different relative density 

under different vertical load �� 
(kPa) 

Calibrated C1 of the Byrne model ��=45% ��=50% ��=55% ��=60% ��=65% ��=70% ��=75% ��=80% ��=85% 
50 0.83 0.74 0.66 0.59 0.53 0.47 0.42 0.37 0.33 
75 0.74 0.66 0.59 0.53 0.47 0.42 0.37 0.33 0.30 

100 0.68 0.61 0.54 0.48 0.43 0.38 0.34 0.30 0.27 
125 0.64 0.57 0.51 0.45 0.40 0.36 0.32 0.29 0.25 
150 0.61 0.54 0.48 0.43 0.38 0.34 0.30 0.27 0.24 

*Coefficient calculation equation: C� = ��������.�� 1.92e��.����� 
 
In the paper of Duku et al. (2008), the authors also presented material-specified 
regressed coefficients of the UCLA model as shown in Table C.3 (Note that in Table 
C.3, the coefficients were obtained when ��,� = 1). Since the calibrated model of clean 
sand were broadly applicable for general clean sand, the model prediction may be 
biased when specific material was analyzed. Therefore, referring Table C.3 and 
following the same coefficient back-calculation procedures, similar material-specified 
coefficients table (Table C.4) was made for the calibrated Byrne model of clean sand.  
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Table C.3: UCLA model material-specified regression coefficients for tested clean sands 

(Duku et al., 2008) 
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Table C.4: Byrne model material-specified calibration coefficients (for clean sand only) 

- Byrne model calibration coefficients 

Material D�(%) 
C���,� C� 

����,� with C� = 1.2 

Vulcan x45 0.95 1.16 0.91 
 x60 0.62 1.21 0.61 
 80 0.34 0.93 0.34 

Silica No.2 45 0.68 0.9 0.76 
 x60 0.47 1.22 0.45 
 x68 0.47 1.31 0.42 
 x80 0.36 0.95 0.41 

Crystal silica No. 30 60 0.41 0.68 0.56 

F-52 x45 0.41 1.43 0.30 
 x60 0.21 1.18 0.21 
 x80 0.16 1.07 0.19 

F-110 x60 0.62 1.46 0.46 

Flint No.13 60 0.47 0.95 0.52 

Flint No.16 60 0.63 1.05 0.66 

Nevada x60 0.51 0.97 0.59 
 x80 0.45 1.46 0.35 

Newhall x60 0.43 1.23 0.42 

Newhall No. 2 x45 0.42 1.23 0.42 
 x60 0.27 1.43 0.22 

Pacoima No.1 60 0.61 0.95 0.67 

Pacoima No.3 60 0.52 0.99 0.59 

Irwindale 60 0.47 0.98 0.49 

Santa Clarita Post Office 60 0.30 0.91 0.33 

Silica No.0 60 0.62 1.13 0.51 

Wilshire x45 0.99 1.37 0.90 
 x60 0.57 1.02 0.63 
 x80 0.41 1.02 0.53 

Note: x denotes test at a wide range of shear strains 
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4. The calibrated Byrne model for sand with fines based on the UCLA model 

regression results 
 

The calibrated Byrne model of sand with fines was proposed using the regressed results 
of the UCLA model of Yee et al. (2014). Note that both the UCLA model and the 
calibrated Byrne model of sand with fines discussed in this Appendix were suitable for 
non-plastic to moderately plastic silty sands/sandy silts (i.e., PI ≤ 10), with FC ranging 
from 0 to 60%..  
 
In the UCLA model, the regression parameter R governs the predicted CN vs. neq. Yee 
et al. (2014) found that R exhibited dependency on γ��� and proposed the regressed Eq. 
(3d) to describe R vs. γ���. Using Eq. (3d) calculated results and following the same 
ways calibrating the C-pair product in the model of clean sand, values of P vs. R (the 
corresponding values of R ranging from 0.25 to 0.36) were regressed. Then, the plot of 
R vs. P was drawn as presented in Figure C. 2, where the regression expression was 
proposed: 
 � = −0.079 ��(�) + 0.292           (C. 2a) 
 
Combing Eq. (3d) and Eq. (C. 2a), the C-pair product expression in the calibrated Byrne 
model for sand with fines were obtained:  
 � = ��.�������� − �����.����

           (C. 2b) 

 
According to Eq. (C. 2b), the updated C-pair dependency can be written as C� =��.��������������.��� ��� . 

 
Unlike the clean sand model calibration, for the sand with fine model, the C-coefficients 
correlation calibration was more complex due to the γ��� dependent C-pair product. In 
the sand with fine model, because the item −ln (∏ ��� )/�� in Eq. (A. 6) should equal 
to the item ��� ∙ �� ∙ ��,� ∙ �� ��� & ���� & ��� in Eq. (3c), plus Eq. (C. 2b), following 
expression was gained: 
 ��,���� ��5.38���.����� = ��� (∏ ����� )��.��������������.��� �× ��      (C. 3a) 

 

Since both t or � depends on γ���, the item ��� (∏ ����� )��.��������������.��� � can be defined as a 

function of γ���, F�(γ���). Then, C� can be written as: 
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�� = ��,���� ���.�����.�������������            (C. 3b) 

 
Because the expression of F�(γ���)  was too complicated, in order to efficiently 
calculate C� in Eq. (C. 3b), a simpler alterative F�(γ���) expression was required. 
Hence, results of F�(γ���) vs. γ��� (varying from 0.03% to 1% with 0.01% increment) 
were calculated and then regressed by various self-defined equations. After trials, a 
simplified regressed expression regarding F(γ) was proposed: 
 ��(����) = 2.149������.���� + 4.337����.������        (C. 4) 

 
Combining Eq. (C. 3b) and Eq. (C. 4), the equation of C� can be expressed as follows: 

 �� = ��,���� ���.�����.������.���������.������.�������.������           (C. 5) 

 
Eq. (C. 5) was the updated C-coefficient correlations in the calibrated Byrne model for 
sand with fines, where the influence of vertical load, fine content, degree of saturation, 
and soil density on seismic compression were all considered in it. Like Duku et al. (2008) 
suggested in the UCLA clean sand model, Yee et al. (2008) also recommended � =1.2 in their model, so �� = � = 1.2 was accepted here as well.  

 
 

 
Figure C.2: Relationship of R and corresponding C-pair product P 
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In summary, the calibrated Byrne model for sand with fines of low plasticity is also 
expressed by Eq. (C. 1a). In contrast with the calibrated clean sand model, the 

calibrated sand with fine model has �� = ��,���� ���.�����.������.������.������.�������.���   and �� =��.���(� − ���)�.���� / �� . The factor ��,� , ��� , and ��  within the model have 
same expression as Eq. (2d), Eq. (3a) , and Eq. (3b) of the UCLA model. Based on the 
calibrated Byrne model of sand with fines, the MATLAB function named 
“Calibrated_sand_with_fine_model” was coded. The details of the code were presented 
in Appendix D. 
 

5. Threshold shear strain consideration in model calibration 
 

Because the UCLA model coefficient a and b were regressed by equation ��,�� =�(���� − γ��)�, to perform the equivalent coefficient back-calculation for the Byrne 

model, one prerequisite should be the identical regression-based γ�� between the two 
models. Otherwise, the calibrated C-coefficients in the Byrne model may not be the 
best fitting ones, especially when the γ���  is very small. However, the detailed 
regression used γ�� was not well-presented among the available literature from UCLA. 
In the thesis of Duku (2007), the author just mentioned a γ�� scope of 0.01% to 0.02% 
for clean sand. In the paper of Duku et al. (2008), the authors indicated a typical clean 
sand γ�� range of 0.01–0.03% by referring the conclusion of Hsu and Vucetic (2004). 
Whereas, for sand with fines, Duku (2007) did coefficient a regression with constant � = 1.1 using 0.02-0.03% γ��. In the thesis of Yee (2011), the author used various γ�� values as shown in Table C.5 to perform the model regression. Hence, it is highly 
likely that the UCLA model coefficients were regressed based on non-unified γ�� 
values. This might be insignificant, because the change of the small γ�� values seems 
have negligible effect on the regression results. But to increase the Byrne model 
calibration accuracy, this thesis still recommended considering the influence of the γ�� 
and mentioning the calibration used γ�� clearly before any regression analysis. 
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Table C.5: The UCLA model regressed parameters with varied γtv values (Yee, 2011) 

 
 

6. Comparison between the Byrne (1991) model and the UCLA model  
 

Compared with the original Byrne (1991) model, the UCLA model has better 
performance on characterizing ε�,�� vs. γ���, because the original Byrne (1991) model 
only allowed a linear ε�,�� vs. γ��� prediction, whereas the UCLA model can perform 
a power law curve fitting. As discussed before, a curved fit line was more suitable than 
a straight fit line for most of the ε�,�� vs. γ��� test results. This can also be proved by 
Table C.4, where most of the regression parameter b was not 1 for different tested soils. 
Additionally, for same Type 3 data (see Figure C.3) from Silver and Seed (1971), the 
regression error comparison of the two models were presented in Table C.6. The 
comparison manifested that the UCLA model prediction can match the Type 3 data 
better. But after adding the third coefficient C�, the Byrne model can also perform a 
power law curve fit for ε�,�� vs. γ���. As a result, the expanded Byrne model has same 
prediction accuracy as well as calibration flexibility as the UCLA model in terms of 
depicting ��,��  vs. γ���. 
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Figure C.3: Test data of εv, 15 vs. γeff for different soil density by Silver and 

Seed (1971) 
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Table C.6: εv, 15 vs. γeff prediction goodness of fit comparison between two models 

Tested soil D� (%) 
SSE of the original 
Byrne (1991) model 

SSE of the UCLA 
model 

45 0.011 0.007 
60 0.042 0.027 
80 0.014 0.006 

 
Unlike modifying the Byrne (1991) model expression form on describing ��,�� vs. γ���, 
this study did not adjust the model expression form on characterizing CN vs. neq. This 
was because the Byrne (1991) model had more fit flexibility and less regression error 
than the UCAL model on CN vs. neq regression. Figure C. 4 presented the regression 
error for the two models employing same Type 2 data from Silver and Seed (1971). For 
the investigated eight sets of data, almost all SSE values of the Byrne (1991) model 
were smaller than those of the UCLA model. Also, it seems the SSE value difference 
for the two models were not obvious when the test shear strain was small. Since limited 
data were analyzed and the SSE difference of the two models was not apparent, the 
findings obtained from Figure C. 4 may not be broadly suitable. Given this, a more 
reliable model fit error comparison was carried out using data from Whang (2001), 
where average CN vs. neq(See Figure C. 5) of 4 sands with more than 40 suites of tests 
were regressed. Figure C. 6 showed the SSE histogram comparison between the two 
models, where the Byrne (1991) model showed far less SSE values than the UCLA 
model for the 4 sands. This proved that the Byrne (1991) model has better regression 
performance on CN vs. neq. More importantly, the near 0 SSE values implies a great fit 
capability of the Byrne (1991) model on Type 2 data regression.  
 

 
Figure C.4: CN vs. neqγ data of Silver and Seed (1971) regression results 

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0 0.2 0.4 0.6 0.8

SS
E

Shear strain (%)

SSE of Bryne model
SSE of UCLA model



61 

 
 

comparison between the Byrne (1991) model and the UCLA model 
 

 

 
Figure C.5: Average CN vs. neqγ for 4 sands with more than 40 laboratory 

tests (Whang, 2001) 
 

 
Figure C.6: Regression SSE comparison between the Byrne (1991) model and 

the UCLA model using average CN vs. neqγ of 4 sands (data from Whang, 
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2001) 
 

Even though the Byrne (1991) model can better characterize CN vs. neq than the UCLA 
model, it should be noted that this study did not give full play to such advantage on the 
model calibration. Because of the paucity of the CN vs. neq data, this thesis had to use 
the UCLA model predicted CN vs. neq to perform the regression and then obtained the 
calibrated C-pair product. Figure C. 7 was drawn to compare the predicted CN vs. neq 
among the UCLA model (Duku et al, 2008) with � = 0.29, the original Byrne (1991) 
model with � = 0.4, and the calibrated Byrne model of clean sand with � = 1. As 
shown in Figure C. 7, compared with the original Byrne (1991) model, the calibrated 
model of clean sand had larger predicted CN at neq= 1 to 14 but smaller predicted CN 

at neq= 16 to 25. Additionally, in Figure C. 7, the Byrne (1991) model still exhibited 
excellent CN vs. neq regression performance that even the UCLA model predicted 
points were perfectly fitted. However, since P was not calibrated utilizing the real test 
data, it was hard to know whether the updated CN vs. neq prediction was more accurate 
than before. Given the two models can characterize almost same CN vs. neq as well as 
identical ε�,��  vs. γ��� , the calibrated Byrne model was basically equivalent to the 
UCLA model. Even so, this thesis believed that as along as enough test data were 
available, the calibrated Byrne model will still be overall more accurate and efficient 
than the UCLA model in seismic compression evaluation. The higher accuracy of the 
Byrne model lies in its better regression capability on CN vs. neq. Whereas, the higher 
efficiency of the Byrne model comes from it has less regression coefficients (C�, C� 
and C� ) than the UCLA model. Especially when considering interdependent C-pair 
and �� = 1.2 , merely one coefficient will be involved in the model calibration. In 
contrast, the UCLA model has four parameters (R, c, a, and b) in its expression. 
Assuming � = 1.2 and c can be back calculated from 1 − ���(15), the UCLA model 
still requires at least two coefficients (R and a). More importantly, the calibrated Byrne 
model can also be used in non-simplified analysis, but the UCLA model is merely 
suitable for simplified analysis. 
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Figure C.7: CN vs. neqγ prediction comparison among the UCLA model 

(Duku et al, 2008) with R = 0.29, the Byrne (1991) model with P = 0.4, and 
the calibrated Byrne model of clean sand with P = 1 
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Appendix D: MATLAB codes used for model calibration 

1. MATLAB functions used to obtain best-fitting C-pair or C-coefficients 
 

1.1 Method 1 used MATLAB function: N_vs_V 
 
The “N_vs_V” is a function code which can be used for processing data of whole cyclic 
shear cycle N�����  vs. accumulated vertical strain ε� to obtain best-fitting C� and C�. The procedures of conducting curve-fitting by “N_vs_V” were: (1) according to 
recorded laboratory data of N����� vs. ε�(%), get column matrix of ε� (%) and its 
corresponding column matrix of N�����; (2) import matrixes of N����� and ε� (%) 
into MATLAB Workspace window; (3) use script commands or Curve Fitting Toolbox 
with customized function “N_vs_V” to perform regression. Note that step (3) may need 
to set the upper and lower limit of C�, because if the third C� value was too large, the 
regression may not be successfully performed. The inputs and output of this function 
code were shown in Table D.1 
 

Table D.1: Inputs and output of function code “N_vs_V” 

Input  

Model coefficients C�, C�, and C� 
Cyclic shear strain magnitude γ (%) 
Threshold shear strain ε�� (%) 
Number of whole shear cycle N����� 

Output Accumulated vertical strain ε� (%) 

 
The scripts of the code were shown below: 
 
function y=N_vs_V(c1,c2,c3,r,rtv,N) 
% The output value y is the accumulated vertical strain (%) for any 
given whole shear cycle. 
% This function has six basic variables: 
  % r means shear strain (%) of strain-controlled test. 
  % rtv means threshold shear strain (%) of the tested soil. 
  % N is the number of whole shear cycle. 
  % c1, c2 and c3 are coefficients of Byrne's model. 
v(1)=0; % v is the matrix used to store vertical strain values for a 
given whole shear cycle. The size of this matrix depends on the 
length of N matrix 
        % Xxx asign V(1)=0. 
r2=(r-rtv)^c3;% r2 is the shear strain related item used for 
calculation. 
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y = zeros(size(N)); % y is the matrix used to store accumulated 
vertical strain for number of whole shear cycles from 0 to N 
for j=1:length(N) % In this for loop, length(N) indicates xxx will 
use each value (whole shear cycle) of matrix N to do the calculation. 
    % The index j is used to mark the order of the N value xxx used 
in matrix N 
    i=1; % The index xxxxis used to mark the times of iteration 
calculation of Byrne's basic model  
    while i<=N(j)*2 % In this while loop, N(j)*2 used to represent 
the number of half shear cycle for the given value of Matrix N 
    deltaX_1(i) = c1*(exp(-c2*(v(i)/r2)))*r2/2;% deltaX_1 is the 
volumetric strain increment for every half shear cycle. For the first 
cycle, deltaX=C_1*gamma. 
    v(i+1)=v(i)+deltaX_1(i);% v is matrix used to store the value of 
accumulated vloumetric strain(%) 
    i=i+1; % The iteration will end until i= the number of half shear 
cycle 
    end 
y(j)=v(i); % Xxx store the calculated vertical strain (%) for the 
given shear cycle into the matrix y, then do the same calculation 
once again for next shear cycle that stored in matrix y 
% Finally, xxx will get a matrix y which has same size as matrix N 
end 
end 
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1.2 Method 1 used MATLAB function: N_half_vs_V 

 
The “N_half_vs_V” has same application procedures as function code “N_half_vs_V”. 
But “N_half_vs_V” merely uses half shear cycle N���� as input column matrix. The 
inputs and output of this function code were shown in Table D.2.  
 

Table D.2: Inputs and output of function code “N_half_vs_V” 

Input  

Model coefficients C�, C�, and C� 
Cyclic shear strain magnitude γ (%) 
Threshold shear strain ε�� (%) 
Number of half shear cycle N���� 

Output Accumulated vertical strain ε� (%) 

 
The scripts of this code were shown below: 
 
function y=N_half_vs_V(c1,c2,c3,r,rtv,N) 
% The output value y is the accumulated vertical strain (%) for any 
given whole shear cycle. 
% This function has six basic variables: 
  % r means shear strain (%) of strain-controlled test. 
  % rtv means threshold shear strain (%) of the tested soil. 
  % N is the number of half shear cycle. 
  % c1, c2 and c3 are coefficients of Byrne's model. 
v(1)=0; % v is the matrix used to store vertical strain values for a 
given half shear cycle. The size of this matrix depends on the length 
of N matrix 
        % Xxx asign V(1)=0. 
r2=(r-rtv)^c3;% r2 is the shear strain related item used for 
calculation. 
y = zeros(size(N)); % y is a matrix used to store accumulated 
vertical strain for number of half shear cycles from 0 to N. 
for j=1:length(N) % In this for loop, length(N) indicates xxx will 
use each values (half shear cycle) of matrix N do the calculation. 
    % The index j is used to mark the order of the cyclic shear cycle 
xxx used in matrix N. 
    i=1;% The index xxxxis used to mark the times of iteration 
calculation of Byrne's basic model. 
    while i<=N(j) % In this while loop, N(j) used to represent the 
number of half shear cycle for the given value of Matrix N. 
    deltaX_1(i) = c1*(exp(-c2*(v(i)/r2)))*r2/2;% deltaX_1 is the 
volumetric strain increment for every shear cycle. For the first 
cycle, deltaX=C_1*gamma. 
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    v(i+1)=v(i)+deltaX_1(i);% v is matrix used to store the value of 
vloumetric strain(%). 
    i=i+1;% The iteration will end until i= the number of half shear 
cycle. 
    end 
y(j)=v(i) % Xxx store the calculated vertical strain (%) for the 
given the given shear cycle into the matrix y, then do the same 
calculation once again for next the given shear cycle N that stored 
in matrix N. 
% Finally, xxx will get a matrix y has same size as matrix N. 
end 
end   
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1.3 Method 2 used MATLAB function: Three_D_fitting 
 

The “Three_D_fitting” is a function code which can be used for processing detailed 
data of ε�  with its corresponding N�����  and γ  to obtain best-fitting C�, C�, and C�. The procedures to conducting 3-D curve fitting through MATLAB were shown 
below: (1) according to recorded data of ε�(%) with its corresponding N����� and γ 
(%), obtain same size column matrixes of N����� , ε� (%), and γ  (%); (2) import 
matrixes of N�����, ε�(%), and γ (%) into MATLAB workspace area; (3) use script 
commands or Curve Fitting Toolbox with customized function “Three_D_fitting” to do 
curve fitting for the imported matrixes of N�����, ε�(%), and γ (%).Also, it may need 
to set the C� upper and lower limit for step 3. Additionally, it needs to assign specific ε�� value when doing curve fitting. The inputs and output of this function code were 
shown in Table D.3 
 

Table D.3: Inputs and output of function code “Three_D_fitting” 

Input  

Model coefficients C�, C�, and C� 
Cyclic shear strain magnitude γ (%) 
Threshold shear strain ε�� (%) 
Number of whole shear cycle N����� 

Output Accumulated vertical strain ε� (%) 
 
The scripts of this code were shown below: 
 
function v=Three_D_fitting(C1,C2,C3,r,rtv,N) 
% This function has six basic variables:  
  % r means the shear strain (%) of strain-controlled test. 
  % rtv means threshold shear strain (%) of the tested soil. 
  % N is the considered number of whole shear cycles. 
  % c1, c2 and c3 are coefficients of Byrne's model. 
% The output value v is the accumulated vertical strain (%) for a 
given whole shear cycle N. 
if rtv>=r % When the input shear strain is smaller than the threshold 
shear strain, xxx assume no volumetric strain occurs. 
    v=0; 
else 
v=zeros(length(r),1);% v is a matrix used to store the accumulated 
vertical strain for a given whole shear cycle N 
a=-0.5*C1*C2;% a is only a simplified parameter used for calculation 
b=length(N); % b is the suites number of the processed data  
x = zeros(length(N),1);% x is the a matrix used to store values of 
whole shear cycles for each considered test set 
slope=zeros(length(N),1);% slope is the a matrix used to store slope 
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factor S (It is the calculated result of all items before the item 
(r-rtv)^C3) 
for j_1=1:b 
    r_1(j_1,1)=(r(j_1,1)-rtv)^C3;% For calculation purpose, r_1 is 
the substituted parameter for item (r-rtv)^C3  
end 
for j=1:b % In this for loop, length(x) indicates xxx will use each 
values ( whole shear cycle, N) of matrix x to conduct the 
calculation. 
    % The index j is used to mark the order of the N value xxx used 
in matrix x 
    ft=zeros(1,1);% ft is the matrix used to store the calculated 
t^t...^t(totally 2^2i-1) values when the whole shear cycle is i 
    t=exp(a);% Define parameter t 
    ft(1,1)=t; % The first item of ft matrix is t 
    if N(j)==0 % When the shear cycle is 0  
      v(j,1)=0;% When the shear cycle is 0, there is no vertical 
strain 
    else 
for i_1=2:N(j)*2 % Do a for loop calculation, then xxx will get one 
item about t^t...^t(totally 2^i_1-1)each time when the half shear 
cycle is i_1 
ft(i_1,1)=t^t; % Put the calculated t^t...^t into the next index 
position 
t=t^t;% Do calculation for next index position 
end 
x(j,1)=prod(ft); % x is the matrix used to store the product of all 
calculated t-contained items. 
slope(j,1)=-log(x(j,1))/C2 ;% Calculate the slope factor for each 
considered whole shear cycle 
v(j,1)=slope(j,1)*r_1(j,1); % The arithmetic product of slope factor 
and shear strain item is the vertical strain 
    end 
end 
end 
end 
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1.4 Method 3 used MATLAB function: N_VS_Nor_V 

 
The “N_VS_Nor_V” is a function code which can be used to process Type 2 data 
(normalized volumetric strain versus number of cyclic shear cycle) to obtain the C-pair 
product. The procedures to conducting curve fitting for Type 2 data through MATLAB 
were shown below: (1) according to recorded data of CN vs. N�����, obtain same size 
column matrixes of CN and N����� ; (2) import matrixes of CN and N�����  into 
MATLAB workspace area; (3) use script commands or Curve Fitting Toolbox with 
customized function “N_VS_Nor_V” to do curve fitting for the imported column 
matrixes of CN and N�����. 
 
At each time after the curve fitting, different best-fitting C� and C� values will be 
obtained. That is normal because all these best-fitting C-pair have same product P. 
However, the code “N_VS_Nor_V” can only help us gain the correct value of P. The 
obtained C� and C� values are not the “true” best-fitting coefficients available for the 
tested soil. The inputs and output of this function code were shown in Table D.4 
 

Table D.4: Inputs and output of function code “N_VS_Nor_V” 

Input  

Model coefficients C�and C� 
Cyclic shear strain magnitude γ (%) (can assign 
random value) 
Number of whole shear cycle N����� 

Output Normalized volumetric strain CN 
 
The scripts of this code were shown below: 
 
function y=N_VS_Nor_V(c1,c2,r,N) 
% This function code has four basic variables: 
  % r means the shear strain (%) of strain-controlled test. 
  % N is the maximum considered number of whole shear cycles. 
  % c1 and c2 are coefficients of Byrne’s model. 
% The output value y is the normalized accumulated vertical strain 
(%) for a given whole shear cycle (N) x. 
% This function has four basic variables , from which r means gama; x 
is the number of shear cycles; c1 and c2 are coefficients for 
specific soil. 
V(1)=0; % v is the matrix used to store vertical strain values for a 
given whole shear cycle. The size of this matrix depends on the 
length of N matrix 
        % Firstly, xxx assume V(1)=0. 
Y = zeros(size(N));%  y is the a matrix used to store normalized 
vertical strain for number of whole shear cycles from 0 to N 
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t=zeros(size(N));% t is a matrix used to store vertical strain for 
each shear cycle 
for k=1:30 % Xxx do 30 times calculation, and finally xxx will get 
V(31). V(31) is the vertical strain (%) after 15 whole shear cycle. 

% For my code, i-1=the number of half cycle N_half and (i-1)/2 is 
the number of whole cycle N_whole when xxxxis odd. 

D=c1*(exp(-c2*(v/r)))*r/2;% d is the volumetric strain increment 
for every half shear cycle. For the first cycle, deltaX=C_1*gamma 

v=v+d;% V means accumulated vertical strain 
end 
w=v % Assign the value of v into w    
v(1)=0; % Reassign v(1)=0 for doing another round of iteration.    
For j=1:length(N) % In this for loop, length(x) indicates xxx will 
use each values ( whole shear cycle, N) of matrix x to do the 
calculation. 

% The index j is used to mark the order of the shear cycle value 
xxx put in matrix N 

i=1;% The index xxxxis used to direct the times of iteration 
calculation of Byrne’s basic model  

while i<=N(j)*2 % In this while loop, x(j)*2 means the number of 
half shear cycle 

deltaX_1(i) = c1*(exp(-c2*(v(i)/r)))*r/2;% deltaX_1 is the 
volumetric strain increment for every shear cycle. For the first 
cycle, deltaX=C_1*gamma 

v(i+1)=v(i)+deltaX_1(i);% v is matrix used to store the values of 
accumulated 71olumetric strain(%) 

i=i+1; % The iteration will keep running until i= the max number 
of whole shear cycle 

end 
t(j)=v(i)% Xxx store the calculated vertical strain (%) for the 

given shear cycle into the matrix y, then do the same calculation 
once again for next shear cycle that stored in matrix y 
% Finally, xxx will get a matrix y which has same size as matrix N 
end 
y=t/w % Xxx use matrix t over the value of w to get the normalized 
volumetric strain stored in matrix y 
end 
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2. MATLAB functions of clean sand model and sand with fines of low plasticity 

model 
 

2.1 Calibrated model of clean sand MATLAB function: 
Calibrated_clean_sand_ model 

 
The “Calibrated_clean_sand_model” is a function code used for predicting seismic 
compression magnitude of clean sands. Besides, this code can also be used in case 
analysis or regressed coefficients checking. In this function, the coefficient expressions 
were same as presented in Section 2.3.1. The inputs and output of this function code 
were shown in Table D.5 
 

Table D.5: Inputs and output of function code “Calibrated_clean_sand_model” 

Input  

Overburden pressure σ� (kPa) 
Atmosphere pressure Pa usually is 1 (atm) 
Relative density D� (%) 
Model coefficients C� 
Cyclic shear strain magnitude γ (%) 
Threshold shear strain ε�� (%) 
Number of whole shear cycle N����� 

Output Accumulated vertical strain ε� (%) 
 
The scripts of this code were shown below: 
function v=Calibrated_clean_sand_model(sigma_v,Pa,Dr,C3,r,rtv,N) 
% This function has seven basic variables:  
  % sigma_v is the vertical load 
  % Pa is 1 atm pressure 
  % Dr is relative density 
  % C3 is the third coefficient of Byrne's model 
  % r means shear strain of strain-controlled test. 
  % rtv means threshold shear strain of the tested soil. 
  % N is the maximum considered number of whole shear cycles. 
% The output value y is the accumulated vertical strain (%) for a 
given whole shear cycle N. 
if rtv>=r 
    v=0; 
else 
C1=(sigma_v/Pa)^(-0.29)*1.92*exp(-0.023*Dr); 
C2=1.01/C1; 
v=zeros(length(r),1); 
a=-0.5*C1*C2; 
b=length(N);  
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x = zeros(length(N),1);% x is the a matrix used to store values of 
whole shear cycles for each considered test set 
slope=zeros(length(N),1);% slope is the a matrix used to store slope 
factor S which is the calculated result of all items before the shear 
strain item (herein refer to r_1=(r-rtv)^C3) 
for j_1=1:b 
    r_1(j_1,1)=(r(j_1,1)-rtv)^C3;% r_1 is the calibrated shear strain 
item used for calculation 
end 
for j=1:b % In this for loop, length(x) indicates xxx will use each 
values ( whole shear cycle, N) of matrix x do the calculation. 
    % The index j is used to mark the order of the N value xxx used 
in matrix x 
    ft=zeros(1,1);% ft is the matrix used to store the calculated 
t^t...^t(totally 2^2i-1) values when the whole shear cycle is i 
    t=exp(a);% Define parameter t 
    ft(1,1)=t; % The first item of ft matrix is t 
    if N(j)==0;% When the shear cycle is 0  
      v(j,1)=0;% When the shear cycle is 0, there is no vertical 
strain 
    else 
for i_1=2:N(j)*2 ;% Do a for loop calculation,  xxx will get one item 
about t^t...^t(totally 2^i_1-1)each time when the half shear cycle is 
i_1 
ft(i_1,1)=t^t; % Put the calculated t^t...^t into the next index 
position 
t=t^t;% Do calculation for next index position 
end 
x(j,1)=prod(ft); % x is the matrix used to store the product of all 
calculated t-contained items. 
slope(j,1)=-log(x(j,1))/C2 ;% Calculate the slope factor for each 
considered whole shear cycle condition 
v(j,1)=slope(j,1)*r_1(j,1); % The product of slope factor and shear 
strain item is the vertical strain 
    end 
end 
end 
end   
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2.2 Calibrated model of sand with fines of low plasticity MATLAB function: 
Calibrated_sand_with_fine_model 

 
The “Calibrated_sand_with_fine_model” is a function code used for predicting seismic 
compression magnitude of sand with fines of low plasticity. Besides, this code can also 
be used in case analysis or regressed coefficients checking. In this function, the 
coefficient expressions were same as presented in Section 2.3.1. The inputs and output 
of this function code were shown in Table D.6 
 

Table D.6: Inputs and output of function code “Calibrated_sand_with_fine_model” 

Input  

Overburden pressure σ� (kPa) 
Atmosphere pressure Pa (usually assign 1 atm) 
Relative density D� (%) 
Model coefficients C� 
Fine content FC (%) 
Degree of saturation S (%) 
Cyclic shear strain magnitude γ (%) 
Threshold shear strain ε�� (%) 
Number of whole shear cycle N����� 

Output Accumulated vertical strain ε� (%) 
 
The scripts of this code were shown below: 
 
function v=Calibrated_sand_with_fine_model(sigma_v,Pa,Dr,FC, S, 
C3,r,rtv,N) 
% This function has nine basic variables:  
  % sigma_v is the vertical load 
  % Pa is 1 atm pressure 
  % Dr is relative density, in percent 
  % FC is the fine content, in percent 
  % S is the degree of saturation, in percent 
  % C3 is the third coefficient of Byrne's model 
  % r means shear strain of strain-controlled test, in percent 
  % rtv means threshold shear strain of the tested soil. 
  % N is the maximum considered number of whole shear cycles. 
% The output value y is the accumulated vertical strain (%) for a 
given whole shear cycle N. 
if rtv>=r 
    v=0; 
else 
K1=(sigma_v/Pa)^(-0.29); % Overburden pressure correction 
% Below are for fine content correction 
 if (FC/100)<=0.1 
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        K2=1; 
    elseif (FC/100)<0.35 
            K2=exp(-0.042*(FC-10)); 
    else 
        K2=0.35; 
 end 
% Below are for degree of saturation correction 
       if (FC/100)<=0.1  
            K3=1; 
        elseif (S/100)<=0.3 
            K3=-0.017*S+1; 
        elseif (S/100)<=0.5 
            K3=0.5; 
        elseif (S/100)<=0.6 
            K3=0.05*S-2; 
        else  
            K3=1; 
       end 
C1=(K1*K2*K3*5.38*exp(-0.023*Dr))/(2.153*r^(-0.2342)+4.341*exp(-
66.57*r)); 
C2=exp(0.405)*(r-rtv)^0.3291/C1; 
v=zeros(length(r),1); 
a=-0.5*C1*C2; 
b=length(N); 
x = zeros(length(N),1);% x is the a matrix used to store values of 
whole shear cycles for each considered test set 
slope=zeros(length(N),1);% slope is the a matrix used to store slope 
factor which is the calculated result of all items before the shear 
strain related item (herein refer to r_1=(r-rtv)^C3) 
for j_1=1:b 
    r_1(j_1,1)=(r(j_1,1)-rtv)^C3;% r_1 is the calibrated shear strain 
item used for calculation 
end 
for j=1:b % In this for loop, length(x) indicates xxx will use each 
values ( whole shear cycle, N) of matrix x do the calculation. 
    % The index j is used to mark the order of the N value xxx used 
in matrix x 
    ft=zeros(1,1);% ft is the matrix used to store the calculated 
t^t...^t(totally 2^2i-1) values when the whole shear cycle is i 
    t=exp(a);% Define parameter t 
    ft(1,1)=t; % The first item of ft matrix is t 
    if N(j)==0;% When the shear cycle is 0  
      v(j,1)=0;% When the shear cycle is 0, there is no vertical 
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strain 
    else 
for i_1=2:N(j)*2 ;% Do a for loop calculation,  xxx will get one item 
about t^t...^t(totally 2^i_1-1)each time when the half shear cycle is 
i_1 
ft(i_1,1)=t^t; % Put the calculated t^t...^t into the next index 
position 
t=t^t;% Do calculation for next index position 
end 
x(j,1)=prod(ft); % x is the matrix used to store the product of all 
calculated t-contained items. 
slope(j,1)=-log(x(j,1))/C2 ;% Calculate the slope factor for each 
considered whole shear cycle condition 
v(j,1)=slope(j,1)*r_1(j,1); % The product of slope factor and shear 
strain item is the vertical strain 
    end 
end 
end 
end 
 




