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Abstract

L-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. 

At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Further-

more, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, 

drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel 

derivatives from lysine is discussed. Some chemicals like L-pipecolic acid, cadaverine, and 5-aminovalerate already have 

been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a 

biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active 

and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competi-

tiveness of other amino acid industry.
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Abbreviations

Lys  Lysine

L-PA  L-Pipecolic acid

LCD  Lysine cyclodeaminase

LDC  L-Lysine decarboxylase

GDH  Glucose dehydrogenase

LysR  Lysine racemase

6ACA   6-Aminocaproic acid

5AVA  5-Aminovalerate

Introduction

Amino acids are the basic constituent units of many bio-

logical functional macromolecules, especially the proteins 

needed for animal survival. Traditionally, amino acid man-

ufacturing methods include acid hydrolysis of proteins or 

chemical synthesis [32, 79]. However, recently, innovative 

fermentation has emerged as an alternative of the classical 

manufacturing methods, and the large production volume 

pushes the amino acid industry to progressively gain a pre-

vailing share in the international market. Accompanying 

the emerging technologies such as metabolic engineering 

and synthetic biology, establishing new value chains from 

amino acids to high-value-added chemicals, such as fuels, 

materials, and drugs, should be focused on more closely. On 

one hand, this activity could lead to more economic boom 

in the production of novel and high-value-added chemicals, 

thus leading to new jobs. On the other hand, the extension 

of the amino acid industry could help to maintain the price 

of the original amino acid in the international market, thus 

protecting the effective market operations and stabilizing the 

profit of the amino acids industry and the workers.
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Lysine (Lys) is reported as a kind of imperative nutri-

tion for human and animal. The largest commercial usage is 

relying on its promotion of the growth of poultry and other 

animals as a feed additive. However, it could also be used as 

special chemicals in food, pharmaceutical, and chemical 

industries. The calculated global Lys market is about 2.5 

million metric tons in 2016, and is still growing at a rate of 

about 7% per year [2, 33, 91]. Due to the market competition 

from industrial capacity and demand, and also from the natu-

ral Lys resources such as sardine, swine blood, and maize, 

the per kilogram price of Lys has decreased to around $1.5 

since 2013 [11, 29] (Fig. 1). However, the gross annual value 

of the output is maintained around $2.8 billion, continue 

showing attraction for investors. Here, first, we want to sum-

marize the great efforts for low-cost Lys production, which 

include strain improvement, fermentation optimization, and 

downstream processing. Some of the characteristics of the 

processing routes such as microbial strains, typical biomass 

kinds, titers, productivity, yields, and the main advantages, 

are listed in detail in Table 1. The “bio-based manufactur-

ing” possibility using Lys as a feedstock to expand the Lys 

industry beyond the traditional usage is discussed in the lat-

ter part of this review, including biological and chemical 

hybrid routes, to guarantee a bigger profit and less envi-

ronmental pollution. These two strategies might together 

help to expand the Lys industry in the fierce international 

competition (Fig. 2).

Lys production often employs mutant strains or engi-

neered strains, like Corynebacterium glutamicum and engi-

neered Escherichia coli to produce Lys through fermentation. 

Recently, accompanying the development of emerging tech-

nology like metabolic engineering and synthetic biology [21, 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Yield (million tons)

Total market value
(billion USD)

Price (USD/Kg)

Fig. 1  Production of lysine increase over the past decade, the fluctua-
tion of the lysine price, and the total market value

Table 1  Characteristics of the lysine microbial processing routes are listed in detail about the microbial species, typical biomass kinds and titers, 
production titers, yields, and the main advantages

The kind of strain The characteristic 
of the strain

The yield 
achieved by this 
process (g/g)

The titer achieved 
by this process 
(g/L)

The biomass 
kinds

The bio-
mass titers 
(g/L)

The main advan-
tages

References

E. coli A threonine and 
methionine dou-
ble auxotrophic, 
with ppc, pntB, 
aspA overex-
pression

0.45 134.9 Glucose 300 Increasing the 
yield

[98]

C. glutamicum IolT1 and iolT2 
overexpression

0.24 9.30 Glucose 36.36 Enhancing the 
carbon utiliza-
tion

[27, 43]

C. glutamicum 12 defined 
genome-based 
changes in 
genes encoding 
central meta-
bolic enzymes

0.55 120 Glucose 700 Increasing the 
yield

[4]

C. glutamicum MurE mutation 0.36 7.56 Glucose 25.4 Increasing the 
yield

[5, 6]

C. glutamicum A S. mutans-type 
glycolic path-
way reconstruc-
tion

0.19 9.55 Glucose 50 Increasing the 
yield

[85]

C. glutamicum Replacement 
of the NADH 
biosynthesis 
enzyme

0.47 130.99 Glucose 280 Increasing the 
productivity

[96]
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23], non-natural metabolic pathways could be constructed 

beyond the natural networks. Thus, chemicals traditionally 

produced from oil refining are now included in the list of the 

bio-based chemical derivatives. This review will focus on 

chemicals that are mass-produced from fossils, and on special 

Lys derivatives that might have economical potential in the 

future. To the best of our knowledge, the microbial synthesis 

of commodity derivatives from Lys has never been reviewed 

before. However, this field has rapid development and great 

potential in special chemical industry, agricultural application, 

medical treatment, and biopolymer production. This review 

has discussed the efforts now being made for low-cost bio-

manufacturing of Lys, while the latter part has been organized 

along the sequence of the fields the novel derivatives belong, 

which are summarized in Table 2 and Fig. 3. Chemicals used 

as functional materials have been first presented, and then the 

pharmaceutical products. However, some chemicals are used 

in both these two areas.

Recent e�orts for low-cost 
biomanufacturing of Lys

To expand the Lys industry, one strategy is to further 

decrease the production cost and the market price, which 

might result in the requirement of more supplementa-

tion. Recent efforts for low-cost biomanufacturing of 

Lys include strain improvement, fermentation optimiza-

tion, and downstream processing as reported. The natural 

metabolic pathways for Lys synthesis, together with the 

related enzymes and genes, have been omitted here, since 

such fundamental information is easily available in books 

and articles.

Fig. 2  Two strategies help to expand the lysine industry. The first is the great efforts for low-cost biomanufacturing of lysine. The second is the 
“bio-based manufacturing” combined with chemical steps possibility using lysine as a feedstock
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Strain improvement

Lys fermentation is the No. 2 oldest amino acid fermen-

tation processes next to microbial glutamate synthesis, 

which is first industrialized by the Kyowa Hakko Bio Co., 

Ltd. [29]. Besides the famous strain C. glutamicum, E. 

coli has recently also been enrolled in the Lys production.

Escherichia coli

In an era of metabolic engineering and synthetic biology, 

Lys-producing E. coli has been constructed by rational 

design, and reached a yield capacity almost as higher as 

that of C. glutamicum industrial strains.

An engineered E. coli strain was reported to reach 130 g/L 

titer, with a yield of 0.45 g/g glucose. Systematic metabolic 

engineering was adopted, with ppc (phosphoenolpyruvate 

carboxylase), aspA (aspartase ammonia-lyase), and pntB 

(pyridine nucleotide transhydrogenase) overexpression 

[98]. Overexpression of the Lys exporter YbjE could also 

enhance the Lys production [65]. Recently, the ensemble 

modeling (EM) framework is carried out, and desensitiza-

tion of aspartate kinase is found to be a rate-controlling 

step in the L-lysine (L-Lys) pathway [10]. A synthetic RNA 

device is used to screen the key enzymes involved in Lys 

biosynthesis pathway in E. coli. It is reported that a chimeric 

aspartate kinase shows 160% increase in vitro activity, and 

results in 0.674 g/L Lys production when introduced in vivo 

in engineered strains [92].

Corynebacterium glutamicum

Based on the developmental history of C. glutamicum, 

three stages are clearly shown. The first stage was related 

to the traditional cognition known as “metabolic regulatory 

fermentation”. Rational design was then executed, and the 

strain improvement strode forward into the second stage, 

which was called “metabolic engineering”. Recently, the 

third stage is achieved, which is characterized by “genome 

breeding” and “synthetic biology” [94, 95]. Recent improve-

ments focus on carbon utilization, metabolic precursor 

enhancement, genome reduction, as well as new screening 

method to further reduce the cost.

The uptake of glucose could be activated by the phospho-

enolpyruvate-dependent sugar phosphotransferase system 

(PTS), as recognized until decades ago. However, recently, 

myo-inositol transporters, especially proteins encoding by 

iolT1 and iolT2, have been identified. Overexpression of 

these two genes could accelerate the glucose uptake rate 

[27, 43]. The bglF-specified EII permease and glucokinase 

form the third non-PTS glucose transporter system, which 

has first been acknowledged in C. glutamicum ATCC 31833, 

could contribute to further enhance the carbon utilization 

while increasing their activities in vivo [28]. The spectrum 

Table 2  Summary of some of the novel lysine derivatives produced through biomanufacturing strategy

The table just lists the highest concentrations or yields of the derivatives nowadays achieved. More chemicals might be included due to the 
development of the bio-catalysis strategy
a + means that the bio-transformation strategy nowadays has economic potential; − means that the bio-transformation strategy nowadays has not 
economic potential nowadays

The derivatives 
from lysine

The con-
centrations 
achieved 
by enzyme 
catalysis 
(g/L)

The yields 
achieved 
by enzyme 
catalysis 
(g/g)

The con-
centrations 
achieved by 
whole-cell 
catalysis 
(g/L)

The yields 
achieved by 
whole-cell 
catalysis 
(g/g)

The con-
centrations 
achieved by 
fermenta-
tion (g/L)

The yields 
achieved by 
fermenta-
tion (g/g)

The pre-
ferred path-
way for the 
derivatives 
production

The 
economic 
potential of 
the strategy 
 nowadaysa

References

L-Pipecolic acid 27 0.79 45.1 0.87 17.25 0.69 Whole-cell 
catalysis

+ [56, 86, 99]

6-Aminocap-
roic acid

0.031 0.012 – – 0.16 0.32 Fermen-
tative 
process

− [70, 89, 106]

cadaverine 42.58 0.29 221 0.92 88 0.50 Whole-cell 
catalysis

+ [36, 41, 59, 
61]

5-Aminovaler-
ate

20.8 0.69 90.6 0.94 47.96 0.8 Whole-cell 
catalysis

+ [46, 64, 68]

δ-Valerolactam – – 54.35 0.60 0.705 0.071 Chemo-
enzymatic 
synthesis

− [8, 64, 101, 
102]

ε-Caprolactam – – – – 0.00215 0.001 Chemo-
enzymatic 
synthesis

− [8, 14, 102]
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of carbon source of the engineered strains could be expanded 

by heterologous pathway reconstituted. Arabinose, ethanol, 

and acetic acid, even the industrial molasses [97], and the 

lignocellulosic hydrolysate could support the good growth 

and productivity of C. glutamicum [77, 100]. With the intro-

duction of the heterogeneous araBAD operon and the xylA 

gene, the recombinant could produce 42 mM Lys on rice 

straw hydrolysate and wheat bran hydrolysate [20]. Since 

the expenditure on carbon source occupies a majority of the 

fermentation cost, expanding the substrate utilization has a 

significant effect on the low-cost biomanufacturing of the 

Lys.

Recently, rational design and metabolic engineering has 

developed extensively that novel engineered strains have 

been constructed and the supplement of the precursor has 

been enhanced in vivo. It was found that a one-step dehy-

drogenase reaction could replace the original four-step suc-

cinylase reaction [4]. Kind reported that the supplementation 

of succinyl-CoA could be enhanced with the deletion of the 

succinyl-CoA synthetase within the tricarboxylic acid cycle, 

and a Lys yield of 0.17 mol/mol glucose was achieved [40, 

41]. To avoid the transformation of D,L-diaminopimelate to 

peptidoglycan, overexpression of lysA could increase the 

Lys production with the enhanced decarboxylation reac-

tion [4]. In addition, recently, introduction of a mutation 

MurE, which was a UDP-N-acetylmuramoyl-L-alanyl-

D-glutamate:meso-diaminopimelate ligase utilizing D,L-

diaminopimelate as the substrate, could result in increased 

Lys concentration [5, 6].

In the history of strain improvement, classically generated 

strains and rational designed strains are combined together 

as repertoire for the selection of production strains. Recently, 

new screening methods are used, which expedites strain 

development. Based on the tandem ligation of gene lysE 

encoding the transcriptional activator LysG and eYFP, a Lys 

sensor was constructed [5]. The analysis of large amounts 

of single cells by fluorescence-activated cell sorting (FACS) 

strategy could facilitate the selection of new Lys producers. 

In Binder’s study, a mutation murE (G81E) as an efficient 

D,L-diaminopimelate utilizing ligase was identified and over-

expressed for Lys production enhancement [6].

Synthetic biology, especially the riboswitch, could help 

us to dynamically control metabolic pathways, and thus 

be applied for Lys production. A recombinant strain C. 
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Fig. 3  Production of lysine and novel lysine derivatives from biomass, traditional technologies, and novel strategies
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glutamicum LPECRS was constructed to dynamic control 

of the enzyme citrate synthase and lysE, with two artificial 

riboswitches and additional deregulated aspartokinase. The 

strains achieve a 21% increase in the yield compared to the 

control strain [107]. System engineering under the guidance 

of in silico modeling helped the genetic engineering of the 

Lys strains [4]. In this work, 12 changes in genes encoding 

central metabolic key enzymes pushed major carbon fluxes 

towards the Lys synthesis route, and finally resulted in a titer 

of 120 g/L of Lys. Recently, introduction of S. mutans-type 

glycolic pathway in C. glutamicum has led to a fabulous 

result in L-Lys production [85]. Another experiment, which 

replaced the NADH biosynthesis enzyme with NADP-

dependent GADPH, could also increase the cofactor supple-

mentation. The final L-Lys productivity achieved 2.73 g/L h 

for C. glutamicum Lys5–8 [96]. However, there are advan-

tages of using a deleted host. Therefore, many studies fol-

lowing similar strategies focus on the dissection of cellular 

networks and construction of strains with a reduced genome 

[15, 104]. Different combinatory deletions of all irrelevant 

gene clusters were investigated, which decreased the size of 

the native genome [90]. The strains with irrelevant clusters 

deletion could grow on defined medium”.

Other microorganisms

Although C. glutamicum and E. coli was considered as the 

most powerful industrial strains, some other organisms are 

undergo constructing to obtain significant Lys production 

ability.

Since industrial condition is often high temperature, ther-

motolerant bacterial organisms such as B. methanolicus and 

C. efficiens have been focused on being developed as promis-

ing Lys producers [58]. C. efficiens is phylogenetically close 

to C. glutamicum, while the former could grow at approxi-

mately 10 °C higher than the latter [60]. B. methanolicus 

could grow on methanol, an alternative carbon source which 

does not compete with human food, while grow at 35–60 °C 

[45].

Fermentation optimization

Based on the engineered or mutated strains, fermentation 

optimization is executed to achieve high concentration of 

Lys to facilitate the downstream purification. In different 

countries, different industrials, with different equipment and 

different substrates, fermentation optimization usually needs 

to start from scratch, although the same strain is used.

The carbon source accounts for the majority of the 

fermentation cost, so its utilization should be paid much 

attention. Except for the strain improvement in the utiliza-

tion of the low value carbon source as indicated in the last 

section, the optimization of the kinds of the substrate, the 

substrate initial concentration, and the substrate fed mod-

ule also contributes to the decreasing of the fermentation 

cost. In China, starch hydrolysate, i.e., corn syrup, is the 

substrate usually used for Lys fermentation, while soybean 

hydrolysate is usually used in America. South America and 

Europe give preference to beet molasses and cane, respec-

tively, due to the cost and availability of the substances. A 

titer of 130 g/L with a yield of 0.45 g/g glucose and 120 g/L 

could be reached in E. coli and C. glutamicum, respectively.

Industrial fermentation is executed in large-scale tank fer-

menters with a volume of 500 kL or above and often adopts 

fed-batch fermentation process to accumulate high titer of 

Lys in the final process. Another fermentation style is called 

continuous fermentation. In this style, the fed-batch fermen-

tation process could be extended by sucking out part of the 

broth one or several times intermittently and supplement 

the fermenter with fresh broth or concentrated nutrition at 

a specific rate, correlating to the total substrate concentra-

tion, or the pH, or the specific growth rate of the strain, 

etc. This fermentation strategy could often result in higher 

productivity and final concentration, while it gives full play 

to the production capacity of mature strains by prolonging 

the synthesis period.

Downstream processing

In the Lys whole production process, downstream expendi-

ture often occupies 60–80% of the total cost, depending on 

the purity of the final product and the intended use. In the 

past, the animal-feed Lys from the broth has mainly been 

recovered based on the developed chromatographic separa-

tion [13]. However, this strategy often results in lower prod-

uct concentrations and increased cost of waste-water treat-

ment. Recently, novel promising technologies are emerged 

and explored for Lys purification as industrial applications.

Traditional production process produces Lys sulfate and/

or Lys hydrochloride, using sulfate and/or chloride as coun-

ter anion(s) to main pH. However, a new process, which 

employs hydrocarbonate and carbonate ions to produce Lys 

carbonate, is developed [42]. On the one hand, sequestration 

of the  CO2 is advocated by the government; on the other 

hand, decreasing the amounts of ammonium chloride and/

or ammonium sulfate supplemented into the broth result in 

significant reduce of the fermentation cost and the environ-

mental loads. Recently, retracting of Lys was investigated 

with sec-octylphenoxy acetic acid in sulfonated kerosene or 

supported liquid membrane (SLM) on a flat sheet. A mixture 

of mono-(2-ethylhexyl) ester of phosphoric acid (M2EHPA) 

and bis-(2-ethylhexyl) ester of phosphoric acid (D2EHPA) 

is used as carriers, while kerosene adds as diluent. All the 

studies reveal new mechanisms and give high extraction effi-

ciency [50, 105].
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Spray drying has many advantages such as relative ease 

in operation, easy industrialized production, cost-effective-

ness, and ready availability of suitable equipment [17, 18, 

25]. Spray-dried fermentation broth is also a commercially 

available lysine preparation on the market [34]; for example, 

Evonik and Global Bio-chem Technology Group Company 

Limited all used this strategy. Henke et al. have described the 

metabolic engineering of C. glutamicum for the combined 

production of lysine and cell-bound value-added compounds 

[24]. A proof of principle was proposed, and 48 g/L Lys and 

10 mg/L astaxanthin were coproduced by fed-batch fermen-

tation. Moreover, this strategy could be applied to secreted 

Lys production with the cell-bound carotenoids decaprenox-

anthin, zeaxanthin, canthaxanthin, and lycopene [29].

Development of new Lys-derived products

Except the recent efforts to further reduce the Lys produc-

tion cost, to maintain the price of the original Lys and the 

profit of the amino acid industry in the international market, 

the best way is to extend the industry chain, especially to 

develop the new Lys-derived products.

Lys derivatives for bio‑based materials

The potential usage of Lys as precursor for polymer materi-

als relates to the functional group it gains, which includes 

the amino group and the carboxyl group. Under special con-

ditions with catalysts, the derivatives of Lys might retain the 

functional groups to form products with structural similarity, 

which could be used as monomers for polymer materials. 

The monomers for polyamides are now produced from fuel 

refineries, but biomanufacturing could be a potential strategy 

to replace the traditional production. Here, we will show 

that the monomers of nylon family, like cadaverine, 5AVA, 

valerolactam, caprolactam, etc., could also be obtained 

through bio-transformation.

Cadaverine

Also named 1,5-diaminopentane, cadaverine has various 

applications in industry and agriculture [3]. Most impor-

tantly, bio-based cadaverine could be used as an important 

platform chemical to generate various bio-based polyam-

ides such as PA 54 [54], PA 510 [41], and PA 512 [36]. 

Cadaverine could be generated by microbial fermentation 

or whole-cell bio-catalysis from L-Lys via microorganisms, 

which includes recombinant E. coli strains [38, 81, 84] and 

C. glutamicum [37, 39, 61, 87].

For microbial fermentation, Qian et al. reported that while 

the cadaverine utilization and degradation pathways were 

inactivated [57, 69], the production of cadaverine could be 

enhanced in the engineered strain. The maximum cadaver-

ine yield of 9.61 g/L from glucose was achieved in E. coli 

[69]. A C. glutamicum strain DAP-16 was engineered by 

Kind et al., in which L-Lys decarboxylase (LDC) encoded 

by LDC gene (cadA) and a major facilitator permease were 

overexpressed. The cadaverine yield of 88 g/L could be 

accumulated in C. glutamicum [41, 59]. Cadaverine produc-

tion from xylooligosaccharides using engineered strains dis-

playing xylosidase on the cell surface was also investigated 

[30]. Finally, the engineered strains enabled production of 

1.18 g/L cadaverine from 13 g/L of consumed xylooligosac-

charides. Furthermore, Tween 40 could enhance the cadaver-

ine production in engineering strains [52]. One of the reason 

might be the increase in fluxes for the anaplerotic reactions; 

another possibility might be an increase in membrane per-

meability with Tween 40 addition.

At present, the whole-cell bioconversion is another 

promising method explored for efficient cadaverine synthe-

sis from L-Lys. The PelB signal sequence had an important 

effect on the whole-cell bioconversion of L-Lys to cadaver-

ine. Cadaverine antiporter (CadB) was expressed with the 

PelB signal sequence, which could generate cadaverine of 

221 g/L, increasing the production of cadaverine by 12% 

[48]. The pyridoxal 5-phosphate pathway was introduced 

into the engineered E. coli strain BL-CadA, which could 

produce cadaverine of 168 g/L [49]. The effects of buffer-

ing conditions, substrate concentrations, substrate pH, and 

biocatalyst concentrations were optimized, and a final con-

centration of 133.7 g/L was obtained with a molar yield of 

99.9% [61].

5‑Aminovalerate

5-Aminovalerate (5AVA) is a potential feedstock for the 

manufacture of nylon 5 and nylon 6,5, and also a valuable 

C5 platform chemical used to produce glutarate, valerolac-

tam, 1,5-pentanediol, and 5-hydroxyvalerate [46]. Due to the 

importance of 5AVA, biotechnological production of 5AVA 

has attracted considerable interest.

5AVA is naturally produced through the 5AVA path-

way by Pseudomonas putida [72–74]. 5AVA synthesis is 

sequentially mediated by Lys 2-monooxygenase (DavB) 

and δ-aminovaleramidase (DavA) as follows: in the first 

step, L-Lys is converted to 5-aminovaleramide by DavB; 

in the second step, 5-aminovaleramide is hydrolyzed to 

5AVA by DavA (Fig. 4a). Park et al. found that while 

DavB and DavA were overexpressed in the recombinant 

E. coli WL3110, the engineered strain could generate 

3.6 g/L 5AVA with L-Lys as the substrate [63]. DavB 

and DavA were purified and coupled to form 5AVA by 

enzymatic method. Under this strategy, 20.8 g/L of 5AVA 

could be achieved from 30 g/L Lys [46]. High cell den-

sity fermentation and whole-cell catalysis were carried 
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out for the production of 5AVA with recombinant E. coli 

strain W3110/DavAB. The highest yield of 90.59 g/L 

5AVA was achieved consuming a substrate of 120 g/L 

of L-Lys [64]. Various C. glutamicum strains including 

different origins of replication and promoters were engi-

neered by Shin et al.. The superior strain could generate 

33.1 g/L 5AVA from 250 g/L glucose [78]. Recently, Jorge 

et al. proposed a new route to produce 5AVA from Lys 

via cadaverine as intermediate (Fig. 4c) [31]. The path-

way involved LDC, putrescine transaminase (PatA), and 

γ-aminobutyraldehyde dehydrogenase (PatD). A final con-

centration of 5.1 g/L 5AVA and a yield of 0.13 g/g could 

be achieved. Moreover, a de novo bio-based production 

process for the coupling production of two C5 platform 

chemicals 5AVA and glutarate was established [76]. The 

optimized strain could generate 28 g/L 5AVA with a maxi-

mal productivity of 0.9 g/L h.

Kusakabe et al. first proposed another 5AVA synthe-

sis pathway [44]. The α-carbon atom of Lys was oxidized 

into 6-amino-2-keto-caproic acid,  NH3 and  H2O2 by L-Lys 

α-oxidase (LysOx) from Trichoderma viride, which then 

could be oxidatively decarboxylated to form 5AVA with 

no addition of catalase (Fig. 4b). The 5AVA was success-

fully produced by the immobilized LysOx in the absence of 

catalase [68]. A 13.4 g/L of 5AVA was achieved in aerobic 

incubation for 5 days at 37 °C.

δ‑Valerolactam

δ-Valerolactam is usually obtained by the cyclization of 

5AVA, which is dehydrated under vacuum conditions 

[64]. Nylon 5 is formed by the self-polymerization of 

δ-valerolactam. Nylon 6,5 is generated by the polymeriza-

tion of δ-valerolactam and ε-caprolactam initiated by acetyl-

caprolactam (acetyl-CL) and catalyzed by potassium tert-

butoxide (PtB) [64]. Therefore based on the discussion of 

“5-Aminovalerate” in this paper, a hybrid route to obtain 

δ-valerolactam from bio-based Lys could be constructed. 

The production of δ-valerolactam and ε-caprolactam was 

demonstrated using recombinant E. coli strains with the 

overexpression of an acyl-CoA ligase ORF26 from Strep-

tomyces aizunensis [102]. The recombinant stains could 

produce δ-valerolactam and ε-caprolactam when 5AVA 

and 6ACA were added to the culture medium. Moreover, 

an efficient platform metabolic pathway for the produc-

tion of δ-valerolactam and ε-caprolactam was constructed 

[8]. ω-Amino acids were activated by β-alanine CoA 

transferase (Act) from Clostridium propionicum followed 
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H2N OH
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C
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Fig. 4  Scheme for the production of 5-aminovalerate from L-lysine. 
The enzymes included in those routes are: A: lysine 2-monooxyge-
nase (DavB), delta-aminovaleramidase (DavA); B: L-lysine α-oxidase 

(rAIP); C: L-lysine decarboxylase (LdcC), putrescine transaminase 
(PatA), and γ-aminobutyraldehyde dehydrogenase (PatD)

Fig. 5  Synthesis of 
δ-valerolactam from L-pipecolic 
acid or 5-aminovalerate. There 
are potential enzymes to do this 
work. A: like lysine 2-monooxy-
genase (DavB) (EC 1.13.12.2) 
and lactate 2- monooxygenase 
(EC 1.13.12.4); B: β-alanine 
CoA transferase (Act)
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by spontaneous cyclization (Fig. 5b). In addition, zhang 

et al. discovered a lactam biosensor based on the ChnR/

Pb transcription factor-promoter pair, which could sense 

δ-valerolactam and ε-caprolactam in a dose-dependent man-

ner [101]. This biosensor could potentially be applied for 

industrially high titer lactam biosynthesis.

To exclude the chemical synthesis, another novel route is 

proposed based on L-PA (Fig. 6). Converting D-Lys to L-PA 

could be found in D-Lys metabolic pathway [55]. Comparing 

the chemical structure of L-PA and δ-valerolactam, it could 

be deduced that an oxidative decarboxylase might catalyze 

the transformation of δ-valerolactam from L-PA (Fig. 5a). 

There are potential enzymes to do this work, like DavB (EC 

1.13.12.2), lactate 2-monooxygenase (EC 1.13.12.4), etc. 

However, the natural substrates of these enzymes are not 

L-PA, so rational design and evolution of enzymes might 

be required.

ε‑Caprolactam

As it has been discussed in the above sections, ε-caprolactam 

is the starting material for nylon 6,5 synthesis and the bulk 

building block chemicals for nylon 6 nowadays in the world-

wide. Frost et al. developed a route for the production of 

ε-caprolactam, where biomass-derived lysine was chemi-

cally converted into ε-caprolactam [14]. The process was 

as follows: in optimized conditions, a cyclization reaction 

was initiated after neutralization of lysine hydrochloride 

with sodium hydroxide (NaOH). The resulting α-amino-

ε-caprolactam could then be transformed to ε-caprolactam 

with the subsequently addition of KOH and hydroxylamine-

O-sulphonic acid under − 20 °C.

A microbial 6ACA synthesis pathway from L-Lys is sup-

posed by our lab and is shown in Fig. 8. If this hypoth-

esis pathway could be confirmed by further experiments, 

ε-caprolactam could be obtained by the chemical cycliza-

tion or bio-cyclization of purified bio-6-ACA. The chemo-

enzymatic catalysis strategy might replace the nowadays 

production of ε-caprolactam from oil.

Lys derivatives for active pharmaceutical 
ingredients or drugs

Bio-transformation of Lys to the medical intermediate or 

final therapeutically drugs could expand the Lys industry 

and result in increasing profits of these enterprises. Since 

Lys naturally has chiral structure, the derivatives obtained 

from Lys through enzyme catalysis or whole-cell catalysis 

often keep this characteristic, and could be used as a chiral 

compound with biological function. This section will focus 

on the production of two kinds of medical intermediate L-

PA and 6ACA.

L‑Pipecolic acid

L-Pipecolic acid (L-PA) is a crucial non-proteinogenic amino 

acid. It is a very important intermediate of many pharma-

ceutically and biologically compounds, such as the antican-

cer agents swainsonine, VX710, and sandramycin [22], the 

immunosuppressive agents FK506 and rapamycin [16, 35], 

the anaesthetic analogue ropivacaine and bupivacaine [1, 

62], and antibiotics meridamycin, demethoxyrapamycin, 

Cyl-2, virginiamycin, apicidin, and trapoxins [80, 93] could 

also be synthesized from L-PA. Currently, synthesis of L-PA 

involves biosynthesis [53] and chemical synthesis, such as 

enantioselective reduction [19, 75], diastereoselective syn-

thesis [9], and stereoselective transformation [12]. However, 

these chemical synthesis processes are difficult to provide an 

economic and acceptable manner for the production of chiral 

L-PA on large scale due to the low yield, the cumbersome 

procedures, and other disadvantages. The current market 

price of the L-PA produced by chemical synthesis reaches up 

to 15,000–30,000 $ per ton. Therefore, the biosynthesis of 

the L-PA has been attracted great attention from the chemical 

company worldwide.

It has been known that there are four synthetic routes of 

L-PA. The △1-piperideine-2-carboxylase (P2C) pathway and 

the Lys cyclodeamination pathway are both via the loss of 

the α-nitrogen of Lys and the condensation of the ε-nitrogen 

to produce L-PA. The △1-piperideine-6-carboxylase (P6C) 

Fig. 6  One-pot bioconversion to 
L-pipecolic acid from DL-lysine. 
The enzymes included in these 
routes are: lysine racemase 
(LysR), L-lysine α-oxidase 
(rAIP), glucose dehydrogenase 
(GDH), and △1-piperideine-
2-carboxylase/reductase (DpkA)
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pathway and the α-aminoadipic acid pathway are both 

through the loss of the ε-NH2 and the incorporation of 

α-NH2 into L-PA [22]. Lys cyclodeaminase (LCD) alone 

could catalyze the direct formation of L-PA from L-Lys. Tsot-

sou and Barbirato revealed further the presence of iron(II) 

and glycerol could obviously improve the LCD activity [88]. 

Byun et al. investigated the optimal reaction parameters for 

LCD from Streptomyces pristinaespiralis to the production 

of L-PA, such as temperature, pH, buffer condition, and car-

bon length of substrate [7]. The purification and the first 

characterization in vitro of LCD encoded by the rapL gene 

were studied, and the mechanism of the LCD reaction was 

revealed [22]. Ying et al. used an engineered E. coli strain 

harboring another LCD encoded by pipA from Streptomy-

ces hygroscopicus. This whole-cell conversion process with 

 NAD+ supplement could reach a relative higher L-PA pro-

duction of 17.25 from 25 g/L Lys [99].

Muramatsu et al. utilized an enzyme-coupled system for 

the production of L-PA from L-Lys based on a combination 

of LysOx, Pip2C reductase, and glucose dehydrogenase 

(GDH). This system could produce 27 g/L of L-PA [56]. Tani 

et al. constructed a one-pot synthesis of L-PA by overexpres-

sion of LysOx from Scomber japonicus, GDH from Bacillus 

subtilis, Lys racemase (LysR), and Pip2C reductase from 

Pseudomonas putida in E. coli strains. 45.1 g/L of L-PA 

could be obtained after 46 h in this one-pot process, which 

was by far the highest yield of L-PA with substrate flexibility 

for industrial application [86] (Fig. 6).

In our lab, LysOx, Pip2C reductase, Lys permease (LysP), 

and GDH are overexpressed in a mutated E. coli strain 

ML04 with cadA knocked out, in which ribosome-binding 

sites and promoters for each gene are optimized. This strain 

could produce 46.3 g/L L-PA at the end of the 48 h fed-

batch fermentation, which is the highest level reported in 

the world (unpublished data). Furthermore, the Lys 6-dehy-

drogenase gene and pyrroline 5-carboxylate reductase gene 

were overexpressed to produce L-PA, and the final yield of 

0.09 g/g could be achieved [66]. Furthermore, fermentative 

production of L-PA from glucose glycerol, starch, glucosa-

mine, and xylose was investigated [67]. L-PA production 

from these alternative carbon sources was established by 

expressing the heterologous genes glpF (glycerol facilita-

tor), glpK (glycerol kinase), and glpD (glycerol-3-phosphate 

dehydrogenase), etc.

6‑Aminocaproic acid

6-Aminocaproic acid (6ACA) is a non-natural amino acid, 

which could potentially inhibit the activity of some enzymes, 

such as plasmin, elastase, and pepsin. Therefore, it could 

be potent in treatment of some bleeding disorders [47, 83]. 

6ACA is also the building block of the PA 6. Therefore, pro-

duction of 6ACA from bioresources, especially Lys, could 

significantly reduce the emissions of the fuel refineries and 

be more biosafety preferred.

Raemakers-Franken et al. previously showed that L-Lys 

could be converted to 6ACA by a series of chemical and 

biological methods. The L-Lys is successively converted 

to 6-amino-2-hydroxyhexanoate, 6-aminohex-2-enoate, 

6-aminohexanoate, and 6ACA sequentially [70]. The direct 

production of 6ACA from 5-formyl valeric acid was inves-

tigated [71]. Turk et al. first proposed two complete biosyn-

thetic pathways for the fermentative production of 6ACA 

[89] (Fig. 7). The adipoyl-CoA route starts with the con-

densation of acetyl-CoA and succinyl-CoA. Another impor-

tant pathway is the α-ketopimelate route, which starts with 

acetyl-CoA and 2-oxoglutarate using biosynthetic pathway 

enzymes for coenzyme B [26]). This pathway could directly 

produce 160 mg/L 6ACA from glucose after 120 h. If there 

are some unknown enzymes that could catalyze the alpha 

aminoadipic acid to form ketoglutaric acid or succinyl-CoA, 

6ACA could be potentially formed from Lys, as depicted in 

Fig. 7. A strategy to simultaneously vary genetic and process 

factors was first reported by Zhou et al., which was then 

applied to 6ACA production and increased the final titer 

from 9 to 48 mg/L [106].

Here, a new 6ACA synthesis pathway engineered in E. 

coli using the leucine pathway enzymes LeuABCD together 

with the LysOx, 2-keto-acid decarboxylase (KIVD), and 

phenylacetaldehyde dehydrogenase (PadA) (Fig. 8) is pro-

posed [51, 82, 103]. LysOx is the first step to transform Lys 

into 6-amino-2-keto-caproic acid, and then, LeuABCD could 

perform the C1-elongation to produce 2-keto-7-aminohep-

tanoate, which could be decarboxylased by KIVD and oxi-

dized to 6-ACA by PadA. However, this engineered pathway 

has not yet been confirmed by any experiments until now.

Concluding remarks

Transformation of high-value-added chemicals from renew-

able biomass, especially from the overcapacity of fermenta-

tive Lys, will be successful if the process cost is competitive 

compared with the traditional fuel refineries and derivative 

industry chain and, however, supports from government, and 

the taxpayers are welcomed to transform this green manufac-

turing manner from lab to industrial scale. Moreover, life-

cycle analysis should be done to confirm the feasibility of 

the new mode of manufacturing.

In this review, several kinds of chemicals could be pro-

duced from Lys, which includes L-PA, cadaverine, 5AVA, 

δ-valerolactam, 6ACA, and ε-caprolactam, but there might 

be some other chemicals could be converted from Lys and 

not discussed here. Except for L-PA and 6ACA, which 

could be used as pharmaceutical intermediate, the other 

chemicals discussed are all related to the nylon polymer 
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Fig. 7  Schematic representation of the AKP and adipoyl-CoA route 
for fermentative production of 6-ACA from lysine, partly is con-
firmed by experiments and partly is deduced from the references. The 
most important enzymatic activities of these routes are or might be: 
aminoadipic semialdehyde synthase (AASS) (A), aminoadipic semi-
aldehyde dehydrogenase (B), unknown enzymes (C, D), deaminase 
(E), pipecolic acid oxidase (F), unknown enzyme (G), (R)-homoci-
trate synthase, (R)-homocitrate dehydratase, cis-homoaconitate dehy-

dratase and threo-isohomocitrate dehydrogenase (H), (homo)2citrate 
synthase, dihomocitrate dehydratase, cis-(homo)2aconitate dehy-
dratase and threoiso(homo)2citrate dehydrogenase (I), Aminotrans-
ferase (J), 2-aminopimelate decarboxylase (K), α-ketopimelate decar-
boxylase (L), aminotransferase (M), 3-oxoadipyl CoA thiolase (N), 
3-hydroxyadipyl-CoA dehydrogenase (O), enoyl-CoA hydratase (P), 
hexenoyl-CoA-reductase (Q) (acetylating), and aldehyde dehydroge-
nase (R)
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production. Since nylon is well known for their durability 

and strength, it is indispensable for modern life and the 

amount demanded are arising year by year. Considering 

the decreasing oil reserves and increasing environmental 

pollution, it is important to build biochemical routes to 

develop a renewable and clean bio-based nylon production 

to satisfy the need of the people and society.

In the traditional Lys production industry, studies are 

undergoing to further decrease the production cost and the 

market price, which include strain improvement, fermenta-

tion optimization, and downstream processing as reported. 

With great efforts for low-cost biomanufacturing of Lys 

and the possibility of using “bio-based manufacturing” 

Lys as a feedstock, the Lys industry might be expanded 

in the next decades and enterprises still could maintain 

profits amidst fierce competition.
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