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Abstract: Supercapacitors have gained e wide attention because of high power density, fast charging
and discharging, as well as good cycle performance. Recently, expanded graphite (EG) has been
widely investigated as an effective electrode material for supercapacitors owing to its excellent
physical, chemical, electrical, and mechanical properties. Based on charge storage mechanism,
supercapacitors have been divided into symmetric, asymmetric, and hybrid supercapacitors. Here,
we review the study progress of EG-based materials to be electrode materials. Furthermore, we
discuss the application prospects and challenges of EG-based materials in supercapacitors.

Keywords: expanded graphite; supercapacitor; symmetric supercapacitor; asymmetric supercapaci-
tor; lithium-ion hybrid capacitors

1. Introduction

Owing to the reduction of fossil fuel reserves and global warming, developing alterna-
tive clean energy sources, including solar, wind, as well as tidal energy is urgent [1–3]. How-
ever, they are intermittent energy sources affected by the natural environment; thus, they
need to be converted and stored, which has drawn researchers’ interest in the R&D of sus-
tainable energy conversion and storage technologies [2,4–6]. Among a variety of energy stor-
age devices, rechargeable batteries and supercapacitors have been the two dominating elec-
trochemical energy storage technologies (Figure 1) [2,3]. Rechargeable batteries have been
promising within consumer electronics together with electric vehicles because of their high
energy density. However, their power density is limited due to the slow ion insertion/de-
intercalation process in the electrode material [3,7–10]. When compared to recharge-
able batteries, supercapacitors exhibit quicker charging and discharging (supercapacitors:
1–10 s vs. battery: 0.5–5 h), higher power density (supercapacitors: 500–10,000 W kg−1

vs. battery < 1000 W kg−1), remarkable longer life (supercapacitors > 500,000 h vs. battery:
500–1000 h), together with safer operation [2,11–13]. However, the low energy density
of supercapacitors (supercapacitors: 1–10 W h kg−1 vs. battery: 10–100 W h kg−1) is a
major challenge to the further development of supercapacitors [2,11,14–18]. To overcome
this, most studies have focused on developing high-performance supercapacitor electrode
materials.
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Figure 1. Ragone plot comparing the electrochemical properties of Li-primary battery, Li-ion battery,
Ni/MH battery, PbO2/Pb battery, Supercapacitors [19]. Reprinted with permission from Refer-
ence [19]. Copyright 2021 Elsevier.

Generally, supercapacitors are categorized into two groups by charge storage mecha-
nism: electric double layer capacitors (EDLCs) and pseudocapacitors (Figure 2a,b). Charge
storage in EDLCs is achieved through charge separation within electrode/electrolyte
interface [5,20,21]. This process only involves physical adsorption but not chemical re-
actions. Pseudocapacitors use fast, surface- and nondiffusion-limited redox reactions to
store charges, resulting in pseudocapacitance or redox capacitance mechanism [4,5,22].
Considering the electrode composition, supercapacitors can be classed into symmetrical,
asymmetrical, and hybrid supercapacitors (Figure 2c). Symmetrical supercapacitors com-
bine the same material with the same capacitance on the anode and cathode or a device
with a working electrode of an electric double layer or pseudocapacitance level based
on the working mechanism of the electrode material [23]. Asymmetric supercapacitors
combine two electrode materials with a good potential window [23,24]. As a new type of
supercapacitor, hybrid supercapacitors are composed of battery-type negatives (electro-
chemical insertion or conversion) and capacitive positives (physical adsorption) and have
many characteristics of supercapacitors [14–18].
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Electrode material is vital in supercapacitors because it determines the capacitance,
cycle, and rate performances of the supercapacitor [3]. Expanded graphite (EG) is ob-
tained from expanded/split expandable graphite, which is the best prospective carbon
anode material for different energy storage devices in recent years [25–29]. Noticeably, EG
owns the uniform long-range-ordered layered structure, an enlarged interlayer distance,
and honeycomb-like microstructures composed of plentiful translucent/wrinkled lamel-
liform graphene layers/sheets and turbostratic well-aligned structures, which provide
a fantastically large surface area for admirable charge transfer [26,28]. Moreover, when
compounded with other electrochemical activity materials, EG cannot provide a facile
charge transfer network but cushion volume expansion and even provide additional pseu-
docapacitance [30,31]. EG-based materials show tremendous potential as high-performance
electrode materials for supercapacitors because of the above-mentioned characteristics.
However, no comprehensive reviews on the synthesis methods, composite strategies, and
specific roles of EG-materials in supercapacitors are available yet. Here, first, we briefly
introduce the definition and general synthesis method of EG. Then, we summarize re-
cently developed strategies for the recombination of supercapacitors, and discuss the main
role of EG-based materials in supercapacitors. Finally, we summarize the challenges and
opportunities for developing EG and future research on supercapacitors.

2. Introduction and Synthesis of EG

EG uses graphite as a raw material and intercalates suitable chemical substances
between graphite layers in different ways to obtain expandable graphite (Figure 3a). In
1841, Schafhautl analyzed graphite wafers in a sulfuric acid solution and reported EG for
the first time [32,33]. Since then, researchers have explored the synthesis and application of
EG. Currently, the technology for preparing EG can be roughly classified into two categories:
chemical and physical methods (Figure 3b). Chemical methods mainly include chemical
oxidation [34] and electrochemical methods [35]. Among them, the chemical oxidation
method is more commonly used, but this method uses strong oxidants in the preparation
and generates environmental pollutants, which limits its use. The electrochemical method
has attracted wide attention because it is a fast, efficient, and green method. However,
this method uses graphite foil or graphite paper as an electrode and requires additional
steps for further processing of the raw material graphite powder. High/low-temperature
expansion [36,37], microwave [38], and ultrasonic methods [39] are other physical processes.
The high/low-temperature expansion method is currently most commonly used, but it has
some disadvantages such as excessive energy consumption, inert gas protection, and high
equipment requirements. The microwave method for preparing EG is fast and efficient, but
it consumes a lot of energy, and achieving further scale-up production is difficult, which
limits its industrial application. The ultrasonic preparation of EG requires the selection of
specific solvents and has low yields.
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EG can be prepared in several ways. Using different methods results in differences
in the structure and surface chemical state of EG, which greatly affect its electrochemical
behavior and performance. Therefore, choosing a suitable EG synthesis method according
to the purpose is vital in developing supercapacitor materials.

3. Application EG-Based Materials in Supercapacitor

EG has a long-range ordered layered structure, adjustable interlayer distance, abun-
dant honeycomb microstructures, and turbine-layered ordered structures [25,26]. These
features provide EG with a great surface area for excellent charge transfer and accelerate
the kinetics of electrochemical de-intercalation of charges on graphite materials, thereby
resulting in a high reversible capacity and high rate-ability [25–29]. In this section, we
present the latest research results of EG-based materials in supercapacitors, including
symmetrical, asymmetrical, and lithium-ion (Li-ion) hybrid supercapacitors.

3.1. Symmetric Supercapacitor

Symmetrical supercapacitors combine the same material with the same capacitance on
the anode and cathode or a device with a working electrode of an electric double layer or
pseudocapacitance level based on the working mechanism of the electrode material [23].
Symmetrical supercapacitors usually consist of two electrodes of the similar supercapacitor
type, including carbon and pseudocapacitive materials. Most commercial supercapacitors
are based on two symmetrical carbon electrodes in an organic electrolyte, and their voltage
window can reach 2.7 V [5,39–46]. Additionally, the working voltage limit of the electrolyte
solution is approximately 1.23 V, which is limited by water decomposition [5]. Consequently,
widening the voltage window is key to further improving the energy density of water-
electrolyte-based supercapacitors. The excellent interlayer spacing of EG-based materials
facilitates the adsorption of ions in the electrolytes, which is expected to solve this problem.

The interface interaction between EG and a conductive polymer can accelerate the
transmission of electrolyte ions and electrons during charging/discharging, thereby signifi-
cantly improving the electrochemical performance of hybrid materials. In 2016, Kang et al.
prepared a nanohybrid of sulfamic acid-doped poly(3,4-ethylenedioxythiophene) produced
upon EG (S-PEDOT/EG) with 3D hierarchical nanostructures through a surfactant-free
in situ chemical oxidation polymerization [47]. As-prepared S-PEDOT/EG10 composite
to be supercapacitor electrode material exhibited specific capacitance with 139.6 F g−1

under 1.0 A g−1. A two-electrode symmetric supercapacitor showed the high energy den-
sity of 6.83 W h kg−1 under the power density of 146 W kg−1 and remained 76.3% after
2000 cycles with 1.0 A g−1 (Figure 4a,b). These good characteristics result from 3D hier-
archical structures of S-PEDOT/EG, EG and PEDOT molecule π–π interactions, together
with sulfamic acid doping as a fixed counterion. Yuksel et al. prepared EG–polypyrrole
hybrid (EG–PPy) nanocomposites by electrodeposition of PPy with a brush-coated EG elec-
trode [48]. EG was used as a conductive layer for PPy deposition and charge collection in
the nanocomposite. The as-prepared EG–PPy electrodes exhibited high specific capacitance
(177.8 F g−1) and remarkable cycling stability (90.6% after 5000 cycles at 5.0 mA cm−2)
(Figure 4c,d). Zhou et al. used surface treatment to prepare surface EG foils as substrates
for electrochemical growth of polyaniline to prepare EG/polyaniline (EG/PANI) compos-
ites [49]. Because the EG/PANI composites exhibited excellent electron transmission paths
at the interface of substrate and electrode material, the shrinkage together with expansion
resistance were reduced. The resulting EG/PANI composite exhibited a high specific
capacitance (422.1 mF cm−2 with 0.5 mA cm−2), excellent rate capability, together with
good cycling life (94.1% of capacitance retention within 5000 cycles). Zhou et al. forwarded
an easy electrochemical method to prepare EG and prepared a polyaniline/carbon nan-
otube composite electrode with EG as a substrate (PANI-CNT/EG) through the one-step
co-electrodeposition method [50]. In the composite electrode, EG could offer plenty of
contact points within the electrode material/current-collector interface, hence significantly
decreasing shrinkage/diffusion resistance. The as-prepared PANI-CNT/EG composite
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exhibited the high specific capacitance of 826.7 F g−1. The as-assembled flexible solid-state
supercapacitor, on the basis of PANI-CNT/EG composite, showed good flexibility and
satisfying rate performance, high energy/power performance (7.1 kW kg−1 with the energy
density of 12.0 W h kg−1), together with excellent cycling retention (77.6% capacitance
retention for 3000 cycles) (Figure 4e,f).
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Similarly, forming a composite of metal oxide and EG can also promote EG electro-
chemical performance. Microwave-expanded graphite oxide (MEGO)–manganese dioxide
(MnO2) hybrids with a 3D structure were prepared via the self-limiting redox reaction
of MEGO and potassium permanganate [51]. The composite was composed of ultrathin
MnO2 nanosheets attached to MEGO surface. Because of the short ion diffusion path, the
conductivity was increased, improving the utilization efficiency of MnO2. The energy
density of the symmetrical supercapacitor, based on the MEGO-MnO2 mixed material
containing 24.5 wt% MnO2, was 14 W h kg−1 (13.6 W h L−1), and the power density was
250 W kg−1 (243 W L−1), when the energy density was 5.46 W h kg−1 (5.3 W h L−1), the
power density was 7.67 kW kg−1 (7.44 kW L−1) at a voltage of 2 V within 1 M sodium
sulfate electrolyte (Figure 5a,b). Xiong et al. obtained a 3D ribbon-shaped thermally EG (3D
RTEG)-based (MnO2 and PANI) composite material for supercapacitor electrodes by one-
step electrochemical plug-electrode deposition of MnO2 or PANI into 3D RTEG [52]. Large
specific capacitances of 500 F g−1 (~4 F cm−2) and 700 F g−1 (~6 F cm−2) were achieved
for 3D RTEG–MnO2 and RTEG–PANI, respectively. Furthermore, both materials showed
good energy efficiencies of 65–70% and 75–78%, respectively. Additionally, constructed
supercapacitors with the 3D RTEG–MnO2 and RTEG–PANI hybrids exhibited good energy
densities of 50.12 W h kg−1 (451.08 µW h cm−2) and 61.23 W h kg−1 (551.07 µW h cm−2)
while retaining satisfying power densities of 15.26 W h kg−1 (137.34 mW cm−2) together
with 20.15 kW kg−1 (181.35 mW cm−2), respectively (Figure 5c,d).
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Metal sulfide/EG composites can also enhance EG electrochemical performance. Wei
et al. successfully prepared the Ni–Co–S/EG composite electrode with a 3D nanosheet
structure through the facile and green electrodeposition method [53]. Ni–Co–S/EG com-
posite showed the high specific capacitance of 1516.5 F g−1 at 1 A g−1, a satisfying rate
capability of 74.2% at 20 A g−1, together with a good capacity retention (84.4% capacity
retention within 1000 cycles under 10 A g−1) due to the synergistic effects between Ni–S
and Co–S.

EG has also been used to construct solid flexible supercapacitors. Li et al. showed the
green and simple one-step method to prepare EG foil through electrochemical oxidation
of EG foil in a salt solution [35]. An EG foil electrode with a distinct structure and good
conductivity exhibited good supercapacitor performance (65 mF cm−2), satisfying rate
capability (maintained 80% with the current density of 20 mA cm−2), and excellent capac-
ity retention (95% capacitance remained after 10,000 cycles with 20 mA cm−2). Further,
the flexible symmetric supercapacitor was fabricated with two electrodes and a sulfuric
acid–polyvinyl alcohol gel to be a solid-state electrolyte. The symmetric supercapacitor de-
livered excellent areal capacitance (30.5 mF cm−2), high-rate performance (76% capacitance
retained when the current density was increased from 1 to 20 mA cm−2). Additionally,
the device also exhibited good capacity retention (92% capacitance after 10,000 cycles at
current density of 20 mA cm−2). Moreover, the device characteristics didn’t exhibit any
apparent fluctuate when it was bent 180◦, indicating good mechanical flexibility (Figure 6).
The EG-based symmetric supercapacitor as a traditional electrochemical energy storage
device suffers from poor performance. Therefore, there are fewer studies in recent years.
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Table 1. Summary of symmetric supercapacitor using EG-based materials as electrode materials.

Electrode Material Voltage Window
(V) Electrolyte Cycle Performance Specific

Capacitance
Energy Density

(W h kg−1)
Power Density

(W kg−1) Ref.

SPEDOT/EG −0.2–0.8 1 M LiClO4
76.3%, 2000 cycles,

1 A g−1 139.6 F g−1 6.83 146 [47]

MEGO–MnO2 0–2 1 M Na2SO4 - 97 F g−1 14 250 [51]

EG foil 0−1 0.1 M PVA + 0.1
M H2SO4

95%, 1000 cycles,
20 mA cm−2 65 F cm−2 19 mW h cm−3 447 mW cm−3 [35]

EG-PPy 0–0.8 PVA + H2SO4
90.6%, 5000 cycles,

0.5 mA cm−2 177.8 F g−1 - - [48]

PANI-CNT/ExGP 0–0.8 PVA + H2SO4
77.6%, 3000 cycles,

50 mV s−1 826.7 F g−1 7.1 12 [49]

EG/PANI −0.5–0.5 1 M HCl 94.1%, 5000 cycles,
80 mV s−1 422.1 mF cm−2 58.4 µW h cm−2 9.4 mW cm−2 [50]

EG/CuO@C −0.5–0.5 6 M KOH 87%, 8000 cycles,
10 mV s−1 335 F g−1 14.3 10.1 [54]

3D RTEG/MnO2 0–1.0 1.5 M Li2SO4
90%, 5000 cycles,

100 mV s−1 500 F g−1 50.12 15,260 [52]

3D RTEG/PANI 0–0.1 1.5 M Li2SO4
90%, 5000 cycles,

100 mV s−1 700 F g−1 61.23 20,150 [52]

Ni-Co-S/EG 0.15–0.55 6 M KOH 84.4%, 1000 cycles,
10 A g−1 1516.5 F g−1 - - [53]

Acronym definitions: Sulfamic acid-doped poly(3,4-ethylenedioxythiophene) grown on expanded graphite
nanohybrids (SPEDOT/EG); Three-dimensional (3D) MnO2 structures on microwave-expanded graphite ox-
ide (MEGO–MnO2); Expanded graphite-polypyrrole (EG-PPy); Polyaniline-carbon nanotube one-step co-
electrodeposition expanded graphite composite (PANI-CNT/ExGP); Expanded graphite embedded with CuO
nanospheres coated with carbon (EG/CuO@C); Three-dimensional ribboned thermally expanded graphite-based
MnO2 bifunctional hybrid (3D RTEG/MnO2); Three-dimensional ribboned thermally expanded graphite-based
PANI bifunctional hybrid (3D RTEG/PANI).

3.2. Asymmetric Supercapacitor

Asymmetric supercapacitors can be defined as a combination of two electrode materi-
als with a good potential window [23,24]. An asymmetric supercapacitor consists of two
different supercapacitor-type electrodes; one is the double-layer carbon materials, while
the other electrode is the pseudocapacitance material. During the charging and discharging
process, the asymmetric supercapacitor can fully utilize various potential windows in two
electrodes for maximizing the working voltage of the entire device [24,55–61].
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Because the rich interlayer structure of EG is easy to compound with metal oxides,
hydroxides and conductive polymers, EG-based composites are often used as cathode
materials for asymmetric supercapacitors. In 2017, Barzegar et al. used EG and pine cone
biomass as raw materials to prepare activated EG-composite by activating in potassium
hydroxide [30]. Electrochemical performance of novel materials within the two-electrode
configuration to be supercapacitor electrode showed the specific capacitance of 69 F g−1

under 0.5 A g−1 and a satisfying energy density of 24.6 W h kg−1 with the power density of
400 W kg−1. Yuan et al. prepared EG as a raw material and a layered Ni(OH)2/EG hybrid
within an N, N-dimethylformamide-water system through in-situ electrodeposition [62].
The composite electrode showed the excellent initial specific capacitance of 1719.5 F g−1

under 1 A g−1 and good rate performance (1181.3 F g−1 under 10 A g−1) resulting from
high capacitive characteristics chiefly derived from the synergistic impact in the layered
Ni(OH)2/EG composite. Moreover, the constructed active carbon (AC)//Ni(OH)2/EG
device exhibited a high energy density (32.3 W h kg−1 at a power density of 504.7 W kg−1)
togrther with a long cyclic stability (retaining 79% capacitance within 1000 cycles of 5 A g−1).
Similarly, Ni(OH)2/EG hybrid was prepared by the green microwave-assisted approach,
while Ni(OH)2 particles were evenly distributed on the EG layers’ surface, helped to
obtain the high specific capacitance with 1569 F g−1 under 1 A g−1 [63]. Additionally,
the as-assembled AC//Ni(OH)2/EG asymmetric supercapacitors exhibited an energy
density of 37.7 W h kg−1 at a power density of 490.9 W kg−1, 26.1 W h kg−1 even at a
high-power density of 10.1 kW kg−1. Furthermore, when the current is 0.5 A g−1 and
the voltage window is 1.6 V, it can get the maximum specific capacitance with 86.4 F g−1.
When the current density is 5 A g−1 after 1000 cycles, specific capacitance remains at
80.1%. Ndiaye et al. synthesized vanadium dioxide/activated EG (VO2/AEG) hybrid
material and carbon–vanadium–oxynitride (C–V2NO) porous network structure using
chemical vapor deposition [64]. The electrochemical characteristics of the hybrid material
(VO2/AEG//C–V2NO) was measured in a two-electrode asymmetric device by VO2/AEG
composite to be anode and C–V2NO to be cathode with a 6 M KOH electrolyte. The
asymmetric device delivered a specific energy of 41.6 W h kg−1 with a specific power of
904 W kg−1 under 1 A g−1 specific current and a high operating voltage of 1.8 V. Specific
energy of 9 W h kg−1 was retained under an amplified specific current of 20 A g−1 with
the specific power of 18 kW kg−1. The supercapacitor showed a 93% capacity retention
after 10,000 constant gravimetric current cycles life with the specific current of 10 A g−1

and an excellent rate capability. It maintained significant device stability without any
failure after voltage-floating tests in 100 h or above (Figure 7a–c). Wang et al. prepared
PPy/EG nanohybrid by vacuum-assisted intercalation in-situ oxidative polymerization [65].
The as-prepared PPy/EG10 sample having 10% EG content exhibited excellent specific
capacitance of 454.3 and 442.7 F g−1 at 1.0 A g−1, and specific capacitance cyclic stability
rates of 75.9% and 73.3% at 15.0 A g−1 within 1 M H2SO4 as well as 1 M KCl electrolytes,
respectively. The two-electrode symmetric supercapacitor exhibited an excellent energy
density of 47.5 W h kg−1 at 1 kW kg−1 and could keep high cycle stability after 2000 cycles
(Figure 7d–f). The 3D structure of the PPy/EG nanohybrid filters electrolytes and diffu-
sion of ions, which improves the pseudocapacitance of polypyrrole. During charging and
discharging, EG nanosheets act as collectors, accelerating electrons transfer. EG within
the nanohybrid acts to be a self-supporting skeleton. It prevents volume expansion and
contraction of the nanohybrid as well as improving the nanohybrid cycle stability. Murovhi
et al. successfully synthesized α-manganese dioxide/activated EG (α-MnO2/AEG) com-
posites with the easy hydrothermal method [66]. Under 1 A g−1, its maximum specific
capacitance of three-electrode test has been 185.5 F g−1. Under 5 A g−1, the half-cell
obtained 99.7% efficiency in 2000 cycles. The assembled device with the α-MnO2/AEG
hybrid and AC-PVA composite as anode and cathode, respectively, showed good capacitive
properties with a specific energy of 33 W h kg−1 under specific power of 999 W kg−1 at
1 A g−1 within 2.0 V cell potential. It showed with the 5 A g−1 specific current, after more
than 10,000 cycles, 97.8% of high cycle life was obtained. This device cycle stability has
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been further evaluated through carrying out the voltage keeping for more than 70 h and
remained 70% of initial capacitance with 5 A g−1 was maintained. Wang et al. prepared
partially exfoliated graphite paper (EGP) through the cathode electrochemical method
of tetrabutylammonium cation intercalation [31]. The prepared EGP exhibited a large
specific surface area together with excellent electronic conductivity, which was an ideal
substrate to in situ growth of NiCo–CH nanowires encapsulating graphene nanosheets
by a simple hydrothermal approach. Because of the promoted electrolyte ion transfer and
fast electron transmit, NiCo–CH@EGP achieved a good areal capacity of 2.55 C cm−2 with
0.5 A cm−2 as well as maintained 1.38 C cm−2 even at 60 mA cm−2. The constructed
NiCo–CH@EGP//AC asymmetric supercapacitor exhibited an excellent energy density of
0.30 mW h cm−2 with a power density of 0.92 mW cm−2 together with a satisfying cycle
life, retaining 78.1 % after 10,000 cycles at 20 mA cm−2 (Figure 7g–i).
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Similarly, EG-based composite materials are often employed as negative electrode
materials to asymmetric supercapacitors. Chen et al. inserted alkyl amines into layered
molybdenum trioxide and then carbonized them in situ at high temperatures to prepare
MoO3/C nanocomposites [67]. The prepared MoO3/C as a supercapacitor electrode deliv-
ered an excellent specific capacitance (335 F g−1 at 1 A g−1) and a high rate of characteristics
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(70% capacitance retention rate from 1 to 10 A g−1). The as-assembled MoO3/C//EG asym-
metric supercapacitor delivered a specific capacitance (88 F g−1 at 1 A g−1) and a satisfying
specific energy density (31.3 W h kg−1 with a power density of 838.4 W kg−1) in 0–1.6 V
voltage range and excellent capacity retention properties (86.5% capacity retention af-
ter 5000 cycles with 1 A g−1) (Figure 8a–c). The excellent performance is attributed to
(1) opening of the MoO3 layer with conductive carbon, which can provide more redox
sites for the Faraday reaction and promote the transfer of electrons and (2) the formation
of a sandwich-type hybrid nanostructure by molybdenum trioxide and the embedded
carbon layer, which facilitates the penetration and diffusion of electrolyte ions. Using a
fast and energy-saving microwave heating approach, Ni2CoS4/EG hybrids were prepared
within a mixed solvent of ethylene glycol and water [68]. The specific capacitance of the
Ni2CoS4/EG hybrids could reach up to 2056.8 F g−1 under 5 A g−1, and specific capaci-
tance would be 1923.3 F g−1 even under the 30 A g−1 current density; therefore, 92.5% of
rate performance was obtained with the increase of current density from 5 to 30 A g−1.
The composite also exhibited good stability of 94.4% when cycling with a current density
of 30 A g−1 for 2000 cycles. It showed good initial capacitance, high-rate performance,
together with excellent cycle life. Moreover, the constructed AC//Ni2CoS4/EG asymmetric
supercapacitor exhibited an excellent specific capacitance of 120.3 F g−1 under 0.5 A g−1,
a good cycle stability (91% under 5 A g−1 for 5000 cycles), and a high energy density of
52 W h kg−1 under 477 W kg−1 (Figure 8d–f). The EG-based symmetric supercapacitor
combines the advantages of electric double-layer capacitance and pseudocapacitor, and the
tunable interlayer spacing of EG is easy to combine with other electrochemically excellent
materials. Therefore, it has become a research hotspot in recent years.
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Figure 8. (a) SEM of EG [67]; (d) TEM of Ni2CoS4/EG [68]; Ragone plots of volume power density
versus energy density for (b) EG [67]; (e) Ni2CoS4/EG [68]; Cycling performance of (c) EG [67];
(f) Ni2CoS4/EG [68]. Reprinted with permission from Reference [67]. Copyright 2018 RSC. Reprinted
with permission from Reference [68]. Copyright 2019 Springerlink.
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Table 2. Summary of asymmetric supercapacitor using EG-based materials as electrode materials.

Devices
(Positive//Negative)

Voltage Window
(V) Electrolyte Cycle Performance Specific

Capacitance
Energy Density

(W h kg−1)
Power Density

(W kg−1) Ref.

MEGO-
MnO2//Activated

MEGO
0–1.8 1 M Na2SO4

75%, 5000 cycles,
1 A g−1 56 F g−1 25.1 93 [30]

AEG//APC 0–1.6 PVA + KOH +
carbon black - 69 F g−1 24.6 400 [62]

Ni(OH)2/EG//AC 0.1−0.6 6 M KOH 79%, 1000 cycles,
5 A g−1 1719.5 F g−1 32.3 504.7 [62]

Ni(OH)2/EG//AC 0.15–0.55 6 M KOH 80.1%, 1000 cycles,
5 A g−1 86.4 F g−1 37.7 490.9 [63]

MoO3/C//EG 0–1.6 1 M H2SO4
86.5%, 5000 cycles,

1 A g−1 88 F g−1 31.3 838.4 [67]

AC//Ni2CoS4/EG 0–0.55 6 M KOH 91%, 5000 cycles,
5 A g−1 120.3 F g−1 52 477 [68]

VO2/AEG//C-V2NO 0–1.8 6 M KOH 93%, 10,000 cycles,
10 A g−1 47 F g−1 41.6 904 [64]

PPy/EG//Graphite 0–2.0 1 M H2SO4
86.1%, 2000 cycles,

10 A g−1 454.3 F g−1 47.5 1000 [65]

α-MnO2/AEG//AC-
PVA 0–1.0 1 M Na2SO4

99.7%, 2000 cycles,
5 A g−1 185.5 F g−1 33 999 [66]

NiCo-CH@EGP//AC 0–0.6 2 M KOH 78.1%, 10,000 cycles,
20 mA cm−2 2.55 C cm−2 0.30 mW h cm−2 0.92 mW cm−2 [31]

Acronym definitions: Three-dimensional (3D) MnO2 structures on microwave-expanded graphite oxide (MEGO–
MnO2); Activated pinecone carbon (APC); Activated expanded graphite (AEG); Activated carbon (AC); Vana-
dium dioxide/activated expanded graphite (VO2/AEG); Carbon-vanadium oxynitride (C-V2NO); Polypyr-
role/expanded graphite (PPy/EG); Alpha-manganese dioxide/activated expanded graphite (α-MnO2/AEG);
Activated carbon-polyvinyl alcohol (AC-PVA).

3.3. Li-Ion Hybrid Capacitor

Li-ion capacitors (LICs) are made up of a capacitor-type cathode, one battery-type
anode, and one appropriate electrolyte [15,69–74]. They rely on the surface reaction of
the cathode and the lithiation/electrolysis of the anode to achieve energy storage and
conversion [14,16–18]. Owning to the higher power density together with the longer
cycle life than those of Li-ion batteries, as well as higher energy density than that of
supercapacitors, LICs are regarded to be one of the most prospective electrochemical
energy storage devices. However, because of the dynamism balance between the two
electrodes, the actual energy/power output of LICs is poor. Improving the high capacitance
of the cathode material and increasing the rate capability of the anode are key ways of
improving LIC’s good electrochemical characteristics.

Li et al. made lithium iron phosphate (LiFePO4)/EG (LFP/EG) composites through
in situ sol–gel method [75]. The LFP/EG composite was used to be the anode, activated
carbon to be the cathode, and a lithium nitrate aqueous solution to be the electrolyte for
fabricating a LIC. The specific capacitance of optimized LFP/EG composite at 5 mV s−1

was 326.23 F g−1. The optimized LIC suggested a high specific capacitance at 200 mA g−1

was 53.31 F g−1. The LFP/EG composite and LIC maintained 84.8 % and 84.6 % of their
initial specific capacitance when having 100 cycles, respectively. Qin et al. impregnated
lithium dihydrogen phosphate and ferric citrate precursor solutions in a vacuum through
an in situ sol–gel process and calcined them to form LFP/EG nanohybrids [76]. The hybrid
material consists of spherical LFP particles embedded in the EG pores and wrapped with
an EG film to form an efficient and stable conductive network. This form greatly accelerates
the diffusion of Li-ions and improves their exchange between the LFP and the electrolyte.
The LFP/EG nanohybrids showed a satisfying high-rate capability, good stability, and high
specific capacitance of approximately 1200 F g−1. Furthermore, after 500 cycles, the LFP/EG
hybrids-based LIC retained 100% of its initial capacitance (Figure 9a–c). Lv et al. prepared
LFP/EG nanohybrids through a facile one-step method. They embedded spherical LFP
nanoparticles with controllable size and good agglomeration in EG pores and wrapped
them with an EG film [77]. This morphology formed an efficient and stable conductive net-
work, promoting Li+ diffusion and exchange of LFP and the electrolyte. Thus, the LFP/EG
composite exhibited good rate performance and cycle reversibility. LFP/EG//AC LICs
were constructed in a LiNO3 electrolyte with the LFP/EG composite and AC as the anode
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and cathode, respectively. The as-assembled LIC showed a power density of 2367.9 W kg−1

with the energy density of 6.5 W h kg−1, excellent rate performance, and good cycling sta-
bility with 82.1% capacitance retention under 2 A g−1 within 6000 cycles. A dual-ion hybrid
energy storage device with EG as the cathode and graphite/nanosilicon@carbon (Si/C) as
the anode was fabricated for effective energy storage [78]. The Si/C//EG device showed a
maximum specific capacitance of 185.5 F g−1, excellent cycling life of 94.4% when having
200 cycles with a current density of 30 A g−1, and energy densities of 252–222.6 W h kg−1

with power densities of 215–5240 W kg−1 (Figure 9d–f). Lee et al. fabricated high-energy-
density hybrid LICs using graphite/copper oxide composite (GCuO) to be the negative
electrode together with porous carbon (PC) to be the positive electrode [79]. The hybrid
devices use the Faraday insertion/de-insertion and conversion reaction at GCuO and the
adsorption/desorption of Faraday ions at PC. These LICs provided an excellent specific
capacitance of 185.5 F g−1, a high specific energy density of 212.3 W h kg−1 with a specific
power density of 1.3 kW kg−1 and maintained 85% of its initial energy density when
having 500 cycles (Figure 9g–i). As an emerging electrochemical energy storage device,
EG-based LICs have better specific capacitance, energy density, and power density than
the aforementioned symmetric and asymmetric supercapacitors, however their energy
storage mechanism is not fully understood and the manufacturing cost limits its further
application. Therefore, this point should be paid attention to in the follow-up research.
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Figure 9. SEM of (a) LFP/EG [76]; (d) Si/C [78]; (g) GCuO [79]; Ragone plots of volume power density
versus energy density for (b) LFP/EG [76]; (f) Si/C [78]; (i) GCuO [79]; the specific capacitance of
(c) Si/C [78]; (e) GCuO [79]; (h) Si/C [78]. Reprinted with permission from Reference [76]. Copyright
2017 Elsevier. Reprinted with permission from Reference [78]. Copyright 2020 RSC. Reprinted with
permission from Reference [79]. Copyright 2020 Elsevier.
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Table 3. Summary of hybrid supercapacitor using EG-based materials as electrode materials.

Devices
(Positive//Negative)

Voltage Window
(V) Electrolyte Cycle Performance Specific

Capacitance
Energy Density

(W h kg−1)
Power Density

(W kg−1) Ref.

LFP/EG//AC 0–1.0 1 M LiNO3
84.8%, 100 cycles,

5 mV s−1 326.23 F g−1 - - [75]

LFP/EG//AC −0.6–1.0 1 M LiNO3
100%, 500 cycles,

1 A g−1 1200 F g−1 - - [76]

LFP/EG//AC −0.6–1.0 1 M LiNO3
82.1%, 6000 cycles,

2 A g−1 44.7 F g−1 6.5 2367.9 [77]

EG//Si/C 3.0–5.0 4 M LiPF6
90%, 100 cycles,

0.1 A g−1 109.7 mAh g−1 252–222.6 215–5420 [78]

EG/CuO//porous
carbon 1.0–4.0 1 MLiPF6

85%, 500 cycles,
0.1 A g−1 568.07 mAh g−1 212.3 1300 [79]

Acronym definitions: LiFePO4/expanded graphite (LFP/EG); Graphite@nano-silicon@carbon (Si/C); Expanded
graphite/copper oxide composite (EG/CuO).

4. Summary and Outlook

Supercapacitors (electrochemical capacitors), drew extensive attention within various
electrochemical energy storage devices for its outstanding power density, extraordinarily
quick charging time, good low-temperature characteristics and long cycle life. EG has
excellent electrical conductivity, distinct physical and chemical characteristics, and excellent
electrical and mechanical properties; thus, it has broad application prospects in the field of
supercapacitors. In the past seven years, the electrochemical performance and applications
of EG as a supercapacitor electrode material have been rapidly developed.

This article reviews the research progress of EG-based materials as an electrode ma-
terial (Tables 1–3) and their application prospects and challenges in supercapacitors. Al-
though the application of EG-based materials in supercapacitors has made great progress,
some challenges need to be surmounted.

1. Green, efficient, and controllable syntheses with interlayer spacing are prerequi-
sites for obtaining advanced EG-based materials. However, the current preparation
methods for EG are mainly restricted by the excessively long expansion time, severe
environmental pollution, and the difficulty to control the size of the interlayer spacing,
and these limit the application of EG. Developing a low-cost and green preparation
process with a high yield and an adjustable number of layers has been a difficult
problem in EG research.

2. Choosing other suitable materials to compound with EG is of great significance
for constructing high-performance supercapacitor electrodes. EG exhibits excellent
electrochemical performance, thus, is an excellent candidate material to practical
supercapacitors. Nevertheless, its low energy and power densities do not conform
with the requirements for practical applications. One of the shortcomings can be
overcome by compounding other pseudocapacitive materials. Therefore, choosing
the right composite material is crucial to improving the energy and power densities
of EG-based supercapacitors.

3. To control the interface reaction between an EG-based electrode and electrolyte,
thorough comprehension for the energy storage mechanism is necessary. There is
also a need for further simulations and modeling to reveal potential electrochemical
mechanisms in the nanoscale. Many theoretical and computational researches on
EDLCs have been published. However, due to surface redox and ion intercalation
pseudocapacitances have been more complex and arduous for simulation, the pseu-
docapacitances theoretical understanding is limited. What is more, the latest in situ
microscopy and spectroscopy techniques provide direct experimental proof for them.

4. Apart from energy and power densities, the self-discharge and high and low tempera-
ture of EG-based supercapacitors should be noted. Supercapacitors have good high-
and low-temperature performance, but they exhibit rapid self-discharge. Therefore,
observing the self-discharge and high- and low-temperature performance of EG-based
supercapacitors in future research is important. Furthermore, the reliability of devices
based on EG-based supercapacitors such as high temperature storage, damp heat
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test, rapid temperature change, vibration, safety test (flammability, pressure relief,
puncture, extrusion, impact, punching) should also be concern.

5. The rapid popularization of smart electronic products requires the continuous de-
velopment of stimulus–response integrated smart power supplies. To gather more
functions into an electrochemical energy storage device has been an interesting chal-
lenge. With more in-depth study, novel supercapacitors will take a vital role in
providing lightweight, flexible, and wearable supercapacitors in the future.
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