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We performed the largest genome-wide association study of PD to date, involving the analysis 

of 7.8M SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases, and 1.4M controls. We identified 

90 independent genome-wide significant signals across 78 loci, including 38 independent risk 

signals in 37 novel loci. These variants explained 26-36% of the heritable risk of PD. Tests of 

causality within a Mendelian randomization framework identified putatively causal genes for 70 

risk signals. Tissue expression enrichment analysis suggested that signatures of PD loci were 

heavily brain-enriched, consistent with specific neuronal cell types being implicated from single 

cell expression data. We found significant genetic correlations with brain volumes, smoking 

status, and educational attainment. In sum, these data provide the most comprehensive 

understanding of the genetic architecture of PD to date by revealing many additional PD risk 

loci, providing a biological context for these risk factors, and demonstrating that a considerable 

genetic component of this disease remains unidentified.  

 

INTRODUCTION 

 

Parkinson’s disease (PD) is a neurodegenerative disorder, affecting up to 2% of the population 

older than 60 years, an estimated 1 million individuals in the United States alone. PD patients 

suffer from a combination of progressive motor and non-motor symptoms that increasingly 

impair daily function and quality of life. There are no treatments that delay or alter PD1. As the 

global population continues to age, the prevalence of PD is projected to double in some age 

groups by 2030, creating a substantial burden on healthcare systems.1,2,3 

 

Early investigations into the role of genetic factors in PD focused on the identification of rare 

mutations underlying familial forms of the disease,4–6 but over the past decade there has been a 

growing appreciation for the important contribution of genetics in sporadic disease7,8. Genetic 

studies of sporadic PD have altered the foundational view of disease etiology as much of 

sporadic disease was formerly thought to be environmental.  

 

With this in mind, we executed a series of experiments to further explore the genetics of PD 

(summarized in Figure 1). We performed the largest-to-date GWAS for PD, including 7.8M 

SNPs, 37.7K cases, 18.6K UK Biobank (UKB) “proxy-cases” and 1.4M controls. We identified 

putatively causal genes for PD, providing valuable targets for therapeutic research. We 

assessed the function of these putatively causal genes on a larger scale than in previous 

studies of PD via Mendelian randomization (MR), expression enrichment, and protein-protein 

interaction network analysis 9,10,11. We estimated PD heritability, developed a polygenic risk 

score that predicted a substantial proportion of this heritability, and leveraged these results to 

inform future studies of PD genetics. Finally, we identified putative PD biomarkers and risk 

factors using genetic correlation and Mendelian randomization. 

 

METHODS 

 

See Supplementary Methods 
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RESULTS 

 

Novel loci and multiple signals in known loci identified 

 

To maximize our power for locus discovery we used a single stage design, meta-analyzing all 

available GWAS summary statistics. In support of this design, we found strong genetic 

correlations between GWAS using PD cases ascertained by clinicians compared to 23andMe 

self-reported cases (rG = 0.85, SE = 0.06) and UKB proxy cases (rG = 0.84, SE = 0.134).  

 

We identified a total of 90 independent genome-wide significant association signals through our 

meta-analysis and conditional analyses of 37,688 cases, 18,618 UKB proxy-cases and 

1,417,791 controls at 7,784,415 SNPs (Figure 2, Table 1, Supplementary Appendices, Table 

S1, Table S2). Of these, 38 signals are new and more than 1MB from loci described in a 

previous report by Chang et al. 2017 (Table S3). 

 

In an attempt to detect multiple independent signals within loci we implemented conditional and 

joint analysis (GCTA-COJO, http://cnsgenomics.com/software/gcta/) with a large study-specific 

reference genotype series, as well as a participant-level conditional analysis using 23andMe 

data 12. We considered independent risk signals from conditional analyses to share the same 

locus if they were within 250kb of each other. We detected 10 loci containing more than one 

independent risk signal (22 risk SNPs in total across these loci), of which nine had been 

identified by previous GWAS, including multi-signal loci in the vicinity of GBA, NUCKS1 / 

RAB29, GAK / TMEM175, SNCA and LRRK2. The novel multi-signal locus comprised 

independent risk variants rs2269906 (UBTF / GRN) and rs850738 (FAM171A2). Detailed 

summary statistics on all nominated loci can be found in Table S2. 

 

Refining heritability estimates and determining extant genetic risk 

 

To quantify how much of the genetic liability we have explained and what direction to take with 

future PD GWAS we calculated updated heritability estimates and polygenic risk scores (PRS). 

Using LD score regression (LDSC) on a meta-analysis of all 11 clinically-ascertained datasets 

from our GWAS and estimated the liability-scale narrow-sense heritability of PD as 0.22 (95% 

CI 0.18 - 0.26), only slightly lower than a previous estimate derived using GCTA (0.27, 95% CI 

0.17 - 0.38)10,13,14. This may be because LDSC is known to be more conservative than GCTA, 

however, our LDSC heritability estimate does fall within the 95% confidence interval of the 

GCTA estimate. 

 

Next, we sought to determine the proportion of SNP-based heritability explained by our PD 

GWAS results using polygenic risk scores (PRSs). We utilized a two-stage design for our PRS 

analyses, with variant selection and training in the NeuroX-dbGaP dataset (5,851 cases and 

5,866 controls) and then validation in the Harvard Biomarker Study (HBS, 527 cases and 472 

controls). We focused on the NeuroX-dbGaP and HBS cohort as both of these clinically 

characterized cohorts were genotyped on the same PD-focused array (NeuroX) and have been 

used in previous studies of PRSs 8,15–18. In addition, both of these studies directly genotyped 
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larger effect, rare variants within LRRK2 (rs34637584, G2019S) and GBA (rs76763715, N370S) 

of great interest in previous PRS analyses.  

 

In order to prevent bias, we estimated the effect size of each SNP contributing to the PRS using 

a meta-analysis of all PD GWAS datasets except NeuroX-dbGAP and HBS. Using permutation 

testing in the NeuroX-dbGAP training cohort, we found that the optimal P threshold for variant 

inclusion was 1.35E-03, which included 1809 variants. Two PRSs were tested in HBS, one 

limited to 88 of the 90 genome-wide significant variants (two variants failed to pass quality 

control in the HBS study), and the other incorporating 1805 variants from the training phase 

(four variants failed to pass quality control in HBS due to low imputation quality). The 88 variant 

PRS had an area under the curve (AUC) of 0.651 (95% CI 0.617 - 0.684), while the 1805 variant 

PRS had an AUC of 0.692 (95% CI 0.660 - 0.725). The AUCs from our 88 variant PRS in both 

the NeuroX-dbGAP cohort and the HBS cohort were significantly larger than the AUCs in those 

same cohorts using a published PRS (Chang et al. 2017, AUC = 0.624, P < 0.002 from 

DeLong’s test). Although the HBS cohort was used to discover the 90 PD GWAS risk variants, 

therefore potentially biasing our 88 variant PRS, all 90 variants remained genome-wide 

significant in a meta-analysis of all GWAS datasets excluding the HBS study. Extended results 

for all included studies at all P-value thresholds can be found in the Supplementary Appendix. 

 

Using equations from Wray et al. 2010 and our current heritability estimates, the 88 variant PRS 

explained approximately 16% of the genetic liability of PD assuming a global prevalence of 

0.5%13,19. The 1805 variant PRS explained roughly 26% of PD heritability. In a high-risk 

population with a prevalence of 2%, the 1805 variant PRS explained 36% of PD heritable risk 
13,19 (Table S4). 

 

We then attempted to quantify strata of risk in our more inclusive PRS. Compared to individuals 

with PRS values in the lowest quartile , the PD odds ratio for individuals with PRS values in the 

highest quartile was 3.74 (95% CI = 3.35 - 4.18) in the NeuroX-dbGaP cohort and 6.25 (95% CI 

= 4.26 - 9.28) in the HBS cohort (Table 2, Figure 3, Figure S1). 

 

Variants in the range of 5E-08 < P < 1.35E-03 (used in the 1805 variant PRS) were rarer and 

had smaller effect estimates than variants reaching genome-wide significance. These sub-

significant variants had a median minor allele frequency of 21.3% and a median effect estimate 

(absolute value of the log odds ratio of the SNP parameter from regresion) of 0.047. Genome-

wide significant risk variants were more common with a median minor allele frequency of 25.1%, 

and had a median effect estimate of 0.081. We performed power calculations to forecast the 

number of additional PD cases needed to achieve genome-wide significance at 80% power for a 

variant with a minor allele frequency of 21.3% and an effect estimate of 0.047 20. Assuming that 

all incoming data is well harmonized with current data and that disease prevalence is 0.5%, we 

estimated that we would need a total of ~99K cases, ~2.3 times as many as our current 

analysis. Variant discovery at this point will help us work towards the maximum achievable AUC 

for a genetic predictor in PD (estimated 85%). Past this point it is possible that effect estimates 

get too marginal, variants get too rare and they are no longer useful in predictions or in 

estimating heritability 21. 
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Functional causal inferences via Quantitative Trait Loci (QTL) 

 

There were 305 genes within the 78 GWAS loci. We sought to identify the causal gene in each 

locus in order to help direct future high-throughput functional studies. Specifically, we used large 

QTL datasets and summary-data-based Mendelian randomization (SMR) to test whether the 

expression or methylation of these genes led to a causal change in PD risk (Table 3, Table S5, 

Table S6)11. This method allows for functional inferences between two datasets to be made 

within a similar framework as a randomized controlled trial, treating the genotype as the 

randomizing factor.  

 

We used four QTL datasets: a large meta-analysis of mRNA expression across brain tissues, 

mRNA expression in the substantia nigra, mRNA expression in blood, and methylation in blood 
22–26. Of the 305 genes under linkage disequilibrium (LD) peaks around our risk variants of 

interest, 237 were possibly associated with at least one QTL and were therefore testable via 

SMR (Supplementary Methods, Table S6). The expression or methylation of 151 of these 237 

genes (63.7%) was significantly linked to a causal change in PD risk.  

 

Of the 90 PD GWAS risk variants, 70 were in loci containing at least one of these putatively 

causal genes after multiple test correction (Table 3 summarizes top QTL per gene). For 53 out 

of these 70 PD GWAS hits (75.7%), the gene nearest to the sentinel SNP was a putatively 

causal gene (Table S2). Most loci tested contained multiple putatively causal genes. 

Interestingly, the nearest putatively causal gene to the rs850738 / FAM171A2 GWAS risk signal 

is GRN, a gene known to be associated with frontotemporal dementia (FTD)27. Mutations in this 

gene (GRN) have also been shown to be connected with another lysosomal storage disorder, 

neuronal ceroid lipofuscinosis28. 

 

Rare coding variant burden analysis 

 

As an orthogonal approach for nominating putatively causal genes, we also carried out rare 

coding variant burden analyses. While the main GWAS analysis was limited to MAF ≥ 1% 

(except for known coding risk variants), we carried out rare variant burden analyses in a subset 

of studies (Supplementary Methods). We performed kernel-based burden tests on the 113 

genes in our PD GWAS loci that contained two or more rare coding variants (MAF< 5% or MAF 

< 1%). After Bonferroni correction for 113 genes, we identified 7 significant putatively causal 

genes: LRRK2, GBA, CATSPER3 (rs11950533/C5orf24 locus), LAMB2 (rs12497850/IP6K2 

locus), LOC442028 (rs2042477/KCNIP3 locus), NFKB2 (rs10748818/GBF1 locus), and 

SCARB2 (rs6825004 locus). These results suggest that some of the risk associated with these 

loci may be due to rare coding variants. The LRRK2 and NFKB2 associations at MAF < 1% 

remained significant after correcting for all ~20,000 genes in the human genome (P = 2.15E-10 

and P = 4.02E-07, Table S7, Table S5).  

 

Tissue and cell specific expression enrichment plus protein-protein interactions 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/388165doi: bioRxiv preprint 

https://doi.org/10.1101/388165


 

 

 

In order to better understand the function of the genes highlighted by this study, we tested 

whether these genes were enriched in 10,651 biological pathways. We tested for gene 

expression and pathway enrichment in PD loci using Functional Mapping and Annotation of 

Genome-Wide Association Studies (FUMA) and webgestaltR, respectively 9,29. We found 10 

significantly enriched pathways (false discovery rate [FDR]-adjusted P < 0.05, Table S8), 

including four related to vacuolar function and three related to known drug targets (calcium 

transporters: ikeda_mir1_targets_dn and ikeda_mir30_targets_up, kinase signaling: 

kim_pten_targets_dn). Known pathways of interest relating to lysosomal function, endocytosis, 

and dopamine metabolism were significantly enriched when using a more lenient P value (FDR-

adjusted P < 0.1). At least three candidate genes within novel loci are involved in lysosomal 

storage disorder (GUSB, GRN, and NEU1), a pathway of interest in recent PD research 30. 

 

Next, we sought to determine the tissues and cell types most relevant to PD etiology using 

FUMA9. We tested whether the genes highlighted by our PD GWAS were enriched for 

expression in 53 tissues from across the body. We found 13 significant tissues, all of which 

were brain-derived (Figure S2A), in contrast to what has been seen in Alzheimer’s disease 

which shows a strong bias towards blood, spleen, lungs and microglial enrichments 31. To 

further disentangle the enrichment in brain tissues, we tested whether our PD GWAS genes 

were enriched for expression in 88 brain cell types using single cell RNA sequencing reference 

data from DropViz (http://dropviz.org)32. After false discovery rate correction we found seven 

significant brain cell types, all of which were neuronal (Figure S2B). The strongest enrichment 

was for neurons in the substantia nigra (SN) at P = 1.0E-06, with additional significant results at 

P < 5.0E-4 for the globus pallidus (GP), thalamus (TH), posterior cortex (PC), frontal cortex 

(FC), hippocampus (HC) and entopeduncular nucleus (ENT).  

 

Finally, we analyzed protein-protein interaction networks using webgestaltR29 and found that the 

genes highlighted by our PD GWAS were enriched in six functional ontological networks (FDR-

adjusted P < 0.1). The majority of these networks were related to chemical signaling pathways 

or response to some type of stressor. The most significant protein-protein interaction was 

related to response to interferon-gamma (Table S9, Figure S3A, Figure S3B). 

 

Genetic correlations and Mendelian randomization across phenotypes 

 

Next, we used cross-trait genetic correlation and Mendelian randomization to identify putative 

PD biomarkers and risk factors. We estimated the cross-trait genetic correlation between our 

PD GWAS and 757 other GWAS datasets curated by LD hub 33. We found four significant 

genetic correlations (FDR-adjusted P < 0.05, Table 4, Table S10) including positive correlations 

with intracranial volume (rG = 0.351, SE = 0.077, P = 4.64E-06) and putamen volume (rG = 

0.248, SE = 0.064, P = 9.55E-05, respectively)34, and negative correlations with current tobacco 

use (rG = -0.134, SE = 0.034, P = 7.92E-05) and “academic qualifications: National Vocational 

Qualifications (NVQ) or Higher National Diploma (HND) or Higher National Certificate (HNC) or 

equivalent” (rG = -0.169, SE 0.045, P = 2.00E-04)35. The negative association with one’s 

academic qualifications suggests that individuals without a college education may be at less risk 
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of PD than individuals with higher levels of education. The correlation between PD and smoking 

status may not be independent from the correlation between PD and education as smoking 

status and years of education were significantly correlated (rG = -0.361, SE = 0.064, P = 1.64E-

08) 36.  

 

We used Mendelian randomization to assess whether there was evidence of a causal 

relationship between PD and five phenotypes related to academic qualification, smoking, and 

brain volumes described above (Figure S4). Cognitive performance had a large, significant 

causal effect on PD risk (MR effect = 0.213, SE = 0.041, Bonferroni-adjusted P = 8.00E-07), 

while PD risk did not have a significant causal effect on cognitive performance (Bonferroni-

adjusted P = 0.125). Educational attainment also had a significant causal effect on PD risk (MR 

effect = 0.162, SE = 0.040, Bonferroni-adjusted P = 2.06E-04), but PD risk also had a weak but 

significant causal effect on educational attainment (MR effect = 0.007, SE = 0.002, Bonferroni-

adjusted P = 7.45E-3). There was no significant causal relationship between PD and current 

smoking status (forward analysis: MR effect = -0.069, SE = 0.031, Bonferroni-adjusted P = 

0.125; reverse analysis: MR effect = 0.004, SE = 0.010, Bonferroni-adjusted P = 1). Smoking 

initiation (the act of ever starting smoking) did not have a causal effect on PD risk (MR effect = -

0.063, SE = 0.034, Bonferroni-adjusted P = 0.315), whereas PD had a small, but significantly 

positive causal effect on smoking initiation (MR effect = 0.027, SE = 0.006, Bonferroni-adjusted 

P = 1.62E-05). Intracranial volume could not be tested because its GWAS did not contain any 

genome-wide significant risk variants. There was no significant causal relationship between PD 

and putamen volume (P > 0.05 in both the forward and reverse directions). 

 

DISCUSSION 

 

Our work marks a significant step forward in our understanding of the genetic architecture of PD 

and provides a genetic reference set for the broader research community. We identified 90 

independent common genetic risk factors for PD, nearly doubling the number of known PD risk 

variants. We re-evaluated the cumulative contribution of genetic risk variants, both genome-

wide significant and not-yet discovered, in order to refine our estimates of heritable Parkinson’s 

disease risk. We also nominated likely causal genes at each locus for further follow-up using 

QTL analyses and rare variant burden analyses. Our work has highlighted the pathways, 

tissues, and cell types involved in PD etiology. Finally, we identified intracranial and putaminal 

volume as potential PD biomarkers, and cognitive performance as a PD risk factor. Altogether, 

the data presented here has significantly expanded the resources available for future 

investigations into potential PD interventions. 

 

Using a PRS constructed from our GWAS results, we were able to explain up to 36% of PD 

heritability. Power estimates suggest that expansions of case numbers to 99K cases will 

continue to reveal additional insights into PD genetics. While these yet-to-be defined risk 

variants will have relatively small effects, cumulatively they will improve our ability to predict PD 

and will help to further expand our knowledge of the genes and pathways that drive PD risk.  
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Population-wide screening for individuals who are likely to develop PD is currently not feasible 

using our 1805 variant PRS alone. There would be roughly 14 false positives per true positive 

assuming a prevalence of 0.5%. While large-scale genome sequencing and non-linear machine 

learning methods will likely improve these predictive models, we have previously shown that we 

will need to incorporate other data sources (e.g. smell tests, family history, age, sex) in order to 

generate algorithms that are useful for population-wide screening 18. 

 

Evaluating these results in the larger context of pathway, tissue, and cellular functionality 

revealed that genes near PD risk variants showed enrichment for expression in the brain, 

contrasting with previous work in Alzheimer’s disease. Notably, we showed that the expression 

enrichment of genes at PD loci occured exclusively in neuronal cell types. We also found that 

PD genes were enriched in chemical signaling pathways and pathways involving the response 

to a stressor. These observations may be informative for disease modeling efforts, highlighting 

the importance of disease modeling in neurons and of incorporating a cellular stress 

component. This will help inform and focus stem cell derived therapeutic development efforts 

that are currently underway. 

 

Using cross-trait LD score regression, we found four phenotypes that were genetically 

correlated with PD. Putamen and intracranial volumes may prove to be valuable PD biomarkers. 

Our bi-directional GSMR results suggest a complex etiological connection between smoking 

initiation and PD that will require further follow-up and should be viewed with some caution. One 

of the implications of this work is that PD trials of nicotine or other smoking-related compound(s) 

may be less likely to succeed. The strong causal effect of cognitive performance on PD is 

supported by observational studies 37. 

 

While this study marks major progress in assessing genetic risk factors for PD, there remains a 

great deal to be done. No defined external validation dataset was used, which may be seen as a 

limitation. Simulations have suggested that without replication variants with P values between 

5E-08 and 5E-9 should be interpreted with greater caution 38,39. We found 16 risk variants in this 

P value range, including two known variants near WNT3 (proximal to the MAPT locus) and 

BIN3. To a degree, the fact that we filtered our variants with a secondary random-effects meta-

analysis may make our 90 PD GWAS hits somewhat more robust due to the conservative 

nature of random-effects. Secondly, this study focused on PD risk in individuals of European 

ancestry. Adding datasets from non-European populations would be helpful to further improve 

our granularity in association testing and ability to fine-map loci through integration of more 

variable LD signatures while also evaluating population specific associations. Additionally, large 

ancestry-specific PD LD reference panels, such as those for Ashkenazi Jewish patients, will 

help us further unravel the genetic architecture of loci such as GBA and LRRK2. This may be 

particularly crucial at these loci where LD patterns may be quite variable within European 

populations, accentuating the possible influence of LD reference series on conditional analyses 

in some cases 40. Finally, our work utilized state-of-the-art QTL datasets to nominate candidate 

genes, but many QTL associations are hampered by both small sample size and low cis-SNP 

density. Larger QTL studies and PD-specific network data from large scale cellular screens 

would allow us to build a more robust functional inference framework. 
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As the field moves forward there are some critical next steps that should be prioritized. First, 

allowing researchers to share participant-level data in a secure environment would facilitate 

inclusiveness and uniformity in analyses while maintaining the confidentiality of study 

participants. Our work suggests that GWASes including up to 99,000 cases will continue to 

provide useful biological insights into PD. In addition to studies of the genetics of PD risk, 

studies of disease onset, progression, and subtype will be important and will require large series 

of well-characterized patients. We also believe that work across diverse populations is 

important, not only to be able to best serve these populations but also to aid in fine mapping of 

loci. Notably, the use of genome sequencing technologies could further improve discovery by 

capturing rare variants and structural variants, but with the caveat that very large samples sizes 

will be required. While there is still much left to do, we believe that our current work represents a 

significant step forward and that the results and data will serve as a foundational resource for 

the community to pursue this next phase of PD research.  
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Table 1: Novel loci associated with Parkinson's disease.  

Summary statistics for all 90 genome-wide significant PD variants. Columns include single 

nucleotide polymorphism ID (SNP), chromosome (CHR), base pair position (BP), nearest gene 

annotation for the variant, effect allele designation and frequency, as well as metrics for the 

odds ratio (OR), regression coefficient (beta), and standard error of the beta for the SNP from 

fixed-effects meta-analysis as well as the index of heterogeneity (I2). We also include four p-

values from: fixed-effects meta-analyses, random-effects meta-analyses, standard conditional 

analyses in 23andMe, and a conditional joint analysis approach (COJO). 

 

Table 2: Summary of genetic predictive model performance. 

These are estimates of performance for predictive models including single study estimates, 

estimates from meta-analyses across studies, as well as a two stage design. Here the best P 
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threshold column denotes the filtering value for SNP inclusion to achieve the maximal pseudo 

(Nagelkerke's) R2. The odds ration (OR) colum is the exponent of the regression coefficient 

(beta) from logistic regression of the polygenic risk score (PRS) on case status, with the 

standard error (SE) representing the precision of these estimates. These same metrics are 

derived across array types and datasets using random-effects meta-analyses. The area under 

the curve (AUC) is included as the most common metric for predictive model performance. In 

the table, * denotes R2 approximation adjusted for an estimated prevalence of 0.5%, equivalent 

to roughly half of the unadjusted R2 estimates for the PRS. All calculations and reported 

statistics include only the PRS and no other parameters after adjusting for principal components 

1-5, age and sex at variant selection in the NeuroX-dbGaP dataset. 

 

Table 3: Summary of significant functional inferences from QTL associations via 

Mendelian randomization for nominated genes of interest.  

Multi-SNP eQTL Mendelian randomization results focusing only on the most significant 

association per nearest genes to PD risk loci after Bonferroni correction. If a locus was 

significantly associated with both brain and blood QTLs after multiple test correction, we opted 

to show the most signficant brain tissue derived association here after filtering for possible 

polygenicity (HEIDI P > 0.01). All tested QTL summary statistics can be found in Supplementary 

Table S6. Effect estimates represent the change in PD odds ratio per one standard deviation 

increase in gene expression or methylation. 

 

Table 4: Significant cross-trait genetic correlations. 

The genetic correlations between PD and four significantly-associated traits from LD Hub. An 

extended version of this table included in the Supplementary Materials (Supplementary Table 

S10) showing data for all tested correlations. In this table, h2 represents the heritability estimate 

of the trait. 

 

FIGURES 

 

Figure 1: Workflow and rationale summary. 

This figure describes study design and rationale behind the analyses included in this report. 

 

Figure 2: Manhattan plot. 

The nearest gene to each of the 90 significant variants are labeled in green for previously-

identified loci and in blue for novel loci. –log10P values were capped at 40. Variant points are 

color coded red and orange, with orange representing significant variants at P 5E-08 and 5E-9 

and red representing significant variants at P < 5E-9. The X axis represents the base pair 

position of variants from smallest to largest per chromosome (1-22). 

 

Figure 3: Predictive model details.  

A. The odds ratio of developing PD for each quartile of polygenic risk score (PRS) compared to 

the lowest quartile of genetic risk. B. PRS receiver-operator curves for each array type and 

sampling design.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Methods: Detailed methods section. 

 

Supplemental Appendix: This appendix is split into four sections detailing: first comparisons of 

effect estimates across GWAS cohorts (beta~beta plots), second forest plots for each significant 

variant, thirdly locus plots showing regional GWAS results, and QTL and burden associations 

for each variant, finally the fourth section including extended PRS results. Beta~beta plots 

compare the regression coefficients for up to 90 of the significant variants in one study to a 

meta-analysis of all others via linear regression. Forest plots communicate similar sensitivity 

analyses, for each of the 92 variants of interest. In the forest plots, box size indicates relative 

sample size for that study, and the width of the diamond representing the meta-analysis effect 

estimates indicate the 95% confidence interval. The locus plots are a zoomed-in version of 

Figure 2 for each of the 90 significant variants. These plots are truncated at a -log10 P value of 

50 for display purposes and include the most significant burden test and QTL analysis results 

per gene denoted by label color-coding in each figure. In each locus plot, R2 is measured in our 

in-house LD reference dataset and shows the correlation between the most significant local 

SNP and all other proximal SNPs. Additional detailed PRS results for a subset of cohorts are 

available in the appendix summarizing PRS estimates at varied P thresholds. Each cohort 

specific PRS in the appendix is based on meta-analyses excluding that cohort when calculating 

SNP weights. A smaller table summarizing PRS associations at the P threshold with the highest 

r2 is also included. Column headers in the PRS section of the appendix mirror that of Table 2. 

 

Figure S1: The odds ratio of developing PD for each decile of PRS, comparing each decile to 

all others for all samples in this analysis. 

 

Figure S2: Results of FUMA analysis for tissue and cell type specific expression enrichment. A. 

Tissue enrichment. B. Cell type-specific enrichment. Red bars indicate levels of significance 

surpassing multiple test correction. 

 

Figure S3: Panel A: Gene ontology term connectivity within protein-protein networks. This panel 

shows network of gene ontology (GO) terms from pathway analyses. Most significant GO terms 

are shown in green. Panel B: Gene level connectivity within protein-protein networks. This panel 

shows connectivity between genes across enriched pathways. 

 

Figure S4: Comparison of regression coefficients in Mendelian randomization analyses across 

traits. Each cross represents a SNP, with the dashed lines representing the trend across all 

variants. Axes position are regression coefficients from GWAS for significant SNPs from either 

GWAS. Panel A includes results for cognitive performance, panel B includes results for 

educational attainment, panel C includes results for putamen volume, panel D includes results 

for smoking initiation and panel E includes results for current smoking status. 

 

Table S1: Descriptive statistics and quality control summaries for meta-analyzed genome-wide 

association studies. ! denotes age at exam for both cases and controls. $ denotes age at death, 
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onset not available. * based on 599 PD cases and 715 controls. ^ denotes samples checked for 

overlap across datasets as per Nalls et al. 2014 and Chang et al. 2017, ^^ denotes checked for 

overlap within IPDGC sample series, ^^^denotes a combination of both workflows for identifying 

sample overlap. 

 

Table S2: Summary statistics for all nominated risk variants, known and novel. For binary 

variables, 0 = negative and 1 = positive. Some specific notes include: delineations of all studies, 

new studies and previous studies as discussed in the methods section. Betas and standard 

errors (StdErr) refer to effect estimates per SNP from logistic regression or fixed-effects meta-

analyses.I2 is the index of heterogeneity. QTL Nominated Gene = genes which represent the 

nearest cis-QTL for that locus significant in MR. 

 

Table S3: Comparison with novel results from Chang et al., 2017. This table summarizes 

linkage disequilibrium estimates between Chang et al., 2017 novel loci and variants passing 

quality control in this report. 

 

Table S4: Estimates of genetic liability explained in different scenarios. 

Here we compare how different AUC estimates and prevalence rates change the amount of 

genetic liability explained by GWAS. 

 

Table S5: SNPs of interest tagging genes for functional inferences and networks analysis. 

Nominated genes and SNPs for follow-up analyses based on minimum r2 > 0.5 within +/- 1MB of 

one of our 90 risk loci. 

 

Table S6: Complete summary statistics for QTL Mendelian randomization. Output from the 

SMR package for all QTLs of interest. Additional columns include QTL reference dataset, 

dataset-level Bonferroni corrected P values and a binary indicator if a candidate association 

passed multiple test correction. All columns prefixed by SMR indicate multi-SNP SMR results. 

 

Table S7: Rare coding variant burden analyses for genes under GWAS peaks. Detailed results 

of burden tests for genes proximal to risk loci. This includes variant counts, test statistics (rho, q, 

P, adjusted P) for each gene of interest. 

 

Table S8: FUMA expression pathway enrichment analysis results. 

Pathway enrichment from collapsed GWAS summary statistics. 

 

Table S9: Protein network analysis for linked genes under association peaks. Gene ontology 

terms passing false discovery rate adjustment. 

 

Table S10: Bivariate LDscores. Default output from LD Hub. Abbreviations defined in main text 

and methods section. 

 

Text S1: Authors and affiliations. 
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SNP CHR BP Nearest Gene

Effect 

allele

Other 

allele

Effect allele 

frequency OR Beta SE P, fixed-effects P, COJO P, conditional P, random-effects I2, %

rs6658353 1 161469054 FCGR2A c g 0.501 1.07 0.065 0.009 6.10E-12 4.69E-12 1.38E-05 3.71E-05 40.2

rs11578699 1 171719769 VAMP4 t c 0.195 0.93 -0.070 0.012 4.47E-09 4.45E-09 2.63E-03 1.09E-07 5.1

rs76116224 2 18147848 KCNS3 a t 0.904 1.12 0.110 0.019 1.27E-08 1.27E-08 3.75E-07 1.27E-08 0

rs2042477 2 96000943 KCNIP3 a t 0.242 0.94 -0.066 0.012 1.38E-08 1.48E-08 3.49E-05 1.38E-08 0

rs6808178 3 28705690 LINC00693 t c 0.379 1.07 0.066 0.010 8.09E-12 7.18E-12 8.84E-05 8.09E-12 0

rs55961674 3 122196892 KPNA1 t c 0.172 1.09 0.086 0.013 9.98E-12 8.30E-12 2.80E-06 9.98E-12 0

rs11707416 3 151108965 MED12L a t 0.367 0.94 -0.063 0.010 1.13E-10 1.02E-10 2.66E-04 1.77E-07 10.9

rs1450522 3 161077630 SPTSSB a g 0.674 0.94 -0.062 0.010 5.01E-10 4.90E-10 3.51E-04 2.27E-05 24.6

rs34025766 4 17968811 LCORL a t 0.159 0.92 -0.084 0.013 2.87E-10 2.82E-10 7.43E-06 2.87E-10 0

rs62333164 4 170583157 CLCN3 a g 0.326 0.94 -0.064 0.010 2.00E-10 1.77E-10 5.10E-05 2.17E-05 21.3

rs26431 5 102365794 PAM c g 0.703 1.06 0.062 0.010 1.57E-09 1.65E-09 6.00E-03 2.36E-07 7.9

rs11950533 5 134199105 C5orf24 a c 0.102 0.91 -0.092 0.016 7.16E-09 6.73E-09 5.08E-04 2.68E-08 1.9

rs9261484 6 30108683 TRIM40 t c 0.245 0.94 -0.064 0.011 1.62E-08 1.43E-08 1.26E-06 1.62E-08 0

rs12528068 6 72487762 RIMS1 t c 0.284 1.07 0.066 0.010 1.63E-10 1.79E-10 9.80E-06 1.63E-10 0

rs997368 6 112243291 FYN a g 0.805 1.07 0.071 0.012 1.84E-09 1.97E-09 2.61E-05 1.84E-09 0

rs75859381 6 133210361 RPS12 t c 0.967 0.80 -0.221 0.034 1.04E-10 9.67E-11 1.09E-06 1.04E-10 0

rs76949143 7 66009851 GS1-124K5.11 a t 0.051 0.87 -0.143 0.025 1.43E-08 1.51E-08 5.47E-09 2.04E-06 12.3

rs2086641 8 130901909 FAM49B t c 0.723 0.94 -0.061 0.011 1.81E-08 1.57E-08 6.07E-06 1.81E-08 0

rs6476434 9 34046391 UBAP2 t c 0.734 0.94 -0.062 0.011 6.58E-09 6.56E-09 2.74E-04 6.58E-09 0

rs10748818 10 104015279 GBF1 a g 0.851 0.92 -0.079 0.013 1.05E-09 1.23E-09 7.47E-06 1.05E-09 0

rs7938782 11 10558777 RNF141 a g 0.878 1.09 0.087 0.015 2.12E-09 1.97E-09 2.17E-07 2.12E-09 0

rs7134559 12 46419086 SCAF11 t c 0.404 0.95 -0.054 0.010 3.96E-08 3.80E-08 1.69E-02 1.84E-05 25.2

rs11610045 12 133063768 FBRSL1 a g 0.490 1.06 0.060 0.009 1.77E-10 1.62E-10 3.57E-05 8.79E-07 19.5

rs9568188 13 49927732 CAB39L t c 0.740 1.06 0.062 0.011 1.15E-08 1.11E-08 4.29E-06 2.46E-04 21.4

rs4771268 13 97865021 MBNL2 t c 0.230 1.07 0.068 0.011 1.45E-09 1.67E-09 1.41E-04 1.45E-09 0

rs12147950 14 37989270 MIPOL1 t c 0.438 0.95 -0.053 0.010 3.54E-08 3.58E-08 1.06E-03 3.54E-08 0

rs3742785 14 75373034 RPS6KL1 a c 0.787 1.07 0.071 0.012 1.92E-09 2.08E-09 2.22E-06 8.18E-06 24.8

rs2904880 16 28944396 CD19 c g 0.309 0.94 -0.065 0.011 7.87E-10 8.68E-10 1.39E-05 7.87E-10 0

rs6500328 16 50736656 NOD2 a g 0.599 1.06 0.059 0.010 1.82E-09 1.53E-09 1.43E-03 1.82E-09 0

rs12600861 17 7355621 CHRNB1 a c 0.648 0.95 -0.057 0.010 1.01E-08 1.15E-08 5.10E-03 1.01E-08 0

rs2269906 17 42294337 UBTF a c 0.653 1.07 0.063 0.010 6.24E-10 8.63E-09 1.17E-05 6.24E-10 0

rs850738 17 42434630 FAM171A2 a g 0.606 0.93 -0.071 0.011 1.29E-11 3.55E-10 4.18E-04 2.17E-07 17

rs61169879 17 59917366 BRIP1 t c 0.164 1.09 0.082 0.013 9.28E-10 9.40E-10 9.07E-07 6.21E-06 16.4

rs666463 17 76425480 DNAH17 a t 0.833 1.08 0.076 0.013 3.20E-09 2.90E-09 1.62E-05 4.17E-04 41

rs1941685 18 31304318 ASXL3 t g 0.498 1.05 0.053 0.009 1.69E-08 1.61E-08 1.64E-08 1.69E-08 0

rs8087969 18 48683589 MEX3C t g 0.550 0.94 -0.058 0.010 1.41E-08 1.46E-08 1.09E-04 1.41E-08 0

rs77351827 20 6006041 CRLS1 t c 0.128 1.08 0.080 0.014 8.87E-09 7.94E-09 1.84E-05 4.38E-07 11.2

rs2248244 21 38852361 DYRK1A a g 0.283 1.07 0.071 0.011 2.74E-11 2.51E-11 6.31E-05 8.78E-06 34.3
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Study Max P threshold

pseudo R2 

from PRS* OR Beta SE P

OR, highest 

quartile PRS

95% CI, highest 

quartile PRS N SNPs N samples AUC 95% CI (DeLong) Sensitivity Specificity

Positive predictive 

value (PPV)

Negative predictive 

value (NPV)

Balanced 

accuracy

Training dataset: IPDGC - Neurox 1.35E-03 0.029 1.74 0.553 0.022 8.99E-135 3.74 3.35 - 4.18 1809 11,243 0.640 0.630 - 0.650 0.569 0.632 0.591 0.611 0.601

Test dataset: HBS 4.00E-02 0.054 2.03 0.709 0.072 8.28E-23 6.25 4.26 - 9.28 1805 999 0.692 0.660 - 0.725 0.628 0.686 0.691 0.623 0.657
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Gene Probe CHR Probe, BP Top SNP, BP Top SNP N SNPs QTL reference Effect SE Odds ratio P Bonferroni adjusted P

VAMP4 ENSG00000117533 1 171,690,343 171,717,417 rs10913587 98 Võsa et al. 2018 - blood expression -0.272 0.05 0.762 5.67E-07 1.19E-04

KCNIP3 ENSG00000115041 2 96,007,438 95,989,766 rs3772034 14 Qi et al. 2018 - brain expression -0.161 0.04 0.851 1.12E-05 1.15E-03

MAP4K4 ENSG00000071054 2 102,410,880 102,338,377 rs6733355 3 Võsa et al. 2018 - blood expression 1.119 0.24 3.063 2.32E-06 4.87E-04

TMEM163 ENSG00000152128 2 135,344,950 135,248,544 rs598668 28 Qi et al. 2018 - brain expression 0.074 0.02 1.077 3.55E-07 3.65E-05

KPNA1 ENSG00000114030 3 122,187,294 122,201,610 rs73190142 110 Võsa et al. 2018 - blood expression 0.310 0.05 1.363 1.56E-06 3.28E-04

GAK ENSG00000178950 4 884,612 906,131 rs11248057 1 Qi et al. 2018 - brain expression 0.508 0.10 1.663 7.47E-07 7.69E-05

CAMK2D ENSG00000145349 4 114,527,635 114,730,260 rs115671064 146 Võsa et al. 2018 - blood expression -0.006 0.05 0.994 5.74E-06 1.21E-03

PAM ENSG00000145730 5 102,228,247 102,118,633 rs2432162 679 Võsa et al. 2018 - blood expression -0.031 0.01 0.970 2.08E-06 4.36E-04

LOC100131289 cg21339923 6 27,636,378 27,636,378 rs78149975 2 Qi et al. 2018 - brain methylation -0.094 0.02 0.911 1.53E-06 3.06E-04

TRIM40 cg01641092 6 30,094,300 30,094,315 rs9261443 8 Qi et al. 2018 - brain methylation 0.072 0.01 1.075 6.15E-06 1.23E-03

HLA-DRB5 cg26036029 6 32,552,443 32,570,311 rs34039593 8 Qi et al. 2018 - brain methylation -0.153 0.02 0.858 7.53E-10 1.51E-07

GPNMB ENSG00000136235 7 23,295,156 23,294,668 rs858274 74 Qi et al. 2018 - brain expression 0.090 0.01 1.094 2.73E-21 2.81E-19

CTSB ENSG00000164733 8 11,713,495 11,699,279 rs4631423 33 Qi et al. 2018 - brain expression -0.150 0.04 0.861 4.37E-09 4.50E-07

BIN3 ENSG00000147439 8 22,502,296 22,456,517 rs71513892 32 Qi et al. 2018 - brain expression 0.046 0.01 1.047 1.43E-06 1.48E-04

SH3GL2 ENSG00000107295 9 17,688,103 17,684,784 rs10756899 15 Qi et al. 2018 - brain expression 0.252 0.05 1.287 5.83E-08 6.00E-06

ITGA8 ENSG00000077943 10 15,659,036 15,548,925 rs7910668 6 Qi et al. 2018 - brain expression -0.201 0.05 0.818 6.13E-05 6.32E-03

RNF141 ENSG00000110315 11 10,548,001 10,553,355 rs4910153 120 Võsa et al. 2018 - blood expression -0.054 0.05 0.947 6.25E-07 1.31E-04

IGSF9B cg25790212 11 133,800,774 133,800,477 rs11223626 1 Qi et al. 2018 - brain methylation -0.172 0.04 0.842 3.24E-06 6.48E-04

FBRSL1 cg03621470 12 133,137,479 133,138,334 rs10781619 16 Qi et al. 2018 - brain methylation -0.057 0.01 0.944 6.35E-05 1.27E-02

CAB39L ENSG00000102547 13 49,950,524 49,918,175 rs35214871 30 Qi et al. 2018 - brain expression 0.097 0.02 1.102 3.51E-08 3.62E-06

GCH1 ENSG00000131979 14 55,339,148 55,348,837 rs3825611 6 Qi et al. 2018 - brain expression 0.113 0.03 1.120 2.76E-04 2.85E-02

SYT17 ENSG00000103528 16 19,229,472 19,273,554 rs727747 4 Qi et al. 2018 - brain expression 0.177 0.05 1.193 1.54E-04 1.58E-02

SETD1A ENSG00000099381 16 30,982,526 30,950,352 rs7206511 34 Võsa et al. 2018 - blood expression -0.710 0.09 0.492 2.75E-13 5.77E-11

CHRNB1 ENSG00000170175 17 7,354,703 7,373,595 rs60488855 18 Qi et al. 2018 - brain expression 0.115 0.03 1.122 1.67E-05 1.72E-03

UBTF ENSG00000108312 17 42,290,697 42,297,631 rs113844752 34 Võsa et al. 2018 - blood expression -0.466 0.09 0.628 5.68E-06 1.19E-03

MAPT ENSG00000186868 17 44,038,724 44,862,347 rs199502 6 Qi et al. 2018 - brain expression 0.265 0.03 1.304 7.13E-24 7.35E-22

WNT3 ENSG00000108379.5 17 44,875,148 44,908,263 rs9904865 2 GTEx v7 - substantia nigra brain expression -0.082 0.02 0.921 4.01E-06 4.81E-05

DNAH17 cg09006072 17 76,425,972 76,427,732 rs589582 3 Qi et al. 2018 - brain methylation 0.100 0.02 1.106 2.44E-05 4.88E-03

MEX3C ENSG00000176624 18 48,722,797 48,731,131 rs12458916 40 Võsa et al. 2018 - blood expression -0.291 0.05 0.748 5.28E-05 1.11E-02
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Trait of interest PMID

Genetic 

correlation, SE, RG Z, RG P, RG P, FDR adjusted Observed H2 SE, H2 H2 intercept SE, H2 intercept Cross trait intercept SE, Cross trait intercept

Intracranial volume 25607358 0.351 0.077 4.580 4.64E-06 3.51E-03 0.166 0.045 1.003 0.007 -0.013 0.005

Current tobacco smoking Not available (UKB) -0.134 0.034 -3.947 7.92E-05 2.41E-02 0.055 0.003 1.014 0.010 0.004 0.007

Mean Putamen 25607358 0.248 0.064 3.902 9.55E-05 2.41E-02 0.282 0.047 0.952 0.007 -0.007 0.006

Qualifications: NVQ or HND or HNC or equivalent Not available (UKB) -0.169 0.045 -3.726 2.00E-04 3.79E-02 0.015 0.002 1.011 0.007 0.005 0.005
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