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Abstract
Background: Gene expression microarrays are a prominent experimental tool in functional
genomics which has opened the opportunity for gaining global, systems-level understanding of
transcriptional networks. Experiments that apply this technology typically generate overwhelming
volumes of data, unprecedented in biological research. Therefore the task of mining meaningful
biological knowledge out of the raw data is a major challenge in bioinformatics. Of special need are
integrative packages that provide biologist users with advanced but yet easy to use, set of
algorithms, together covering the whole range of steps in microarray data analysis.

Results: Here we present the EXPANDER 2.0 (EXPression ANalyzer and DisplayER) software
package. EXPANDER 2.0 is an integrative package for the analysis of gene expression data, designed
as a 'one-stop shop' tool that implements various data analysis algorithms ranging from the initial
steps of normalization and filtering, through clustering and biclustering, to high-level functional
enrichment analysis that points to biological processes that are active in the examined conditions,
and to promoter cis-regulatory elements analysis that elucidates transcription factors that control
the observed transcriptional response. EXPANDER is available with pre-compiled functional Gene
Ontology (GO) and promoter sequence-derived data files for yeast, worm, fly, rat, mouse and
human, supporting high-level analysis applied to data obtained from these six organisms.

Conclusion: EXPANDER integrated capabilities and its built-in support of multiple organisms make
it a very powerful tool for analysis of microarray data. The package is freely available for academic
users at http://www.cs.tau.ac.il/~rshamir/expander

Background
Gene expression microarrays are a prominent experimen-
tal tool in functional genomics. They have revolutionized
biological research by providing genome-wide snapshots
of transcriptional networks that are active in the cell. This

opens the opportunity for gaining global, systems-level
understanding of cellular processes. Microarray platforms
for measuring the expression levels of most or all genes of
an organism are available for a variety of organisms rang-
ing from yeast to human. Experiments that use this
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technology typically generate overwhelming volumes of
data, unprecedented in biological research, which makes
the task of mining meaningful biological knowledge out
of the raw data a major challenge. Hence, exploitation of
gene expression data is fully dependent on the availability
of advanced data analysis and statistical tools. Many algo-
rithms and software tools for analysis of microarray data
were developed in recent years, including sophisticated
methods for signal extraction and array normalization
[1,2], clustering [3,4], and statistical identification of
over-represented functional categories [5] and promoter
motifs [6,7]. At present, of special need are integrative
software packages that provide users with a set of algo-
rithms collectively covering the whole range of steps in
microarray data analysis, thereby significantly boosting
the analysis flow and the researcher's ability to deduce
meaningful biological conclusions from the overwhelm-
ing volume of recorded data. Here we present the
EXPANDER program suite for gene expression data
analysis.

Implementation
EXPANDER (EXPression ANalyzer and DisplayER), ini-
tially developed as a clustering tool [8], has been rede-
signed as a 'one-stop shop' tool for analysis of the data.
EXPANDER 2.0 integrates methods and algorithms that
collectively cover different steps of the data analysis, rang-
ing from the initial steps of normalization and filtering,
through module detection by clustering and biclustering,
to high-level analysis of functional enrichment and of
promoter cis-regulatory elements. EXPANDER serves as
the major platform in which we integrate various gene
expression analysis algorithms that were developed in our
lab, including CLICK for clustering [9], SAMBA for biclus-
tering [10], PRIMA for promoter elements analysis [7],
and TANGO for GO functional enrichment analysis
(manuscript in preparation). In addition, EXPANDER
implements various visualization utilities that accompany
each of the analysis modules. Four basic design principles
instructed us in the implementation of the package: First,
the analysis flow should be highly streamlined. Second,
although some of the modules are based on highly com-
plicated algorithms, their use should be kept simple and
results should be presented in an intuitive manner. Third,
data analysis is expected to be done iteratively, allowing
users to examine different parameter settings and cluster-
ing algorithms – therefore, special effort was put on effi-
cient implementation of the algorithms. Forth, users
should be freed from the burden of compiling annotation
data required for the analysis. Therefore, EXPANDER not
only implements the analysis algorithms, but also sup-
plies users with all necessary annotation and sequence
data.

EXPANDER is available with genome-wide pre-processed
functional Gene Ontology (GO) and promoter sequences
data files for yeast, worm, fly, rat, mouse and human, sup-
porting high-level analysis of data obtained from these
organisms. EXPANDER supports analysis of both relative
and absolute expression level datasets, the former gener-
ated by cDNA microarrays and the latter by, e.g., Affyme-
trix oligonucleotide arrays. The main utilities provided by
EXPANDER and the major algorithms implemented in it
are described in the Results section below. Figure 1 gives a
high level summary of EXPANDER's analysis flow and of
the main algorithms implemented in each analysis step.

EXPANDER is implemented in Java. Most of the algo-
rithms it runs were implemented in C. EXPANDER ver-
sions for Windows and UNIX are freely available for
academic users.

Results
In this section we describe the main analysis modules
implemented in EXPANDER, and present a case analysis
that demonstrates the strength of this package in deriving
biological conclusions out of massive gene expression
datasets.

Normalization
The goal of this pre-processing step is the removal of tech-
nical biases among the analyzed chips. Currently, the
default normalization scheme applied by Affymetrix soft-
ware is the global scaling, which multiplies all intensities
measured in a chip by a constant factor to bring the aver-
age/median intensity level in each chip to a predefined
fixed level. However, several studies pointed out that glo-
bal scaling is too naïve in many cases, and that more
sophisticated normalization procedures accounting, e.g.,
for intensity-dependent bias, are required [11,12]. We
implemented in EXPANDER two such methods: non-lin-
ear regression and quantiles equalization as described in
[1]. Normalization of cDNA arrays requires intensity lev-
els measured in both red and green channels. EXPANDER
expects log ratios (Red/Green) as input when analyzing
dual channels data. Therefore, normalization schemes in
EXPANDER are available at this stage to one-channel data-
sets. Several novel normalization schemes are not yet
implemented in EXPANDER (e.g., Variance Stabilizing
Normalization (VSN) [13], Li-Wong invariant set normal-
ization [14]). Users can load EXPANDER with data that
were normalized using external tools.

Filtering utilities
EXPANDER provides several commonly-used filtering
options based on fold-change factors, minimal variation
criteria, or choosing the n most variant genes, allowing the
user to focus downstream analysis on the set of genes that
show sufficient variation across the measured conditions.
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Cluster analysis
Clustering algorithms applied to gene expression data par-
tition the genes into distinct groups according to their
expression patterns over the probed biological conditions.
Such partition should assign genes with similar expres-
sion patterns to the same cluster (keeping the homogeneity
merit of the clustering solution) while retaining the dis-
tinct expression pattern of each cluster (ensuring the sepa-
ration merit of the solution). Cluster analysis eases the
interpretation of the data by reducing its complexity and
revealing the major patterns that underlie it. EXPANDER
implements a few of the most widely used clustering algo-
rithms – SOM [4], K-means [15], and hierarchical cluster-
ing [3], as well as CLICK, a graph theoretic based
algorithm developed in our lab. CLICK is described in
detail in [16] and it was demonstrated to outperform

other algorithms according to several figures of merit [9].
When computing a clustering solution, EXPANDER also
specifies its homogeneity and separation measures, ena-
bling the user to compare the merits of different solutions.
Several displays for patterns (Fig. 2) and matrices (Fig. 3)
are provided for the visualization of clustering solutions.

Bicluster analysis
As expression data accumulate, and profiles over hun-
dreds of different biological conditions are readily availa-
ble, clustering becomes too restrictive. Clustering
algorithms globally partition genes into disjoint sets
according to the overall similarity in their expression pat-
terns, i.e., they search for genes that exhibit similar expres-
sion levels over all the measured conditions. Such
requirement is appropriate when analyzing small to

A high level summary of EXPANDER's microarray data analysis flow and of the main algorithms implemented in each analysis stepFigure 1
A high level summary of EXPANDER's microarray data analysis flow and of the main algorithms implemented in each analysis 
step.
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medium size datasets from one or a few related experi-
ments or when analyzing time-series data, as it provides
statistical robustness and produces results that are easily
visualized and comprehended. Yet, when larger datasets
are analyzed, a more flexible approach is frequently
advantageous. A bicluster (or a module) is defined as a set
of genes that exhibit significant similarity over a subset of
the conditions (Fig 4a). A biclustering algorithm can dis-
sect a large gene expression dataset into a collection of
biclusters, where genes or conditions can take part in
more than one bicluster. A set of biclusters can thus char-
acterize a combined, multifaceted gene expression dataset
[10]. An enhanced version of our biclustering algorithm,
called SAMBA (Statistical-Algorithmic Method for Biclus-
ter Analysis) is integrated in EXPANDER and is the prefer-
able partition-analysis approach for large heterogeneous
datasets that encompass dozens of conditions (Fig 4b).
SAMBA 2.0 can handle datasets with thousands of condi-
tions profiled over entire genomes. For technical descrip-
tion of the SAMBA algorithm see [10,17]. Briefly, the
algorithm first transforms gene expression data into a
weighted bipartite graph (with genes and conditions as its
two parts) and then applies a statistical scoring scheme

and a combinatorial algorithm to identify heavy sub-
graphs in the bipartite graph. Each such heavy subgraph
represents a bicluster. SAMBA operates in three phases: in
the first step bicluster seeds are detected, then each seed is
optimized to a locally optimal bicluster, and finally a non
redundant subset of the locally optimized biclusters is
selected. SAMBA 2.0 contains a new implementation of
the first step in which efficient hashing techniques are
now utilized, thereby significantly improving running
time. It also features a new redundancy filtering algorithm
(step 3) that optimizes the total likelihood of a set of
biclusters using a probabilistic model that generalizes the
single bicluster model.EXPANDER allows the user to tune
SAMBA's performance by selecting among several multi-
level discretization schemes based on the numerical char-
acteristics of the analyzed dataset. Another important tun-
able parameter controls the stringency of the redundancy-
filtering algorithm.

Functional enrichment analysis
After identifying the main co-expressed gene groups in the
data (either by clustering or biclustering), one of the
major challenges is to ascribe them to some biological

All-patterns display of a clustering solutionFigure 2
All-patterns display of a clustering solution. Each graph represents a specific cluster. The X-axis represents the measured con-
ditions. The Y-axis represents (standardized) expression levels. Each cluster is represented by the mean expression pattern 
over all the genes assigned to it. Error bars denote ± 1 standard deviation. Clicking within a cell opens a window that lists the 
genes that are assigned to the cluster.
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Matrix displaysFigure 3
Matrix displays. (A) Unclustered expression matrix display. Each row corresponds to a gene, and each column to a biological 
sample. The color of the (i, j) cell in the matrix indicates the expression level of the ith gene in the jth sample. Green repre-
sents below-average expression level; Red represents above-average expression level (color scheme can be adjusted by the 
user). (B) The same dataset as in A, with genes ordered according to a clustering solution. Horizontal white lines separate the 
different clusters. (C) Unclustered similarity matrix display. The color of the (i, j) cell in the matrix represents the similarity 
between the expression patterns of the ith and the jth genes over all the samples (hence the matrix is symmetric). Red repre-
sents high similarity, and green represents low similarity. (D) Same as in C, with genes ordered on both axes according to a 
clustering solution. Clusters appear as distinct red blocks along the matrix diagonal, and similar clusters are manifested by off-
diagonal reddish blocks.
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meaning. To assist the researcher in this task, EXPANDER
contains a statistical analysis module that seeks specific
functional categories that are significantly over-repre-
sented in the analyzed gene groups, with respect to a given
background set of genes. In addition to pointing to possi-
ble biological roles for distinct gene sets, such analysis was
demonstrated to be very helpful in assigning putative
functional roles to uncharacterized genes [10,18].
EXPANDER is provided with pre-compiled functional
annotation files for six organisms: yeast (S. cerevisiae),
worm (C. Elegans), fly (D. melanogaster), rat (R. norvegi-
cus), mouse (M. musculus) and human, releasing the user

from the burden of compiling such annotation informa-
tion. These annotation files, compiled based on data pro-
vided by the Gene Ontology (GO) consortium [19] and
the central databases for these organisms, associate genes
with GO functional categories.

A major challenge in identifying cases of over-represented
GO categories is obtaining a good estimation of statistical
significance for each case, that takes multiple testing into
account (hundreds of categories are typically tested for
enrichment). What complicates this task is the hierarchi-
cal tree-like structure of the ontology, which induces

Bicluster analysisFigure 4
Bicluster analysis. (A) A bicluster corresponds to a submatrix defined by row and column subsets. Both subsets are not known 
in advance. After reordering the original data matrix, it can be seen as the rectangle with the yellow border. (B) EXPANDER 
summarizes bicluster analysis results in a table that lists the dimensions (numbers of genes and conditions) of the biclusters 
identified and their scores. Clicking on a row in this table pops-up a window with the submatrix view of the selected bicluster. 
Below the table there are two examples of biclusters identified in a dataset comprising some 1,000 genes measured across 
over 70 conditions in human cells. Row and column labels are gene and condition names for the bicluster, respectively.
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strong dependencies among GO categories. Thus, stand-
ard methods for accounting for multiple testing, which
assume independent tests (e.g., Bonferroni, False Discov-
ery Rate) are far too stringent. EXPANDER uses the
TANGO (Tool for ANalysis of GO enrichments) algorithm
for coping with this problem (Tanay et al., in prepara-
tion). Briefly, TANGO repeatedly shuffles genes to com-
pute an empirical distribution of maximum p-values for
functional enrichment obtained across a random sample
of clusters that maintain the same size characteristics of

the analyzed clusters. TANGO uses this empirical distribu-
tion to determine thresholds for significant enrichment
on the true clusters. Another problem that stems from the
strong dependencies among GO categories is the high
level of redundancy in the reported enriched categories,
which often include both parent and child nodes associ-
ated with highly overlapping set of genes. TANGO filters
out such redundant categories by performing conditional
enrichment tests that ensure that all the reported enriched
categories are statistically significant even after taking into

GO functional enrichment analysisFigure 5
GO functional enrichment analysis. (A) Enriched GO categories identified by TANGO in the analyzed gene groups (clusters or 
biclusters) are displayed as bar diagrams; each corresponding to a specific gene group (i. e., cluster or bicluster). In these dia-
grams, GO categories are color-coded, and the height of a bar represents the statistical significance (-log10(p-value)) of the 
observed enrichment for its corresponding category. The percentage of genes in the group assigned to the enriched category 
is indicated above the bar. (B) Clicking on a bar pops-up a window that lists the group's genes that are associated with the cor-
responding GO category. In this window, genes are linked to central annotation DBs (SGD [25] for yeast, WormBase [26] for 
worm, FlyBase [27] for fly, and Entrez Gene [28] for human, mouse and rat) where detailed gene descriptions can be found for 
in-depth analysis.
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account the enrichment of their related nodes in the tree.
An example for the visualization of TANGO results is
shown in Figure 5.

Cis-regulatory element analysis
Microarray measurements provide snapshots of cellular
transcriptional programs that take place in the examined
biological conditions. These measurements do not, how-
ever, directly reveal the regulatory networks that underlie
the observed transcriptional activity, i.e. the transcription
factors (TFs) that control the transcription of the
responding genes. Computational promoter analysis can
shed light on the regulators layer of the network. Based on
the assumption that genes that exhibit similar expression
pattern over multiple conditions are likely to be control-
led by common regulators and, therefore, share common
cis-regulatory elements in their promoter regions, several
algorithms have been developed to identify over-repre-
sented cis-elements in promoters of co-expressed genes.
Such computational approaches successfully delineated
transcriptional networks in organisms ranging from yeast
to human [7,15]. EXPANDER provides such promoter
analysis utility by integrating our PRIMA (PRomoter Inte-
gration in Microarray Analysis) tool which is described in
detail in [7]. In short, given target sets and a background
set of promoters, PRIMA performs statistical tests aimed at
identifying transcription factors whose binding site signa-
tures are significantly more prevalent in any of the target
sets than in the background set. Typically, sets of co-
expressed genes identified using either cluster or bicluster
analysis serve as target sets, and the entire collection of
promoters of genes present on the microarray serves as the
background set. In its stand-alone version, an execution of
PRIMA typically takes several hours to complete. To facil-
itate the computations of PRIMA from within
EXPANDER, we added a preprocessing phase, which
decreased the running time to just a few minutes on a
standard PC. The preprocessing phase is run by us on
occasions of major updates to genome sequence assem-
blies of the supported organisms (typically, once every
few months). It generates promoter-fingerprints file per
organism. These fingerprints files map computationally-
identified high scoring putative binding sites ('hits') of all
TFs to the entire set of promoters in the organisms. In the
version integrated in EXPANDER, PRIMA loads the hits
data from the fingerprints files rather than scanning pro-
moter sequences de-novo on each run, thereby drastically
reducing the running time. This improvement greatly
enhanced the flexibility of PRIMA, enabling its execution
in an iterative way, in which results obtained by different
clustering solutions can be routinely compared.
EXPANDER provides genome-wide pre-processed pro-
moter fingerprints files for the six organisms that are we
currently support (yeast, worm, fly, mouse, rat and
human). The integration of PRIMA into EXPANDER

allows the user to both identify the major expression pat-
terns in his/her data (by applying EXPANDER's cluster
analysis module), and points to transcription factors that
underlie the transcriptional alterations observed in the
clusters (Fig 6).

Demonstration of EXPANDER's capabilities
To demonstrate the utility of the EXPANDER package, we
applied it to a very large dataset published recently by
Murray et al [20]. This study recorded expression profiles
in several human cell lines exposed to various stressful
conditions. The authors integrated these data with a data-
set in which expression profiles were measured through-
out the progression of the cell cycle [21]. The combined
dataset contains expression data for 36,825 probes meas-
ured over 174 conditions. The analysis of such complex
dataset poses a daunting bioinformatics challenge. Mur-
ray et al. used the Cluster/TreeView tool [3] to
hierarchically cluster this dataset, and by visual inspection
of the resulting tree defined the main clusters in the data.
A second "adoption step" was then applied, in which each
main cluster adopted genes whose expression pattern
resembled the cluster's mean pattern. Overall, 23 clusters
containing 1245 distinct genes were reported. Biological
meaning was assigned to the clusters by inspection of
their expression profiles and of the genes they contain. No
promoter analysis was reported.

As we noted above, when analyzing large datasets, biclus-
tering becomes more appropriate than clustering. There-
fore, we subjected this dataset to bicluster analysis using
SAMBA. We first replaced missing entries with 0 (which
corresponds to 'no change' in log-transformed data) and
then scanned the dataset for probes whose expression was
changed by at least 2-fold in at least 7 conditions. Some
10% of the clones (3,392) passed this filtering. We
applied SAMBA to the union of these genes and the 1245
genes analyzed by Murray et al. The union contains 3892
genes. SAMBA identified 155 biclusters on this filtered
dataset. (These biclusters can overlap – genes can be
assigned to several biclusters – but are not redundant: a
pruning step removes highly overlapping biclusters.) The
identified biclusters reveal the major expression patterns
that underlie this intricate dataset. Next, we aimed to
assign biclusters with putative functional meaning, and to
identify major TFs that regulate the transcriptional
responses captured by them. To this goal, we applied the
TANGO and PRIMA modules (both were run with default
parameters).

The purpose of this exercise is not to apply in-depth bio-
logical analysis of stress responses in human cells, but to
demonstrate the strength and agility of EXPANDER in
analysis of complex microarray datasets. Therefore we
only briefly summarize some of the major biclusters
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identified in the dataset, along with their putative biolog-
ical roles and transcriptional regulators that were compu-
tationally discovered by EXPANDER. The major biclusters
identified are listed in Table 1 and some of them are pre-
sented in Additional file 1. In agreement with Murray et
al., we found that most of the transcriptional responses to
stressful conditions were agent- and cell-type- specific (for
example, bicluster #1 represents 145 genes that were acti-
vated only in Hela cells exposed to heat shock; bicluster
#24 represents over 100 genes that were activated only in

fibroblasts exposed to DDT). In addition, some biclusters
correspond to more general stress responses that were
induced by multiple agents and in different cell lines (for
example, bicluster #53 contains 51 genes that were down-
regulated in response to both oxidative stress and heat
shock in Hela cells and in response to heat shock in
fibroblasts). As pointed by Murray et al, analyzing
together the stress data and the cell-cycle data allows the
distinction between genes that respond directly to the
stress agents and those whose change can be explained by

Promoter cis-regulatory elements enrichmentFigure 6
Promoter cis-regulatory elements enrichment. (A) Transcription factors (TFs) whose DNA binding site signatures are over-
represented in promoters of the genes assigned to the clusters are displayed in bar diagrams. Like the display for the GO anal-
ysis (Fig. 5), each diagram corresponds to a specific gene group (cluster or bicluster), TFs are color-coded and identified by the 
accession number of their binding site model in TRANSFAC DB. The statistical significance of the observed enrichment for a 
TF is represented by the height of its bar (-log10(p-value)). The TF enrichment factor, which is the ratio between the preva-
lence of the TF hits in the gene group and in the background set of promoters, is indicated above the bar. (B) Clicking on a spe-
cific bar pops-up a window that lists the genes in the group whose promoters were found to contain a hit for that TF. In this 
window, genes are linked to central annotation DB of the analyzed organism as specified in the legend of Figure 5.
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differences in the fraction of cells in the different phases
of the cell cycle due to activation of cell cycle checkpoints
after exposure to damaging agents. Indeed, bicluster #106
is enriched for DNA replication genes, up-regulated in S-
phase time points in the cell-cycle dataset, and down-reg-
ulated in fibroblasts exposed to either DDT or Menadi-
one, probably reflecting an arrest of these cells in early G1
or G2 phase. Similarly, biclusters #40 and #104 show the
down-regulation of mitotic genes in several cell lines and
in response to various stress agents, probably reflecting
the reduction in the fraction of cells undergoing mitosis in
these stressed cell populations.

In several biclusters PRIMA identified significant enrich-
ment for binding site signatures of TFs that are known to
control the respective biological processes (e.g., over-rep-
resentation of E2F binding site in bicluster #106, which is
enriched for DNA replication genes; enrichment of NF-Y
binding site in bicluster #40, which is enriched for mitotic
genes). In other biclusters PRIMA suggests novel links
between TFs and stress responses (e.g., over-representa-

tion of N-Myc binding site in bicluster #53, which con-
tains genes that are repressed by different stresses).

Some of EXPANDER's salient advantages are evident from
the above analysis: The biclustering module, which is
unique to EXPANDER among packages for microarray
data analysis, allows systematic detection of the major
expression patterns in highly complex datasets. Biclusters
provide higher resolution gene groups, some encompass-
ing many conditions but most covering relatively small
subsets and thus focusing on specific phenomena. Func-
tional enrichment and promoter analyses are done in a
streamlined and integrated fashion, and so most of the
expert's effort can be devoted to biological interpretation.
Last, analysis of microarray data requires experimentation
with various filtering thresholds and algorithmic
parameters settings; therefore it is of high importance that
the analysis modules will require relatively short running
time. EXPANDER was designed to meet this requirement.
A full analysis iteration, which includes biclustering, func-
tional enrichment and promoter analyses applied to the

Table 1: Major biclusters identified in the test case analysis of the human stress data set.

Bicluster 
number

Num of 
Conditions

Num of 
Genes

Enriched GO (GOid, p-val) Enriched TF binding site 
signatures (TRANSFAC id, 
p-val)

Comments

106 9 79 DNA Replication (GO:0006260, 5.3 
× 10-9)

E2F (M00918, 1.3 × 10-7) Down-regulation of DNA 
replication genes in fibroblasts 
exposed to DDT or Menadione.

40 33 74 Mitosis (GO:0007067, 9.3 × 10-19) NF-Y (M00287, 6.7 × 10-22) 
IRF-7 (M00453, 9.5 × 10-5)

Down-regulation of mitotic genes 
in response to various stresses.

104 41 13 Mitosis (GO:0007067, 3.3 × 10-10) NF-Y (M00287, 3.4 × 10-9) Down-regulation of mitotic genes 
in response to various stresses.

16 5 89 Carboxylic acid metabolism 
(GO:0019752, 3.4 × 10-8)

--- Genes activated in Hela cells in 
response to Tunicamycin and 
Menadione

1 6 145 Response to unfolded protein 
(GO:0006986, 1.2 × 10-7)

--- Genes activated in Hela cells in 
response to heat shock

9 7 142 Response to unfolded protein 
(GO:0006986, 7.3 × 10-9)

AP-2alpha (M00469, 5.6 × 10-4) Genes activated in K562 cells in 
response to heat shock

111 10 24 Response to unfolded protein 
(GO:0006986, 1.5 × 10-7)

--- Genes that are activated by heat 
shock but repressed by crowding 
in Hela cells

24 6 105 Transcription corepressor 
(GO:0003714, 1.5 × 10-6)

HIF-1 (M00797, 6.9 × 10-4) Genes activated in fibroblasts in 
response to DDT

27 8 200 --- ---- Genes activated in fibroblasts in 
response to oxidative stress 
(H2O2)

61 9 134 --- ---- Genes that are repressed by 
crowding in fibroblasts.

53 22 51 ---- N-Myc(M00055, 2.7 × 10-6) Genes that are repressed in both 
Hela cells and fibroblasts.

89 9 115 --- AP-4 (M00005, 2.1 × 10-4) Genes repressed in Hela cells in 
response to various stresses.

123 10 31 --- NFkB (M00051, 7.1 × 10-4) Genes activated in Hela cells in 
response to DDT.
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above massive dataset that we used as an example, takes
some 15 mins on a standard PC.

Comparison with other tools
Several integrative packages for the analysis of gene
expression data were are available, among them are
INCLUSive [22], Expression-Profiler, GEPAS [23], TIGR's
Multiple Experiment Viewer, and ArrayPipe [24].
EXPANDER has several advantages over extant packages.
While some of the integrative packages are designed as
web portals that provide links to independent programs,
where, in some cases, the outputs are sent to the user by e-
mail and not always in a format directly compatible with
subsequent analysis steps, in EXPANDER the analysis flow
is inherently streamlined and straightforward. In addi-
tion, EXPANDERs' strength lies in the advanced algo-
rithms it uniquely provides: CLICK for clustering, SAMBA
for biclustering, TANGO for identification of GO enrich-
ment, and PRIMA for the identification of enriched TF
binding site signatures. The synergism that stems from the
integration of these algorithms into one package grants
EXPANDER with very powerful analytical capabilities.
Another feature that distinguishes EXPANDER is its built-
in support for genome-wide analysis of data obtained
from six major research organisms.

Conclusion
Designed as a 'one-stop shop' for gene expression data
analysis, EXPANDER provides algorithms covering main
analysis steps including (1) the initial process of normal-
ization and filtering for removing biases and focusing
downstream analysis on responding genes in the dataset;
(2) clustering and biclustering to discover the main
expression patterns in the data; (3) high-level functional
enrichment analysis; and (4) promoter cis-element analy-
sis to gain insights on the biological meaning of the iden-
tified expression patterns and to point to transcriptional
regulators that underlie them. These integrated capabili-
ties provided by EXPANDER and its built-in support of
multiple organisms make it a very powerful tool for anal-
ysis of microarray data. Although some of the analysis
modules implemented in EXPANDER are based on
sophisticated algorithms, their execution remains simple
and intuitive.

We will routinely post on EXPANDER's website updated
GO annotation and promoter fingerprint files for all the
supported organisms. EXPANDER's users will be notified
of such updates. We will continue to maintain and expand
EXPANDER to keep it as an integrative suite that provides
state-of-the-art algorithms and visualization utilities for
analysis of microarray data. We will also expand the group
of organisms supported by the package according to the
availability of appropriate information and data.

Availability and requirements
• Project name: EXPANDER

• Project home page: http://www.cs.tau.ac.il/~rshamir/
expander

• Operating system(s): Windows, UNIX

• Programming language: Java for the envelope and C for
most of the algorithms.

• Other requirements: Java 1.4 or higher

• License: free for non-commercial users.

• Any restrictions to use by non-academics: License
needed.
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SOM – Self Organizing Maps

CLICK – CLuster Identification via Connectivity Kernels
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TF – Transcription factor
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Additional File 1
Examples of 13 major biclusters identified on the human cells stress-
response dataset. Enriched GO categories and TFBS signature found in 
these biclusters are summarized in Table 1. In each matrix, rows and col-
umns correspond, respectively, to genes and conditions that participate in 
the bicluster. Labels of the conditions follow this convention: the cell line 
is indicated first (Hela for Hela cells, WI for WI38 fibroblasts, or K for 
K-562 cells), followed by an indication for the stress agent (HS – heat 
shock, DDT, Ox – H2O2 oxidative stress, Crd – crowding, Men – Mena-
dione, Tun – Tunicamycin, CC – cell cycle data measured in Hela cells 
synchronized using double thymidine, and CCb – cell cycle data in Hela 
cells synchronized using thymidine-nocodazole). The last number in the 
label indicates the time point.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-232-S1.zip]
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