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EXPANDING GRAVITATIONAL SYSTEMS
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DONALD G. SAAR1

Abstract. In this paper we obtain a classification of motion for Newtonian gravi-
tational systems as time approaches infinity. The basic assumption is that the motion
survives long enough to be studied, i.e., the solution exists in the interval (0, <x>). From
this classification it is possible to obtain a sketch of the evolving Newtonian universe.

The mathematical study of Newtonian gravitational systems has a long history
and has inspired a considerable amount of modern mathematics such as, among
other topics, ergodic theory, algebraic topology, qualitative theory of differential
equations and some functional analysis. Yet very little seems to be known about
gravitational systems beyond the two-body problem. In 1922, J. Chazy [1] was able
to classify the motion of the three-body problem as time, t, approaches infinity.
In 1967, H. Pollard [7] obtained the first general «-body results as t -> oo. He
obtained results concerning the maximum and minimum spacing between particles
as t -*■ oo. His work suggests that the behavior of systems with nonnegative energy
is in some sense a generalization of the two- and three-body problems.

It is the purpose of this paper to sharpen these results and to provide the first
classification of motion of the «-body problem, as t -> oo independent of the sign of
the energy. With this classification of motion a sketch of the evolution of Newton's
universe as ? -^ oo is possible. Also several remaining problems on the growth of
systems are partially answered.

It is interesting to note that previous classifications of motion have been
attempted in terms of the sign of the total energy of the system. It turns out that
this approach is far too restrictive and that the classification should be made
according to the rate of separation of the particles, as is done here.

It will be shown that in the absence of motion that we will call oscillatory and
pulsating, the «-body problem is quite well behaved. It separates into clusters where
the mutual distances between particles are bounded as t -> oo. The clusters form
subsystems characterized by the separation of clusters like t213. The centers of mass
of the subsystems separate asymptotically from each other as Ct.

Most of the results depend quite heavily on Tauberian theorems of the type of
Landau [20, p.  194] (we follow the customary usage of the o—O symbols):
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220 D. G. SAARI [May

fe C2(0, co),f(t)=o(t«) (or f(t) = 0(t°)) and f"(t)^-Ata~2 ^/'(0 = o(ia"1) (or
f(t) = 0(ta'1)) where A and a. are constants.

Probably A. Wintner [21, p. 429] was the first to recognize the power of
Tauberian arguments in celestial mechanics. He pointed out that some of Sund-
man's considerations in his discussion on binary collisions in the three-body prob-
lem [19] were of a Tauberian nature. (R. P. Boas, Jr., [2] extracted from Sundman's
work a simplified Tauberian argument and J. Karamata [3] extended the result.
Along this same line, papers of Pollard [8], Saari [15], and Pollard and Saari [12]
are of interest.) This approach of using Tauberian theorems was subsequently
exploited by H. Pollard in his paper on gravitational systems and by Pollard and
Saari [9], [10] in their discussions of singularities and collisions in the «-body
problem.

In addition to the above mentioned references, C. Siegel's paper [16] on collisions
in the three-body problem is part of the literature leading to this work.

While we borrow freely some of the ideas from the literature, and some of these
ideas have become almost standard arguments, most need to be strongly modified.
This is so, because in our setting the major problem is the existence of error terms
and the lack of integrals of motion. However, as a by-product, some of the altered
arguments turn out to be an improvement in their original setting where more
information is available.

The primary assumptions will be that the motion exists for all t in the interval
(0, oo) and that the center of mass of the system is located at the origin of some
inertial coordinate system.

The notation will be introduced as needed, but the following is basic. For positive
continuous functions/ g,f~g will imply that after some time there exist positive
constants A and B such that Ag(t)^f(t)-¿Bg(t).

The symbols mk, rk, vk denote respectively the mass, position and velocity of the
Arth particle. The same letter will be used to indicate the magnitude of a vector. For
example, rk= \rk\ and rkj=\rk — r,\. We define further

T=\^mkv\,U=      2     T^    and    I = \2>nkrl

If we assume the gravitational constant to be unity, then the law of conservation
of energy becomes T= U+h where A is the constant total energy. The conservation
of angular momentum is 2 mkrk xvk=c where c is a constant vector. The Lagrange-
Jacobi formula [6, p. 41] is simply d2I/dt2=U+2h and the Sundman inequality is
c2 + (dI/dt)2è4IT.

2. The Sundman inequality. Here we establish the validity of the Sundman
inequality. There are several proofs available [2], [7, p. 605] but this one has the
advantage that it is not only simple but it also includes the error term. (The proof
is a consequence of correspondence between H. Pollard and the author, leading to
[11]-)
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1971] EXPANDING GRAVITATIONAL SYSTEMS 221

By definition of the quantities involved,

2ZW*UW   " I   A\dt)
where Q=\ 2 mk (dfkldt)2. Hence

(2.1) (dI/dt)2^4IQ and equality is achieved if, and only if, rk(t) = Dk(I(t))m for
k = \,2,...,n. Dk is a positive constant.

By definition of c,

c = 2(^)1,2^((^)1/2--^-j-

Taking the absolute value of both sides and using the Cauchy inequality yields

c* 2 »»* 2 "^7-j2 = »2 -^)2-

The sum on the right-hand side is equal to 2(F— Q). This follows from the
definition of T and the relationship

r2v2 = (r-v)2 + (rxv)2 = r2 (dr/dt)2+(rxv)2.

Hence

(2.2) c2 Ú 4/(F- Q)

and

(2.3) c2 + (dl¡dt)2 ¿4IT.

3. Classification of motion. In the three-body problem, there is the possibility
that some initial conditions lead to motion with the property that, as t -»■ oo,
lim inf(r!2/^23) = 0 and lim sup (r12/r23)>0 where limsupr23 = oo [1], [13]. We
generalize this definition to the «-body problem as follows :

Definition. Masses mk, mj; and m¡ are oscillatory if, as t —> 00, lim sup /-i; = oo,
lim sup (rki/rij)>0 and lim inf (rw/ry) = 0. We say that rx participates in oscillatory
motion if / can be chosen as one of the above indices. The existence of such motion
in the three-body problem has been shown by Sitnikov [17]. Bounds on its behavior
in the three-body problem have been found by Saari [13].

In this section we lead to a precise statement of the classification of motion. But
first we state and prove the following lemma. This will show what type of motion to
expect and will motivate the development of the machinery which follows.

Lemma. Consider the p-body problem. Suppose lim sup r12 = oo.

0 < lim inf (rsj/rX2) ^ lim sup (rsj/rX2) < 00,       s ¥= j-
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222 D. G. SAARI [May

Then either

rs = Cst + 0(lnt)

or

rslxt2'3,       s*j.

Proof. We first show that the total energy must be nonnegative so assume the
contrary, i.e., A<0. As TaO, it follows from the conservation of energy integral
that U+h^O or U^\h\. By the second hypothesis /1/2sst/_1 hence there exists
positive A such that after some time AI~ll2^\h\. But this states that /=0(1),
which contradicts the first hypothesis.

If A>0, then by definition of U, it follows that d2I/dt2=U+2h^2h, or I^ht2.
Again from the second hypothesis Ill2xrsj, s^j, hence r~j1 = 0(t~1). That
is d\/dt2 = 0(t-2). Integration yields drs(t2)/dt-drs(t1)/dt = 0(t{1-t21). As
i1( t2 -> oo, the right-hand side goes to zero, forcing the left-hand side to zero also.
Hence for all s,drs/dt = Cs + 0(t-1), or rs = Cst + 0(ln t). If all Cs=0, then rsj
= 0(ln t) and /1,2 = 0(ln t), contrary to /¿Ai2. Thus some Cs^0, say s= 1. From
the fact that the center of mass is fixed at 0, m1r1t'1= —2? »Vi*-* -*■ mxCi. Hence
for some other index, Cs#0. It follows directly from the second hypothesis that
rsjxt, i.e., at most one Cs=0.

The last case is A = 0. Again from the second hypothesis Z1'3»?/-1, hence the
Lagrange-Jacobi relationship becomes d2l/dt2xl~112. Note that d2I/dt2>0,
hence dl/dt is an increasing function. It must eventually become positive, otherwise
/ is bounded which is contrary to hypothesis. Once dl/dt becomes positive, it
remains positive. This implies / is eventually monotonically increasing, and as it is
unbounded, /—>- oo. Using these facts, after some time

(dl/dt)d2l/dt2x(dl/dt)l-112   or   (dl/dt)2 x I1'2.

(The constant of integration is absorbed by the fact /-> oo.) Again by the fact that
dl/dt eventually becomes positive,

(dl/dtyi11* x 1    or   I3'1 x t.

But as Ill2Xrsj, s^j, this implies the conclusion and completes the proof of the
lemma.

What we do next is to try to implement the intuitive idea that in the general
«-body problem, at large enough distances "slower motions" can be viewed as
point masses. Hence the motion should be in some sense similar to that given in the
lemma.

Choose indices k,j such that lim sup rkj = co and rk, r¡ do not participate in the
same oscillatory motion. (If no such indices exist, the motion is either oscillatory
and/or bounded.) rkj divides, in a natural fashion, the « masses into clusters. We
collect those indices i for which rM/rM -> 0 as t -> oo into set Gk, with a similar
definition for set G,. As the particles mk and m¡ do not participate in the same
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1971] EXPANDING GRAVITATIONAL SYSTEMS 223

oscillatory motion, it follows from the triangle inequality that this can be done.
(Note, rk may participate in oscillatory motion, but the point is that rk and r¡ do not
define the same oscillatory motion. That is, the growth properties of the oscillatory
motion is either much slower or faster than rkj.)

After rkj has been chosen, we are simply interested in its asymptotic properties,
so let/(i) 6 C2(0, oo) be such that f(t)xrki.

For all / such that / is not in Gk or G¡ and lim inf (rkl/f(t)) < oo, we can define G¡.
That is, we collect all indices into G¡ which adhere to rt in the sense defined above.
Again by precluding participation in oscillatory motion, the triangle inequality
yields lim sup (rkilf(t))<oo. We (relabel and) enumerate the sets Gs, s = \,2,..., p,
and define Msps = 2¡eGs "Vf where Ms = 2¡e0s m¡.

The equations of motion for ps are

Ms d2pjdt2 = 2 «i d2rjdt

y     rnkmi(rk-rj) [     ^        y    mkmlrk-r>)

k.ieGs;fc#i ' kt 1-1;) + s feGs:fceGy ' *i

^     mkmi(rk-rj)

ieGs: kiGj rM

The first double sum on the right-hand side vanishes by the antisymmetry of the
term rk-r¡. Each term of the last double sum is of the magnitude 0(rki2). For these
values of k,f(t)/rki -> 0 as t ->• oo, hence the sum is o(f(t)~2) and

"•^=  i    2 ^p^+o(f(t)-2)
ul i = l:i*p ieGs:keG, rM

=     2    M>M%>-*>+    J        2    mimk(rk-r^')+o(f(ty2).
i = l:i*s fis ; = l;;#s isGs;keG, \'ik      Psjl

Each term of the triple sum is of the order

By the triangle inequality and the definition of the sets Gs, rik = psj + o(pSJ). Hence
each term of the triple sum is o(f(t)~2).

This leads to the final form of the equations of motion:

(3.1)       Ms^i=     2     MsMÁP3í~Ps) + o(f(ty2),       s=\,2,...,p.
ul 1 = l:i*s Pis

We first show that equation (3.1) retains the same form if ps is expressed relative
to the common center of mass of the vectors ps rather than the origin of the inertial
coordinate system. Let A/ = 2?=i Ms and MP=2 Msps.

By the antisymmetry of py-ps and (3.1), Md2P/dt2 = o(f(t)~2). Hence, if we
replace pk by pk — P in (3.1), the above estimate for d2P[dt2 and the fact (p;-P)
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224 D. G. SAARI [May

— (ps —P) = (pj — ps) yield differential equations which are again of the form (3.1).
For the remainder of this paper we assume equations (3.1) are expressed relative to
their common center of mass.

The restrictions on oscillatory motion for the «-body problem implies the
construction of the sets Gs. These sets define a system which is a perturbation of the
/>-body problem defined in the lemma at the beginning of this section. One wishes
to prove a perturbation theorem, but needs an additional assumption: no "pulsat-
ing motion".

Motivated by the definition of U and T, define

v=y*MJM1   and
Psl

(3.2)

H!"-f=iz*^($-f)'
where (*) denotes the double summation 1 t^s<jSp- The two sums in the definition
of E are equal as a consequence of ps being expressed relative to the center of mass
P,i.e.,ZMsdpJdt=0.

With the definition of V, (3.1) can now be stated as

(3.3) Msd^ = d£+o(f(t)-2).

If the error term were not present, then a conservation of energy integral would
follow: E=V+H where H is a constant. As E^O, Vxftt)'1 and/(/) is not
bounded, it follows that //^0. Hence lim inf E/V^ 1.

When the error term is present, a possible interpretation for lim inf /s/Kä 1 is
that in some sense (3.3) does satisfy a "conservation of energy" relationship. This
will be made more explicit in Corollary 1.2.

We can now state the main theorem leading to the classification of motion.

Theorem 1. If Urn inf E/V>\ as t -> oo iAe« either

ps = Cst+Dslnt+o(lnt),       s = 1,2, ...,p,

or

Ps! x i2'3,      s ¥= j

Cs and Ds are constant vectors. \CS — Ck\ ̂ Ofor s^k.

Corollary 1.1. For all i, k, at least one of the following occurs as t -> oo :
1. r¡ and rk participate in the same oscillatory motion.
2. rik = 0(l).
3. rikxt™.
4. rik~Cikt, where Cik is some positive constant.
5. rlk defines a subsystem with the property lim inf E/V^.\ as I -> oo.
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1971] EXPANDING GRAVITATIONAL SYSTEMS 225

Proof of Corollary 1.1. If r{ and r¡ do not participate in the same oscillatory
motion and ri}¥ 0(1), then rM can be used to define (3.1). Let / e Gs and k s G¡, s^j.
As rx = ps + o(rik) and rk = p3 + o(rik), the conclusion of Corollary 1.1 follows directly
from that of Theorem 1.

The condition "lim inf E\V>\" will be discussed in greater detail in §6. But
here we state the following which shows that it does imply a conservation of energy
relationship :

Corollary 1.2. liminfF/F>^ as r->oo if and only if E=V+H+o(V) as
t -> oo. H is a nonnegative constant.

For purposes of identification we call the case lim inf E/V^^ pulsating motion.

4. Proof of Theorem 1 and Corollary 1.2. First the proof of Theorem 1. Moti-
vated by the definition of and properties of /, we define

j - \2 MsPs = ¿2* mmá»,-?;?'

From the definition of V and Euler's theorem, 2 Ps • d F/Sps = — V. Hence, from
(3.2), (3.3) and the fact Vxf(t)-\

(4-1) % = 2M°W + 2M^-W? - 2E-V+o(f(tyi).

As lim inf F/F>^, after some time there exists a positive constant B such that
2E-V^BV, or

d2J/dt2 ^ BV+o(V).

By the definition of J,Jxf(t)2, or

(4.2) «/V/A8 ^ ÄZ-^ + oi/-1'2).

(5 may have a different value with each usage.) But this implies d2J/dt2 is positive
after some time, or that dJ/dt is monotonically increasing. As / is unbounded and
positive, there is some tx for which dJ(tx)/dt^O; hence, it follows that dJ/dt is
positive for t>tx. Using this fact and (4.2) we have

Integrating from a to t, we have

(dJ/dt)2 ^ BJm + o(Jll2) + C

where C is a constant of integration.
As dJ/dt is positive and J is unbounded, it follows that /-> oo; hence C can be

incorporated into the error term.
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Again by the fact that dJ/dt is positive, we have

(dJ/dO/J11* S B+o(l).

Integration yields

J3li £ Bt + o(t)   or   J^ Btil3 + o(til3).

Now, as Jxf(tf, we have/(i)^5i2/3.
From (3.1), this implies

^ = 0(l/r*'3),       s=l,...,p.

Integrating from ^ to t2, t1 < t2,

(4.3) d9s(t2)/dt - dPs(h)/dt = 0(t2 1'3 - if1'3).

As fi, i2-> oo, the right-hand side approaches zero, carrying the left-hand side to
zero with it. By the Cauchy criterion for the existence of a limit, this implies

(4.4) dps/dt->Cs,       s = l,...,p.

Integration again yields

(4.5) Ps ~ Qt,

where for any choice of s such that Cs=0, ps = o(l).
We assume first that at least one Cs^0, say Cx- Then as the ps are expressed

relative to their common center of mass, 2 A/5ps = 0 or

(4.6) -Mid = hm f Mjfjt-1 = y MSCS.
i-00   s = 2 s = 2

Hence, for at least one other choice of subscript, say s = 2, (4.4) has a nonzero limit.
As the masses are positive and there is a (— 1) term on the left-hand side of (4.6),
C2can be chosen so that \C1 — C2|^0. This means that |pi — p2|~ |Ci — C2|i, or that
f(t) can be chosen as t.

Butas pskxt, we have from (4.5) psk=\ps — pk\~\Cs — Ck\txt, or |CS — Ck| ^Ofor
s^k. This means that at most one Cs = 0.

Substituting (4.5) back into (3.1) yields d2ps/dt2~Dst~2 where

_^Mi(Cj-Ck)
Us     ¿  |C,-Ck|a '

Integrating twice gives us the desired result

ps~ Cst-Dslnt.

We return to (4.4) and assume now that all Cs = 0. Letting r2 -> oo in (4.3), this
implies dps(t)/dt = 0(t-113), or Ps = 0(i2'3).
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That is,
fit) x Psl = |p.-p,| = 0(t2'3).

As it has already been shown that/(/)^5/2/3, it follows that psjxt213, and the
theorem is proved.

We now prove Corollary 1.2. One direction is obvious as E/ V= 1 + HV ~1
+ o(l)^l. To show the other direction assume first that f(t)xt213. Then (3.1)
becomes

d2ps _ dV
dt2      dPs

Ms"-£ = Ué+o(Ut*<3)

or
dps d2ps      dV dp. <\%H-dt   dt2      dps  dt

Now from the above proof of Theorem 1 and (4.3) it follows that \dpjdt\
= 0(t~113), hence the error term is o(t~513). Thus summing over s — \,...,p,

dt   ¿M* dt dt2    dps dt+°v   '    dt+0{t   h

Integrating from tx to t2,

(4.7) E(t2) - E(tx) = V(t2) - V(tx)+o(tx 2'3 - ti2'3).

As Vxt'213, we have, as t2, tx -> oo, that E(t2)-E(tx) -*■ 0, or by the Cauchy
criterion for the existence of a limit E -*■ H. By definition of E, H}t 0.

Allowing t2 ->■ oo in (4.7) and recalling that Vxt~213 it follows that

(4.8) E(t) = V(t) + H+o(V).

From the definition of F and the fact dpi/dt=0(t~113), it follows that #=0.
Mimicking the above argument with/(r) = t and the fact dps/dt~ C„ (4.8) follows.

In this case, the definition of E and the fact that dps/dt~Cs, where not all Cs=0,
implies that H=\ 2 AfsC2>0.

5. Susbystems. To summarize Theorem 1 : In the absence of oscillatory motion
and pulsating motion (lim inf E/V^%), the «-body problem is quite well behaved.
It separates into what we call clusters, where the mutual distances between p
particles are bounded as t -» oo. The clusters form subsystems characterized by the
separation of clusters like t213. The centers of mass of the subsystems separate
asymptotically from each other as Ct.

By imposing additional conditions and restrictions upon possible oscillatory and
pulsating motion, improvements of Theorem 1 can be made and some partial
answers to questions about the «-body problem can be obtained. In this section we
concentrate on the relationship between clusters, oscillatory motion and sub-
systems. Hence, for the remainder of this section assume Jx r4'3. We will need the
following:
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Lemma 1. IfJxtil3 then \dE/dt\, \dV/dt\ = 0(t-513).

Proof. As Jxtil3 we have/(í)s;í2'3 and ps¡xt2'3, s^j. Substituting this value of
f(t) into (3.1) and recalling that the ps, s=l,.. .,p, are expressed relative to their
common center of mass, dps/dt=0(t~113). Hence \dpsj/dt\^\dps/dt-dpj/dt\
= 0(r113). By definition

\dV/dt\e2MsMÁd2Pjdtl = 0(t-^3).

The conclusion for dE/dt follows from the expression prior to (4.7) and the above
estimates for dpjdt and/(i).

We rewrite (4.1) as

(5.1) d2J/dt2 = 2E-V+ei(t)

where e±(t) is the error term. Likewise we define e2(t) to be the error term of (4.8).
Note that ei,e2 = o(i-2'3).

We seek a more precise statement in terms of J and F concerning the behavior of
the subsystem. The following theorem gives us this information by stating that
under certain conditions we have asymptotic behavior for / and V. It is motivated
by a theorem of Pollard [7, p. 607]. Using the present terminology Pollard finds a
similar conclusion for one particle clusters where it turns out that no other motion
besides i2'3 separation is permitted. Also he requires the total energy of the system
to be zero. We make no restrictions on the total energy or the number of particles
in a cluster. The only restrictions are on possible oscillatory and pulsating motion.

Theorem 2. // j\ (e^u) + e2(u))J ~Ui du converges as i^oo, then J~At113,
dJ/dt~(4/3)At113 and V~(4/9)At~213 as t-^oo. A is some positive constant.

It is interesting to note that the conclusion of this theorem is similar to the type
of results one obtains in the problem of collision [9], [10], [21, pp. 255-257]. Of
course in the present setting t —> oo, whereas in collisions t —> 0. But, in collisions,
J and V exhibit the same type of behavior.

Theorem 2 will be extended by Corollaries 2.4 and 2.5. However the statement
and proof of these corollaries will be deferred until the end of this section to permit
the development of the necessary machinery. The proof of the theorem and
corollaries are complicated by the existence of the error term resulting from
possible bounded, pulsating or oscillatory motion. We employ Tauberian arguments
and the Sundman inequality to overcome this difficulty.

This is our first assumption on bounds for possible oscillatory and pulsating
motion. It is quite liberal as the following corollaries show.

Corollary 2.1. If oscillatory and pulsating motion do not occur, then J~Atil3
and F~(4/9Mr2'3.
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1971] EXPANDING GRAVITATIONAL SYSTEMS 229

Corollary 2.2. If oscillatory and/or pulsating motion occur only for those
particles having indices in Gs and ifi,jsGs,s=l,2,...,p; r¡, r, participating in this
motion implies rtj = 0(t2l3-£), e>0, then J-At*'3 and V~(4/9)At~213.

Proof of the corollaries. We prove only the second corollary. The first will follow
directly. As ps is the common center of mass for ru i s Gs,

2 m¿ri-9s)2 = TAT     2     "Wfa-PsM'V-Ps)]2
¡eG. Alvlsi,jeG¡.i*i

By hypothesis and Corollary 1.1, the right-hand side is 0(til3~2e). As the terms in
the sum on the left-hand side are all nonnegative, rt = ps + 0(r2/3_i). Hence for
arbitrary isGs and <xsGk,ria = psk + 0(t2l3~s) and rla/psk = l + 0(t~s). The error
term in (3.1) is now found to be 0(t~il3~e). The error term due to particles with
indices not in Gs, s=l,.. .,p, is 0(r~2) (from Theorem 1) hence ex(t), e2(t)
= 0(t~2,3's) and these values clearly satisfy the conditions of Theorem 2.

Proof of the theorem. We first show that (dJldt)jJVi~/>0, as r-^oo. As
f(t) = t2l3,Jxtil3 and Vxr213. From the proof of Theorem 1, H=0, hence (4.1)
and (4.8) imply d2J\dt2xr2]3, i.e. dJ/dtxt113. Hence (dJ/dt^J^xl. Thus if
(dJ/dt)/!11* has a limit as t -> oo, it is positive.

By definition of the terms involved,

d_ ldJ\dt\ _ 4Jd2J/dt2-(dJ/dt)2 = 4JE-(dJ/dt)2   4(E-V+ex)
dtXj11*) J5li J5li Jm

_ 4JE-(dJ/dt)2   4(e2 + ex)
jBii        +    jm

Integrating from tx to t,

. dJ/dtf  __ f 4JE-dJ2/dt^ f* 4(e2(u) + ex(u))f' 4JE-dJ2/dt    Ç*
Jm \tl     L       J5li k Jllé du.

As Jxtil3, Jllixt113 and by hypothesis, the second integral on the right-hand
side is bounded as t -> oo. As dl/dtxt113 and J11* X t113, the left-hand side is bounded
as t —> oo. Hence

(52> Í ' 4JE-(dJ/dt)2
JSH

du = 0(1)   as t -> oo.

By an argument similar to that in §2, dJ2/dt ^ 4JE, hence the integrand is positive
and the integral converges. That is, there exists a nonnegative constant B such that

Í* 4JE-dJ2ldt
-jsTT^-B = 0(\).
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By hypothesis the integral containing the error term converges as t -> oo. As the
right-hand side converges, so does the left-hand side. That is,

(dl/dtyj11* ~ / > 0,   or
(5.3) J3'* ~ // => / ~ Atil3   for some positive constant A.

From (5.3) we have dJ/dt~Btm where B is some positive constant. Integrating
both sides and comparing with J~Atm shows dJ/dt~(4/3)At113. This implies (from
(5.1) and (4.8)) d2J/dt2=V+o(r2'3) that

fJt
V(u)du~^At113.3

We would like to differentiate both sides of this relationship to obtain the desired
result that V(t)~(4/9)At~213. By a well-known Tauberian theorem, this can be
done if dV/dt = 0(1 ~5'3). But as this is the case, (by Lemma 1) the theorem is proved.

Corollary 2.3. Under the conditions of Theorem 2,

ilßk)-*r>).
Proof. By definition of the terms

1 V iAd PsV      E    2dJ/dt   4  J(5 4) iw^y = ----
<•    ; 2^M\dtt213)       i4'3   3 t 9i10'3

As E= V+o(V), the conclusion of Theorem 2 implies that the right-hand side is
o(t~2). As the left-hand side is the sum of positive quantities, the proof is completed.

In the case of subsystems, we would like to state ps~CsI2'3. While we are unable
to prove this, we can obtain a result of equal interest, namely pjt213, s= 1, 2,..., p,
asymptotically approach the vertices of central configurations.

Definition [21, p. 273]. We say that r(, i = 1,..., «, forms a central configuration
at time ij if, for all i, Xr¡(t1) = d2r¡(t1)/dt2 where A is a constant independent of i. That
is, Xmirt = dU/dri at time tv

For example, if « = 3, there are 3 collinear solutions (depending on the arrange-
ment of the masses) and one noncollinear central configuration—an equilateral
triangle [21, pp. 274-277].

Theorem 3. Under the hypothesis of Theorem 2 as t -*■ oo, pst~213 asymptotically
approaches the vertices of some central configuration.

(Again a result similar to this exists for a complete collapse of the «-body
problem [21, pp. 280-282]. With the new additional information available on
collisions [10], [11] Wintner's proof carries over with only minor modifications to
show that for any collision in the «-body problem the participating particles must
tend asymptotically to some central configuration. However, again because of
possible bounded and oscillatory motion, Wintner's proof cannot be directly
generalized to prove Theorem 3.)
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Proof. What we show is, for Rs = pst~213,

*} 1        O T/

9R*-MS8RS^°   ■»'-**.'-UV..,/».

From (4.1),

d29* _ ¿Lin tm\ - d2Rs tm , 4dR, ,-i/8_2
dt2 ~ dt2( s    '   '  dt2 l    +3 dt 9

J_iev\
M.;(fjr-+0(i-3)

where d V/dRs is defined by

sçMsMk(Rk-Rs)
L        R\

Note dV/dRsx 1, i.e., Rsk is bounded away from zero as / -»■ oo for all s, k, s^k.
By Corollary 2.3, the above can be expressed as

d2Rs  ,   2 _        I   BV      ,,,

Integrating from ^ to t,

f ¿2*s   , _,        f /2 „      1   8K\   .(5.5) j.,*_j(5*+_^ *+«,).

Integrating the left-hand side by parts,

—7-5- IT AM = I/2 -3- (w)      - 2        -j-5 M ÖW.

Again by Corollary 2.3, the right-hand side of the above is o(t). Hence (5.5) can be
expressed as

We would like to differentiate both sides of the above expression to obtain the
conclusion

2 „      1   dV     „
9Äs + Ms8Äs-*°   aS^°°-

But again from the Tauberian theorem^(/) = o(t) and d2g(t)/dt2 = 0(t ~x) => dg(t)/dt
= o(\), this can be done if

2^   _}_d_(8T
9 dt +Msdt\8R, ) - <*->.

That this is so follows from Corollary 2.3, and the fact Rtjxl. This completes the
proof.
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As stated earlier, we would like to have ps~Csi2'3. Clearly a sufficient condition
that this is the case would be that the square root of the right-hand side of (5.4) is
integrable. However this refined information on the behavior of F, J, and dJ/dt is
missing both for this problem and the problem of collision [10], [11].

What we can show is that in certain cases ps~ Cst213 where Cs is a nonnegative
constant.

Theorem 4. We assume the hypothesis of Theorem 2. For those values of p and
Ms, s=i,.. .,p, for which only a finite number of central configurations exist,
ps~Cst213 where Cs is some nonnegative constant. At most one Cs = 0.

This proof and the observation of a finite number of central configurations is
essentially that of Wintner [21, p. 282] as applied to complete collapse of the
system. As the proof carries over directly, we simply outline the details.

Proof. We first show that at most one Cs = 0. Assume ps~Cst213. As |ps—pk\
^P$+Pk=(Cs + Ck)t2l3 + o(t213), if Cs and Ck are both zero for some 5 and k, s^k;
then Psk = o(t213). But this is a contradiction to the fact Vxt~213.

As we have only a finite number of central configurations, the Rs must converge
to one central configuration as r->oo. Hence |/?(—R¡\ =A(r)CiJ + 0(l), where Cy
is the distance between vertices i and/ We first show that X(t) can be chosen as a
constant. As we are assuming that the vectors p„ s=1,..., p, are expressed relative
to the common center of mass,

J=Tm    2     MiMfa-py + od*'3)
ílyl lSi<!Sp

where M is the total mass. As J~Atil3 we have

Jrm = ¿2MiMXÄi-Äi)2+0(l)

= Ym2mím^+°^~a-

Hence A(í)2 is a constant plus terms o(l). As X(t) is continuous and nonzero,
(Vxt~2l3)X(t) can clearly be chosen as a constant.

Hence the vectors Rt are asymptotic to the vertices of a rigid body which may be
rotating about its center of mass. But as the center of mass of this body is fixed, it is
a simple matter to show that |Ät(/)| —> Ct as r-^-oo. The C¡ are nonnegative
constants.

Corollary 2.4. If¡\ (ex(u) + e2(u))J ~mdu=0(l)ast-+ oo, then the conclusions
of Corollary 2.3 and Theorem 3 follow.

Proof. The problem is to find new estimates for J, dJ/dt and d2J/dt2 to substitute
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into (5.4). With this error term and following the proof of Theorem 2, we still
obtain the statement

JT i^gffi-2 - J+«n.
We would like to show

The above estimates for J, dJ/dt, E, V, d2J/dt2 and dE/dt (from Lemma 1) imply

d (4JE-(dJ/dt)2\ __ 4(dJ/dt)E+4J dE/dt - 2J d2J/dt2   5 4JE- (dJ/dt)2
dt \        J5'*       j " J5li 4        J9,i

= 0(t-2).

To summarize we have a function ge C2(0, oo) such that g = o(l) and d2g/dt2
= 0(t~2). But by the Tauberian theorem this yields dg/dt = o(t~1). Hence

4JE-(dJ/dt)2 = o(rl)   or   4JE_(dJ/dt)2 = o(t2'3).

By (5.1) and (4.4) d2J/dt2 = E+o(t~213), so

4Jd2J/dt2 = (dJ/dt)2+o(t213).

As Jd2J/dt2 and (dJ/dt)2xt213,

4Jd2J/dt2~ (dJ/dt)2.

As dl/dtxt113, it is positive and

(5.6) 4(d2J/dt2)/(dJ/dt) ~ (dJ/dt)/J.

Now

d((dJ/dt)/J)jdt = (4Jd2J/dt2-(dJ/dt)2)J~2-3(d2J/dt2)J'1

= -3(d2J/dt2)J-1 + o(r2).

From   (5.6)   4(d2J/dt2)J-1~((dJ/dt)J-1)2,   or   by   defining  e(t)=(dJ/dt)J-1,
de/dt=~le2 + o(t-2) and e2xt~2. This implies that (de/dt)e~2= -| + o(l) or
-e-%=-i(t-t0)+o(t).
That is,

(5.7) J/(dJ/dt) ~ it.

By (5.6), (d2J/dt2)/(dJ/dt)~(3t)-1.
From (5.7) we have that ln/=ln/4/3 + o(ln/) or that J=h(t)tm. As Jxtil3,

h(t)x\. By (5.7) dJ/dt~(4/3)tll3h(t). In the same fashion,

d2J/dt2 ~ (4/9)r2l3h(t).
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With this information the proof of Corollary 2.3 follows. (These estimates are
substituted into (5.4).) The proof of Theorem 3 depends upon the validity of
Corollary 2.3, and so the conclusion of Theorem 3 still holds.

Note that from (5.7) t(dh\dt)h~^ -> 0. From this it follows that h(t) is a slowly
varying function in the sense of Karamata, i.e., h(ßt)/h(t) ->■ 1 for constant ß>0.
This does not imply that «(/)-> A as the example 2+cos(lnln/) shows. So a
remaining question is under what additional conditions can one say that h(t) -*• A,
i.e., that the conclusion of Theorem 2 holds?

Corollary 2.5. Under the hypothesis of Corollary 2.4, // the Rs approach the
vertices of one central configuration, then J~Atil3 and V~(4/9)At~213.

Proof. As the Rs converge to one central configuration, \Rt — R¡\ = A(r)Ci; + o(l),
where X(t)x 1. Hence Jt~il3 = (I¡2M) 2* MiMiCfjX(t)2+o(\)=h(t) or X(t)2B~h(t)
where B is a positive constant. We showed in the proof of Corollary 2.4 that
d2J/dt2~(4/9)t~2l3h(t), or that F~(4/9)í"2'3«(í). That is

,2/3 Kv*      MjM}_4
¿   A(í)Cw + o(l)     9mj)'

or X(t)~1D~h(t). This implies that A3~ D/B of that X(t) is asymptotic to a constant.
This in turn implies that h(t)~A where A is some positive constant and the proof is
completed.

6. Pulsating motion. It seems to be questionable whether "pulsating motion"
exists. The nonexistence of an energy relationship may simply be a technical
difficulty which has not been surmounted by the present technique. However, as
this is an open question, this section will consider some results which give some
flavor to the notion. No attempt will be made to provide an exhaustive study nor
to obtain the sharpest possible results.

An investigation of (3.1) as to what may cause the nonexistence of a conservation
of energy relationship leads to the tentative conclusion that there must exist either
a strong rotational and/or a pulsating action (in the sense of continual contractions
and expansions). This is partially confirmed by the next theorem which states, as a
special case, that if for some mutual distance, say p12, that dp12/dt is eventually
nonnegative and eventually the magnitudes of the velocities are of the same order
as dp12/dt (\dpjdt | = 0(dp12/dt), s—l,...,p) then we do not have pulsating motion.

Let K(a) = 2* OijPij where a is a nonzero constant and the ait are nonnegative
constants, not all zero. The summation is 1 ̂  i<j^p. Note that K(a)llaxf(t)x V'1.

Theorem 5. If there exists some K(a) such that a dK/dt is eventually nonnegative

and
\dPs

dt = 0(Ka-")la dK/dt)   for s = 1,..., p,

then E= V+H+o(V) where H is a nonnegative constant.
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Notice that a natural choice for K(2) would be J and for K(-1) would be V.
A choice for K(l) would be p12.

Proof. From (3.1)

Ms dt2      3ps      K '

and

*Ê - V M éh ^îi - V— ?h + ni\dh\K-v<\
dt~ ¿Ms dt'dt2 - ¿d9s'dt+0\\dt\K     )

j^(-l-a)la\

Integrating from tx to t where tx is large enough so that dK/dt is of one sign for
»fcfi,

E(t) = j/(0+^+o(ü:-1,a) = V(t) + A + o(V(t))

where ^4 is a constant of integration.
If A is negative, then as F SO,

mi ̂  no+oW))*/«-1,
which implies that/(i) = 0(1). As this is a contradiction, .4 is nonnegative. This
implies

E/V = l+AV-i + tXX).

As the left-hand side is eventually greater than +, the conclusion of the theorem
follows from Corollary 1.2.

By using the fact E=(\/2M) 2* MtMj(dptldt—dpj/dt)2, the above proof can be
modified to replace the condition \dps/dt\=0(K(1-a)la dK/dt) with \dpi/dt-dpj/dt\
= 0(Ka-™a dK/dt).

A rough estimate on the growth properties of such motion can be readily found
by making a slight assumption, which is motivated by lim inf E/VfL\.

Theorem 6. IfE=0(V)thenf(t) = 0(t213).

Proof. From E=(\/2M) 2* M.M^dpJdt-dpj/dt)2 and Psixf(t)x V~\ it
follows that

PsiE = 0(1)   or   p^dpjdt-dpjdtl2 = 0(1).

This implies \P¡¡2 dPsj/dt\ = 0(l) or that P3¡2 = 0(t). That is, Psj = 0(t213) which
implies the conclusion of the theorem.

This upper bound is given some credence by the following:

Theorem 7. In pulsating motion, J"" f(s)~312 ds=co.

Proof. As V~1xJll2xf(t), this is equivalent to showing that J" V/Jw dt=co.

dt +<
dK
dt
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From the proof of Theorem 2, (§5)

d ldJ/dt\    V+ei _ 4JE - (dJ/dt)2     E
dt [ J1'* )+ J1'* 4J5li        +/1/4 =

Hence
,.      dJ/dt    r'F4-Ci,

g(t) = -jïrT+ja-jTirdt

is a monotonically nondecreasing function, that is g(t) -> / as t -> oo where / is
finite or /=oo. First we show that /=oo.

Assume that |/|<co. As the integrand is eventually positive (ex = o(V)),
Pa(v+ei)lJlli(it^l2- If h is finite, then (dJ/dt)J-m -W-/a, or 73/4~(/-/2)r.
Note that /-/2^0. As /, l2 are finite, this implies/(/) = 0(i2/3), i.e., after some time
there exists some positive constant C such that C/i2/3^/(0_1, or

C3,2lnj á £/(i)-3'2 x [^0dt.

But this is a contradiction to the convergence of the integral on the right. Hence
\a (V+eJ/J1111 dt -* oo. This implies that (dJ/dt)J-Vi -^ -oo, or that dJ/dt is even-
tually negative. However this contradicts the fact J is unbounded and positive,
hence we have that /=oo.

For /=oo, either J-^ V/JVi dt -> oo or it does not. If this integral converges, then
(dJldt)J-Vi^ oo as i->oo. This means that eventually (dJ/dt)J-m>l, or
/3/4>fl, i.e. there exists a positive constant B such that eventually f(t)>Bt213.
But from the proof of Theorem 1, and Corollary 1.2, this implies that an energy
relationship exists, contrary to the assumption of "pulsating" motion. Hence the
theorem is proved.

7. Separation of subsystems and oscillatory motion. A refinement for the
separation of subsystems is possible as the following theorem shows.

Theorem 8. If ps = Cst + Ds In I + o(ln t),s=\,...,p, and either oscillatory and
pulsating motion do not occur or the mutual distances between particles participating
in this motion with indices in some Gs is 0(t213), then ps = Cst — Ds In t + Es + 0(t~ll3).

Proof. The first half of this proof is the same as the proof of Theorem 1. The
hypothesis implies, by means of analysis similar to that employed in the proof of
Corollary 2.2, that the error term in (3.1) is 0(r113). Substituting ps = Csi+0(ln t)
into (3.1) yields

d2pjdt2 = /)sr2 + 0((ln/)/í3) + 0(r7'3) = Z)sr2 + 0(r7/3)

or
dpjdt = C-ZV^ + Oir4'3).

Integrating from tx to t2, tx < t2,

(9lh) - Cst2 + Dslnt2)- (Ps(ii) - C,h + Ds In tj = 0(t2 1'3 - If1'3).
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As tx, t2 -»■ oo, the right-hand side approaches zero, carrying the left-hand side to
zero with it. Hence, by the Cauchy criterion for the existence of a limit, the con-
clusion of the theorem follows.

Actually, in the absence of oscillatory and pulsating motion, the evolution of the
«-body problem as t -*■ oo is quite well behaved. The clusters form subsystems and
(under certain hypotheses) asymptotically separate like i2'3, possibly in pinwheel
fashion, to the vertices of expanding central configurations. The center of mass of
these subsystems separate as described in Theorem 8. With additional hypothesis,
oscillatory and pulsating motion can be included in this sketch in a straightforward
fashion. Various combinations of the classifications give all possible motion for the
«-body problem as t -*■ oo.

It follows from the above that many of the outstanding questions about the
«-body problem are reduced to a study of oscillatory and/or pulsating motion. For
example, is it true that for all initial conditions /= 0(r2) as t -> oo, i.e., r, = 0(t) for
all / [I, p. 604]?

It has recently been shown by Saari [13] that for the three-body problem, this is
true. Clearly for the «-body problem this condition can be violated only by oscil-
latory or pulsating motion.

Theorem 9. 1= 0(t2) as t —> oo, if and only if, the mutual distance between any
particles participating in oscillatory and pulsating motion is 0(t).

Proof. This follows directly from I=(\/2M)'£Xéi<jSnmimj(ri — rj)2 and
Theorem 1. M is the total mass of the system.

Another open question is whether or not r(t), the minimum distance between
particles (i.e., r(t) = min rtí(t)), can approach zero as t -*■ oo [7, p. 603].

Corollary 8.1. 7/r(r)->-0 as r->oo, then there exists oscillatory motion and
particles participating in the same oscillatory motion with indices i and j such that
lim sup rij(t)t~1 = co as r—> oo.

Proof. Pollard has shown [7, p. 605] that this condition implies I/t2 -> oo as
r -»• oo. If I/t2 -*■ oo could be explained solely in terms of pulsating motion, then
pr_1-s-oo or l//(i) = o(r_1). This contradicts Theorem 7. Hence the conclusion
follows.

In the absence of oscillatory and pulsating motion, the behavior of I can be
approximated by use of the classification of motion.

Theorem 10. In the absence of oscillatory and pulsating motion, I has one of the
following forms.

(a) I=At2 + Btil3 + o(til3).

(b) I=At2 + Bt\nt + 0(t).
(c) 7=^í4/3+o(í4'3).

(d) 7=0(1).
A and B denote positive constants, not necessarily the same with each usage.
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Proof. By definition /=i 2 "Vf • Each rt belongs to some subsystem, the center
of mass given by Pa, and to some cluster. The center of mass of this cluster relative
to Pa is pau and rt=Pa + pau + 0(l). That is

/ = i 2 m¿p2« + 2P" ■ P«. + P2«) + 0(Pa)

= i2 2 Mau(P2 + 2Pa-pM + p2w) + 0(Pa)

where the first sum is over the indices of the clusters in a given subsystem and the
second is over all the subsystems. Mau is the mass of the cluster given by pm. Note
that 2 2 MailPa-patl = 2 MaP2 where Ma is the total mass of the subsystem corres-
ponding to Pa. Hence

/ = \ 2 M«p2«+2 2 M*«p?+°(pJ-
If there are at least two subsystems and at least two clusters in some subsystem,

then (a) follows from Theorems 1 and 3. If there are at least two subsystems and
only one cluster per subsystem, then pw=0 and (b) follows. To complete (b) it
remains to show that B is a positive constant. This follows from (4.1) and (4.8)
where //>0, i.e., d2J/dt2= V+2H+o(V). Note in this case V~B/t where B is some
positive constant. Hence J=Ht2 + Bln i+o(ln t).

If there is only one subsystem and at least two clusters then Pa = 0 and (c) follows.
If there is only one subsystem and one cluster, then (d) follows.

Of course by refining the assumptions on the type of existing motion both
Theorems 8 and 10 can be extended. But as long as bounded motion is permitted
the results are marginal and omitted here.

An example of how Theorem 10 can be used is given here.

Corollary 10.1. // U is quasi-periodic then either I is quasi-periodic or
I= Ct2 + Dt + 0(1) and oscillatory motion exists. C is a positive constant.

Proof. A singularity at I = ?i can occur if and only if U -> oo as t -> ii [21, p. 326].
As U is quasi-periodic, ¡7=0(1) for all t, hence the solution exists for all time. As
U is quasi-periodic, d2I/dt2 = U+2h is quasi-periodic and dI/dt=2Ct+quasi-
periodic motion. Hence, I=Ct2 + Dt + quasi-periodic motion. Note C^O. If C^O
then from Theorem 10 oscillatory and/or pulsating motion exist. If only pulsating
motion existed, then/(í)síí, contradicting Theorem 7. If C=0, then D=0, other-
wise /-> -oo as í approaches either +oo or -oo (depending on the sign of D).
This would contradict the existence of the solution and the definition of / ( ̂ 0).

The question of escape from systems with nonnegative energy [11] is another
problem reduced to the study of oscillatory motion.

Corollary 10.2. For A>0, if oscillatory and pulsating motion do not occur and
U -»• 0 as t ->• oo, then U~A/t213 or U~B/t. A and B are some positive constants. If,
in addition, in all the subsystems all the clusters approach the vertices of a central
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configuration, then at least n—l particles escape, i.e., for at least «— 1 values of the
indices, r{ —>■ oo as t -> oo.

Proof. As U->0, all ri} -> oo and each cluster has only one particle. In an
obvious fashion U= 2 Vu + o( Vu) where the sum is over all the subsystems and Vu
is the generalized self-potential of the subsystem. If any of the subsystems has at
least two clusters, then U~A/t213 (from Theorem 2). If all subsystems have only
one cluster, then U~ A/t. The proof of the escape statement follows from Theorems
2 and 3.

It is a conjecture of the author that for some r( and rf participating in oscillatory
motion, liminfr(J<oo as r->oo. If this is true, then the condition £/->0 auto-
matically excludes oscillatory motion.

8. Inverse q law. In the classification of motion the exponents on t are 2/3 and
1. The mechanism that leads to these values is the force law. To see this we consider
the force law r~", where 1 <q<3. The value q = 2 is the Newtonian force law. The
inverse q central force law leads to a similar classification of motions except that
r2'3 is replaced with t2l9 + 1. The central configuration results hold also.

The only real differences in the proof are that y=J.(MiMj/P^'1) and (4.1)
becomes

d2J/dt2 = 2E+(\-q)V+o(f(ty-") = (3-q)V+2H+o(f(t)1-'1).

Pulsating motion is now defined to be the case where lim inf E/V^(q—1)/2. How-
ever, with the above restrictions on q, all of the proofs are essentially the same. With
q outside of this range modifications are necessary and will not be discussed here.

It also turns out that the problem of collision can be generalized from the inverse
square law. If a collision occurs as / -* 0+ then the colliding particles approach
each other like r2'3. In the inverse q law, the colliding particles approach each other
like r2'(4+1). Again the details of the proof for the case q=2 [9] can be generalized
with only minor modifications.

9. A remark and extensions. Care was taken in the proofs of the theorems to
allow the greatest latitude for the error term. It essentially turns out that the error
term can be "almost r~2". Hence these results are directly applicable to a wider
class of problems than simply mass particles subjected to the inverse square law.
The results are equally valid in central force systems where the inverse square term
is the dominant term for large values of rtj. That is, it applies to models which
include oblateness effects, nongravitational forces for close encounters, or even a
crude approximation to the theory of relativity where the force law is assumed to
be ur~2 + Br"i [6, p. 88]. B is some constant.

It is interesting to note that vectors describing the separation of clusters in a
subsystem and vectors describing the separation of subsystems have the property

\dpJdt\/Pij x r1.
This is the Newtonian version of "Hubble's constant".
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