
Expanded N-Grams for Semantic Text Alignment

Notebook for PAN at CLEF 2014

Samira Abnar, Mostafa Dehghani, Hamed Zamani, and Azadeh Shakery

School of ECE, College of Engineering,

University of Tehran, Tehran, Iran

{s.abnar, mo.dehghani, h.zamani, shakery }@ut.ac.ir

http://ece.ut.ac.ir/iis

Abstract Text alignment is a sub-task in the plagiarism detection process. In this

paper we discuss our approach to address this problem. Our approach is based on

mapping text alignment to the problem of subsequence matching just as previous

works. We have prepared a framework, which lets us combine different feature

types and different strategies for merging the features. We have proposed two

different solutions to relax the comparison of two documents, so as to consider

the semantic relations between them. Our first approach is based on defining a

new feature type that contains semantic information about its corresponding doc-

ument. In our second approach we have proposed a new method for comparing

the features considering their semantic relations. Finally, We have applied DB-

SCAN clustering algorithm to merge features in a neighborhood in both source

and suspicious documents. Our experiments indicate that different feature sets

are suitable for detecting different types of plagiarism.

Keywords: Plagiarism Detection, Text Alignment, Semantic Similarity, Expanded

N-Gram, N-Gram Similarity Score, N-Gram Transparency, Dispersion Measure

1 Introduction

Text alignment is introduced as a phase of external plagiarism detection process [4,5].

It has many other applications such as parallel corpus construction [1]. In this paper,

we discuss our approach for dealing with the text alignment challenge of PAN 2014

[3]. More generally, we present a mechanism for text alignment emphasizing on the

application of plagiarism detection.

The aim of a text alignment tool is to detect pairs of related regions from two distinct

documents. How these two regions are related and also the length of the regions should

be determined regarding the application. Considering the plagiarism detection as an

application of text alignment, on which we have focused in this paper, the relatedness

between the regions would be not only in terms of concept and semantic, but also in

terms of lexical and grammatical structures. Also about the length of the regions in case

of the plagiarism detection, it is reasonable to be at least as long as a short paragraph;

while in parallel corpus construction it may be fine for the length of the regions to be as

long as a sentence.

At the first glance, the text alignment challenge seems similar to the problem of

finding common subsequences of two sequences; thus each document is treated as a

928



sequence of features. In the simplest way, we can reduce the problem to common sub-

string matching. However, this will only work for finding no obfuscated plagiarism

cases. Most of the methods that have been proposed until now, are based on this ap-

proach. Their difference is in the type and number of features exploited, and also the

strategies they use so as to detect the subsequences, which indicate the plagiarism cases.

In our work, we have prepared a framework that enables us to customize the text

aligner combining different common subsequence detection methods with different fea-

tures sets. In our experiments we have tested a clustering based method as the subse-

quence detection strategy, and word n-grams, expanded word n-grams, contextual word

n-grams [7] and stopword n-grams [6] as the features.

One of the goals we follow is to investigate how each of the phases of modeling the

document as a sequence of features and finding the common subsequeces, affects the

performance of the text aligner. As indicated by our experiments different combinations

of values for n in n-grams are suitable for detecting different types of plagiarism.

The existing methods extract different kinds of features from the source and suspi-

cious documents and try to detect plagiarism cases considering the common features.

They assume a feature to be common, if it exactly appears in both documents. Thus,

for example if a word n-gram is replaced completely by its synonym n-gram in the pla-

giarized text, it would not be considered as a common feature. However, in order to be

able to detect more complicated types of plagiarism like summarization, we need to deal

with some semantic feature types. Thus if we want to solve the problem in the existing

frameworks there is the need to make use of many different other types of features. For

example we may have to extend the document by adding the synonyms of its words to

it. In this paper, we explore a new approach in finding common features to address this

problem. We introduce a general similarity function, which assign a similarity score to

feature pairs. This score can be based on many different aspects of the features rather

than just comparing their string value. For instance, it may consider different forms of

the n-gram tokens in the comparison. Then feature pairs with a similarity value higher

than a specified threshold are considered as common features. Furthermore the assigned

similarity score can be used later in the process of text alignment to give higher priority

to the pairs with higher weights. The advantage of using a similarity function for com-

paring features is that there is no more needed to use many various types of features for

detecting different types of plagiarism. Therefore, applying this approach, the word n-

gram feature, itself, covers many other types of features. In section 2.2 we will discuss

the similarity function we have exploited more thoroughly.

In Section 2 we will explain our methodology, then we will discuss the results we

obtained in the Section 3. Finally we will conclude and discuss about some future works

in Section 4.

2 Methodology

In this Section the overall procedure of the proposed method for text alignment is de-

scribed thoroughly. The text alignment challenge we have dealt with, is defined as fol-

lows:

929



Definition 1 Given two documents d and d′, our goal is to extract a set of passage

pairs, P , such that:

P = {< pdi, pd′j > |∀pdi, ∀pd′j : pdi ∈ d ∧ pd′j ∈ d′ ∧ |pdi ∩ pd′j | > δ}, (1)

where pdi is a passage from d, pd′j is a passage from d′, and pdi ∩ pd′j shows how two

text regions are related. It can be defined in various ways. Finally, δ is a threshold that

determines if the amount of relatedness of two text regions is as much as they should be

considered as a plagiarism case.

Briefly, the proposed process to solve the text alignment challenge starts with ex-

tracting features from the documents. Then the features from two documents are com-

pared so as to select the common features in order to align related sections of the texts.

In the next step, for the purpose of detecting a subset of the common features, which

are in a neighborhood in both documents, the feature pairs are considered as points in

a two dimensional space according to their positions in the first and second documents.

Then a density based clustering algorithm is applied to cluster these points. Thus each

cluster represents a pair of related text regions in the first and second documents. By

considering offsets of features in each cluster, boundaries of the related regions are

determined.

In the rest of this section we explain all these steps in more details. In Section 2.1 we

discuss how we have modeled each document as a set of features. Then in Section 2.2

we describe our approaches for detecting common features. Finally in Sections 2.3 and

2.4 we explain the techniques we have employed to approximately detect the plagiarism

cases and then find the exact edges of the detected plagiarism cases respectively.

2.1 Extracting Features from Textual Documents

We have proposed two different methods for considering semantics in text alignment.

In both these methods so as to be able to compare two documents for the text alignment

purpose, each document is represented as a set of feature objects, d = {fi}. Feature

objects are defined as:

F =< t, s, S, P, T >, (2)

where t is the feature type, s is the string value of the feature, S is a list containing the

string value of the tokens included in the feature, P is a list of occurrence positions of

the n-gram in the document, and T is a list that keeps the n-grams transparency in each

position.

In the first method we use an exact technique of comparison on the string value of

the features to detect common features. Therefore, it is needed to exploit multiple fea-

ture types to be able to detect the plagiarism cases with different levels of obfuscation.

In this research, we have explored using word n-grams, contextual word n-grams, stop-

word n-grams, and expanded word n-grams. We have introduced the expanded word

n-grams to be able to detect semantic relations between two documents. Algorithm 1

shows how expanded word n-grams are created.

930



Data: g : n-gram to be expanded

Result: G′: List of expansions for the input n-gram

if g.getN() = 1 then
G′ ← []
foreach synonym ∈ synonyms[word] do

transparency ← translationProbability(synonym,word)
if transparency ≥ wordTransparencyThreshold then

G′.add(< [synonym], transparency >)
end

end

return G′

else
G′ ← getExpanedNGrams(g.subNGram(1, N))
word← g[0]
foreach synonym ∈ synonyms[word] do

transparency ← translationProbability(synonym,word)
if transparency ≥ wordTransparencyThreshold then

foreach < transparency′, g′ >∈ G′ do
if (transparency′ × transparency) ≥
ngramTransparencyThreshold then

G′.add(
< [synonym g′], transparency′ × transparency >)

end

end

end

end

end

Algorithm 1: Function to return all valid expansions of an n-gram

Since we have made use of expanded n-grams, we have defined the n-gram trans-

parency to specify how bold an n-gram has occurred in the document. For example,

if an n-gram has occurred in the document, its transparency is equal to one, while its

corresponding expanded n-gram, which has not occurred in the document, but it has

been added to the feature set in the expansion phase as an expanded n-gram, has a

lower transparency. This transparency score is calculated by multiplying the transla-

tion probabilities of synonyms constituting the expanded n-gram. To be mentioned,

the translation probabilities are obtained from a monolingual dictionary that we have

constructed from a parallel corpus using MOSES 1.

Our second approach is proposed in order to avoid defining multiple feature types

for detecting plagiarism cases with different levels of obfuscation. We have introduced

a similarity function for measuring the similarity of two features in the feature com-

parison phase, instead of comparing the exact string value of the features. In this way,

adding other types of feature objects to the feature set would be redundant; and the

word n-grams feature will cover all contextual word n-grams, sorted n-grams, stemmed

word n-grams, named entity n-grams and expanded n-grams. In this approach all pos-

1 http://www.statmt.org/moses/

931



sible pairs of n-grams have to be compared against each other. The details about the

similarity function explained in Section 2.2.

Strategies for feature set space reduction The documents being text aligned may be

too long, and they may contain lots of information which will not necessarily help in

finding related regions of two documents. Considering the whole content of the doc-

uments for text alignment may make the feature set space too large and may lead to

inefficiency in terms of time in the next step which is "common feature detection". Be-

sides, it would add noise to our features and affect the precision. Moreover if we want

to apply the similarity score function approach it is really needed to have small set of

features for each document in order to make it feasible to compute the similarity score

between all possible pairs of features. To overcome these issues, we suggest several

strategies for reducing the number of feature objects taken into account as useful fea-

tures for the text alignment task. In general, applying these techniques should improve

the precision, while it may decrease the recall.

– Stopword removal

Stopwords may be useful in detecting some types of plagiarism but in many other

cases they could simply be omitted from the text, having no effect on recall. For

example for no obfuscation there is no need to use stopwords since, common word

n-gram features are enough to detect the plagiarized passages; while for random

obfuscation or summary obfuscation, stopwords may help, because the common

features of type word n-gram are too sparse.

– IDF based word filtering

In this technique, n-grams with low IDFs are removed. The reason behind this

decision is that a low value of IDF indicates that the n-gram is occurred in many

documents. Hence these n-grams may be detected as common features with a high

probability, while they are not necessarily signs of plagiarism or any kind of relation

between two regions of texts. We have omitted 20% of the documents’ tokens with

this strategy.

– Feature object filtering based on features distributions in the suspicious docu-

ment

If a feature object is distributed evenly in the suspicious document, we can conclude

that this feature is somehow related to the main content of the document. For exam-

ple in a document about Barak Obama, his name would frequently occur anywhere

in the document. Hence even if it is detected as a common feature, it can hardly be a

sign of plagiarism, and if it is, it would not help in specifying the plagiarized region

in the suspicious document. According to this fact, we have introduced a dispersion

measure for the feature objects. This measure shows how the n-gram is distributed

in the document. The more uniformly the n-gram is distributed in the document,

the higher its dispersion score will be. If it is higher than the specified threshold, for

a feature, the feature would be removed from the feature set. The dispersion score

for n-gram features are computed as in Equation 3.

dispersion(fi, d) =
∑

pj

p(fi, pj)× log p(fi, pj), (3)

932



where pj is the jth paragraph of the document, and p(fi, pj) is computed as c(fi, pj)/c(fi, d).
c(fi, pj) and c(fi, d) are the occurrence count of feature fi in the jth paragraph of

the document and the whole document respectively.

It is noteworthy that this strategy is applied only on suspicious documents.

2.2 Detecting Common Features

This step is called “finding seeds” in the literature of this research [4]. In this step

features of the suspicious document are searched in the source document using their

string value. Then a set of feature pairs is created. Each feature pair contains informa-

tion about a feature in the suspicious document and its corresponding feature in the

source document, such as feature offsets and feature values. Also a weight is assigned

to each feature pair. When applying the exact comparison method, this weight is cal-

culated based on feature transparencies. When applying the similarity score function

based method, the similarity score assigned to each pair of feature is set as the pair

weight. In the similarity function score method feature objects from the two documents

should be compared the similarity function should applied on all pairs of features. The

similarity function can take into account several aspects of features. We have mapped

the comparison procedure of two word n-grams to the bipartite graph-matching prob-

lem. Words from the first n-gram are considered as the nodes of one part of the graph,

and words from the second n-gram are considered as the nodes of the other part of

the graph. The links between nodes of this bipartite graph is weighted according to the

similarity score of their end point nodes. In our experiments we set this similarity score

to be the translation probabilities obtained from a monolingual dictionary. For comput-

ing the overall similarity score between the two n-grams, a maximum weight-matching

algorithm is applied on the graph, and then the normalized sum of the scores of the

selected links is calculated as the similarity score of the n-grams. A threshold value,

SimTh, is set, and if the similarity score of the n-grams is higher than that, these two

features are considered as common features.

2.3 Clustering Common Features

Given a list of feature pairs as the common features, our mission is to detect regions of

texts from the two documents where feature objects are shared densely enough. Taking

into account the occurrence positions of feature objects in the pairs, they are mapped

into a two dimensional space. The first dimension of this space represents the length of

the first document and the second dimension represents the length of the second docu-

ment. For each matched pair of feature objects, considering the occurrence positions of

the features related to the source and suspicious documents, all possible pairs of offsets

are computed as points in the 2D space. Finally a density based clustering algorithm,

which is able to exclude the outlier points is applied to detect pairs of related regions.

In our experiment we have used DBSCAN [2] as the density based clustering method.

After clustering feature pairs based on their offsets in the source and suspicious docu-

ments, we have to determine the edges of the regions in both documents. This is done

considering the offsets of the beginning and end of the sentences containing common

features. We have decided to do this to make sure the regions of text that are selected as

933



the plagiarized or source passages are meaningful units, which means a sentence may

be included in the passage completely or not at all.

2.4 Post-processing of Detected Pairs

This post-processing step is aimed at handling the overlapping detected pairs. If this

phase is done properly, it can affect granularity and precision significantly. Currently

we have just designed a rule-based scenario for this part of the procedure, which is as

follows: Detected cases are added sequentially to the final list. Upon adding a new case

it is checked if it overlaps with the existing cases. If an overlap is found, considering

the lengths of the cases and the length of the overlapping region, they are either merged

or one of them is dropped. This step may further be improved, employing a classifier to

accept or discard the detected cases.

3 Experiments

In order to design the experiments several parameters related to each phase of the pro-

cedure had to be taken into account. For the feature extraction phase, we need to specify

the exact types of the features. In our experiments, word bi-grams to 5-grams are used.

It should be mentioned that it is not reasonable to exploit uni-grams due to the fact that

the number of common features increases significantly if uni-grams are used as feature

objects; also the distribution of feature objects would be near uniform, which makes

the clustering impossible. For the dispersion measure we have introduced in section

2.1, DispTh, we have set it to 0.4. Furthermore in our case DBSCAN, clustering pa-

rameters should be configured. For DBSCAN, we have to specify ǫ, the neighborhood

diameter, and k, the minimum number of points in the neighborhood. Although auto-

matic or semi-automatic algorithms are suggested for setting these parameters [2] , they

are not actually appropriate in the application of text alignment. That is because the

goal of the algorithms for determining the value of these thresholds automatically is a

dynamic parameter setting regarding the characteristics of different data. For example,

the neighborhood diameter should have different values in two cases of high-density

area of points, or sparse collection of points. This is based on the assumption that the

scale of the distances between points is not important, while this assumption is not valid

when our goal is to merge parts of text in a document for text alignment. Hence, we have

set these parameters heuristically. Finally we have set the value of k to 6 and ǫ to 380.

Furthermore, applying the semantic similarity function technique, for common feature

detection, at first it is needed to specify how the similarity function measures the simi-

larity between two words. In our experiments, we have used a monolingual probabilistic

dictionary, considering only the top 10 synonyms for each word to assign a similarity

score to each pair of words. The monolingual probabilistic dictionary we have used is

constructed from a parallel corpus of English and a temporary language. We have em-

ployed MOSES to create two bi-lingual dictionaries from the parallel corpus. Then we

have constructed the EN-EN dictionary applying the probability rule in Equation 4 on

these two dictionaries.

934



p(a|b) =
∑

x

p(a|x)p(x|b). (4)

In this equation a and b are English words, and x is a word from the temporary

language. p(a|x) and p(x|b) are obtained from the bi-lingual dictionaries created by

MOSES.

Furthermore the similarity score threshold, SimTh, for common features should

be set, considering the probability distributions of synonyms of the words. The larger

this threshold is, the higher the precision is, but we will encounter a lower recall. In

our experiments, we have set the value of this threshold to 0.02. At first, we have tested

our methods on PAN 2014 and 2013 text alignment corpora; then we have investigated

the performance of our proposed method for different types of plagiarism cases when

different feature sets are used.

3.1 Experiments On PAN 2014 datasets

The evaluation results of our method using simple word 3-grams and 4-grams, on PAN

2014 test Corpus II and III, achieved on TIRA platform, [3] is shown in Table 1.

Table 1. Applying the expanded n-gram based method setting the value of N to 3 and 4 on PAN

2014 test corpora

corpus precision recall granularity plagdet score

PAN 2014 test corpus II 0.77330 0.61163 1.02245 0.67220

PAN 2014 test corpus III 0.72686 0.67422 1.01169 0.69372

On these test corpora we have achieved a low recall, the reason behind this fact is

that the values 3 and 4 considered for n-grams in this run, are not small enough to be

able to detect common regions of text in summary and random obfuscation plagiarism

cases. Since on corpus II we have achieved a higher precision, while we have obtained

higher recall on corpus III, we can conclude that the plagiarism cases of corpus III were

more close to the no-obfuscation or random obfuscation types of plagiarism.

Table 2 shows the result of applying the similariy score function based method on

PAN 2014 test corpus III. We were not able to run this method successfully on corpus

II, since it took too much time. We should investigate why this has happened upon we

have access to the datasets.

Table 2. Applying our proposed similarity function based method using word 2-gram and 3-gram

on PAN 2014 test corpus III

precision recall granularity plagdet score

0.54833 0.84779 1.00455 0.66377

935



3.2 Experiments on PAN 2013 Test Dataset

Since we didn’t have access to the PAN 2014 datasets we have run the experiments to

investigate the performance of exploiting different feature sets per plagiarism type, on

PAN 2013 test corpus [5].

Tables 3 and 4 illustrate plagdet scores obtained on PAN 2013 test dataset per pla-

giarism type when the similarity score function based method is applied.

Table 3. Plagdet score of the similarity score function based approach exploiting word n-grams

and (n+1)-grams

plagiarism type N=2 N=3 N=4 N=5

no obfuscation 0.2984 0.7865 0.8735 0.8838

random obfuscation 0.5427 0.5754 0.2627 0.1396

translation obfuscation 0.3442 0.7751 0.7540 0.6268

summary obfuscation 0.4467 0.3548 0.1367 0.0732

Table 4. Plagdet score of the similarity score function based approach exploiting word n-grams

plagiarism type N=2 N=3 N=4 N=5

no obfuscation 0.3181 0.81321 0.8802 0.8859

random obfuscation 0.5615 0.5428 0.2359 0.1176

translation obfuscation 0.3764 0.7517 0.7220 0.5900

summary obfuscation 0.4633 0.3147 0.1217 0.0506

In Figure 1, the effect of increasing the value of n is illustrated when exploited

features are simple word n and n + 1 grams. In Figure 2, the effect of increasing the

value of n is illustrated when all types of features including the expanded n-grams are

exploited.

As can be seen, setting n to 2 and 3 rather than larger values, led to better perfor-

mance for random-obfuscation and summary obfuscation plagiarism types, while 3 and

4 grams work better for translation obfuscation, and the larger the value of n is, we

obtain higher score for no-obfuscation plagiarism. Taking these results into account,

we can conclude using a dynamic feature selection strategy, to select the features and

setting the value of N, depending on the type of the plagiarism case can improve the

results significantly.

4 Conclusion and Future Works

In this paper, we have discussed our approaches for solving the text alignment problem

regarding the PAN challenge. We applied two different techniques for detecting the

common features. Our first solution for common feature extraction was to compare

936



Figure 1. Effect of increasing the value of n when exploited features are n and n+1 word grams

features from the two documents in a fuzzy manner using a similarity function. The

advantage of this technique is that, it reduces the size of the feature space since it is

not needed to define many different types of features in this way. The disadvantage

of this solution, is its long execution time specially for long documents. The second

solution was to add the expanded word n-grams to the features set to be able to detect

the semantic relations between documents and then, use a Hash-based comparison on

features so as to detect the intersections between source and suspicious documents.

The advantage of this solution is that it can be implemented highly efficient, and its

disadvantage is that so as to be able to detect different levels of plagiarism with this

technique we have to define many more different types of features. Moreover during

this experience we explored how different combinations of feature sets affect the text

aligners performance when applied on different type of plagiarism cases.

However, the results we obtained were not as good as other participants of the PAN

text alignment track both in terms of performance and efficiency, there exist several

potentials so as to improve it. As a future work, it should be worked on the efficiency of

the similarity score function based method. Additionally, The experiments indicate that

for all types of n-gram features, customizing the value of n per plagiarism type may

lead to better results. Therefore, adding dynamic feature selection step to the process of

text alignment is a good idea. Furthermore learning algorithms can be used for setting

some parameters like the dispersion threshold or the similarity score threshold.

937



Figure 2. Effect of increasing the value of n is when all feature types are exploited

References

1. Peter F Brown, Jennifer C Lai, and Robert L Mercer. Aligning sentences in parallel corpora. In

Proceedings of the 29th annual meeting on Association for Computational Linguistics, pages

169–176. Association for Computational Linguistics, 1991.

2. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In KDD, volume 96, pages

226–231, 1996.

3. Tim Gollub, Martin Potthast, Anna Beyer, Matthias Busse, Francisco Rangel, Paolo Rosso,

Efstathios Stamatatos, and Benno Stein. Recent trends in digital text forensics and its eval-

uation. In Pamela Forner, Henning Müller, Roberto Paredes, Paolo Rosso, and Benno Stein,

editors, Information Access Evaluation meets Multilinguality, Multimodality, and Visualiza-

tion. 4th International Conference of the CLEF Initiative (CLEF 13), 2013.

4. Martin Potthast, Tim Gollub, Matthias Hagen, Johannes Kiesel, Maximilian Michel, Arnd

Oberländer, Martin Tippmann, Alberto Barrón-Cedeno, Parth Gupta, Paolo Rosso, et al.

Overview of the 4th international competition on plagiarism detection. In CLEF (Online

Working Notes/Labs/Workshop), 2012.

5. Martin Potthast, Matthias Hagen, Tim Gollub, Martin Tippmann, Johannes Kiesel, Paolo

Rosso, Efstathios Stamatatos, and Benno Stein. Overview of the 5th international compe-

tition on plagiarism detection. In Pamela Forner, Roberto Navigli, and Dan Tufis, editors,

Working Notes Papers of the CLEF 2013 Evaluation Labs, 2013.

6. Efstathios Stamatatos. Plagiarism detection using stopword n-grams. Journal of the American

Society for Information Science and Technology, 62(12):2512–2527, 2011.

7. Diego Antonio Rodríguez Torrejón and José Manuel Martín Ramos. Coremo system (contex-

tual reference monotony) a fast, low cost and high performance plagiarism analyzer system:

Lab report for pan at clef 2010. In CLEF (Online Working Notes/Labs/Workshop), 2010.

938


