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Time-Lag Components
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Test-retest data can reflect systematic changes over varying intervals of time in a

"time-lag" design. This article shows how latent growth models with planned

incomplete data can be used to separate psychometric components of developmen-

tal interest, including internal consistency reliability, test-practice effects, factor

stability, factor growth, and state fluctuation. Practical analyses are proposed using

a structural equation model for longitudinal data on multiple groups with different

test-retest intervals. This approach is illustrated using 2 sets of data collected from

students measured on the Woodcock-Johnson—Revised Memory and Reading

scales. The results show how alternative time-lag models can be fitted and inter-

preted with univariate, bivariate, and multivariate data. Benefits, limitations, and

extensions of this structural time-lag approach are discussed.

Test-retest data are often collected to examine test

reliability and trait stability. In the traditional test-

retest design, participants are measured on a battery of

tests and then, at some specific interval of time, the

same participants are measured again on the same

tests. Test-retest data are often collected over short

periods of time to examine the test-retest reliability of

a test or a battery of tests (e.g., Stanley, 1971). When

data have been collected over longer intervals of time,

the stability of the trait is highlighted and the terms

longitudinal and panel analyses are used (e.g., see

Nesselroade & Baltes, 1979).

Researchers interested in the reliability or stability
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of a psychological attribute often report a test-retest

correlation for a specific test. This correlation can be

informative under certain traditional assumptions

about the test and the persons under study. But this

correlation can be misleading when these persons

change in a nonrandom or systematic way during the

interval of time between test and retest. Tests mea-

suring traits that change over time will demonstrate

lowered test-retest correlations. These effects on the

correlation can come as a result of the short-term im-

pacts of practice and retention or from longer term

impacts of growth or maturation. In these cases, the

results from test-retest studies confound concepts of

trait stability with test reliability, and the quality use-

fulness of the tests may be compromised. These issues

are well known in psychometric theory (e.g., Ana-

stasi, 1954; Cattell, 1957; Gulliksen, 1950; Nunnally,

1978; Traub, 1994), but few studies have overcome

these fundamental test-retest problems.

A great deal of research has demonstrated how it is

possible, even advantageous in some cases, to esti-

mate some developmental within-person variation

from complete longitudinal information (e.g., see

Nesselroade & Baltes, 1979). These growth models

work best when large numbers of participants are

measured at many occasions on many variables, but

this kind of data collection is often not possible (Co-

hen, 1991). Thus, various alternative models have

been used to analyze incomplete longitudinal conver-

gence or cohort-sequential data (Bell, 1953; Schaie,
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1965) and some of these have used new techniques in

linear structural equation modeling (SEM) techniques

(e.g., Aber & McArdle, 1991; Anderson, 1993; Horn

& McArdle, 1980; McArdle & Anderson, 1990;

McArdle & Hamagami, 1992). These structural mod-

els provide some consideration for data that differ in

interval of time between repeated testings—here

called the "time-lag." The main purpose of this ar-

ticle is to illustrate this time-lag methodology and

show how it can be used to enhance the usefulness of

the traditional test-retest design.

This article is organized into several sections. First,

we present a brief introduction on components of

change with test-retest data. Second, a time-lag de-

sign is introduced and illustrated with two samples of

time-lag data: (a) a short-term univariate study of

memory, and (b) a longer term multivariate study of

memory and reading. Third, we introduce a latent

growth model and show how it can be used to exam-

ine changes over time-lags. Fourth, we discuss model

estimation to illustrate how and why these longitudi-

nal models can be fitted using only two occasions of

measurement on each person in a planned incomplete

data design. Univariate structural results for both data

sets are based on using standard SEM computer pro-

grams (e.g., LISREL, MX). For clarity, only key tech-

nical issues are discussed and technical notes are pre-

sented in the Appendix. We then expand the time-lag

model to include a multivariate organization of

growth and change, and we present some multivariate

results from the second data set. Finally, we discuss

some benefits, limitations, and extensions of this

time-lag methodology.

Internal Consistency and Stability

Basic psychometric concepts of reliability are often

formulated from studies with "split-half or "paral-

lel forms" (see Gullikson, 1950; Nunnally, 1978;

Stanley, 1971). In these classical test theory models, it

is assumed that the observation of a participant's test

performance (here termed Y) reflects an underlying

construct. This construct may be termed either a trait

or a true score or a common factor (termed F). We

also assume that any test score includes some error of

measurement (termed £), and these errors are typi-

cally assumed to be independent of the true scores.

More recent work in item response theory modeling

(IRT) also retains many of these traditional assump-

tions (e.g., Reise, Widaman, & Pugh, 1993; cf. Vin-

sonhaler & Meredith, 1966).

An illustration of a true-score model for two alter-

native forms is presented in the first path diagram of

Figure 1A. In this path diagram, squares are used to

represent observed or measured variables (Ya and Yb);

circles are used to represent unobserved or theoretical

variables (e.g., Ea, Eb, and F); one-headed arrows are

used to represent regression coefficients (e.g., F <— Ya

is fixed at a value of 1); and two-headed arrows are

used to represent estimated correlation or variance

terms (e.g., F <-> F = Vf>. More details on these kinds

of path diagrams are given by McArdle and Boker

(1990).

These path diagrams can be used to illustrate many

classical test theory results (see Traub, 1994). For

example, the variance of the observed score (Vy) may

be calculated as the sum of the variance of the trait

(Vf) plus the variance due to error (Ve). In this simple

model the ratio of the variance due to the trait (Vf)

compared with the total variance of the observed test

performance (Vy) can be written as a standardized

variance component or ratio (Vf = Vf/V^. Under

these assumptions, the expected variance component

Vf is identical to the observed correlation between

measures (Raib) for split-half, alternative form, or

parallel form data. This coincides closely with one

common definition of the internal-consistency reli-

ability ratio (Ric), and this definition is often used

as a primary index of the quality and usefulness of a

test.

Stability and Change

The same measure may be observed on more than

one occasion. In Figure IB the time of measurement

is indexed within brackets (y[l] and Y[2]). In this

test-retest model, we include the covariance over time

(Cy[! 2j) between the two factor scores, and this allows

us to consider additional sources of variance in tests

and traits. For instance, we may be interested in the

factor-stability—the degree to which the common fac-

tor scores F remain the same over time. If we assume

that the observed variances are equal over time, then

the observed correlation over time (/f^i^i) is a direct

index of factor stability. In this case, the factor-

stability ratio and the internal-consistency ratio can be

calculated using similar formulae (i.e., Rab = /?y[1,2]

= Vf). However, these simple model assumptions

might not hold, so the size of the factor stability is not

necessarily an index of test quality. In more general

terms, factor stability is a characteristic of develop-

ment and change (Burr & Nesselroade, 1990; McCall,
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Figure 1. Alternative structural models for test-retest data. Square = observed variable; circle = unobserved variable;

one-headed arrow = a unit-valued regression coefficient; two-headed arrow — a variance or covariance term. Panel A:

Alternative forms. Panel B: Test-retest covariance. Panel C: Test-retest with practice. Panel D: Difference in true scores.
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Appelbaum, & Hogarty, 1973; Nesselroade, 1983;

Wohlwill, 1973).

There are a variety of practical cases where the

factor stability can provide different information from

the internal-consistency reliability. When occasions

are spaced at shorter lengths of time we often expect

a test-practice or test-retention effect (see Horn, 1972;

Hundal & Horn, 1977; Jones, 1962; Nunnally, 1978,

pp. 233-234; Woodworth, 1938, pp. 50-68). In some

cases, a practice effect may be conceived of as an

independent source of individual differences that only

impacts observed scores after the first occasion of

measurement.

The path diagram of Figure 1C shows a model that

looks like Figure 1A with an additional latent variable

P. This additional influence can increase (or decrease)

the variance of the test at a second occasion (by the

variance labeled Vp). If this is a practice effect, or

virtually any additional source of variance, the ob-

served test—retest correlation (Ry[1 jj) will not equal

the standardized factor stability (Vf). To clarify this

distinction, we need some practical way to separate

the factor stability from the test practice-retention

variance. We also want to account for any increases or

decreases in the mean score as a result of practice or

retention of the specific test material. These basic is-

sues are raised again in analyses presented later.

More Complex Growth and

Change Components

These theoretical conceptions can be expanded on

in a number of ways. If we measure individuals over

a long enough period of time we may find individual

differences in the growth or maturation in a trait. Cat-

tell (1957, pp. 343-344) used the terms trait changes

and function fluctuation to indicate nonrandom and

systematic changes in the factor scores over time. We

use the term factor growth in a similar way here (after

Horn, 1972; McArdle & Hamagami, 1992; Nessel-

roade & Bakes, 1979).

Figure ID is an illustration of one kind of alterna-

tive model for test-retest studies. This model includes

a factor score at a first occasion (F[l]) and a score on

the same factor at the second occasion (F[2]). We

have included a regression arrow with a unit value

between the two factor scores, and this leads to a

latent difference score (AFn) that is possibly corre-

lated with the initial factor score (i.e., in algebraic

terms, F[2]n = F[l]n + AFn so, by definition, &Fn =

F[2]n - F[\]n; e.g., McArdle & Nesselroade, 1994).

This model leads to a set of expectations about the

observed scores over time and can be used to organize

and test hypotheses about change in the true-scores.

Recent controversies about the "reliability of change

scores" can also be formalized using this kind of

model (e.g., Burr & Nesselroade, 1990; Rogosa &

Willett, 1985; Willett, 1988). In more advanced mod-

els these developmental concepts can be related to

systematic changes in the observed group means over

time (as in Meredith & Tisak, 1990; McArdle &

Hamagami, 1992, 1996).

Even more complex differences between reliability

and stability are based on the need to account for

psychological states. The most obvious state concepts

in mental test performance include temporary fatigue,

anxiety, and impulsivity, although other constructs

may be involved as well (Cattell, 1957, pps. 349,

639-640, 683). The influences of psychological states

on psychological performances are often defined as

transitory or temporary features of behavior (e.g.,

Nesselroade & Bartsch, 1977; cf. Steyer, 1989;

Steyer, Schwenkmezger, & Auer, 1990). These influ-

ences may vary in a systematic way across different

variables within a specific time of measurement but

also vary between times of measurement. In a multi-

variate model, we may consider the common state as

a characteristic of a common factor that only occurs

within a specific time point. Cattell (1957, 1964) used

the term state fluctuation to deal with these compo-

nents, and he suggested some unique ways to calcu-

late state variance from empirical data. We explore

these issues in more detail later.

Adding Time-Lags to

Test-Retest Measurement

The developmental concepts raised above are dif-

ficult to examine, even when multiple-occasion lon-

gitudinal data are collected. To add to these problems,

longitudinal data are among the most difficult data to

collect. Unintended retesting effects can occur over

short periods of time, and unintended attrition of par-

ticipants can occur over longer periods of time (see

Cohen, 1991; Nesselroade & Baltes, 1979). In prac-

tice, financial resources and other aspects of project

planning may limit a longitudinal investigation to

only two occasions.

In a single-occasion study, each variable (Y) is usu-

ally summarized by two statistics—one mean (My)

and one variance (Vy)—although other aspects of the

distribution of Y may be informative as well. The

developmental information obtained from only one

time point of measurement is cross-sectional so any
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model components can only reflect individual differ-

ences between persons. Similarly, each variable in a

two-occasion test-retest study is usually summarized

by five summary statistics: two means (My[1j and

Mym), two variances (Vym and Vyl2j), and one corre-

lation (/?j,[i,2j)- Unfortunately, these typical test-retest

statistics do not contain enough information for a non-

arbitrary separation of some developmental effects

defined earlier. For example, an effect of growth-

maturation (G) and an effect of practice-retention (P)

both lead to increases in the means and variances at a

second time point, so there is no easy way to separate

such components (e.g., Jones, 1962). This kind of

confounding also occurs with three or more time

points as well (see Heise, 1969).

It is possible to improve the usefulness of two time

points of measurement if we consider variation in the

time-lag between tests. That is, previous research has

shown how some developmental concepts can be ex-

amined if we consider issues related to time between

measurements. Some time-lag models were illustrated

by Thorndike (1931) in a study of repeated IQ mea-

surements taken at different lengths of time delays.

Thorndike fitted a relatively sophisticated regression

model to these data—z-transformed correlations were

the dependent variable and the time-lag between tests

was the independent variable—so he could estimate

the intercept of this regression model as the "instan-

taneous reliability" (the intercept) and the "change in

reliability" (the slope) due to the time delay (also see

Hartigan & Wigdor, 1989). In another more complex

model, Vinsonhaler & Meredith (1966) developed an

item response model that allowed for systematic

change due to practice effects in repeated testings.

Only a few researchers have studied time-lags in the

context of a designed experiment (e.g., Schlesselman,

1973; Woodworth, 1938). The broad theme of using

some features of time-lags in modeling analyses is

adapted and extended in the rest of this paper.

Structural Equation Modeling of

Test-Retest Data

The models to be used here reflect a mixture of

traditional logic in reliability and change analysis.

SEM techniques have been used for several decades

to estimate reliability and stability from longitudinal

data, especially using three or more points in time

(e.g., Blok & Saris, 1983; Werts, Breland, Grandy &

Rock, 1980; Heise, 1969; Hertzog & Nesselroade,

1987; Joreskog & Sorbom, 1979; McDonald, 1980,

1985; Raffalovich & Bohmstedt, 1987; Steyer, 1989).

More recently, these SEMs have been used to exam-

ine growth and maturation in longitudinal data (e.g.,

Bergmann, 1993; McArdle, 1988; McArdle & Aber,

1990; McArdle & Epstein, 1987; McArdle & Nessel-

roade, 1994; Meredith, 1991; Meredith & Tisak,

1990). These new longitudinal structural analyses of-

fer more flexible features for structured variation over

time and models for mean changes using the same

developmental functions, and allow the addition of

psychometric measurement model parameters.

In a broader sense, the resulting longitudinal mod-

els are similar to classical variance components mod-

els of generalizability theory (e.g., Cronbach, Gleser,

Nanda, & Rajaratnam, 1972; Shavelson & Webb,

1991; Whitman, 1988). In several ways, these models

also resemble a multilevel or hierarchical modeling

approach to longitudinal data analysis (e.g., Bryk &

Raudenbush, 1993; McArdle & Hamagami, 1996).

The concepts of planned incomplete data appear in

many other research designs, including analysis of

variance (ANOVA) and multidimensional scaling

(MDS; for review, see McArdle, 1994). Building on

this prior work, we now further develop models that

can use the time-lag between two measurements of

the same tests.

Time-Lag Data

Planning Time-Lags in Test-Retest

Measurement

The models examined here are based on repeated

measurements collected over a variety of time-lags.

The layout of Figure 2 presents one potentially useful

plan for test-retest measurement.

This layout mimics the traditional test-retest data

with one key exception—in this model the time be-

tween the test and retest is defined by time-lag /, and

this time-lag is not the same for each group studied.

Each column defines an independent group based on

the variables we do collect (the observed squares) and

the variables we do not collect (the unobserved

circles). By convention, a zero time-lag (t = 0) is

used to indicate the initial time of measurement. In-

cluded in a first group (column 1) are persons mea-

sured only at t - 0 and t = 1. For this group, we

assume variables at time t > 1 are not measured again

and we treat these occasions as latent variables. In the

second group (column 2) we include persons mea-

sured only at t = 0 and t = 2. Here the time-lag of t

= 2 indicates some predefined interval of time (e.g.,

2 months), and latent variables are used to indicate no
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Figure 2. A time-lag (t) design for two-occasion test-

retest data. Each column defines an independent group

based on the variables collected (squares) from variables not

collected (circles).

measurements at time t — 1 or at t > 2. The overall

pattern of incomplete data shown here yields 7 inde-

pendent groups, with the seventh group also measured

twice, but at t = 0 and t = 7.

This planned time-lag layout of Figure 2 requires

each participant to be measured at two occasions

with a defined time-lag between tests. Where pos-

sible, we can accumulate the individuals into "time-

lag groups" on the basis of a common unit(s) of time.

The aggregation of persons into groups is not a formal

necessity, and it requires several extra statistical as-

sumptions (e.g., homogeneity of the persons, homo-

geneity of time-lag, etc.). This kind of aggregation

will be used here mainly because it leads to conve-

nient statistical displays and standard analyses.

We initially assume that there is no relationship

between the scores at the first occasion (¥[0]) and the

time-lag t chosen for each participant or group. This is

a reasonable assumption when the time-lag between

testings can be randomly assigned by the investigator

and not selected by the participants. As it turns out,

randomization to groups can be tested and may even

be relaxed in more complex models. More flexible

definitions of the time-lags can be based on substan-

tive interest (e.g., 1 day, 1 month, etc.), equal intervals

are not required, and more complex incomplete data

collection plans can be effective (see Schlesselman,

1973; McArdle, 1994; McArdle & Hamagami, 1992,

1996).

Study 1: A Univariate Example of Daily

Time-Lag Data

As a first illustration of a time-lag design we pre-

sent data from a short-time test—retest study of the

Woodcock-Johnson Psycho-Educational Battery—

Revised (WJ-R; Woodcock & Johnson, 1989; Mc-

Grew, Werder, & Woodcock, 1991; see Appendix A).

In this first study, 1,364 participants aged 5 to 19 were

selected from the WJ—R standardization sample and

participated in a short-term test—retest study of the

WJ-R Memory-for-Names (MEMNAM) task. Scores

on the first occasion were based on the number of

"novel name-picture associations" held in memory

at several points in the task. The retest occurred at a

random selected time between 1 and 8 days later (with

an average lag of about 3 days). At this second occa-

sion these participants were asked to recall the picture

associated with given names.

In theory, these data should show a pattern of

change over time reflecting greater losses of memory

with longer time delays. A univariate model will be

developed in later sections to formally examine these

ideas, and these models will be based on the time-lag

data presented in Table 1 and Figure 3.

The top of Table 1 is a list of summary statistics for

MEMNAM at two occasions. After adjusting these

scores for the wide range of age differences (ages

5-19; see Appendix A) the means are centered at 0

(0.1 ± 12.6) at the first occasion, decline about 10

points (—9.9 ± 12.6) by the second occasion, and the

overall (i.e., within age) test-retest correlation is

Ryii2\
 = -637. These summary statistics are listed

separately for the eight independent groups defined by

the daily time-lag between tests. For each retest

group, this list includes the sample size, the observed

age-adjusted means, standard deviations, and test-

retest correlations. Among many fluctuations, the

means decrease, the deviations increase and decrease

and the correlations are relatively high. The expected

values listed in the bottom of Table 1 are the numeri-

cal results from a structural model and these will be

discussed later.

In Figure 3 we present plots of the changes in these

statistics over time for each variable. Figure 3A is a
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Table 1

Sample Statistics for Eight Daily Time-Lag Groups

Measured at Two Occasions on Woodcock—Johnson—

Revised Memory for Names (N = 1,384)

Days

delay

TimeO

N

Time t
OVPT time

Mrfo, Dym !UM DM '0W
Observed time-lag scores (age residuals)

1

2

3

4

5

6

7

8-14

Overall

279

525

165

80

120

54

137

24

1,384

-0.7

0.1

0.5

0.2

1.4

-3.4

1.4

0.6

0.1

Expected time-lag

1

2

3

4

5

6

7

8-14

279

525

165

80

120

54

137

24

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

13.1

12.1

13.5

14.2

13.0

12.3

10.9

9.7

12.6

scores

12.6

12.6

12.6

12.6

12.6

12.6

12.6

12.6

-8.7

-8.8

-8.8

-12.6

-10.8

-14.4

-13.0

-16.7

-9.9

13.9

11.7

13.1

13.4

11.6

11.9

11.5

11.1

12.6

.711

.650

.601

.730

.561

.546

.536

.546

.637

(from Model «3)

-7.9

-8.9

-9.9

-10.9

-11.9

-12.9

-13.9

-14.9

12.9

12.6

12.4

12.1

12.0

11.9

11.8

11.8

.676

.662

.645

.625

.601

.574

.545

.513

plot of the initial means for each of the retest groups.

Because of the random assignment, the initial t = 0

means (and deviations) should be statistically similar

for all groups, but a smaller mean for Group 6 is

apparent. Figure 3B is a plot of the mean difference

between the two occasions within each time-lag group

(Myifj - My[o] for t = 1 to 8 groups). These mean

differences are somewhat erratic but there are steady

decreases over time. Figure 3C is a similar plot except

here we depict the decreasing then increasing differ-

ences over time in the standard deviations (£*v[,j -

£)?[<>])• Finally, Figure 3D is a plot of the observed

test-retest correlation over time (Rv^0 ,j). These corre-

lations decrease with an increasing time-lag except for

the slightly higher correlation at Day 4 (for N = 80

with no outliers). These plots do not now include

confidence boundaries for the wide range of sample

sizes (ranging from N = 525 at t - 2 to only N = 24

at t = 8), but these will be estimated in later models.

Study 2: A Multivariate Example of Monthly

Time-Lag Data

A different organization of time-lag data were col-

lected in a longer term retest study of the WJ-R (see

McGrew et al., 1991; the first section of the Appen-

dix). In this second study, multivariate test-retest data

were obtained on N = 330 persons aged 5-19 at

time-lags between about 1 and 13 months. A test bat-

tery of 39 WJ-R tests was administered at die first

occasion, and 26 of these tests were repeated at the

second occasion. For illustrative analyses here we ini-

tially use four WJ-R raw scores: (MEMSEN or 7,),

Memory for Words (MEMWRD or Y2), Letter-Word

Identification (LWIDNT or F3), and Passage Compre-

hension (PSGCMP or y4). From these four variables

we also created two standard WJ-R composite scores:

a short-term memory factor (Memory or [Yl + Y2]/2),

and a broad reading cluster (Reading or [Y3 + Y4]/2).

A variety of substantive results are expected here.

In theory, these two WJ-R composites (and four vari-

ables) indicate different developmental constructs that

should have different patterns of change over time

(see Horn, 1972, 1988; McGrew et al., 1991). The

Memory scores represent the ability to hold new in-

formation in memory for short periods of time, and is

thought to be largely independent of cultural knowl-

edge and reasoning. In contrast, the Reading scores

represent reading skills that are primarily learned

from printed materials and training. On a substantive

basis we expect that (a) the Memory scores may show

some practice effects and minimal growth effects; (b)

the Reading scores will show substantial growth ef-

fects but minimal practice effects; (c) similar growth

patterns should exist within a pair representing the

same composite; (d) different growth patterns should

exist between variables of different composites; and

(e) a single factor (g) model should not fit all these

data very well. In the latter sections of this article, a

multivariate model will be developed to deal with

these ideas.

In Tables 2 and 3, we list the summary statistics for

these two WJ-R composites at both occasions broken

down into 11 separate groups defined by consecutive

samples of N = 30. This aggregation leads to an

unequal range of average time-lags ranging from 68

days to 424 days. Also listed are the age-adjusted

means, standard deviations, and test—retest correla-

tions for each retest group. The means and deviations

generally increase over time, and the correlations are

relatively high but show some fluctuations. The three

columns of correlations listed alongside each variable

and can be used to form the correlation matrix from

both the Y and X variables at the specific time-lag.

(Note that for each time-lag group in row t, the 3

correlations for Y in Table 2 can be combined with the

3 correlations for X in Table 3, and diese 6 correla-
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Figure 3. Observed statistics from Study 1: Woodcock-Johnson—Revised Memory for Names data from daily time-lag

groups. Panel A: Means (M) at the initial time point. Panel B: Mean changes over time. Panel C: Deviation (D) changes over

time. Panel D: Test-retest correlations (R).

tions are the unique elements of the 4 x 4 matrix of the

variables Y[0], Y[t], X[0], and X[t] at the specific time-

lag).

Figure 4 shows the changes in some statistics over

time for each variable (with Memory as an "o" and

Reading as an "x"). Figure 4A is a plot of the mean

difference between the two occasions for each time-

lag group (AA/yW - Mym for / = 1,11). These means

are erratic, but they do show small positive increases

over time. The Memory means are initially higher and

then decline over the year of time-lag. In Figure 4B

we depict the differences over time in the standard

deviations (AOyM - Dym), and changes here are simi-

lar to the mean changes. Figure 4C is a plot of the

test-retest correlations over time, and this erratic be-

havior may be an important source of misfit in later

models. Figure 4D is a plot of the within-time corre-

lation between these two variables over time, and

these kinds of statistics will be used in later bivariate

and multivariate time-lag analyses.

Time-Lag Models

A Time-Lag Structural Equation Model

Let us write a first structural model as

Y[t]n = /„ + U\i\n. (D

where Y[t] is the observed variable score at some oc-

casion t, the / is an unobserved initial level score, and

the U[t] is an unobserved unique or error score. In this

model we assume / score is constant over time for

each person and uncorrelated with the U[t] score, and

the U[t] score is uncorrelated with other unique U[t +

1] scores at other times t + I (I > 0). Under these

assumptions we can expect a constant covariance (and

correlation) over time for the observed scores Y[t] and

Y[t + 1] at all intervals of time. This model is identical

to the traditional true-score reliability model pre-

sented in Figure 1A, and this model can be useful

when there is no systematic change over time.
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Table 2

Sample Statistics for 11 Monthly Time-Lag Groups on Woodcock-Johnson—Short-Term Memory Composite Scores

(Y = [MEMSEN + MEMWRD]/2)

Sample

group

1

2

3

4

5

6

7

8

9

10

11

Overall

N

30

30

30

30

30

30

30

30

30

30

30

330

Time-lag

(mean days)

68

91

106

139

229

268

291

309

332

365

424

245

TimeO

Mym

-8.8

-5.6

-8.9

4.0

1.4

-3.7

1.1

3.3

-0.0

2.5

2.1

-1.1

0*0,

15.3

13.0

16.1

18.2

14.7

11.0

15.8

16.0

14.8

16.0

12.5

15.3

Time t

Myu

-4.9

3.5

-2.1

5.9

3.9

1.9

5.7

9.2

4.7

9.0

8.3

4.1

0»M

17.6

13.3

14.3

15.3

17.5

14.3

14.7

19.2

17.5

14.7

13.6

15.9

«,[»,]

.76

.62

.78

.74

.87

.79

.74

.87

.85

.75

.69

.78

Over time

Krfowo]

.51

.29

.09

.16

.50

.45

.42

.55

.50

.37

.45

.42

KyW.M

.41

.28

.24

.27

.65

.36

.34

.48

.53

.45

.68

.43

Note. N = 330. MEMSEN = Memory for Sentences; MEMWRD = Memory for Words.

A more complex longitudinal structural model can

be written as

Y[i], = /„ + B(t] x GB + [/[«]„, (2)

which is the same as the previous equation but includes

unobserved factor scores G, representing a growth

score, and factor loadings B[i], representing growth

coefficients. The G is constant over time for each

person, and the B[t] are constant for the group but can

change over time, so the product term B[t] x Gn al-

lows a different impact on the outcome score Tf[t] at

each occasion t. In other terms, G is considered as an

individual slope, or trait-change score that defines the

way the person changes over time and B[t] is inter-

preted as the shape of the group growth curve. Equa-

tion 2 has previously been termed a latent growth

model (following McArdle, 1988, 1989; McArdle &

Epstein, 1987; McArdle & Hamagami, 1992; Me-

redith & Tisak, 1990).

This SEM approach allows a variety of other mod-

Table 3

Sample Statistics for 11 Monthly Time-Lag Groups on Woodcock-Johnson—Revised Reading Composite Scores

(X = [LWIDNT + PSGCMP1/2)

Sample

group

1

2

3

4

5

6

7

8

9

10

11

Overall

N

30

30

30

30

30

30

30

30

30

30

30

330

Time-lag

(mean days)

68

91

106

139

229

268

291

309

332

365

424

245

TimeO

M*0]

-9.3

-3.4

-6.8

2.7

-0.4

-5.4

4.4

7.8

3.7

-0.1

4.4

-0.2

0*o,

15.3

14.5

13.1

16.2

20.8

14.0

16.5

18.2

16.9

16.7

19.4

17.1

Time t

M,m

-8.2

0.6

-3.8

7.0

3.2

1.1

11.6

17.2

11.4

12.5

15.5

6.6

0*1

16.2

12.9

13.5

13.8

18.3

13.1

14.3

21.3

18.2

19.3

21.7

18.7

«*0.r]

.89

.70

.75

.84

.85

.73

.70

.78

.87

.72

.74

.75

Over time

**],*]

.54

.19

.22

.25

.44

.63

.29

.58

.37

.37

.36

.46

**<>].,«

.47

.23

.26

.36

.56

.60

.16

.52

.46

.44

.52

.47

Note. N = 330. LWIDNT = Letter-Word Identification; PSGCMP = Passage Comprehension.
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Figure 4. Observed statistics from Study 2: Memory and Reading composites for Woodcock-Johnson—Revised monthly

time-lag groups. Panel A: Mean (M) changes over time. Panel B: Deviation (D) changes over time. Panel C: Test-retest

correlations (R). Panel D: Between-variable correlations.

els of components of change in a univariate time-

series. We can next write

= 4 + Bit] x Gn + Alt] x />„ (3)

with the additional factor score P and factor loadings

Alt]. This model now includes multiple latent growth

curves, and such models have recently been discussed

by Meredith and Tisak (1990) and McArdle and

Anderson (1990), among others. In this case, we add

further restrictions to the loadings Alt] so that P can

reflect a practice or testing-effect score.

A few additional expected values (&) are needed to

express the means and covariances of the latent com-

ponents. In the initial models we include non-zero

means for the three common components (M;, Mg, and

M „), non-zero variances for four components (Vit VK,

Vp and VJ, and at least one non-zero covariance (Cig)

between the initial level and growth common factor

components (for a more formal expression, see the

Latent Means, Covariance, and Common Factor No-

tation section in the Appendix). The non-zero covari-

ance Cit! reflects the possibility that the initial level

score is correlated with the growth score (e.g., Rogosa

& Willett, 1985; Willett, 1988). An equivalent model

can be written with this covariance estimated as a

regression coefficient (as in Tucker, Damarin, & Mes-

sick, 1966). More critically, we have also assumed

that the practice factor P is not correlated with either

the initial level 7 or the growth G. These restrictions

lead to a unique identification of parameters related to

the P component, but such assumptions may be al-

tered later as needed.
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A Summary Path Diagram

A latent growth model of a univariate time-series is

presented as a path diagram in Figure 5 (as in

McArdle, 1988; McArdle & Hamagami, 1991). Fol-

lowing current traditions, we represent the observed

variables as squares, the unobserved variables as

circles, the regression coefficients as one-headed ar-

rows, and the covariance terms as two-headed arrows.

One atypical feature of this graphic notation is the

representation of all variance terms as two-headed ar-

rows attached to the specific variables. Another un-

usual feature of this diagram is that the unit constant

is included as a triangle, and the latent variable means

(Mj, Mg, and Mp) are all represented in this diagram as

the regression coefficient of a variable regressed on

the constant. In this way, this path diagram explicitly

includes all parameters needed to write all model ma-

trices and expectations for the means and covariances

(see McArdle & Boker, 1990).

The use of circles within squares in Figure 5 is also

unusual, but it is a shorthand way of indicating the

possible presence or absence of a measured variable

(after McArdle, 1994). Following the data layout of

M,

Figure 5. A latent growth model for univariate time-lag

data. Square = observed variable; circle = unobserved

variable; triangle = the unit constant; one-headed arrow =

a unit-valued regression coefficient; two-headed arrow — a

variance or covariance term.

Figure 2, the variable K is always measured at the

initial occasion (1TOD but may or may not be mea-

sured at each of the other time-lags ( Y [ l ] , y[2], y[3],

and JT4]). In this notation we assume only one set of

longitudinal model parameters but all measurements

are not made on all occasions of interest.

Defining Patterns of Change

The data collected reflect a specific time series so

several parameters describe patterns of change over

time. Perhaps most critical here are the common fac-

tor loadings of the unknown coefficients B[t] and A[t].

Whenever possible, we like to estimate separately the

functional relationships over time (B[i\ and A[f\) as

well as the means (M), deviations (D), and correla-

tions (K) for all latent components (/, G, P, and U[t]).

Estimation requires consideration of a variety of fur-

ther substantive and mathematical model restrictions.

The key questions now become: "How do we formal-

ize an effect of growth or maturation?'' ' 'How do we

formalize an effect of practice or training?" and

' 'How do we distinguish growth effects from practice

effects?"

To deal with these patterns, we first reexpress the

model using standard factor analysis notation. In a

model for, say, T = 5 occasions we can write

WL

B[0] A[0]

B[l] A[l]

B[2] A[2]

B[3] A[3]

B[4] A[4]J

n} +

•c/[oL"

(4)

or, even more compactly for all persons N, as

Y = L Q + U, (5)

where L is a (T x 3) matrix of common factor load-

ings, Q = [I, G, P] is a (3 x JV) vector of common

factor scores, and U = U[t] is a (5 x N) vector of

independent unique scores. In a similar matrix fash-

ion, all means, variances, and covariances among the

latent variable scores Q can be represented as average

cross-products or moments matrix (M,,,; see Browne

& Arminger, 1995; McArdle, 1988; Meredith & Ti-

sak, 1990), and these expectations can be combined to

generate expectations about the observed cross-
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products matrix (Myy; for further details, see the Ap-

pendix).

Given this factor notation, we can now consider

some alternatives based solely on restrictions of the

factor loading parameters. First we consider some

simple models where the loadings are fixed at some a

priori value. In an initial model, we could require all

B[t] = 0 and A[t] = 0 and simply write

1 0 0 "

1 0 0

1 0 0

1 0 0

1 0 0

(6)

This matrix representation is consistent with the sub-

stantive definition of a "no growth and no practice"

model. By combining these loadings L0 with other

model matrices we end up with a highly restrictive set

of model expectations (labelled ^0 here) with no

change over time.

In an alternative model we could allow "linear

growth and no practice" by setting the B[t] = t and

the A[/] = 0. We write the model («,) with

L,=

' 1 0 0 "

1 1 0

1 2 0

1 3 0

1 4 0

(7)

The use of this Lj matrix in a model allows compo-

nents for both the initial level and a simple linear

increase in growth. Notice that the first loading on the

second component 8[0] = 0, implying that no growth

has occurred at time t = 0, and this helps create a

mathematical separation between the first and second

common factors. As we show later, this kind of model

leads to predictions of increases in variances and co-

variances over time, but the changes in the means can

be either linearly positive or linearly negative (i.e.,

negative growth).

More complex models can be stated using the same

approach, and certain kinds of practice effects can

be isolated. For example, a model with "no growth

but exponential practice decay" can be formalized

by setting the B[t] = 0 but allowing the A[t] =

e-"('-i) jj- we (jefjne ^ = 2, we can write a model

(«2) with

' 1 0 .000"

1 0 1.000

1 0 .819

1 0 .670

1 0 .549

(8)

In this form, the third component (P) reflects a de-

creasing function over time. The use of this loading

matrix in a model allows components for both the

initial level and the practice effects where, say, the

loss is initiated at the second time point and this loss

is then compounded over time. This kind of a model

suggests decreasing variances and covariance over

time, with the means over time following the same

exponential patterning, either down or up. Inciden-

tally, models with exponential losses or gains can be

written to begin at the initial time point (t = 0), but

this will be considered a negative growth process

rather than a practice effect (see Jones, 1962;

McArdle & Hamagami, 1996; Vinsonhaler & Me-

redith, 1966).

Other alternative models can be written to allow a

mixture of both growth and practice components.

These models are generally hard to estimate without a

clear separation of the two developmental compo-

nents, and we do not deal with all these issues here.

However, one potentially useful alternative includes

both "linear growth and constant practice." In model

(«3) we define B\t\ = t but A[t] = 1 for all time

points, and write

' 1 0 0 "

1 1 1

1 2 1

1 3 1

1 4 1

(9)

Including these loadings in a model permits some

examination of the parameters for all three common

factor components /, G, and P of Figure 5.

In principle, it may be useful to fit more complex

versions of change hypotheses, including models

where the B\f\ orA[r] are estimated from the available

data. In model %,, we write

1 0 0

1 1 0

1 B[2] 0

1 B[3] 0

.1 B[4] Oj

(10)
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where the B[l] = 1 for identification purposes but the

other three B[t] coefficients are estimated from the

data. The resulting coefficients (T- 2) can be used to

define a flexible latent curve for the growth compo-

nent. This kind of model has recently been discussed

by, among others, McArdle (1988) and Meredith and

Tisak (1990). This factor analytic logic can also be

applied to the A[t] coefficients as well. A variety of

more complex growth models are possible but not

used here (see Browne & DuToit, 1992; McArdle &

Hamagami, 1996; see the More Advanced Growth

Functions section in the Appendix).

Time-Lag Expectations and Estimation

Plotting Some Time-Lag Model Expectations

Some properties of the theoretical models can be

understood in terms of the statistical observations

generated. This requires a further translation of the

linear equations (for Y) into a set of statistical expec-

tations C£) for the means and covariances of all ob-

served measures over all occasions. These expecta-

tions can be formed algebraically or from the popular

path analysis tracing rules (see McArdle & Boker,

1990; Wright, 1982); they will be compared with the

Time-Lag T

4 6 8 10 12

Time-Lag T

4 6 8

Time-Lag T

4 6 8

Time-Lag T

10 12

Figure 6. Theoretical time-lag characteristics of the observed statistics for four models. Panel A: Mean changes over time.

Panel B: Variance changes over time. Panel C: Test-retest correlation over time. Panel D: Proportion of variance of growth.

E0 = no-change model; E, = linear growth model; E2 = exponentially decreasing practice model; E3 = linear growth with

practice shift model.
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observed statistics to form the optimal parameters,

and they can be theoretically informative as well.

The plots of Figure 6 illustrate some basic time-lag

principles. Here we show the theoretical trajectory

over time for some of the expected time-lag statistics

for a single variable. In each plot here we use the four

factor-loading patterns of Equations 6 to 9 with iden-

tical parameters for latent means and covariance (for

numerical details, see the Time-Lag Model Math-

ematical Expectations section in the Appendix). In

model %0 we define all growth and practice terms to

be zero, so this model is termed "no changes." Model

^, is the "linear growth" model. Model ^2 is the

"exponentially decreasing practice" model. Model

"83 is the "linear growth with practice shift" model.

The algebraic basis of each plot of Figure 6 is based

on the model of Figure 5, and these are presented in

detail next.

Expectations About the Means

Using standard rules of statistical expectation we

can write all univariate means as

%{My,t]} = M, + B[t] x Mg + Alt] x Mp, (11)

so the expected means My(t] are a linear function of

the latent means M;, Mg, and Mp, and the coefficients

B]t] and Alt]. If we further assume that B[0] = 0 and

A[0] = 0, we can simplify this expression and write

«{My[01) = M,,

•• Bit] x Mg + Alt] x Mp. (\2)

These equations imply that the initial mean is based

on a single parameter (A/,) and the mean changes over

time-lags (M>l[rj - Myioi) are dependent on the factor

loadings and factor means.

Figure 6A is a display of the means over time im-

plied by the four models, ^0 to ^3, and here the four

models are easily differentiated. The two linear pat-

terns C8j and "S3) are much different from the decreas-

ing practice (&2) or the no-change fg0) model, and all

patterns over time depend on the factor loadings.

Expectations About the Variances

The expectations of the variances over time are

given as

«{V[']} = V; + Bit]
2 Bit]

x Cig + Alt]
2 x Vp + Vu, (13)

which seems more complex than the corresponding

expectations for the means. If we further assume that

B[01 = 0 and AlO] = 0, then these expectations can

be simplified and written as

and

^(Vylfi ~
 yy[0]) = SW2 x

 V, + 2 x B
\f\

x Cis + Alt]
2 x Vp, (14)

so the variance changes over time are dependent on

the factor loadings and factor variances.

As shown in Figure 6B, these variance expectations

exhibit a general pattern of increases (and decreases)

over time that are similar to the means squared (i.e.,

^{M^,]}2). A plot of the expected deviations (i.e.,

%{Dy[t]} = V8{VyW}) would look very similar to the

plot of the expected means.

Expectations About the Covariances

The expectations of the covariances over time can

be written as

^{Cj.UH.tj} = Vi + Bit] xVsx Bit + k]+ A[t]

xVpx Alt + k]+ Bit]

x Cig + Cig x Bit + k]. (15)

Each term here can be seen as a separate tracing in the

path diagram, but these are complex and different for

each pair of occasions t and t + k. These equations

become still more complex if we assume additional

non-zero correlations among all model components.

In the two-occasion test-retest data (e.g., Figure 2)

we again focus on the initial occasion of measurement

(t = 0) where we measure all participants. Because of

the restrictions of B[OJ = 0 and AlO] = 0, the key

covariance expectation can be written more simply as

«{Cy[(M} = V, + Bit] x Cif (16)

and if either Bit] = OoiCig = 0, then Cylaj] = V, for

all time-lags.

By combining the previous equations we can write

the standard formula for the test-retest correlation in

terms of model parameters as

/ v

V* Vp + V,

(17)

This equation does not directly reflect a path tracing,

and it remains complex because of the variance term
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at time t. But this expression does highlight an im-

portant property of the time-lag model: The value of

the test-retest correlation depends on the time-lag

considered.

Figure 6C is a plot of these test-retest correlations

over time calculated from the covariance and variance

terms. The no-changes model (60) has the same test-

retest correlation at any time-lag whereas the other

three change over time. The linear growth models 0g,

and ^3) both show substantially decreasing correla-

tions over time-lags and this is due to the increasing

growth variance over time. In contrast, the model of

decreasing practice (12) shows an increasing correla-

tion over time is due to the eventual elimination of

practice variance (e.g., Jones, 1962).

Expectations About Variance Proportions

We can also formalize some developmental com-

ponents defined earlier. At each occasion t we can

decompose the variance into standardized proportions

(or ratios) by writing

*3w = -

and

V*[(] = ̂ , (18)

where, by definition, the sum Vfct} + V*w + VJm = 1

for any time t. Because these components can change

over time, it may be useful to consider additional

indices of growth and change. These might include

changes in the raw deviations (e.g., &DM = D^ -

%,]), the raw variance (e.g., AV^j = V^,, - V^Q]), or

even in the standardized variance (e.g., AV^,j = V^,]

- V^0]) terms. Of course, any substantive interpreta-

tion of these kind of growth terms requires a mean-

ingful starting point (at t = 0).

Figure 6D is a plot of the theoretical proportion of

factor growth variance Vf[t] from the four models,

and only two patterns emerge. In models without

growth terms C80 and (S2)
me factor growth remains at

the same zero level over time. In models with linear

growth terms <^&l and t3) the factor growth shows

increases over time. In these last models, the initial

factor variance remains intact, but the factor scores

have changed over time and these increasing propor-

tions highlight this growth.

Statistical Estimation With Incomplete Data

There are many ways to use SEM to analyze lon-

gitudinal time-lag data. In longitudinal data with mul-

tiple time points, the model expectations could be

applied to all pairs of occasions, [Tx (T+ l)]/2. If we

measured, say N participants at T = 8 occasions of

measurement we would have 44 summary statistics—

eight means, eight variances, and 28 correlations.

Many different models can be fitted from summary

matrices of mean and covariance structures (for de-

tails, see Browne & Arminger, 1995; Horn &

McArdle, 1980; McArdle, 1988, 1994; Meredith &

Tisak, 1990).

The incomplete time-lag data creates several com-

plex issues dealing with different statistics and differ-

ent sample sizes. That is, from eight test-retest time-

lag groups we obtain a total of 40 summary

statistics—two observed means (My^ and M^,]), two

observed variances (Vy[0] and V^), and one observed

covariance (Cy[0r]) for each of eight independent

groups. Each statistic has a potentially different (and

smaller) sized sample N[f\. Although the information

about the full (pairwise) covariance matrix is largely

incomplete, we can still use the time-lag model ex-

pectations to estimate the model parameters.

The critical structural expectations for the test-

retest time-lag model (i.e., Equations 12, 14, and 16)

lead to at least one way we could create parameter

estimates of all model components directly from the

summary statistics. In one approach, a reasonable sta-

tistical estimate of the expected value of the mean

level (Mj) can be obtained as the average of the means

at the first time point for all scores. Similarly, the

variance of the initial level (V,) can be obtained as the

average of the covariances over time-lag groups. The

slope components (Mg and Vg) can be obtained by

first creating averages of these statistics and then cal-

culating B[t\ weighted differences; the practice com-

ponents (Mp and Vp) are the intercepts in the resulting

slope equations of these statistics.

This practical approach to estimation has a few

problems; (a) It does not easily account for sample

size differences in the summary statistics, (b) It does

not provide a measure of misfit between expectations

and observations, (c) It does not provide a measure of

the statistical characteristics of the final parameter es-

timates (i.e., standard errors), (d) It would be much

more complex in the presence of correlated compo-
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nents. (e) It can only be calculated for "fixed" B[t]

parameters. So, although these practical calculations

can provide good initial estimates, they are neither

efficient nor general solutions to this time-lag prob-

lem.

These statistical considerations suggest we use a

more advanced approach to model estimation and

testing, and we use statistical theory based on SEM

for incomplete or missing data (Allison, 1987; Horn

& McArdle, 1980; Kiiveri, 1987; Little & Rubin,

1987; McArdle, 1994; McArdle & Anderson, 1990;

McArdle & Hamagami, 1991, 1996; Muthen, Kaplan,

& Hollis, 1987; see Appendix). The SEM analyses we

present next are based on maximum-likelihood esti-

mation (MLE) of the means and covariances to ac-

count for the incomplete patterns and different sample

sizes, but other weighted fitting functions (e.g., GLS)

could be used as well.

Estimation Using Standard SEM Software

The aggregation of individuals into time-lag groups

allows us to analyze a variety of longitudinal models

using any available SEM software that permits a mul-

tiple group calculation (e.g., LISREL-8 by Joreskog

& Sorbom, 1993; MX by Neale, 1993; also see Mc-

Donald, 1980). The key feature of this programming

is that the overall model parameters remain invariant

but they are deployed systematically among the dif-

ferent time-lag groups. More complete details on the

required computer programming are presented in the

Appendix.

One useful byproduct of MLE is the calculation of

a likelihood ratio test (LRT) statistic for the evalua-

tion of goodness-of-fit. These LRT indices and their

differences (dLRT) can be compared to a chi-squared

distribution with degrees of freedom based on the

number of summary statistics minus the number of

model parameters. Other useful byproducts of MLEs

include the calculation of standard errors, confidence

boundaries, and other indices of goodness-of-fit. In

recent work, Browne and Cudeck (1993) suggested an

index of "close fit" to the data, based on the root

mean square error of approximation (i.e., RMSEA <

.05) and this overall criterion of fit will be used here.

Calculation of statistical power for incomplete data

designs is also possible using MLE techniques (see

McArdle, 1994; McArdle & Hamagami, 1992). These

and other useful properties of MLE are often based on

assumptions of multivariate normality of the model

residuals (see Browne & Arminger, 1995), so other

fitting functions may be needed.

Time-Lag Results

Study 1: Results for the Daily Univariate

WJ-R Data

We fit a variety of longitudinal models to the daily

MEMNAM statistics of Table 1 (i.e., eight groups,

each with one correlation, two deviations, and two

means). The results for five alternative models are

listed in Table 4.

The first column of parameters (labeled 'J&Q) in

Table 4 is based on a ' 'no growth and no practice'' or

"initial level only" model fitted to the summary sta-

tistics of Table 1. To fit this model we estimated only

three parameters (i.e., M/, Vj, Vu) using the L0 matrix

(defined in Equation 6). The estimated parameters are

all significantly different from zero, but the goodness-

of-fit obtained is poor: LRT = 961 on df = 37;

RMSEA = .135.

The second column C8]) lists the results of a "lin-

ear growth and no practice" model fitted to the same

data. In this model we estimate six parameters (i.e.,

M» Vj, Vu, Mg, Vg, C,g) using the L, matrix (see Equa-

tion 7). Here we obtained small but significant nega-

tive parameters for the means (e.g., Mg = -2.5) and

a nonsignificant growth variance, Vg. This indicates

the decline in the means is not similar to changes in

the covariances, but it also shows a negative growth

pattern for the means. The goodness-of-fit obtained

now is still a poor fit (LRT = 242 on df = 34;

RMSEA = .067), but the addition of the growth com-

ponent improves the change in fit a great deal (ALRT

= 719 on Ad/ = 3).

The third column C£2) gives the results of an ' 'ex-

ponential practice and no growth" model. Here we

estimated five parameters (i.e., M,, V,, Vu, Mp, Vp)

using a set of loadings similar to L2 (see Equation 8)

plus one extra parameter -n = .093 used to form all

loadings. This means that a first component is the

initial level 7 and the second component P is a practice

effect which starts at the f = 1 and decays exponen-

tially over successive time points. The significant

practice mean (Mp = —8.1) indicates an 8-point loss

in scores at the time-lag of 1 day. Once again, the

variance associated with this second component was

very small, so this best reflects the group decline and

not the individual changes. The goodness of fit ob-

tained now is much better (LRT = 52.7 on df = 35;

RMSEA = .020), and the addition of this practice

component substantially improves the relative fit

(ALRT = 908 on Adf = 3).

The next column (&3) gives the results of a "linear
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Table 4

Univariate Estimates for Alternative Models Fitted to Study 1 Memory-for-Names Daily Time-Lag Data

Model parameter estimated level only linear growth

exponential

practice linear + shift latent growth

Model coefficients

Growth B[r] 0= t= 0= t= B[t]

Practice A[r] 0= 0= IT = .093* 1= 0 =

Initial Mi -4.9* -1.1* .1 .1 .1

Growth Ms 0= -2.5* 0= -1.0* -8.2*

Practice Mp 0= 0= -8.1* -6.9* 0 =

Model variances and covariances

Initial V, 109.* 102.* 101.* 115.* 108.*

Growth Vs 0= .2 0= .7* 5.8*

Covar. Cig 0= -.7 0= -4.8* -6.0*

Unique Vu 74.0* 61.5* 56.1* 43.7* 51.5*

Practice Vp 0= 0= .3 17.3* 0=

Goodness-of-fit indices

Free parameters 3 6 6 8 13

Degrees of freedom 37 34 34 32 27

Likelihood ratio 961.0 242.0 52.7 44.9 46.1

Prob. perfect fit <.01 <.01 <,02 <.06 <.02

RMSEA index .135 .067 .020 .017 0.23

Prob. close fit <.01 <.01 <1.0 <1.0 <1.0

Standardized variance components (assuming t — 7 for 1-week lag)

Initial V/[0] .596 .624 .643 .724 .677

One week V*[7] .596 .624 .639 .568 .670

Practice V*[7] .000 .000 .006 .122 .000

Unique V*[7] .404 .376 .355 .309 .330

Test-Retest «y[0,7] .596 .593 .641 .542 .620

Note. This table is based on age-partialled data with N = 1,384 from Table 1 and maximum-likelihood estimates from LISREL-8 and Mx-92.
An asterisk indicates parameter that is larger than 1.96 times its standard error; equal sign indicates a parameter has been fixed for
identification. M, and V, are the result of the age-regression adjustments. The 13 loadings A[t] = e<- °"*'-1' = [0, 1, 1.10, 1.21, 1.32, 1.45,
1.59, 1.75 and 1.92]. The %, loadings fl[t] = [0,1,1.08,1.14,1.54,1.46,1.52,1.70, and 2.07]. Prob. = probability of; RMSEA = root mean
square error of approximation from Browne and Cudeck (1995).

growth plus a practice shift" model. Here we estimate

all eight parameters (i.e., M,, V,, Va, Mp, Vp, Mg, Vg,

Cig) using the matrix L3 (see Equation 9). The first

component is the initial level /, the second component

is the linear growth G, and the third component P is a

second initial level which starts at the t = 1 and

remains constant from that point on. The negative

growth mean (Mg = —1.0) once again indicates a loss

over time that accumulates linearly with increasing

time-lag. In contrast, the significant practice mean

(Mp = -6.9) indicates a seven-point loss in memory

scores at the second time for any time-lag. The esti-

mated variance proportions show the initial variance

is large but the growth in this variance is very small.

The variance associated with the practice shift com-

ponent is larger (Vp = 17.3 with V*[7] = .109) and

this indicates substantial individual differences in

practice that is not related to the time-lags used here.

On a statistical basis, model ̂ 3 provides an excellent

fit to these Memory-for-Names data (LRT = 44.9 on

df = 32; RMSEA = .017).

The final column (^4) gives the results of a latent

basis model. Here we estimate six of the previous

parameters (i.e., Mi: Vj, Vu, Mg, Vg, Cig), but we also

estimate seven B[f] elements using a matrix similar to

L4 (see Equation 10). This means that the second

component G allows a flexible form for the growth

function over time. The resulting parameters indicate

a negatively decreasing function (Mg = -8.2), which

has small variance (Vg = 5.8). The seven estimated

B[t] curve coefficients rise only slightly from lags of

1 day (( = 1) to lags of 8 days (t = 8). A good fit is

obtained here (LRT = 46 on df = 27; RMSEA =

.023) but the single curve model "S4 with many
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parameters does not fit as well as the simpler

model '6,.

The 8 parameters of the best fitting model ^3 yields

the 40 expectations for the means, deviations, and

covariances listed previously in the bottom of Table

1. The small differences between the observed values

in the top of Table 1 and the expected values in

the bottom of Table 1 leads to the close fit of the

model 'Bj.

Study 2: Results for the Monthly Univariate

WJ-R Data

Similar univariate longitudinal models have been

fitted to the data from the second WJ-R study. All

univariate models were fitted to the 55 independent

test statistics for each composite variable listed in

Tables 2 and 3 (i.e., 11 groups, each with 1 correla-

tion, 2 deviations, and 1 mean). For brevity here we

only discuss results from models using loadings with

a linear growth B[t] and an initial practice A[t] = 1

(i.e., of type L3). The linear growth coefficient matrix

B[f] was scaled (at t) so that one unit in this metric

equals 1 year of time-lag. Results from the best fit-

ting models are presented in the first two columns of

Table 5.

Model 'gj of Table 5 gives estimates for a "no

growth or practice only" model fitted to the data on

the WJ-R Short Term Memory score (of Table 2). In

this initial univariate model we have fixed the unique-

ness at a value based on the previously published

internal consistency (i.e., VB = 25.8; the Appendix's

section on WJ-R data). This no-growth model (i.e.,

Mg = Vg = Cig - 0) yielded a significant practice

mean (Mp = 5.2) indicating a 5-point gain in Memory

scores just for having taken a retest at any time-lag.

We also obtained a large initial level variance (V; =

199), a smaller state variance (V^ = 20.5), a nonsig-

nificant practice variance (Vp = 20.9), and a close fit

(RMSEA = .038) to the Short Term Memory data.

Model ?6 in Table 5 gives the result of a "no

practice or growth only" model fitted to the data on

the WJ-R Broad Reading score of Table 3. We again

fixed the factor loading (at H = 1) and the uniqueness

at a value specified by the internal consistency (i.e.,

Vu = 15.4). This no-practice model (i.e., Mp = Vp -

0), yielded a significant linear growth mean (Mg =

10.2), indicating a 10-point gain in reading scores for

every 1 -year interval of time. We also obtained a large

initial level variance (V; = 264), a large growth vari-

ance (V = 98.7), a small but significant state vari-

ance (V, = 22.3), and a close fit (RMSEA = .040) to

the Reading data.

Summary of Univariate Results

In Study 1, we expected the memory losses would

increase with longer time between test and retest in

the daily Memory-for-Names task. We also expected

substantial individual differences in these memory

losses, perhaps as a single functional form and possi-

bly correlated with the initial level of memory. This

final model chosen (see "83 of Table 4) yields some

interesting substantive information about these hy-

potheses. The decreasing pattern in the means (A/y[(])

shows the group has an initial 8-point loss for 1 day,

a 9-point loss for 2 days, a 10-point loss for 3 days,

and so on. However, the large initial-level variance

and very small growth variance suggests this decline

reflects only the group means and is not related to a

single source of systematic individual differences in-

dicated by the covariances. Thus, a general decline in

memory over time was found, but after we hold con-

stant the contamination due to simple practice effects,

our initial hypothesis about a single function of

memory loss was not substantiated.

In Study 2, the univariate results from the monthly

time-lag data on Reading and Memory (Study 2)

yielded different substantive results. The Short-Term

Memory scores were fitted well by a "no-growth"

model (see ?5 of Table 5), and this shows substantial

practice effects in mean and variance over any

monthly time-lag. This pattern would be expected of

a psychological variable that has lots of short-term

variation or has already reached some peak level. In

contrast, the reading scores were fitted well by a "no-

practice' ' model (see ^66 of Table 5), and this shows a

substantial linear growth pattern over the entire yearly

period of time-lag between tests. This pattern would

be expected of a psychological variable that is under-

going growth and has not already reached some peak

level.

These univariate models demonstrate our general

approach to modeling, but the substantive results can

be enhanced and clarified in several ways. It would be

informative to make direct comparisons between vari-

ables, especially comparisons based on individual dif-

ferences. Also, we would like to be able to estimate

the unique variance (VB was fixed above) and also

make some estimate of state variance (Vs was not

estimated above). These substantive issues lead us to

consider more complex multivariate data and models.
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Table 5

Univariate and Bivariale Estimates From Selected Models Fitted to the Study 2 Monthly Woodcock-Johnson—Revised

Time-Lag Data (of Table 2)

Univariate

Model parameter estimated

Test-specific coefficients

Factor Lw

Practice A[t]w

Practice Mpw

Intercept Mivv

Test-specific variance-covariances

Unique VUM

Practice Vpw

Trait-specific coefficients

Growth Bw

Growth Ms

Trait-specific variance-covariances

Initial V,

Growth Vg

Covar. Cig

State Vs

Goodness-of-fit indices

Free parameters

Degrees of freedom

Like, ratio

Prob. perfect fit

RMSEA Index

Prob. close fit

ce
*5

memory

Y,+2

1 =

1 =

5.2*

-1.1

25.8 =

20.9

tin

0 =

199.*

0 =

0 =

20.5*

5

50

73.1

<.02

.038

<.85

<£

^6

reading

y3«

1=
1=
0 =

-.3

15.4 =

0 =

tin
10.2*

264.*

98.7*

-29.7

22.3*

6

49

73.5

<.02

.040

<.82

<y?»7

general

M-t-2 Y3+4

1= 1.92*

1= 1 =

1.5 -.8

-1.1 -.2

182.* 53.8*

0< 0<

tin
5.8*

66.1*

11.4

-.7

0<

14

140

386.0

<01

.077

<.01

Bivariate

cp
*8

memory

r, 72

1 = .976*

1= 1 =

6.1* -.9

-.9 -1.4

61.7* 178.*

0< 0<

tin
0 =

200.*

0 =

0 =

.2

11

143

219.0

<.01

.041

<.92

cp
^,

reading

YI Yt

1 = .727*

1= 1 =

0= 0 =

3.0* -3.4*

69.7* 164*

0= 0 =

tin
11.4*

340.*

120.*

-41.1

0<

10

144

332.0

<.01

.064

<.01

Notes. This table is based on age-partialled data with N = 330 from Tables 2-3 and maximum-likelihood estimates from LISREL-8 and
Mx-92. An asterisk indicates parameter that is larger than 1.96 times its standard error; equal sign indicates a parameter has been fixed for
model identification; less-than sign (<) indicates a parameter that remained on a boundary. Basis B are fixed equal to linear trend with 1 year
proportion (i.e., 1/12). y, = MEMSEN; Y2 = MEMWRD; Y3 = LWIDNT; K4 = PSGCMP.

A Multivariate Time-Lag Extension

Including a Multivariate Measurement Model

There are many ways to expand the models of the

previous sections. To include a complete empirical

separation of all developmental concepts discussed

earlier, we need to expand to a multivariate form. One

way to do this is to write a factor measurement model

for the observed scores as

r_ = (19)

where, for each separate variable Y^, w is a numerical

index (with scores Y1, Y2, Y3, etc.), the coefficients Hw

are common factor loadings, the F is the unobserved

common factor or true score, and the UK is the unique

factor score. As in standard factor analytic treatments,

this unique score is theoretically the sum of an error-

of-measurement score and a specific factor score. One

way to add a time-lag to this model is to write

= Hw x F[t]n (20)

where the factor scores F[t\ are assumed to change

with time but the factor pattern H is assumed to have

factorial invariance over time (Horn & McArdle,

1980, 1992; McArdle, 1988; Meredith & Tisak,

1990).

Let us further assume that the previous growth

model can be directly applied to the factor scores by

writing

F[f]a = /„ + B[t] x S[t]n. (21)

This model uses the same notation as in the earlier

models for growth coefficients B[t] and growth scores

G, but here we represent the growth in the unobserved
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common factor scores. In this model of the common

factor scores we also include a second-level unique

score termed S[t], which is common to all variables

Yw within a time and (as with U[t\ before) is indepen-

dent of other S[t + /] across time and has zero mean.

By these definitions, the S[t] can be termed a common

state or state-fluctuation score. In contrast to other

treatments (e.g., Steyer, 1989; Steyeretal., 1990), this

state variable is considered as the nongrowth or tran-

sitory component of the factor score within each time

(after Horn & Little, 1966; Horn, 1972; Nesselroade,

1993).

Let us next add the practice component P discussed

earlier by writing

!-[/]„,,„ = »„ x F[t]n + A[t]w x Pwn + (22)

where, for each variable w, we add a separate practice

score Pw and loading A[t]K. By this definition each

test has a specific practice component.

By combining the previous equations we can also

write the model for observed scores as

= Hv x (/„ + B[t\ x Gn x pm

= H»
 x /„ + H*. x Bit] x Gn + Hw x S[rJ,

(23)

so the model is seen to have five separate components

(/, G, S, P, U) with multiplicative coefficients. This

multivariate model can also be seen as a higher order

factor analysis model with first-order measurement

loadings H, with second-order growth loadings B[t],

and with some consideration of specific practice ef-

fects A[i\. This kind of multivariate model allows for

both stability and change components in the tests

(Y[i]w) and in the traits (F[t]) and has been termed a

curve of factor scores model (McArdle, 1988). Spe-

cific factor components and additional multivariate

features may now be added as necessary.

A Mutivariate Path Diagram

This multivariate longitudinal model is presented in

the path diagram of Figure 7. We assume the same

variable Y[t]w has been repeatedly measured on at

least two occasions, these measured scores are an out-

come of unobserved common factors F[f] and have

independent unique scores U[f\w. The factor scores

Fit] are influenced by additional factors labeled initial

/, growth G and state S[f\. The / score influences all

F[t] scores equally but the G score only influences

the later F[t > 0] scores with changing B[t > 0], The

independent state components S[t] are seen to have an

impact only on the factor score within an occasion,

are uncorrelated over time, and have zero mean (i.e.,

no relation to the unit constant 1). Finally, the test-

specific practice score Pw influences each observed

test score at the later time points (f > 0), and has both

a test specific mean (Mpu) and a test specific variance

(VpKI). The means at the first occasion (Mywla]) are

estimated from the initial level parameters Min. (these

are not drawn), but the means at later occasions

(A/^M) depend on the both the common latent growth

and specific practice means.

Multivariate Expectations and Variance

Components

The multivariate expectations are more complex

but can be formed by a combination of the previous

concepts and equations (for details, see the Multivari-

ate Time-lag Expectations section in the Appendix).

The expectations for the multivariate means require

the possibility of an arbitrary scaling constant or in-

tercept Miw for each variable (not drawn in Figure 7).

We then write all observed score means in terms of

the factor means A//w and the factor loadings Hn.

Similarly, expectations for the covariances within

each variable can be written in terms of the factor

covariances over time (C^,,+;]) of covariances within

a time (C,1(]Jt[rJ) and covariances between different

times (C,M t(n-\\>-
 m ̂  cases above, the observed co-

variances can be seen as functions of the latent vari-

able covariances.

The univariate models allow independent estimates

of several useful variance components for each ob-

served variable w. First we can define a factor com-

munality ratio (Rfc<^,]W)) to index the proportion of the

initial common factor variance included in variable w

at time t. Similarly we can define a practice-retest

ratio (/?,„.(,[,]„)) to index the proportion of practice

variance in any observed variable Fw at time t. Other

test-specific ratios can be formed from the five com-

ponents of Equation 16 in various ways.

In this multivariate framework we have an added

opportunity to define ratios that are trait-specific. In

these ratios, the denominator is the common factor

variance (V/[,j) at occasion /. A factor stability ratio

(Rfti,{) may be defined as the proportion of the initial

level of the trait that remains in the common factor

scores at time t. Likewise, a. factor-growth ratio C?/g[,])

may be defined as the proportion of the systematic

growth or change variance which is now included in

the common factor scores at occasion t. Finally, a
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Time [t]

Figure 7. A latent growth path model for multivariate time-lag data. Square = observed variable; circle = unobserved

variable; triangle = the unit constant; one-headed arrow = a unit-valued regression coefficient; two-headed arrow = a

variance or covariance term.

state-fluctuation ratio (/?s/w) may be defined as the

independent common factor variance in the factor

scores at any time t. This last coefficient is common to

all variables within an occasion and will be separate

from the test-specific unique variance (VJW). These

trait-specific proportions can be written so the sum is

unity within any time point t (i.e., RfsW + RfM + Rsf[l]

= 1) so these proportions are only useful when we

have a meaningful starting point (/ = 0).

Results from Multivariate Time-Lag Models

Results From Bivariate Factor Models

Several bivariate models were fitted to the monthly

WJ-R data (Study 2) discussed earlier. These models

were each based on only two variables following the

path diagram of Figure 7. To identify all model pa-

rameters here we used standard factor analytic iden-

tification constraints: (a) We fixed the factor loading

for one variable (Hw = 1). (b) We estimated the sec-

ond loading and both unique variances, (c) We

equated the loadings at the second occasion (i.e., fac-

torial invariance). (d) We allowed separate intercepts

for each variable (Miw). (e) We equated these inter-

cepts at the second occasion, (f) We forced all mean

differences over time to be accounted for by the com-

mon factors (F[f]).

A single factor model %-, was initially fitted to all

memory and reading time-lag data of Tables 2 and 3.

This analysis includes 14 parameters fitted to 154

summary statistics (for 11 groups, each with 4 means,

4 variances, and 6 correlations). This bivariate model

proved to be extremely cumbersome to fit and a va-

riety of additional boundary conditions were needed

to produce numerical convergence (i.e., V, > 0, Vp >

0). The relative loadings for Memory (f/j = 1.00) and
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Reading (H2 = 1.92) suggest that the Reading com-

posite dominates this General factor, but further in-

terpretation is not needed due to the extremely poor fit

of the model (LRT = 386 on df = 140; RMSEA =

.077).

As an alternative approach, we fit the bivariate

model at a lower level of measurement. A Short Term

Memory factor model c
&% was fitted using the more

basic scales—Memory for Sentences (MEMSEN) and

Memory for Words (MEMWRD) WJ-R scales. The

numerical results obtained now show about equal

loadings (H2 = .976; see Table 5) and the unique

variances are larger than the univariate model esti-

mate (VB = 61.7, 178) indicating substantial specific

factor components. The practice effects differ slightly

between the two variables: the MEMSEN has a strong

practice mean (Mpl = 6.1), the MEMWRD practice

mean is almost zero, and neither variable has a sig-

nificant practice variance. The common factor of

these two variables has a large initial level variance

(V, = 200), and the common state variance is very

close to zero in this model. The standardized factor

loadings are estimated as H[t]* = [.764, .517] and,

due to no growth and no practice variance, these stan-

dardized loadings are the same at all time points. This

model, assuming no-growth in a common factor of

Memory, provides an excellent fit (e.g., RMSEA =

.041).

The Broad Reading factor model ^g was fitted to

the other WJ-R scales—Letter-Word Identification

(LWIDNT) and Passage Comprehension (PSOCMP).

The numerical results show lower loadings for the

second test (H2 = .727) and large unique variances

(I/,, = 69.7, Vu2 = 164.). This indicates potentially

important differences in the constructs measured by

these two tests. Nevertheless, the common factor of

these two variables has a large initial level variance

(Vj = 340), corresponding large linear growth over

time in both the mean growth (Mg = 11.4) and

growth variance (Vf = 120), and the estimated com-

mon factor state variance is close to zero. The stan-

dardized estimates of the factor loadings are calcu-

lated as H[Q]* = [.830, .523] at t = 0, and, due to the

growth variance, increase to H[7]* = [.883, .597] at

t = 1 year. This no-practice common factor model of

Reading yields a questionable fit to these WJ-R data

(e.g., RMSEA = .064) so other alternatives may be

needed.

Alternative Developmental Components

and Hypotheses

All previous model estimates can be recast as de-

velopmental components, and these are calculated for

each variable in the columns of Table 6. In contrast to

the initial univariate estimates, these bivariate calcu-

lations show the factor stability coefficients are

raised, and the state-fluctuation variances are nearly

zero. In comparable cases, the overall pattern of

changes in the latent common factor can be seen as

enhanced versions of the univariate estimates.

The models above presented only the most restric-

tive hypotheses about practice and growth. But a va-

riety of alternative models can be fitted before making

any firm conclusions. Table 7 presents goodness-of-

fit indices for some of these models. The first row of

Table 7 gives the overall fit indices (LRT and df) for

a model where all parameters have been fit to each

dataset. All of these initial fits are excellent except for

Table 6

Resulting Standardized Components far Monthly Test—Retest Models (Assuming B[t] = 1 for 1 Year Lag)

Univariate Bivariate

Memory Reading
General Memory Reading

Component calculated

Test-specific components

Internal consistency S.JO]^

Test-retest correlation Sy[0, !]„,

Factor communalityVJ.[0]^

Practice variance V*r[l]^

Trait-specific components

Factor stability Vfs

Factor growth V,|[l]

State fluctuation yj[l]

Yl+2

.895

.779

.895

.079

.906

.000

.094

YM

.949

.731

.949

.000

.718

.214

.068

YM

.895

.259

.266

.000

.859

.141

.000

y^

.949

.765

.518

.000

r
,

.862

.764

.765

.000

.999

.001

.000

Y2

.794

.517

.518

.000

V
3

.936

.715

.851

.000

Y4

.887

.447

.522

.000

.792

.208

.000
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the bivariate General factor and Reading factor model

discussed above.

The second row of Table 6 gives the fit for the

no-growth hypotheses (i.e., Mg = Vs = Cig - 0)

from all previous datasets. Because this second model

is a nested subset of the first model we can calculate

the difference in fit, and this shows a clear pattern in

both univariate and bivariate models: No growth is

reasonable for common Memory scores (ALRT = 4

on Ad/ = 3) but is not reasonable for common Read-

ing scores (ALRT = 56 on Ad/ = 3). The next row

gives results for the no-practice hypothesis (i.e., Mpw

= Vpw = 0), and these multivariate results are less

than clear: No practice seems unreasonable for

Memory scores (ALRT = 7 on Ad/ = 2) but does

seem reasonable for Reading scores (ALRT = 3 on

Ad/ = 2). The last model sets all practice and growth

parameters to zero. A "no changes" model shows a

marked loss of fit for all cognitive data described

here.

Results From Multivariate Factor Models

Two final multivariate models were fitted using

all four WJ-R scales together. That is, for each of

the 11 monthly groups, these analyses included eight

means, eight standard deviations, and 28 correla-

tions (for a total of 484 summary statistics; not listed

here). Table 8 gives the results for a two-common

factor model ("810) and a one-common factor model
<^p "i
(»n)-

Model "810 includes two common factors, a

Memory factor (based on Yl and Y2) and a Reading

factor (based on Y3 and Y4). This factor model in-

cludes two sets of factor loadings, H = [1.00, .75;

1.00, .97], and two sets of trait change parameters. In

addition, this model also includes covariance param-

eters (Cf) relating the developmental components

among the factors. This is a restrictive multivariate

model because the only covariances allowed are be-

tween the initial levels and growth parameters. The

resulting test and trait coefficients are very similar to

bivariate estimates (in *83 and 19 of Table 5), and only

a few of the latent trait covariances are noteworthy.

The correlation of the initial levels is RH ,2 = .55

(calculated from the estimated variance and covari-

ances; 137/-V330 x Vl92), but the covariance of all

other latent growth components is nearly zero. The

goodness-of-fit of this restrictive two-factor model

with 32 parameters is quite good (LRT = 744 on df

= 452; RMSEA = .045).

Model "K!! is based on the same data, but it includes

only one common factor. This model includes three

free factor loadings H = .64, .79, 1.00, and .86, and

posits all individual differences in both initial level

and growth can be organized by a single general fac-

tor. The model parameters for the loadings are all

relatively high (Hw > .6), but all common growth

variance is nearly zero. Perhaps more importantly, the

goodness of fit of this 24 parameter model is no

longer adequate (LRT = 1165 on df = 460; RMSEA

= .069). The difference in fit between the two-

common factor model ̂ 10 and this one-common fac-

tor model %n is relatively large (ALRT = 421 on Ad/

= 8), so we conclude that the one-factor model does

not fit these data.

Summary of Multivariate Results

The results from the monthly time-lag multivariate

data on Reading and Memory (Study 2) yield some

interesting substantive results. First, simultaneous es-

timation of all parameters, including both the unique

variances (Vu) and the state variance (Vs), was esti-

Table 7
A Summary of Goodness-of-Fit Indices for Alternative Test—Retest Models

Univariate

Memory

Model comparisons

1. Overall

2. No growth

difference (2 -

3. No practice

difference (3 -

4. No change

difference (4 -

1)

1)

1)

x2

69

73

4

76

7

144

75

df

47

50

3

49

2

52

5

Reading

x2

71

127

56

74

3

215

144

df

47

50

3

49

2

52

5

General

x2

386

424

38

388

2

524

138

df

140

143

3

144

4

147

7

Bivariate

Memory

x2

214

219

5

227

13

292

88

df

140

143

3

144

4

147

7

Reading

x2

317

373

55

332

15

477

160

df

140

143

3

144

4

14

7
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mated but some components (Vp and Vs) were prob-

ably not needed here. The poor fit of the bivariate

model across different variables provides some evi-

dence that Memory and Reading composites do not

exhibit the same general latent change patterns. How-

ever, the good fit of the same within each pair of

variables of similar content suggests that these Read-

ing and Memory composites do have substantial va-

lidity. Finally, the four variable models provide a di-

rect test of the one-factor hypothesis and this strongly

suggests that more than one common factor is needed

to account for these Memory and Reading data.

In sum, a single factor has little construct validity

here because this model does not account for both the

within-time and across-time information in these cog-

nitive abilities. Although consideration of Spearman's

g remains a typical hypothesis in multivariate cross-

sectional data analysis (e.g., Horn, 1988, 1991), these

repeated measures analyses add considerable power to

the statistical hypotheses (see McArdle & Nessel-

Table 8

A Summary of Two Alternative Multivariate Test-Retest Models Fitted to the Monthly Woodcock-Johnson—Revised

Time-Lag Data

Two-factor 1

Memory Reading One-factor'g,. General

Parameter estimated

Test coefficients

Loading HK

Practice A[t]^

Intercept M,v

Practice M^

Test variance-covariances

Unique Vulv

Practice V^

Trait coefficients

Growth Bw

Growth Mf

Trait variance-covariances

Initial V,

Growth Vs

Covariance Cig

State V,

Covariances C,, ,2, Cgi s2

Covariances Ci} s2, Cg, a

Yl *2

1 = .973*

1= 1 =

3.2* -3.6*

-0.7 -0.1

69* 157*

0< 0<

Memory

t/n
0.6

192*

0<

13

0<

3

10

y, v*

1 = .748*

1= 1 =

-0.9 -1.4

3.9* 5.6*

56* 178*

11 0<

Reading

(/1 2

12.1*

330*

102*

-32

0.4

137*

25*

>-, Y2 Y,

.641* .643* 1 =

1= 1= 1 =

-0.9 -1.4 3.2*

0.3 0.2 0.9

142* 254* 148*

13 0< 0<

General

tin
9.4*

250*

0<

18

0<

1-4

.862*

1 =

-3.6*

0.4

134*

35

Goodness-of-flt indices

Free parameters

df

Likelihood ratio

(Prob. perfect fit)

RMSEA Index

(Prob. close fit)

Two-factor'g,,

32

452

744

(<.01)

.045

One-factor % ,

24

460

1165

.069

Note. This table is based on grade-partialled data with N = 330 from Tables 2 and 3 and maximum-likelihood estimates from LISREL-8 (and

Mx-92). An asterisk indicates parameter that is larger than 1.96 times its standard error; equal sign indicates a parameter has been fixed for

model identification; less-than sign indicates a parameter that was restricted to a boundary. Basis B\i\ fixed equal to linear trend with 1-year

proportion (i.e.. 1/12). Y, = Memory for Sentences; Y2 = Memory for Words; Y3 = Letter-Word Identification; y4 = Passage Compre-

hension. Prob = probability of; RMSEA = root mean square error of approximation.



TEST-RETEST TIME-LAG ANALYSES 427

roade, 1994). This final latent change result may be

our most informative.

Discussion

Theoretical Issues

The psychometric evaluation of a test and the trait

it measures is limited when made from only one oc-

casion of measurement. A second time of measure-

ment opens up some further possibilities but test—

retest data are usually limited when the interval of

time between tests is fixed at an arbitrary value. In

these cases, test reliability is confounded with test-

practice and other kinds of trait changes. In this article

we used a varying time-lag test-retest interval to ex-

plore the separation of these components.

The time-lag design used here reinforces some

well-known features of the differences between test

reliability and trait stability. In the special case of

parallel measures with equal means and equal vari-

ances, the internal consistency of a test can be esti-

mated as the correlation between the two parallel

measures. However, when these simplifying assump-

tions are not met (e.g., the observed variances over time

are not equal) the factor-stability coefficient (S/s) is not

a substitute for, or counterpart of, the internal-

consistency coefficient (/?fc). Similarly, if the trait scores

change over time in a systematic way then the simple

correlation over time /Jj,[i.2] no longer reflects the same

concepts about "continuity" over time (see McCall,

Appelbaum & Hogarty, 1973; Wohlwill, 1973).

Two-occasion data provide the initial basis of the

measurement of developmental change, even when

additional measurements are obtained (Burr & Nes-

selroade, 1990). Choosing the most informative inter-

val of time between these tests is a complex theoret-

ical problem, which is not the same for all measures

(see Gulliksen, 1950, p. 197; Cattell, 1957, pp. 343-

344; Nunnally, 1978, p. 230). However, in theory, one

reasonable use of the time-lag design will be at the

beginning of an investigation when relatively little is

known about the characteristics of the tests of the

traits.

The main purpose of any structural equation analy-

sis is to provide information about the validity of a

theoretical construct (see McArdle & Prescott, 1992).

As we have demonstrated here, tests measuring traits

that change over time, whether as a result of the initial

impact of practice or from longer term growth, will

demonstrate lowered test-retest correlations. In these

cases of systematic changes, it may be a serious mis-

take to assume that these lowered correlations are a

reflection of lowered test quality. Of course, increases

in growth are not the only possible explanation for a

lowered test-retest correlation, and the identification

of systematic growth remains an empirical issue.

Practical Issues

The practical implementation of a time-lag design

can be relatively easy. Rather than measure the total

sample at only one interval of time, the sample can be

subdivided into different time-lag groups. Some pre-

vious research suggests that many different forms of

incomplete data models can have reasonable power in

these situations (McArdle & Hamagami, 1992). The

resulting power to test basic growth hypotheses will

vary as a function of the type of time-lag pattern

selected, the number of occasions of measurement,

and the cornmunality of the variables used to indicate

the common factors. Some researchers, most notably

Schlesselman (1973) and Helms (1992), have pointed

out both problems and benefits of time-lag designs.

In many studies, this time-lag data collection may

serve to reduce the burden on the investigator. For

example, not all participants need to be "retested in

November" or "on each birthday." In other cases,

this design may also mean that some increased bur-

dens of data collection may now tend to fall on the

investigator, especially if the design adds more

sources of influence (i.e., confounds) than they were

designed to rule out (i.e., control). In general, the

practical utility of this time-lag design will vary

among different kinds of psychological investigations

(e.g., Bergmann, 1993; Cohen, 1991).

The time-lag design can provide some empirical

basis for the determination of an optimal time-lag. In

our illustrations, the relationships between the cogni-

tive factors and other achievement cluster do vary

over time, even with the relatively short daily and

monthly time-lags. These results suggest some ben-

efits in using longer time-lags between tests, espe-

cially for the cognitive factors. This time-lag ap-

proach might initially be used to determine a small

enough aggregation of time-lag so we can pick up

twice the hypothesized change patterns (i.e., the so-

called "Nyquist limit"). When viewed as an empiri-

cal issue, the lowest level of aggregation may be de-

sired and the model may best be fitted to individual

level data (as in McArdle, 1994; McArdle &

Hamagami, 1996). In many recent studies the specific

time-lag between measurements is unplanned, un-

clear, or unreported. At very least, our highlighting of
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the time-lag may influence some researchers to con-

sider these issues.

Final substantive results can also be practically pre-

sented in a form of the theoretical curves (see Figure

6) to illustrate the critical results of time-lag models.

These parameters of any fitted model can also be used

to form an expectation for the individuals involved in

a specific testing. That is, we can calculate the like-

lihood of any specific vector of observed (Y[t]a)

scores compared with the expected group profiles. Of

course, the individual inferences need to be made with

appropriate caution. Any set of observed data, as pre-

sented in Figures 3 and 4 here, are not likely to be as

simple or as smooth as the structural expectations of

our theoretical models (e.g., Figure 6). In practice, it

is likely that more elaborate models of developmental

change will be needed to account for other important

features of tests and traits.

Future Research Issues

It is also possible to consider more complex ver-

sions of this model where we estimate "an increasing

growth function" and a "decreasing practice func-

tion" (see the Appendix). In related research (see

McArdle & Hamagami, 1992, 1996), we have found

that we can recover many additional parameters from

these kinds of time-lag data, including multiple expo-

nential and latent growth curve parameters. However,

the power to detect differences among complex alter-

natives is greatly diminished when using only two

occasions of measurement. More than two occasions,

possibly using different time-lags, are indicated. In

the WJ-R examples presented here, another retesting

of some of these same individuals again at a later time

would provide three time-points and this allows ad-

ditional models not possible here (i.e., correlated

components, more extended practice effects, more

complex second-order coefficients, etc.).

Other aspects of these models can be expanded

using nonconventional SEM. As noted previously, ag-

gregated time-lag groups are not strictly needed be-

cause individual likelihood models can be written for

individual time-lag distances (McArdle, 1994; Neale,

1993). When using a model with a more accurate

account of the individual time between tests we found

similar results. However, in general, an expanded

time-lag data set should yield more informative and

stable estimates (McArdle & Hamagami, 1992;

Schlesselman, 1973). Further multivariate extensions

allow the testing of many unique and informative hy-

potheses (e.g., Bergmann, 1993; Horn, 1972, 1988;

McArdle, 1988; Woodcock, 1990).

The scientific utility of our time-lag extension of

the test-retest design is an issue for future research.

Any two-occasion test-retest design that incorporates

a time-lag feature permits the structural separation of

some potentially important developmental compo-

nents. We think the WJ-R illustrations demonstrate

that additional growth and change information can be

substantively informative. The SEM approach pre-

sented here may be used with many other kinds of

time-lag designs and data to help tease apart some

interesting parameters related to reliability, stability,

and change. We hope these ideas will be both useful

in current practical applications and further extended

in future theoretical developments.
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Appendix

Technical Notes

Notes on the Woodcock-Johnson—Revised (WJ-R) Data

The WJ-R scales are a wide-range comprehensive set of

individually administered tests of intellectual ability, scho-

lastic aptitudes, and achievement (McGrew et al., 1991;

Woodcock, 1990). Four features of the WJ-R make it es-

pecially valuable as an instrument for research in human

development and psychometric change: The WJ-R (a) is

well-normed, (b) is calibrated using a Rasch model, (c)

includes multiple ability measures, and (d) can be adminis-

tered quickly and easily. All WJ-R scales use a constant of

500 and a logit transformation so a change of 10 points

indicates a 25% difference in probability of correct re-

sponse. The equal interval feature of these Rasch-based

scales is useful in time-lag research. In theory, test differ-

ences can be interpreted to have the same meaning at any

performance level.

In Study 1 presented here, all participants were initially

administered the WJ-R Memory for Names task. This task

is basically designed to measure the long-term memory of

the participant. In the first testing, participants were asked to

examine a set of figures called space creatures and to

memorize their fictitious names (i.e., "This is Jawf. Point to

Jawf. This is Kiptron. Point to Kiptron," etc.). Progres-

sively more figurines are added to the pictures and the task

becomes more difficult. Raw scores on the first testing ses-

sion reflect the maximum number (0 to 12) of names held in

memory at any time during the session. The retest compo-

nent of this experiment occurred sometime between 1 and

14 days later, with an average lag of about 3 days. In all

cases the same participant was again asked to name the

same space creatures. This task was again designed to mea-

sure the long-term memory of the participant. Three at-

tempts were allowed to name each space creature (so raw

scores range between 0 and 36). Both test and retest scores

obtained were converted to a Rasch-based measurement
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scale: In these units the average raw score was 500.5 at the

first occasion, 490.5 at the second occasion, and the overall

test-retest correlation was Ry[, 2] = .898.

In Study 2 we selected a stratified random sample of

individuals from the same norming sample for a longer term

retesting. Out of 402 students contacted, 361 (89.9%)

agreed to be tested again (245 kindergarten-Grade 12 and

116 college students) and 330 students had complete data.

This sampling approach resulted in an average retest delay

between tests of 245 days, with a minimum of 21 days, a

maximum of 482 days, and a small correlation between age

and time-lag (Ra, = -.14).

All WJ-R scores used here were age-adjusted residuals

from a fourth-order polynomial model:

and

Y[t]n = Ba + B,

(Al)

where X = age in years - 10, and where coefficients B are

taken from the larger WJ-R norming sample and applied to

each score at each time point. It follows that the intercepts

M, :iW are artifacts of the age-adjusted equations (and these

are not included in the diagrams). This adjustment was ap-

plied so we would not overestimate the test— retest correla-

tion due to persons remaining about to the same age during

these experimental treatments. The numerical results show

that score changes are largely linear over this age span, so

this age adjustment reduced the variance at the initial time-

point and the test-retest correlation for all groups. There

was no other substantial difference in the models fit before

and after this age adjustment. Although there may still be

Age x Retest interactions, this simple adjustment procedure

allows us to focus on test-retest effects here.

In some of the models presented here, an estimate of the

unique variance was used as a fixed value as an approxi-

mation of the "disattenuated" correlation. That is, the fixed

unique or error variance estimate was calculated from Du =

D[\] x -y/1 — Rlc estimated from the larger sample. Mc-

Grew et al. (1991) reported internal consistency reliabilities

in the norming study (median R^ = .947 and R^ = .888),

and we use these as initial estimates of the loadings and

uniquenesses here. In the multivariate models we use the

corresponding summary statistics for the individual scales

in each composite (i.e., MEMSEN, MEMWRD, LWIDNT,

and PSGCMP) — these statistics were not all listed in Tables

2 and 3. In each of these models the factor loadings and

uniquenesses was estimated from the time-lag data.

Latent Means, Covariances, and Common

Factor Notation

To define the latent means and covariances we write

I - MJ '} = V,

] = Ms, «{(C - Mg) (G - Mg)'} = Vg,

«{P} = Mp, i8{(P - Mf) (P - Ag'} = Vp,

%{U] = 0,
 r
«{U U'} = Vu,

(A2)

The factor-analytic basis of the latent growth model has been

discussed in other research (e.g., see McArdle, 1988; Meredith

& Tisak, 1990; Browne & Arminger, 1995). We can expand

Model 3 for a specific time-series data (e.g., t = 0 to 4) as

L + -B[0] x G, + A[6] x Pn + {/[OL,

, = /„ + B[l] x C, 4- /1[1] X />„ + £/[!]„,

= /„ + fl[2] x Gn + A[2] xPn + U[2]n,

= !„ + B[3] xGn + A[3] x Pn + (/[3]n,

YWn = '„ + B[4] X Gn + /t[4] X Pn + U[4]n. (A3)

These vectors can now be summarized into the more com-

pact matrix form described in Equations 4 and 5. In this

specific factor model with 7" = 5 we include a (5 x 3)

matrix L of common factor loadings, a (3 x 1) vector of

common factor scores Q = [In, Gn, Pn], and a (5 x 1) vector

of independent unique scores U = U[t] (for t = 0 to 4).

In the factor-analytic context we can also write a matrix

form of the latent means and covariances. An average cross-

products or moment matrix among the common factors Q

can be written as

M , =

(A4)

and we define the moment matrix of unique variances as

(AS)

So, by assuming the independence of the Q and U we can

write the usual structural factor analysis representation

Myy = L x Mqq x L' + Mun> (A6)

and create expectations about the mean and covariances

(moments) of all observed variables.

It is also possible to add the defined unit constant variable

into the vector of latent variables. This has the advantage of

directly separating the means from the moments, and this

covariance-based form produces identical structural expec-

tations Myy. This approach also permits estimation by stan-

dard SEM programs based on covariance matrices (for ref-

erences, see McArdle, 1988).

Multiple Group Estimation With Incomplete Data

The expected covariance matrix and mean vectors for W

observed variables and K latent variables can always be
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formed using RAM formulas (see McArdle & McDonald,

1984; McDonald, 1985) as,

s = PCI - Ar
u, = F(I - A)-

- A)'1' F' and

J, (A7)

where X = the (W x M) expected covariance matrix, ji, =

the (W x 1) expected mean vector, F = the (W x [W + K])

filter matrix, A = the ((W + K) x (W + K)) assymmetric

coefficient matrix, S = the ([W + K] x [W + KQ symmetric

covariance matrix, and J = the ([W + K] x 1) latent mean

coefficient matrix. Some uses of these matrices are de-

scribed below.

For any set of parameter values the likelihood ratio test

of the difference between the expected and observed Co-

variance matrix and mean vectors can be formed by calcu-

lating

= -k * / - In El + ji'2 - '

'C-1 M,

and

LKI=(N-

= In El 4- In ICI + tr (JT1 C) -p

+ (M - u,)'S-' (M - u.) = xW (A8)

In the case of multiple independent groups, the usual like-

lihood function is weighted by the appropriate sample size

by calculating

Several other tests of goodness-of-fit (e.g., Browne & Cu-

deck, 1993) statistical power analyses (e.g., McArdle, 1994)

can now be formed from these indices.

SEM Programming Devices

Various computer programs used in this article can all be

obtained as ASCII files under the title of JJM.TTMELAG96

from the Anonymous FTP server at the University of Vir-

ginia (FTP FTP.VIRGINIA.EDU). These formal models

can be analyzed by both the LISREL-8 computer program

(Joreskog & Sorbom, 1993) and the MX program (Neale,

1993). Both programs allow us to write patterns for the

means, deviations, and correlations of the time-lag groups

(as described in Tables 1, 2, and 3). These patterns are

defined by parameters that are (a) free to be estimated using

numerical procedures, (b) fixed at some specific value, or

(c) equal to to another parameter (i.e., invariant).

A slightly nonstandard matrix approach to model repre-

sentation was used to simplify all models here. The univari-

ate latent growth model of Figure 5 was fitted to eight

groups (of Table 1) in the following way. First, a matrix

specification was set up for each group with three observed

variables (F[0], Y[t], and one unit constant), and 14 total

variables (all variables in Figure 5). We used a fixed-filter

matrix F (3 x 14) containing only ones and zeros, an asym-

metric regression matrix A (14 x 14) containing all one-

headed arrows, and a symmetric covariance matrix S (14 x

14) containing all two-headed arrows. With this approach

the matrix entries precisely match the parameters in the path

diagram of Figure 5 and, although the program is a bit slow,

it is easy to use the input and output.

This same model was then used to specify the one-factor

model simply by placing zeros in the appropriate rows and

columns. In multivariate models, parameters representing

the factor mean vector (J) are needed.

This kind of incomplete data take advantage of the spe-

cial use of the RAM filter matrix. Then for each group, we

write a separate filter matrix that defines the available mea-

surements for that specific group. For example, if we have

a unit constant and two measurements at t = 0 and t = 1

and only eight total variables, we would write

1 0 0 0 0 0 0 0~|

0 1 0 0 0 0 0 0 ,

0 0 1 0 0 0 0 Oj (AID)

but in a group with a unit constant and two measurements at

t = 0 and t = 2, we write

r i o o o o o o o " !
• = 0 1 0 0 0 0 0 0 ,

|_0 0 0 1 0 0 0 oJ (All)

and in a group with a unit constant and two measurements

at t = 0 and t — 7, we write

Tl 0 0 0 0 0 0 0~1

F(7)= 0 1 0 0 0 0 0 0 .

|_0 0 0 0 0 0 0 i j (A12)

In general, the placement of the unit value in the last row

indicates the available data for each time-lag group, and this

is the only parameter that is altered from one group to

another. Following McArdle and Anderson (1990) we write

one set of model parameters in super-matrices A and S. This

approach allows the specification of invariance of all other

model parameters in matrices A(8) and S(g). There are nu-

merous ways to produce the correct model expectations, but

these require much more complex programming.

The calculation of standard errors for the variance com-

ponents poses a special problem that was not detailed in the

previous sections. In general, the variance terms (e.g., V;)

have an asymmetric distribution, so we estimated their con-

fidence intervals by estimating the comparable standard de-

viations (e.g., D,) and their standard errors. The calculation

of confidence intervals for the standardized variance com-

ponents (e.g., Vf) is more complex. These proportions in-

clude several model parameters and the correlations among
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these estimates need to be taken into account as well (as in

the calculation of the standard errors for indirect effects).

These standard error calculations can be built into the model

estimation by adding extra parameters to the models (i.e.,

the PAR command) and then using nonlinear constraints

(i.e., the CO commands) to form these ratios.

Time-Lag Model Mathematical Expectations

We examined all expectations plotted in Figure 6 using

the matrix expressions defined above. For example, if we

substitute the parameters of loading matrix L3 we can write

the observed means as

*{AW = MI + 0 x
 M, + 0 x Mp,

where

Mt + 2 x Mg

M, + 3 x Ms

M, + 4 X Mx

1 x Up,

1 x M,

(A13)

which illustrate the functional relationships over time. If we

further define M, = 1, Mg = 1, and Mp = 1, then, by

simple substitution, these expectations yield means My[0] =

1, Mym = 3, Mym — 4, My[3] = 5, Mym = 6, and these

are the numerical values plotted for i3 in Figure [6a].

All other variances, correlations, and variance propor-

tions listed in Figure 6 were created by substitution in the

same way. The parameters used to create these four models

are listed in the design outlined in Table 1A:

Multivariate Time-Lag Expectations

The multivariate path diagram may be written algebra-

ically in a number of ways. To simplify matters here, we

have written the multivariate expectations needed as sepa-

rate elements.

Structural expectations for the means may be written for

variable w as

and

M/w = MI + B[r] X Mg. (A 14)

Structural expectations within variables (for measure w)

may be written as

and

where

and

[o,tj} = ̂ w x £/[o,(]

Vm = V, + B[tf x Vg + 2 B[>] x Cis + V,

(A 15)

Structural expectations among variables (for measures /

k) may be written as

and

jr,,Wl]} = H, X (V,. + B[t] x Cit) H't. (Al6)

A few test-specific developmental ratios within the factor

model may be written as

and

*Wi ' <A17)

A few trait-specific developmental ratios for the factor

model may be written as

Table 1A

The Numerical Values for the Four Theoretical Models Presented in Figure 6

Loadings

Model label H B,

to 1 0
«, 1 t/12
c«2 1 0

«3 1 t/12

•4,

0

0
g-.2(,-l)

1

Means

M, Mg

1 0

1 1

1 0

1 1

Variances

M
P

0

0

1

1

v<

3

3

3

3

Vg

0

2

0

2

vr

0

0

1

1

vu

2

2

2

2

Correlations

c*

0

0

0

0
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V,

(A18)

and

- —
*/w v

m

More Advanced Growth Functions

Parameter identification in this kind of a model can be
achieved using various devices. In a model with k common
factors we know that at least t2 constraints need to be fixed
and distributed across the loadings and covariances of the
common factors (for details, see McArdle & Cattell, 1994,
among others).

In the specific growth models discussed above, two prior
conditions are clear. First, the initial factor / has a fixed
scale of measurement simply by the definition of the fixed
unit values in the first column. Second, for the first factor to
be interpreted as the initial level we also need to set the
other loadings for the initial time point to zero (i.e., L, 2 =
B[0] = 0 and I1>3 = A[0] = 0). The necessary scaling of
each of the other two factors can conveniently be defined by
restrictions where both B[l] = 1 andA[l] = 1. This leaves
an initially restricted model where the second and third
columns can be estimated for / > 1.

The main problem with this model is that second and

third common factors, G and P, are not yet separated. To
wit, if S[2] = Am, S[3] = A[3], and B[4] = A [4], then the
columns are identical and could be interchanged without
loss of meaning (the matrix rank is greater than the matrix
order). This means the remaining loadings require addi-
tional restrictions or the overall model will not be identified.
Following a suggestion made by McDonald (1980), we
might consider a representation of this model where we
estimate "an increasing growth function" and a "decreas-
ing practice function' ' by writing

1 0 0

1 B[3] = B[2] + 8[2]2 A[3] = A[2] - 6[2]2

1 B[4] = B[3] + 8[3]2 A[4] = A[3] - 9[3]2 _
(A19)

In this model each growth coefficient B[t] > B[t - 1] due to
the positive increment 8[f - I]2, so the growth function must
be monotonically increasing or flat. Likewise, each practice
coefficient A[z] < A[t - I] due to the negative increment
- 8[f - I]2, so the practice function must be monotonically
decreasing or flat. In this way, we have a model where one
function describes the increases over time and another func-
tion describes the decreases over time.
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