
Expanding From Discrete To Continuous
Estimation Of Distribution Algorithms:

The IDEA

Peter A.N. Bosman and Dirk Thierens

Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{peterb, Dirk.Thierens}@cs.uu.nl

Abstract. The direct application of statistics to stochastic optimiza-
tion based on iterated density estimation has become more important
and present in evolutionary computation over the last few years. The
estimation of densities over selected samples and the sampling from the
resulting distributions, is a combination of the recombination and muta-
tion steps used in evolutionary algorithms. We introduce the framework
named IDEA to formalize this notion. By combining continuous proba-
bility theory with techniques from existing algorithms, this framework
allows us to define new continuous evolutionary optimization algorithms.

1 Introduction

Algorithms in evolutionary optimization guide their search through statistics
based on a vector of samples, often called a population. By using this stochastic
information, non–deterministic induction is performed in order to attempt to
use the structure of the search space and thereby aid the search for the optimal
solution. In order to perform induction, these samples are combined so as to gen-
erate new solutions that will hopefully be closer to the optimum. As this process
is iterated, convergence is intended to lead the algorithm to a final solution.

In the genetic algorithm [11, 14] and many variants thereof, values for problem
variables are often exchanged and subsequently individually adapted. Another
way of combining the samples is to regard them as being representative of some
probability distribution. Estimating this probability distribution and sampling
more solutions from it, is a global statistical type of inductive iterated search.
Such algorithms have been proposed for discrete spaces [2–4, 12, 13, 15, 17, 19, 21],
as well as in a limited way for continuous spaces [5, 10, 15, 22, 23]. An overview
of this field has been given by Pelikan, Goldberg and Lobo [20].

Our goal in this paper is to apply the search for good probability density
models to continuous spaces. To this end, we formalize the notion of building
and using probabilistic models in a new framework named IDEA. We show how
we can adjust existing techniques to be used in the continuous case. We thereby
define new evolutionary optimization algorithms. Using a set of test functions,
we validate their performance.

The remainder of this paper is organized as follows. In section 2, we present
the IDEA framework. In section 3 we describe a few existing algorithms that
build and use probabilistic models. In section 4 we state some derivations of
probability density functions (pdfs). We use the described algorithms and pdfs
within the IDEA in our experiments in section 5. Topics for further research are
discussed in section 6 and our final conclusions are drawn in section 7.

2 The IDEA

We write a = (a0,a1, . . . ,a|a|−1) for a vector a of length |a|. The ordering of the
elements in a vector is relevant. We assume to have l random variables available,
meaning that each sample point is an l dimensional vector. We introduce the
notation a〈c〉 = (ac0 , ac1 , . . . , ac|c|−1) Let L = (0, 1, . . . , l − 1) be a vector of l
numbers and let Z = (Z0, Z1, . . . , Zl−1) be a vector of l random variables. We
assume that we have an l dimensional cost function C(z〈L〉) which without loss
of generality we seek to minimize. Without any prior information on C(z〈L〉), we
might as well assume a uniform distribution over Z. Now denote a probability
distribution that is uniformly distributed over all z〈L〉 with C(z〈L〉) ≤ θ and
that has a probability of 0 otherwise, by P θ(Z). In the discrete case we have:

P θ(Z)(z〈L〉) =
{ 1

|{z′〈L〉|C(z′〈L〉)≤θ}| if C(z〈L〉) ≤ θ

0 otherwise
(1)

Note that if we find P θ∗
(Z) where θ∗ = minz〈L〉{C(z〈L〉)}, a single sample

drawn from P θ∗
(Z) provides an optimal solution z〈L〉∗.

A probability distribution is made up of a probability density structure (pds)
and a probability density function (pdf) for each element in the pds. In graphical
models literature, a pds is also called a factorization. Let a�b be the splicing of
a and b such that the elements of b are placed behind the elements of a, giving
|a�b| = |a|+|b|. Using graphical modelling [9], we can denote any non–clustered
pds with conditional probabilities P (Z〈a〉|Z〈b〉) = P (Z〈a�b〉)/P (Z〈b〉). We let
π(·) be a function that returns a vector π(i) = (π(i)0, π(i)1, . . . , π(i)|π(i)|−1) of
indices denoting the variables that Zi is conditionally dependent on. We call the
graph that results when taking the Zi as nodes and having an arc from node Zi

to node Zj if and only if i ∈ π(j), the pds graph. The only required condition to
be able to express any non–clustered pds using conditional probabilities, is that
this graph needs to be acyclic. By using a permutation vector ω, the definition of
a pds (π,ω) that models conditional factorizations, can be formalized as follows:

P(π,ω)(Z) =
l−1∏
i=0

P (Zωi
|Z〈π(ωi)〉) (2)

such that ∀i∈L〈ωi ∈ L ∧ ∀k∈L−(i)〈ωi �= ωk〉〉
∀i∈L〈∀k∈π(ωi)〈k ∈ {ωi+1,ωi+2, . . . ,ωl−1}〉〉

Each P (Zωi |Z〈π(ωi)〉) from equation 2 is a special case multivariate condi-
tional pdf. This means that any such conditional pdf along with a pds (π,ω)

defines a probability distribution over Z. In general, we denote a pds by f. The
pds is constrained to be of a certain form. For instance, in the case of equa-
tion 2, the constraints impose f to describe a directed acyclic graph. We denote
the constrained space of all possible structures by C. A probability distribution
over Z is then formally denoted by Pf(Z), f ∈ C.

Denote the largest function value of a selection of samples at iteration t by
θt. We find a pds and estimate each pdf to best approximate P θt(Z). We can
then sample from the resulting probability distribution to get more samples.
By formalizing this rationale in an iterative algorithm, we define the Iterated
Density Estimation Evolutionary Algorithm (IDEA):

IDEA(n, τ , m, sel(), rep(), ter(), sea(), est(), sam())

Initialize an empty vector of samples P ← ()
Add and evaluate n random samples for i ← 0 to n − 1 do

P ← P � NewRandomVector()
c[P i] ← C(P i)

Initialize the iteration counter t ← 0
Iterate until termination while ¬ter() do

Select �τn� samples (z0〈L〉, z1〈L〉, . . . , z�τn�−1〈L〉) ← sel()

Set θt to the worst selected cost θt ← c[zk〈L〉] such that

∀i∈Nτ 〈c[zi〈L〉] ≤ c[zk〈L〉]〉
Search for a pds f f ← sea()

Estimate each pdf in P̂f(Z) {P̂ (·)|P̂ (·) ⇐ P̂f(Z)} ← est()
Create an empty vector of new samples O ← ()

Sample m new samples from P̂f(Z) for i ← 0 to m − 1 do
O ← O � sam()

Replace a part of P with a part of O rep()
Evaluate the new samples in P for each unevaluated P i do

c[P i] ← C(P i)
Update the generation counter t ← t + 1
Denote the required iterations by tend tend ← t

In the IDEA framework, we have that Nτ = (0, 1, . . . , 	τn
 − 1), τ ∈ [1
n , 1],

sel() is the selection operator, rep() replaces a subset of P with a subset of O,
ter() is the termination condition, sea() is a pds search algorithm, est() estimates
each pdf and sam() generates a single sample from P̂f(Z). The notation P̂ (·) ⇐
P̂f means that P̂ (·) is one of the pdfs that is implied by the model f.

The IDEA is a true evolutionary algorithm in the sense that a population of
individuals is used from which individuals are selected to generate new offspring
with. Using these offspring along with the parent individuals and the current
population, a new population is constructed. By referring to the iterations in
the IDEA as generations, the evolutionary correspondence is even more obvious.

Note that in the IDEA, we have used the approximation notation P̂ θt

f (Z)
instead of the true distribution P θt

f (Z). An approximation is required because
the determined distribution is based upon samples and the underlying density
model is an assumption on the true model. This means that even though we
might achieve P̂ θt

f (Z) = P θt

f (Z), in general this is not the case.

If we set m to (n − 	τn
), sel() to selection by taking the best 	τn
 vectors
and rep() to replacing the worst (n−	τn
) vectors by the new sampled vectors,
we have that θk+1 = θk − ε with ε ≥ 0. This assures that the search for θ∗ is
conveyed through a monotonically decreasing series θ0 ≥ θ1 ≥ . . . ≥ θtend

. We
call an IDEA with m, sel() and rep() so chosen, a monotonic IDEA.

If we set m in the IDEA to n and set rep() to replace P with O, we obtain
the EDA by Mühlenbein, Mahnig and Rodriguez [17]. In the EDA however, the
threshold θt cannot be enforced. Note how EDA is thus an instance of IDEA.

3 Probability density structure search algorithms

In order to search for a pds, a metric is required that guides the search. In
effect, this poses another optimization problem. The metric we use in this paper
is a distance metric to the full joint pds (π+,ω+), ∀i∈L〈ω+

i = i ∧ π+(i) =
(i + 1, i + 2, . . . , l − 1)〉. The distance metric is defined by the Kullback–Leibler
(KL) divergence. We write Y instead of Z from now on to indicate the use of
continuous random variables instead of either the discrete or continuous case.
Using our definitions, the KL divergence can be written as [7]:

D(P̂(π+,ω+)(Y)||P̂(π,ω)(Y)) = −h(P̂(π+,ω+)(Y)) +
l−1∑
i=0

h(P̂ (Yωi
|Y 〈π(ωi)〉)) (3)

Let a L, b L where a L means that a contains only elements of L.
In equation 3, h(Y 〈a〉) is the multivariate differential entropy and h(Y 〈a〉|Y 〈b〉)
is the conditional differential entropy. Let dy〈a〉 =

∏|a|−1
i=0 dyi be shorthand

notation for the multivariate derivative. We then have:

h(P (Y 〈a〉)) = −
∫

P (Y 〈a〉)(y〈a〉)ln(P (Y 〈a〉)(y〈a〉))dy〈a〉 (4)

h(P (Y 〈a〉|Y 〈b〉)) = h(P (Y 〈a � b〉)) − h(P (Y 〈b〉)) (5)

As the term h(P̂(π+,ω+)(Y)) in equation 3 is constant, an algorithm that
searches for a pds can use the KL divergence by minimizing the sum of the con-
ditional entropies imposed by (π,ω). This will cause the pds search algorithm to
search for a pds as close as possible to (π+,ω+) subject to additional constraints.

The probabilistic models used in previously proposed algorithms range from
lower order structures to structures of unbounded complexity. It has been em-
pirically shown by Bosman and Thierens [6] that a higher order pds is required
to solve higher order building block problems. We shortly state three previously
introduced pds search algorithms that we use in our experiments.

In the univariate distribution, all variables are regarded independently of
each other. The PBIL by Baluja and Caruana [2], the cGA by Harik, Lobo
and Goldberg [13], the UMDA by Mühlenbein and Paaß [18], and all known
approaches in the continuous case prior to the IDEA [10, 22, 23], use this pds. It
can be modelled by ∀i∈L〈π(i) = () ∧ ωi = i〉, giving: P̂(π,ω)(Z) =

∏l−1
i=0 P̂ (Zi).

In the MIMIC algorithm by De Bonet, Isbell and Viola [4], the pds is a
chain which is constrained to π(ωl−1) = ()∧∀i∈L−(l−1)〈π(ωi) = (ωi+1)〉, giving
P̂(π,ω)(Z) = (

∏l−2
i=0 P̂ (Zωi

|Zωi+1))P̂ (Zωl−1). To find the chain, an O(l2) greedy
approximation algorithm is used in MIMIC to minimize the KL divergence.

If the pds is constrained so that in addition to having an acyclic pds graph,
each node may have at most κ parents, the pds is constrained to ∀i∈L〈|π(i)| ≤ κ〉.
This general approach is used in the BOA by Pelikan, Goldberg and Cantú–
Paz [19], as well as the LFDA by Mühlenbein and Mahnig [16] and the EBNA
by Larrañaga, Etxeberria, Lozano and Peña. In the case of κ = 1, a polynomial
time algorithm can be used to minimize the KL divergence [5]. In the case of
κ > 1, a greedy algorithm is used that iteratively adds arcs to the pds graph.

There are other special case algorithms, such as the optimal dependency trees
approach by Baluja and Davies [3] and the ECGA by Harik [12]. Like the LFDA,
the ECGA uses minimum description length as a search metric. This metric has
the advantage that the resulting pds will not be overly complex. Using the KL
divergence, this can only be influenced by adjusting κ because the KL divergence
is merely a distance measure from a certain pds to (π+,ω+). We only regard the
three described sea() algorithms in combination with the KL divergence metric.
Note that using the KL metric and the (π+,ω+) pds is merely an instance of the
IDEA framework. This is also the case for using a certain pdf. The framework
is to be seen separately from the algorithms that can be modelled by it.

4 Probability density functions

Next to the pds search algorithms from section 3, we require to specify a pdf to
use. It follows from sections 2 and 3 that we require to know the multivariate
differential entropy as well as the conditional pdf. In this section, we specify two
well known pdfs that we use in our experiments within the IDEA framework.

A widely used parametric pdf is the normal pdf. Let S = (y0,y1, . . . ,y|S|−1)
be the set of selected samples. The sample average in dimension j is then
Yj = 1

|S|
∑|S|−1

i=0 yi
j . The sample covariance matrix over variables Y 〈a〉 is S =

1
|S|

∑|S|−1
i=0 (yi〈a〉 − Y 〈a〉)(yi〈a〉 − Y 〈a〉)T . Let s′ij = S−1(i, j). The conditional

pdf and the entropy can be stated as follows [5]:

fN (ya0 |y〈a − a0〉) =
1

σ
√

2π
e

−(ya0−µ)2

2σ2 (6)

where σ =
1√
s′00

, µ =
Ya0s

′
00 −

∑|a|−1
i=1 (yai

− Yai
)s′i0

s′00

h(Y 〈a〉) =
1
2
(|a| + ln((2π)|a|det(S))) (7)

The non–parametric normal kernels pdf places a normal pdf over every avail-
able sample point. Let si be a fixed standard deviation in the i-th dimension.
The conditional pdf and the entropy can then be stated as follows [8]:

fNK
(ya0 |y〈a − a0〉) =

|S|−1∑
i=0

νi
1

sa0

√
2π

e

−(ya0−yi
a0)2

2s2
a0 (8)

where νi =
e
−∑ |a|−1

j=1

(yaj
−yi

aj
)2

2s2
aj

∑|S|−1
k=0 e

−∑ |a|−1
j=1

(yaj
−yk

aj
)2

2s2
aj

h(Y 〈a〉) = (9)

1
2
ln

|S|2(2π)|a|

|a|−1∏
j=0

s2
aj

−

∫
fNK

(y〈a〉)ln

|S|−1∑

i=0

e
−∑ |a|−1

j=0

(yaj
−yi

aj
)2

2s2
aj

 dy〈a〉

An alternative pdf to the two described above, is the histogram pdf. Using
this pdf however does not scale up very well [7] and leads to an exponential
iteration running time in the order of rκ where r is the amount of bins to use
in each dimension. The normal pdf is very efficient but very cluster insensitive.
The normal kernels pdf is very sensitive to clusters but may very quickly overfit
the data. In addition, the running time each iteration for using the latter pdf
tends to be a lot greater than for the normal pdf.

5 Experiments

We have used the following continuous function optimization problems:

C1
1

4000

∑l−1
i=0(yi − 100)2 − ∏l−1

i=0 cos(yi−100√
i+1

) + 1 [−600, 600]l

C2 γi = 24
1000 (i + 2) − yi [−3, 3]l

C3 γ0 = Y0, γi = yi + γi−1 [−3, 3]l

C4 γ0 = Y0, γi = yi + sin(γi−1) [−3, 3]l

Function C1 is Griewank’s function and C2, C3 and C4 are test functions
by Baluja. For the latter three functions we have to maximize 100/(10−5 +∑l−1

i=0 |γi|). Griewank’s function should be minimized.
We use monotonic IDEAs with the normal pdf and the normal kernels pdf.

Furthermore, we use the KL metric and truncation selection. The amount of
available samples 	τn
 strongly influences the effectiveness of density estimation.
We expect a better performance if this amount goes up. Therefore, we fix τ and
increase n. To be more precise, we use the rule of thumb by Mühlenbein and
Mahnig [16] for FDA and set τ to 0.3. If all of the solutions differed by less than
5 ·10−7, termination was enforced. The si standard deviation parameters for the
normal kernels pdf were determined as (α · rangei)/	τn
 with α = 3 for C1.

Our results are presented using the notion of relative function evaluations
RFE = neRT, where ne is the required amount of function evaluations. Let

FT(x) be the time spent to perform x random function evaluations and let TT
be the average total algorithm time spent including the ne function evaluations.
The relative time is defined as RT = (TT − FT(ne))/FT(ne). The RFE metric
is a cpu independent fair running time comparison.

Functions C1 and C2 can be optimized efficiently by determining a value
for each variable separately. This is not the case for functions C3 and C4. We
therefore only used the univariate distribution on C1. In figure 1, the scalability
on C1 and C3 is shown, computed over 20 runs. We only used the normal pdf on
C3. The RFE at the minimal value of n at which C1 was minimized to a value
to reach (VTR) of 10−6 in all runs is shown on a linear scale. The computation
time scales approximately linearly for the IDEA variants. For l ∈ {250, 300}, the
VTR was never reached for the normal kernels. By allowing α to vary adaptively,
thereby obtaining a more flexible density estimator, this might be overcome. For
C3, we used a VTR of 5. The results are shown on a logarithmic scale. The true
pds of C3 can be seen to be the full joint distribution. Using this pds scales up
polynomially, whereas using the univariate model scales up exponentially. Using
the graph search with κ = 1 seems to scale up polynomially, but tests for a larger
value of l need to be run to be sure.

0

10000

20000

30000

40000

50000

60000

70000

50 100 150 200 250 300

R
el

at
iv

e
F

un
ct

io
n

E
va

lu
at

io
ns

 (
A

ve
ra

ge
)

Dimensions

Normal
Normal Kernels

10000

100000

1e+006

1e+007

1e+008

50 75 100 125 150

R
el

at
iv

e
F

un
ct

io
n

E
va

lu
at

io
ns

 (
A

ve
ra

ge
)

Dimensions

Univariate
Graph

Full Joint

Fig. 1. Results on C1 (left, linear) and C3 (right, logarithmic) for increasing dimension.

We compared the IDEA using the normal pdf to Evolution Strategies [1] (ES)
on C1. The ES has a (µ, λ) strategy with λ = 7µ and independent mutations
using either individual standard deviations nσ = l or a single standard deviation
nσ = 1. We initialized the standard deviations to 3.0 and used τG = 1/

√
2l and

τi = 1/
√

2
√

l. Table 2 shows the success rate (SR), which is the relative amount
of times the VTR of 10−6 was reached. The results are computed over 10 runs.
The parameters for the ES are indicated by (nσ, µ, λ) and for the IDEA by (n, τ).
We allowed 105 evaluations if l = 10 and 106 evaluations if l = 300. In all cases
except for ES (l, 30, 210) for l = 300 and IDEA (500, 0.3) for l ∈ {10, 300},
premature convergence resulted in SR < 100%. In the other two cases, the
maximum of evaluations was reached before convergence in unsuccessful runs.

The continuous PBIL approach by Sebag and Ducoulombier [22] was tested
on functions C2, C3 and C4. We used IDEAs with the KL metric and the normal
pdf in combination with the univariate distribution, the chain search algorithm,
the exact graph search algorithm for κ = 1 and a fixed chain according to the

ES IDEA

l (1, 15, 105) (l, 15, 105) (1, 30, 210) (l, 30, 210) (250, 0.3) (500, 0.3)

10 20% 10% 20% 40% 100% 70%
300 70% 0% 60% 0% 0% 100%

Fig. 2. Success rates on C1 in 10 and 300 dimensions.

function definitions, so ωi = l − i − 1, π(0) = () and π(i) = i − 1, i ≥ 1. For a
given pdf, results obtained with this pds is an upper bound for any pds in which
each node may have at most a single parent. We also tested the full joint pds.
We have used l = 100, a maximum of 2 · 105 evaluations and we have averaged
the results over 20 runs. We increased n in steps of 25 to find the best value for
n. Repeating earlier reported results [22], table 3 indicates that our approaches
perform better. We note that using the full joint pds requires very large values
for n. As a result, the amount of generations is very small since we are allowed
only 2 · 105 evaluations. This strongly influences the results.

C2, l = 100 C3, l = 100 C4, l = 100

Method C2 n RT C3 n RT C4 n RT

(10 + 50)–ES 399.07 — — 2.91 — — 7.56 — —
PBIL (Binary) 16.43 — — 2.12 — — 4.4 — —
PBIL (Gray) 366,77 — — 2.62 — — 5.61 — —

PBILC 4803 — — 4.76 — — 11.18 — —
IDEA NoU 9999999.87 225 4.92 4.51 150 5.00 13.40 250 0.95
IDEA NoC 9999999.90 250 17.83 5.30 200 18.65 14.85 300 3.71
IDEA NoG 9999999.96 350 130.17 7.50 275 44.32 27.73 550 4.95

IDEA NoFC 9999999.88 350 5.68 13.48 350 6.03 49.65 450 1.07
IDEA NoJ 1.81 7000 33.13 347.00 3575 59.76 360.62 3375 11.91

Fig. 3. Results on C2, C3 and C4 in 100 dimensions.

6 Discussion

Selecting what value of α to use for the normal kernels pdf is dependent on the
optimization problem. The value of α determines the smoothness of the fit [7],
which makes it intuitive that increasing α on smooth functions should give better
results. In our experiments, we empirically determined α, but it is worthwhile
to investigate how to use α adaptively.

Using the normal kernels pdf quickly tends to overfit the sample vector.
This can somewhat be regulated by α, but not entirely. The tendency to overfit
became apparent as the approach was highly sensitive to the value of 	τn
. Using
the normal pdf on the other hand almost always underfits a sample vector. The
normal mixture pdf with regularization is therefore an interesting trade–off that
seems very worthwhile to investigate next for multiple reasons.

In this paper, we have used the KL metric. The drawback of this metric is
that it is merely a distance metric to the fully joint distribution. This means
that unless the additional constraints on the pds are very specific, a pds search
algorithm will most likely not result in using the problem structure in an effective

way. Therefore, metrics such as the minimum description length or other direct
conditionality tests are strongly worth investigating. The algorithms tested in
this paper should be seen independently from the IDEA framework.

When we increase the size l of a problem, we are estimating a probability dis-
tribution in a highly dimensional space. Using the full joint pds in that case poses
problems for an IDEA. Estimating joint pdfs in highly dimensional spaces can
require a large amount of time as well as many samples to justify the estimation
because of the curse of dimensionality. However, the assumption that the cost
function is built up of bounded lower order interactions between the problem
variables is usually made. This implies that the actual pdfs that are being esti-
mated, are of a lower order. If the optimization problem is not built up of such
bounded lower order building blocks, using IDEAs is potentially a non–scalable
approach, depending on the pdf that is used and the problem definition.

7 Conclusions

We have used the algorithmic framework IDEA for modelling iterated density
estimation evolutionary algorithms. These algorithms make use of density esti-
mation techniques to build a probability distribution over the variables that code
a problem in order to perform optimization. To this end, a probability density
structure must be found and subsequently be used in density estimation. For a
set of existing search algorithms, we have applied and tested them in the IDEA
framework using two different density estimation models.

The experiments indicate that building and using probabilistic models for
continuous optimization problems is promising. This, in combination with its
modelling capabilities, shows that the IDEA is general, applicable and effective.

References

1. T. Bäck and H-P. Schwefel. Evolution strategies I: Variants and their computa-
tional implementation. In G. Winter, J. Priaux, M. Galn, and P. Cuesta, editors,
Genetic Algorithms in Engineering and Computer Science, Proc. of the First Short
Course EUROGEN’95, pages 111–126. Wiley, 1995.

2. S. Baluja and R. Caruana. Removing the genetics from the standard genetic
algorithm. In A. Prieditis and S. Russell, editors, Proc. of the 12th Int. Conf. on
Machine Learning, pages 38–46. Morgan Kauffman Pub., 1995.

3. S. Baluja and S. Davies. Using optimal dependency–trees for combinatorial opti-
mization: Learning the structure of the search space. In D.H. Fisher, editor, Proc.
of the 1997 Int. Conf. on Machine Learning. Morgan Kauffman Pub., 1997.

4. J.S. De Bonet, C. Isbell, and P. Viola. MIMIC: Finding optima by estimating
probability densities. Advances in Neural Information Processing, 9, 1996.

5. P.A.N. Bosman and D. Thierens. An algorithmic framework for density estimation
based evolutionary algorithms. Utrecht University Technical Report UU–CS–1999–
46. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-1999/1999-46.ps.gz, 1999.

6. P.A.N. Bosman and D. Thierens. Linkage information processing in distribu-
tion estimation algorithms. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon,

V. Honavar, M. Jakiela, and R.E. Smith, editors, Proc. of the GECCO–1999 Ge-
netic and Evolutionary Computation Conference, pages 60–67. M.K. Pub., 1999.

7. P.A.N. Bosman and D. Thierens. Continuous iterated density estimation evolu-
tionary algorithms within the IDEA framework. Utrecht Univ. Tech. Rep. UU–CS–
2000–15. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-15.ps.gz, 2000.

8. P.A.N. Bosman and D. Thierens. IDEAs based on the normal kernels proba-
bility density function. Utrecht University Technical Report UU–CS–2000–11.
ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-11.ps.gz, 2000.

9. D. Edwards. Introduction To Graphical Modelling. Springer–Verlag, 1995.
10. M. Gallagher, M. Fream, and T. Downs. Real–valued evolutionary optimization

using a flexible probability density estimator. In W. Banzhaf, J. Daida, A.E.
Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proc. of
the GECCO–1999 Gen. and Evol. Comp. Conf., pages 840–846. M.K. Pub., 1999.

11. D.E. Goldberg. Genetic Algorithms In Search, Optimization, And Machine Learn-
ing. Addison–Wesley, Reading, 1989.

12. G. Harik. Linkage learning via probabilistic modeling in the ECGA. IlliGAL Tech.
Report 99010. ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IlliGALs/99010.ps.Z, 1999.

13. G. Harik, F. Lobo, and D.E. Goldberg. The compact genetic algorithm. In Proc.
of the 1998 IEEE Int. Conf. on Evol. Comp., pages 523–528. IEEE Press, 1998.

14. J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University
of Michigan Press, 1975.

15. P. Larrañaga, R. Etxeberria, J.A. Lozano, and J.M. Peña. Optimization by learn-
ing and simulation of bayesian and gaussian networks. University of the Basque
Country Technical Report EHU-KZAA-IK-4/99. http://www.sc.ehu.es/ccwbayes/
postscript/kzaa-ik-04-99.ps, 1999.

16. H. Mühlenbein and T. Mahnig. FDA – a scalable evolutionary algorithm for the
optimization of additively decomposed functions. Evol. Comp., 7:353–376, 1999.

17. H. Mühlenbein, T. Mahnig, and O. Rodriguez. Schemata, distributions and graph-
ical models in evolutionary optimization. Journal of Heuristics, 5:215–247, 1999.

18. H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of
distributions I. binary parameters. In A.E. Eiben, T. Bäck, M. Schoenauer, and
H.-P. Schwefel, editors, Parallel Problem Solving from Nature – PPSN V, pages
178–187. Springer, 1998.

19. M. Pelikan, D.E. Goldberg, and E. Cantú-Paz. BOA: The bayesian optimiza-
tion algorithm. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar,
M. Jakiela, and R.E. Smith, editors, Proc. of the GECCO–1999 Genetic and Evo-
lutionary Computation Conference, pages 525–532. Morgan Kaufmann Pub., 1999.

20. M. Pelikan, D.E. Goldberg, and F. Lobo. A survey of optimization by build-
ing and using probabilistic models. IlliGAL Technical Report 99018. ftp://ftp-
illigal.ge.uiuc.edu/pub/papers/IlliGALs/99018.ps.Z, 1999.

21. M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algorithm.
In R. Roy, T. Furuhashi, K. Chawdry, and K. Pravir, editors, Advances in Soft
Computing – Engineering Design and Manufacturing. Springer–Verlag, 1999.

22. M. Sebag and A. Ducoulombier. Extending population–based incremental learning
to continuous search spaces. In A.E. Eiben, T. Bäck, M. Schoenauer, and H.-P.
Schwefel, editors, Parallel Problem Solving from Nature – PPSN V, pages 418–427.
Springer, 1998.

23. I. Servet, L. Trave-Massuyes, and D. Stern. Telephone network traffic overload-
ing diagnosis and evolutionary computation technique. In J.K. Hao, E. Lutton,
E. Ronald, M. Schoenauer, and D. Snyers, editors, Proc. of Artificial Evolution
’97, pages 137–144. Springer Verlag, LNCS 1363, 1997.

