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Abstract

We propose a new model for recognizing human at-

tributes (e.g. wearing a suit, sitting, short hair) and ac-

tions (e.g. running, riding a horse) in still images. The pro-

posed model relies on a collection of part templates which

are learnt discriminatively to explain specific scale-space

locations in the images (in human centric coordinates). It

avoids the limitations of highly structured models, which

consist of a few (i.e. a mixture of) ‘average’ templates. To

learn our model, we propose an algorithm which automati-

cally mines out parts and learns corresponding discrimina-

tive templates with their respective locations from a large

number of candidate parts. We validate the method on re-

cent challenging datasets: (i) Willow 7 actions [7], (ii) 27

Human Attributes (HAT) [25], and (iii) Stanford 40 actions

[37]. We obtain convincing qualitative and state-of-the-art

quantitative results on the three datasets.

1. Introduction

The focus of this paper is a semantic description of hu-

mans in still images using attributes and actions. Given the

daily growing amount of human centric data (e.g. on photo

sharing and social networking websites or from surveillance

cameras), analysis of humans in images is more important

than ever.

Most recent work on human attributes or action recogni-

tion either rely on, accurate or approximate, estimation of

human pose e.g. [32, 35] or use general non-human-specific

image classification methods e.g. [7, 25, 26, 37]. It has been

demonstrated that state-of-the-art action recognition can be

achieved without solving the difficult problem of pose esti-

mation [7, 11, 26, 32]. Interestingly, several recent methods

propose to model interactions between humans and the ob-

ject(s) associated with the actions [8, 10, 15, 24, 34, 35].

While modelling interactions between humans and contex-

tual objects is an interesting problem, we explore here the

broader problem of modelling appearance of humans for
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Figure 1. Illustration of the proposed method (see text).

attribute and action recognition. Such modelling is critical

in the numerous cases where there are no associated objects

(e.g. actions like running, walking) and/or the pose is not

immediately relevant (e.g. attributes like long hair, wearing

a tee-shirt).

In this paper we present the Expanded Parts Model

(EPM) (Fig. 1), which provides a rich discriminative de-

scription of the appearance of humans. We work in human

centered images i.e. we assume that the human positions

in form of bounding boxes are available (e.g. from a hu-

man detection algorithm). Our model is a collection of part

templates, each of which can explain specific scale-space

regions in the images. At test time, our model scores an

image by representing it with the learnt part templates. As

human attributes and actions are often localized in space

e.g. shoulder regions for ‘wearing a tank top’, we aim to ex-

plain the images partially with the most discriminative re-

gions, i.e. the model selects sufficiently discriminative spa-

tial evidence for the class and does not include the non-

discriminative background regions (Fig. 1). In our model

the parts compete to explain each image individually, which

is in contrast with traditional part based discriminative mod-

els where all parts are used for every image. We propose a

learning algorithm based on regularized loss minimization

and margin maximization. Our learning algorithm allows us
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to mine out important parts for the task, and learn their dis-

criminative templates from a large pool of candidate parts

obtained by dense random sampling of the training images.

We validate our method on three publicly available datasets

of human attributes and actions, and show promising quali-

tative and state-of-the-art quantitative results.

1.1. Related work

Models without parts. Generic image classification algo-

rithms, which have been quite successful in human action

recognition [11], generally learn a discriminative model for

each class. In the Spatial Pyramid method (SPM) [16] im-

ages are represented as a concatenation of bag-of-features

(BoF) histograms [5, 27] with pooling at multiple spatial

scales over a learnt codebook of local features, like SIFT

[19]. A discriminative class model w is, then, learnt using a

margin maximizing classifier [16]. A new image is scored

based on its match with the learnt class model, quantified

as the dot product wT x between the image vector x and

the class model w. The use of histograms destroys ‘tem-

plate’ like properties due to loss of spatial information and

makes visualization difficult. Although SPM has never been

viewed as a template learning method, methods using his-

togram of oriented gradients (HOG) [6] features have been

presented as such and the recent literature is full of visual-

izations of templates (class models) learnt with HOG-like

features e.g. [6, 13, 22]. Both of these methods have been

applied to the task of human analysis [7] and we build on

them and formulate our model in a discriminative template

learning framework. We differ in that we learn a collection

of templates instead of a single template.

The recently proposed Exemplar SVM (ESVM) [21]

learns discriminative templates for each object instance of

the training set independently and then combines their cal-

ibrated outputs on test images as a post-processing step. In

contrast, we work at a part level and use all templates to-

gether during both training and testing.

More recently, a 2-level approach for image representa-

tion has been proposed [31]. Similar to our approach it in-

volves sampling image regions and, then, vector quantizes

the region descriptors, whereas we propose a mechanism to

select discriminative regions and build discriminative part-

based models from them.

Part-based structured models. Generative or discrimina-

tive part-based models (e.g. the constellation model [14]

and the DPM model [13]), have led to state-of-the-art re-

sults for objects that are rigid or, at least, have a simple

and stable structure. In contrast humans involved in actions

can have huge appearance variations due to both cosmetic

changes (e.g. clothes, hair style, accessories) as well as ar-

ticulations or poses. Furthermore, their interaction with the

context can be very complex and case dependent. Probably

because of the high complexity of such a task, DPMs do not

perform well for human action recognition [7]. Increasing

the model complexity, e.g. by using a mixture of compo-

nents [13], has shown to be beneficial for object detection1.

Such increase in model complexity is even more apparent

in similar models for finer human analysis e.g. pose estima-

tion [9, 33, 39], where a relatively large number of com-

ponents and parts are used. While the components account

for global changes in aspect/viewpoint, the parts account

for the local variations of the articulations. A recent study

[40] recommends the design of richer models albeit with

careful regularization. Here, we propose a richer, but less

structured, expanded parts model.

As shown in Fig. 2 (left), in the mixture of components

model the training images are usually assigned to only one

component and thus contribute to training only one of the

templates (and similarly in testing). This limits the capa-

bility to generate novel articulations, as a sub-articulation

(hands raised) in one component can not be combined with

a sub-articulation (hands along the body) in another com-

ponent to generate a hybrid of the two (one hand raised and

one along the body). Note that the clustering and averaging

within such a model are a form of regularization/complexity

control enforced by the system, which involves manual set-

ting the number of parts and components.

In the proposed expanded parts model (i) we neither en-

force nor forbid averaging a priori and (ii) we allow the

model to have a large number of ‘parts’ (up to the order of

the number of training images) if found necessary despite

sufficient regularization (Fig. 1 & 2). While in part-based

deformable models the parts initialization is either based on

heuristics (e.g. initialization with regions with high average

energy [13]) or available annotations [9], our method sys-

tematically explores parts at all possible locations, scales

and atomicities and selects the ones best suited for the task.

Part-based loosely structured models. Our model belongs

to a family of models which use parts but do not assume

that all possible variations and articulations can be captured

by a few averaged, spatially constrained, templates of parts.

Our model has similarities with poselets [3, 4, 20] which

are compound parts consisting of multiple anatomical parts,

highly clustered in 3D configuration space e.g. head and

shoulder together. Each poselet casts a vote independently

for an object hypothesis. Poselets are shown to improve per-

formance and are trained separately from specifically anno-

tated images (in 3D). In contrast, our method tries to mine

out such ‘parts’, at the required atomicity, with a task spe-

cific focus and from given training images. Fig. 6 (top right)

shows some of our parts for the ‘female’ class which show

some resemblances with poselets, though are not as clean.

While poselets learn discriminative templates, meth-

1See the results of different versions of the DPM software

http://people.cs.uchicago.edu/∼rgb/latent/ which, along with other im-

provements, steadily increase the number of components and parts.
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Figure 2. Left – Illustration of a two component model vs. the Expanded Parts Model. Right – Example ‘reconstructions’.

ods such as those derived from Similarity by Composi-

tion [1], Naive Bayes Nearest Neighbors (NBNN) [2], Im-

plicit Shape Models [17] and Collaborative Representa-

tion [38], try to reconstruct images from patches. However,

their learning approaches are generally based on the recon-

struction error i.e. are generally generative while here we

aim to mine out good patches and learn corresponding dis-

criminative templates with the direct aim of achieving good

classification. Moreover, such models have not been previ-

ously applied to human attribute and/or action recognition.

2. Approach

In the following, we address a supervised classifica-

tion setting where we are given a set of training images

It = {Ii ∈ I|i = 1 . . .m} with their corresponding binary

class labels yi ∈ {−1, 1}. Our goal is to learn a scoring

function s : I → R which takes an image and assigns a

score reflecting the membership of the image to the positive

class. We define (the parameters of) our model to be a col-

lection of discriminative templates with an associated scale

space location and the image scoring as a process of par-

tially ‘reconstructing’ the important (task specific) regions

in the images from these discriminative templates.

Models based on HOG-like features [6] suffer an impor-

tant limitation as they rely on shape while somewhat ig-

noring appearance. Shape preference seems to work, and

perhaps to help, for human pose estimation [9, 33, 39] but

seems to be a probable reason for the disappointing perfor-

mance of DPMs on human action recognition [7]. Hence,

in the present work we choose to use the bag-of-features

(BoF) representation instead of HOG-like shape features in

order to obtain a better appearance description. As a re-

sult of this choice, our BoF derived discriminative models

w (similar to [16]) can not be called templates as (i) an im-

mediate method to convert them to plausible natural images

is not clear and (ii) even if such a method exists it will not

lead to a unique image (as trivially, any other image ob-

tained by jumbling around a given image’s local features

also has the same BoF as the starting image). However, we

continue to use the word template to denote the correspond-

ing concept in BoF space. We later explain how our model

provides an approximate way for visualizing the reconstruc-

tions; Fig. 2 (right) shows examples of such visualizations.

Note, however, that the proposed method can be used with

any arbitrary feature space.

2.1. Regularized loss minimization

Our model is defined as a collection of discriminative

templates with associated locations i.e. M = {(w, l)|w ∈
R

Nd, l ∈ R
N×4} where N is the number of parts, d is the

size of BoF codebook, w is the concatenation of N part

templates (each of dimension d) and l is a matrix of their

scale-space positions, with each row specifying a bounding

box i.e. lp = (x1, y1, x2, y2) where x and y are fractional

multiples of width and height respectively.

We propose to learn our model as a regularized loss min-

imization optimization with the objective

L(M) =
λ

2
||w||22+

1

|It|

∑

Ii∈It

max(0, 1−yis(Ii,M)), (1)

with s(·) being the scoring function (Sec. 2.2). Our ob-

jective is the same as that of linear SVMs with hinge loss.

The only difference is that we have replaced the linear,

sl(x,w) = wT x, score function with our score function

(Eq. 2). The parameter λ sets the trade-off between model

regularization and the loss minimization (cf. SVM).
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Algorithm 1 Stochastic gradient descent for learning EPM

1: Initialize: M = (w, l), r = 1, k = 100 and λ = 10−5

2: for iter = 1, . . . , 10 do

3: r(1) = r ×N−/N and r(−1) = r ×N+/N
4: for npass = 1, . . . , 5 do

5: S ← rand shuffle(It)
6: for all Ii ∈ S do

7: Solve Eq. 2 to get s(Ii,M) and α

8: δi ← binarize(yis(Ii,M) < 1)
9: w ← w(1− r(yi)λ) + δiyir(yi)

∑
αpf(Ii, lp)

10: end for

11: end for

12: parts image map← note image parts (M, I)

13: M ← prune parts (M, parts image map)

14: if iter = 5 do r ← r/5 end if

15: end for

2.2. Scoring function

Our scoring function is inspired by the method of image

scoring with learnt discriminative templates and that by im-

age reconstruction. We want to score the image with the part

templates which are capable of reconstructing it well while

penalizing high overlap. The discriminative information for

human actions and attributes is often localized in space i.e.

for ‘riding horse’ only the rider and the horse is discrimina-

tive and not the background and for ‘wearing shorts’ only

the lower part of the image is important. Hence, we aim

to reconstruct the image partially (in space) with the most

important parts only (e.g. see Fig. 2).

Formally, we define the scoring function as

s(I,M) =
1

k
max
α

N∑

p=1

αpwT
p f(I, lp) (2a)

s.t. ||α||0 = k, Ov(α, l) ≤ θ, (2b)

where, wp = [0, . . . , 0, w(p−1)d+1, . . . , wpd, 0, . . . 0]
T i.e.

a vector of same dimension as w with the discriminative

template for the pth part at the corresponding location with

other components set to zero2, f(I, lp) is the feature ex-

traction function which calculates the BoF histogram of the

image I for the patch specified by lp and zero-pads it sim-

ilar to wp, α = [α1, . . . , αN ] are the binary coefficients

which specify if a model part is used to score the image or

not, Ov(α, l) calculates overlap between the parts selected

to score the image. The ℓ0 norm constraint on α enforces

the use of exactly k parts for scoring while the second con-

straint encourages coverage in reconstruction by limiting

high overlaps.

2Such zero padding is like a masking operation which ensures that the

current part interacts only with the similarly located image patch.

2.3. Solving the optimization problem

We propose to solve the model optimization problem us-

ing stochastic gradient descent. We use the stochastic ap-

proximation to the sub-gradient w.r.t. w given by,

∇wL = λw − δi
1

k

N∑

p=1

αpf(Ii, lp) (3)

where, αp are obtained by solving Eq. 2 and δi = 1 if

yis(Ii,M) < 1 otherwise δi = 0. Alg. 1 gives the pseudo-

code for our learning algorithm. The algorithm proceeds by

scoring (and thus calculating the α for) the current example

with w fixed, and then updating w with α fixed.

Initialization. In the initialization we intend to generate

a large number of part candidates, which are subsequently

refined by pruning. To achieve this, we randomly sample

the positive training images for patch positions i.e. {lp} and

initialize our model parts as wp = [2xp,−1]T , where x de-

notes a BoF histogram (we are abusing notation here as ac-

tually wp is zero padded to make its dimension equal to w).

Throughout our method, we append 1 at the end of all our

BoF features i.e. xb = [x, 1]T to account for the bias term

(cf. SVM e.g. [23]). This leads to a score of 1 when a per-

fect match occurs (wT
p xb = 2 × 1 − 1 = 1) and a score

of -1 in the opposite case (wT
p xb = 2 × 0 − 1 = −1), as

the BoF features are ℓ2 normalized. We sample 105 patches

from the whole dataset and, for each class, use patches from

respective positive images. For the learning rate, we follow

recent work [23] and fix a learning rate, which we reduce

once for annealing by a factor of 5 half way through the it-

erations (step 1 and 13, Alg. 1).

Scoring function. The ℓ0 norm constraint in the scoring

function makes it NP-hard. In our current implementation

we use an approximate greedy solution. At any given in-

stant we greedily select the best scoring part (and assign

corresponding αp = 1) which does not overlap appreciably

with the currently selected parts which were generated from

the same training image as that of the part under considera-

tion. We observed, on initial experiments on validation sets,

that if a false positive was similar to one train image, then

it would take numerous overlapping parts which were gen-

erated from that image. The previous condition is to avoid

such double counting. The overlap criteria is 1/3 intersec-

tion by union [11]. While training, we score each training

image from the rest of train set i.e. we do not use the parts

which were generated from the same training image.

Training data imbalance. Usually large databases are

highly unbalanced i.e. they have many more negative ex-

amples than positive examples (of the order of 50:1). To

handle this we use asymmetric learning rates proportional

653653655
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Figure 3. Example patches illustrating pruning (riding bike class).

to the number of examples of other class3 (step 3, Alg. 1).

Parts mining by pruning. After each iteration (i.e. 5 passes

over randomly shuffled training data) we prune the set of

parts. We keep a record of which part is being used to

reconstruct which images while training and then simply

prune the parts which have not been used to reconstruct

even a single image. Such parts only contribute to the ||w||22
term and not to the loss term, hence removing them trivially

minimizes the objective. Pruning in this way removes near-

duplicate and non discriminative parts (Fig. 3) which were

considered because of the random sampling and allows us

to mine out the discriminative parts.

Regularization and number of parts. We follow [23] and

fix the regularization constant λ = 10−5. For fixing the

number of parts we did preliminary experiments on the val-

idation set of Willow actions database [7]. The performance

increased by 10% (absolute) as k went from 10 to 100. With

this we concluded that we need a sufficiently high number

of parts and fixed k = 100 for all experiments.

Nonlinearizing using feature map. Until now, we have

described linear version of our algorithm. To have non

linearity we use explicit feature map [29]. We use map

corresponding to the Bhattacharyya kernel i.e. we take

dimension-wise square roots of our ℓ1 normalized BoF his-

tograms obtaining ℓ2 normalized vectors which we then use

with our algorithm.

Relation with latent SVM. In our model, α can be seen as

latent variables per image, and the whole model can be seen

as a latent SVM [13]. In such cases we should train keeping

in mind the semi-convexity [13] of the objective function –

training as we propose is not guaranteed to reduce the ob-

jective. However, in practice we see that if the learning rate

is not aggressive, training as proposed leads to reasonably

good convergence (Fig. 4) and performance, and hence we

continue to use our implementation.

Visualization of reconstructions. Since we initialize our

parts with the BoFs of patches from training images, we

can use the initial patches to visualize the reconstructions.

3 [23] achieve the same effect by biased sampling from the two classes.

1 2 3 4 5 6 7 8 9 10 11
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6000

8000

1 2 3 4 5 6 7 8 9 10 11
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60

70

Obj val for the optimization iterations for T−shirt class

Avg prec for the optimization iterations for T−shirt class

Figure 4. Convergence of our algorithm.

This is clearly a loose association as the part templates wp

are modified in the the learning process, but we found it to

give reasonable visualizations (Fig. 2).

3. Experimental results

We evaluate our method on three challenging publicly

available databases: (i) Willow 7 human actions [7], (ii)

27 human attributes (HAT) [25], and (iii) Stanford 40 hu-

man actions [37]. We first present implementation details

of our approach as well as our baseline and, then, proceed

to present and discuss our results on the three databases.

Implementation and baseline details. Like previous work

[7, 26, 37] we densely sample grayscale SIFT features at

multiple scales. We use a fixed step size of 4 pixels and

use square patch sizes ranging from 8 to 40 pixels. We

learn a vocabulary of size 1000 using k-means and assign

the SIFT features to the nearest codebook vector (hard as-

signment). We use the VLFeat library [28] for SIFT and

k-means computation. We use a four level spatial pyra-

mid with {c × c|c = 1, 2, 3, 4} cells [16] as baseline. We

use the explicit feature map [29] corresponding to the Bhat-

tacharyya kernel, i.e. dimension-wise square root of ℓ1 nor-

malized vectors, to be comparable to our method. The base-

line results are obtained with the liblinear [12] library.

Immediate context. The immediate context around the

person, which might contain partially the associated object

(e.g. horse in riding horse) and/or correlated background

(e.g. grass in running), has shown to be beneficial for the

task [7, 26]. To include immediate context we expand the

human bounding boxes by 50% in both width and height.

Full image context. The context from the full image has

also been shown to be important [7]. To use it with our

method, we add the scores from a classifier trained on full

images to scores from our method. The full image classifier

uses 4 level SPM with an exponential χ2 kernel.

Performance measure. The performance is evaluated with

average precision (AP) for each class and the mean average

precision (mAP) over all classes.

3.1. Qualitative results

We present qualitative results to illustrate how our recon-

struction works in practice. Fig. 2 (right) shows some ex-

amples, i.e. composite images created by displaying the part
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Table 1. Results on Willow 7 actions database (Sec. 3.2)

Inter. Dsal SPM Ours Ours +

[8] [26] [16] (EPM) context

mAP 64.1 65.9 63.7 66.0 67.6

Table 2. Results on Human attributes database (Sec. 3.3)

DSR SPM Ours Ours +

[25] [16] (EPM) context

mAP 53.8 55.5 58.7 59.7

patches with non-zero alphas. The observed results are con-

vincing, i.e. the method focuses on the relevant parts, such

as torso and arms for ‘bent arms’, shorts and tee-shirts for

‘wearing bermuda shorts’, and even computer (left bottom)

for ‘using computer’. Interestingly, we observe that for both

riding horse and riding bike classes, the person gets ignored

but the hairs and helmet have been partially reconstructed.

This seems to stress the discriminative nature of the learnt

models. As the persons in similar pose might confuse the

two classes, it focuses on the more discriminative aspects.

3.2. Willow actions database

Willow actions4 [7] is a challenging database for action

classification on unconstrained consumer images down-

loaded from the internet. It has 7 classes of common hu-

man actions e.g. ‘ridingbike’, ‘running’. It has at least 108

images per class of which 70 images are used for training

and validation and the rest are used for testing. The task

is to predict the action being performed given the human

bounding box. Tab. 1 shows the results of our method (with

and without context) along with our baseline SPM and some

competing methods. We achieve a mAP of 66% which goes

up to 67.6% by adding the full image context. We perform

better than the current state-of-the-art method [26] on this

dataset on five out of seven classes and on average. As

demonstrated by [7], full image context plays an important

role in this dataset. It is interesting to note, that even with-

out context, we achieve 3.5% absolute improvement com-

pared to a method which models person-object interactions

[8] and uses extra data to train detectors etc.

3.3. Database of human attributes (HAT)

HAT5 is a database for learning semantic human at-

tributes. It contains 9344 unconstrained human images ob-

tained by applying a human detector [13] on images down-

loaded from the internet. It has annotations for 27 attributes

based on sex, pose (e.g. standing, sitting), age (e.g. young,

elderly) and appearance (e.g. wearing a tee-shirt, shorts).

The database has train, validation and test sets. The mod-

els are learnt with the train and validation sets and the per-

formance is reported on the test set. Tab. 2 shows our as

4http://www.di.ens.fr/willow/research/stillactions/
5http://sharma.users.greyc.fr/hatdb/
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Figure 5. The per attribute performance (AP) of the proposed

methods (red/dark) and the baseline SPM [16] (blue/light) on the

database of Human attributes (HAT) [25].

well as other results on this dataset. Our baseline is al-

ready higher than the results reported by the dataset creators

[25], because we use denser SIFT and more scales. Our

method improves over the baseline by 3.2% (absolute) and

increases further by 1% when adding the full image con-

text. Fig. 5 shows our results (without full image context)

along with the baseline. Our method outperforms the base-

line for 24 out of the 27 attributes. Among the different

human attributes those based on pose (e.g. standing, arms

bent, running/walking) seem to be easier than those based

on appearance of clothes (e.g. short skirt, bermuda shorts).

The range of performance obtained is quite wide, from 24%

for crouching to 98% for standing. The performances of the

classes close to the bottom of Fig. 5 indicates that recogniz-

ing human attributes is far from solved.

3.4. Stanford 40 actions

Stanford 40 actions6 [36] is a database of human actions

with 40 diverse daily human actions e.g. brushing teeth,

cleaning the floor, reading book, throwing a frisbee. It has

180 to 300 images per class with a total of 9352 images. We

used the suggested train and test split provided by the au-

thors on the website, with 100 images per class for training

and the rest for testing. Tab. 3 shows our results along with

results of the baseline and other methods. Our method per-

forms better than the baseline by 5.8% (absolute) at 40.7%.

We also perform better than Object bank [18] and Locality-

6http://vision.stanford.edu/Datasets/40actions.html
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Table 3. Results on Stanford 40 actions database (Sec. 3.4)

Object LLC SPM Ours Ours +

bank [18] [30] [16] (EPM) context

mAP 32.5 35.2 34.9 40.7 42.2

constrained linear coding [30] (as reported in [36]) by 8.2%

and 5.5% respectively. With context our method achieves

42.2% mAP which is the state-of-the-art result using no ex-

tra training data. The best result reported on this dataset

is 45.7% by [36], who solve action recognition using bases

of attributes, objects and poses. To derive their bases they

use pre-trained systems for 81 objects, 45 attributes and 150

poselets, using large amount (comparable to the size of the

database) of external data. Since they use human based at-

tributes also, arguably, our method can be used to improve

their generic classifiers and improve performance further

i.e. our method is complementary to theirs.

3.5. The learnt parts and training/testing times

Fig. 6 shows the distribution of the ℓ2 norm of the learnt

part templates, along with top scoring patches for selected

parts, with norms across the spectrum for three classes. The

first image in any row is the patch with which the part was

initialized and the remaining one are its top scoring patches.

The top scoring patches give an idea of what kind of appear-

ances the learnt templates wp captures. We observe that,

across datasets, while most of the parts seem interpretable,

like face, head, arms, horse saddle, legs etc., there are a

few parts which seem to correspond to random background

(e.g. row 1 for ‘climbing’). This is in line with a recent

study [40], in “mixture of template’ like formulations, there

are clean interpretable templates along with noisy templates

which correspond to background.

We also observe that the distribution of the ℓ2 norm of

the parts follows a heavy tailed distribution. Some parts are

very frequent and the system tries to tune them to give high

scores for positive vectors and low scores for negative vec-

tors and hence give them a high overall energy. There are

also parts which have smaller norms, either because they are

consistent in appearance (like the head and partial shoulders

on clean backgrounds in row 4 of ‘female’ Fig. 6, or the

leg/arm in the last row of ‘climbing’) or occur in few im-

ages. However, they are discriminative none the less. De-

termining a clear relation between the statistics of templates

and their contribution to the overall performance is an inter-

esting question, which we leave as future work. It is critical

to control the trade-off between time efficiency vs. accuracy

of a learnt model.

The training is significantly slower compared to a stan-

dard SPM/SVM baseline, i.e. by around two orders of mag-

nitude. This is due to the fact that there is SVM equivalent

cost (with a larger number of vectors) at each iteration. Test-

ing is also a bit slower compared to an SPM, as it is based

on a dot product between longer vectors. For example, on

Stanford dataset testing is 5 times slower compared to SPM

at about 35 ms/image (excluding feature extraction).

4. Conclusion

We have presented a new Expanded Parts Model (EPM)

for human analysis. The model learns a collection of dis-

criminative templates which can appear at specific scale-

space positions. It scores a new image by reconstructing it

using the available part templates. We proposed a stochas-

tic sub-gradient based learning method. The algorithm is

capable of exploring a large number of candidate parts and

mining out the discriminative parts best suited for the cur-

rent binary classification. We validated our method on three

challenging publicly available datasets for human attributes

and actions. We obtained good qualitative and state-of-the-

art quantitative results, when no external data is used.

We analysed the learnt parts with statistics of their dis-

criminative templates and plan to pursue this direction fur-

ther to gain additional insight. Applying the model to artic-

ulated object detection is also a natural extension.
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