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Abstract. In this paper, we expand the applicability of Lavrentiev regularization method for

ill-posed equations, recently presented in Mahale and Nair (2013). We use a modified center-

type Lipschitz condition in our convergence analysis instead of Lipschitz-type condition used

in earlier studies such as Mahale and Nair (2000), (2013) and Tautenhn (2002).

1. Introduction

In this paper, we consider the problem of approximately solving the non-
linear ill-posed operator equation of the form

F (x) = y, (1.1)

where F : D(F ) ⊂ X → X is a monotone operator and X is a real Hilbert
space. We denote the inner product and the corresponding norm on a Hilbert
space by 〈·, ·〉 and ‖ · ‖, respectively. Let U(x, r) stand for the open ball in X
with center x ∈ X and radius r > 0. Recall that F is said to be a monotone
operator if it satisfies the relation

〈F (x1)− F (x2), x1 − x2〉 ≥ 0 (1.2)

for all x1, x2 ∈ D(F ).

0Received October 21, 2013. Revised March 31, 2014.
02010 Mathematics Subject Classification: 65F22, 65J15,65J22, 65M30, 47A52.
0Keywords: Lavrentiev regularization method, Hilbert space, ill-posed problems, Fréchet-
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We assume, throughout this paper, that yδ ∈ Y are the available noisy data
with

‖y − yδ‖ ≤ δ (1.3)

and (1.1) has a solution x̂. Since (1.1) is ill-posed, the regularization meth-
ods are used ([9, 10, 11, 13, 14, 19, 21, 22]) for approximately solving (1.1).
Lavrentiev regularization is used to obtain a stable approximate solution of
(1.1). In the Lavrentiev regularization, the approximate solution is obtained
as a solution of the equation

F (x) + α(x− x0) = yδ, (1.4)

where α > 0 is the regularization parameter and x0 is an initial guess for the
solution x̂. For deriving the error estimates, we shall make use of the following
equivalent form of (1.4),

xδα = x0 + (Aδα + αI)−1[yδ − F (xδα) +Aδα(xδα − x0)], (1.5)

where Aδα = F ′(xδα).

In [15], Mahale and Nair, motivated by the work of Tautenhan [22], consid-
ered Lavrentieve regularization of (1.1) under a general source condition on
x̂− x0 and obtained an order optimal error estimate.

In the present paper, we are motivated by [15]. In particular, we expand
the applicability of the Lavrentieve regularization of (1.1) by weakening one
of the major hypotheses in [15] (see below Assumption 2.1 (ii) in the next
section).

In Section 2, we consider basic assumptions and some preliminaries required
throughout the paper. The main order optimal result using the apriori and a
posteriori parameter choice is provided in Section 3. Finally the paper ends
with some numerical examples in Section 4.

2. Basic assumptions and some preliminary results

We use the following assumptions to prove the results in this paper.

Assumption 2.1. (1) There exists r > 0 such that U(x0, r) ⊆ D(F ) and
F : U(x0, r)→ X is Fréchet differentiable.

(2) There exists K0 > 0 such that, for all uθ = u+ θ(x0 − u) ∈ U(x0, r),
θ ∈ [0, 1] and v ∈ X, there exists an element, say φ(x0, uθ, v) ∈ X,
satisfying

[F ′(x0)− F ′(uθ)]v = F ′(uθ)φ(x0, uθ, v),

‖φ(x0, uθ, v)‖ ≤ K0‖v‖‖x0 − uθ‖
for all uθ ∈ U(x0, r) and v ∈ X.
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(3) ‖F ′(u) + αI)−1F ′(uθ)‖ ≤ 1 for all uθ ∈ U(x0, r).
(4) ‖(F ′(u) + αI)−1‖ ≤ 1

α .

The condition (2) in Assumption 2.1 weakens the popular hypotheses given
in [15], [17] and [20].

Assumption 2.2. There exists a constant K > 0 such that, for all x, y ∈
U(x̂, r) and v ∈ X, there exists an element denoted by P (x, u, v) ∈ X satisfying

[F ′(x)− F ′(u)]v = F ′(u)P (x, u, v), ‖P (x, u, v)‖ ≤ K‖v‖‖x− u‖.
Clearly, Assumption 2.2 implies Assumption 2.1 (2) with K0 = K, but not

necessarily vice versa. Note that K0 ≤ K holds in general and K
K0

can be

arbitrarily large [1]-[5]. Indeed, there are many classes of operators satisfying
Assumption 2.1 (2), but not Assumption 2.2 (see the numerical examples at
the end of this study). Moreover, if K0 is sufficiently smaller than K which
can happen since K

K0
can be arbitrarily large, then the results obtained in this

study provide a tighter error analysis than the one in [15].

Finally, note that the computation of constant K is more expensive than
the computation of K0.

Assumption 2.3. There exists a continuous and strictly monotonically in-
creasing function ϕ : (0, a]→ (0,∞) with a ≥ ‖F ′(x0)‖ satisfying

(1) limλ→0 ϕ(λ) = 0;

(2) supλ≥0
αϕ(λ)
λ+α ≤ ϕ(α) for all α ∈ (0, a];

(3) there exists v ∈ X with ‖v‖ ≤ 1 such that

x̂− x0 = ϕ(F ′(x0))v. (2.1)

Note that the source condition (2.1) is suitable for both mildly and severely
ill-posed problems [16], [17]. Further note that the source condition (2.1)
involves the known initial approximation x0 whereas the source condition con-
sidered in [15] requires the knowledge of the unknown x̂.

We need the auxiliary results based on Assumption 2.1.

Proposition 2.4. For any u ∈ U(x0, r) and α > 0,

‖(F ′(u) + αI)−1[F (x̂)− F (u)− F ′(u)(x̂− u)‖

≤ 5K0

2
‖x̂− u‖2 + 2K0‖x̂− x0‖‖x̂− u‖.

Proof. Using the fundamental theorem of integration, for any u ∈ U(x0, r), we
get

F (x̂)− F (u) =

∫ 1

0
F ′(u+ t(x̂− u))(x̂− u)dt.



180 I. K. Argyros and S. George

Hence, by Assumption 2.1,

F (x̂)− F (u)− F ′(u)(x̂− u)

=

∫ 1

0
[F ′(u+ t(x̂− u))− F ′(x0) + F ′(x0)− F ′(u)](x̂− u)dt

=

∫ 1

0
F ′(x0)[φ(x0, u+ t(x̂− u), u− x̂)− φ(x0, u, x̂− u)]dt.

Then, by (2), (3) in Assumptions 2.1 and the inequality ‖(F ′(u)+αI)−1F ′(uθ)‖
≤ 1, we obtain in turn

‖(F ′(u) + αI)−1[F (x̂)− F (u)− F ′(u)(x̂− u)‖

≤
∫ 1

0
‖φ(x0, u+ t(x̂− u), u− x̂) + φ(x0, u, x̂− u)‖dt.

≤
[ ∫ 1

0
K0(‖u− x0‖+ ‖x̂− u‖t)dt+K0‖u− x0‖

]
‖x̂− u‖

≤
[ ∫ 1

0
K0(‖u− x̂‖+ ‖x̂− x0‖+ ‖x̂− u‖t)dt

+K0(‖u− x̂‖+ ‖x̂− x0‖)
]
‖x̂− u‖

≤ 5K0

2
‖x̂− u‖2 + 2K0‖x̂− x0‖‖x̂− u‖.

This completes the proof. �

Theorem 2.5. ([16, Theorem 2.2], also see [22]) Let xα be the solution of
(1.4) with y in place of yδ. Then

(1) ‖xδα − xα‖ ≤ δ
α ,

(2) ‖xα − x̂‖ ≤ ‖x0 − x̂‖,
(3) ‖F (xδα)− F (xα)‖ ≤ δ.

Remark 2.6. From Theorem 2.5 and triangle inequality we have

‖xδα − x̂‖ ≤
δ

α
+ ‖x0 − x̂‖.

So (1.5) is meaningful if

r >
δ

α
+ ‖x0 − x̂‖.
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3. Error Estimates

The error estimate in this section is obtained by finding error bounds for
‖xα − x̂‖.

Theorem 3.1. Let Assumption 2.1, 2.3 hold, and let K0‖x0 − x̂‖ < 2
9 . Then

‖xα − x̂‖ ≤ Cϕ(α),

where C = 1+2K0‖x0−x̂‖
1−9K0‖x0−x̂‖/2 .

Proof. Let Aα = F ′(xα) and A0 = F ′(x0). Then

xα = x0 + (Aα + αI)−1[y − F (xα) +Aα(xα − x0)].
So

xα − x̂ = x0 − x̂+ (Aα + αI)−1[y − F (xα) +Aα(xα − x0)]
= x0 − x̂+ (Aα + αI)−1[F (x̂)− F (xα) +Aα(xα − x̂) +Aα(x̂− x0)]
= (Aα + αI)−1[α(x0 − x̂) + F (x̂)− F (xα) +Aα(xα − x̂)]

= (Aα + αI)−1α(x0 − x̂)

+(Aα + αI)−1[F (x̂)− F (xα) +Aα(xα − x̂)]

= (A0 + αI)−1α(x0 − x̂) + [(Aα + αI)−1 − (A0 + αI)−1]α(x0 − x̂)

+(Aα + αI)−1[F (x̂)− F (xα) +Aα(xα − x̂)]

= v0 + (Aα + αI)−1(A0 −Aα)v0 + ∆1, (3.1)

where v0 = (A0 + αI)−1α(x0 − x̂) and

∆1 = (Aα + αI)−1[F (x̂)− F (xα) +Aα(xα − x̂)].

By Assumption 2.3, we have

‖v0‖ ≤ ϕ(α), (3.2)

by Assumption 2.1, 2.3 and Theorem 2.5, we have

(Aα + αI)−1(A0 −Aα)v0 = (Aα + αI)−1A0ϕ(x0, xα, v0)

≤ K0‖x0 − xα‖‖v0‖
≤ K0(‖x0 − x̂‖+ ‖x̂− xα‖)‖v0‖
≤ 2K0‖x0 − x̂‖ϕ(α) (3.3)

and by Proposition 2.4

∆1 ≤ 5K0

2
‖x̂− xα‖2 + 2K0‖x̂− x0‖‖x̂− xα‖

≤ 9K0

2
‖x̂− x0‖‖x̂− xα‖. (3.4)

The result now follows from (3.1), (3.2), (3.3) and (3.4). �
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The following Theorem is a consequence of Theorem 2.5 and Theorem 3.1.

Theorem 3.2. Under the assumptions of Theorem 3.1

‖xδα − x̂‖ ≤ C
(
δ

α
+ ϕ(α)

)
,

where C is as in Theorem 3.1.

3.1. Apriori parameter choice. Let ψ : (0, ϕ(a)]→ (0, aϕ(a)] be defined as

ψ(λ) := λϕ−1(λ). (3.5)

Then δ
α = ϕ(α)⇔ δ = ψ(ϕ(α)).

Theorem 3.3. Let the assumptions of Theorem 3.1 be satisfied. If the regu-
larization parameter is chosen as α = ϕ−1(ψ−1(δ)) with ψ defined as in (3.5),
then

‖xδα − x̂‖ ≤ 2Cψ−1(δ). (3.6)

3.2. Aposteriori parameter choice. Note that the choice of α in the above
Theorem depends on the unknown source function ϕ. In applications, it is
desirable that α is chosen independent of the source function ϕ, but may
depend on the data (δ, yδ), and consequently on the regularized solution. For
Lavrentiev regularization (1.5), Tautenhan (cf. [22]) considered the following
discrepancy principal for chosing the regularization parameter α,

‖α(Aδα + αI)−1[F (xδα)− yδ]‖ = cδ, (3.7)

where c > 0 is an appropriate constant. The error estimate in [22] is obtained
under the assumption that the solution satisfies a Holder-type source condi-
tion. In [15], Mahale and Nair considered the discrepancy principle (3.7) and
extended the analysis of Tautenhan [22] to include both Holder type and loga-
rithmic type source conditions. In this paper we consider discrepancy principle
(3.7) and derive order optimal error estimte under the Assumption 2.3.

We will be using the following proposition, proved in [22], which shows the
existence of the regularization parameter α satisfying (3.7).

Proposition 3.4. (cf. [22, Proposition 4.1]) Let F be monotone and ‖F (x0)−
yδ‖ ≥ cδ with c > 2. Then there exists an α ≥ β0 := (c−1)δ

‖x0−x̂‖ satisfying (3.7).

Lemma 3.5. Let Assumption 2.1 and assumptions in Proposition 3.4 hold
and α := α(δ) is chosen according to (3.7). Then

‖α(A0 + αI)−1(F (xα)− y)‖ ≥ (c− 2)δ

1 + k1
, (3.8)
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where k1 = K0(2c−1)‖x0−x̂‖
c−1 .

Proof. By (3.7), we have

|cδ − α‖(Aδα + αI)−1(F (xα)− y)‖|
= |α(Aδα + αI)−1(F (xδα)− yδ)‖ − α‖(Aδα + αI)−1(F (xα)− y)‖|
≤ ‖α(Aδα + αI)−1[F (xδα)− F (xα)− (yδ − y)]‖
≤ ‖F (xδα)− F (xα)‖+ ‖yδ − y‖
≤ 2δ.

The last step follows from Theorem 2.5. So

(c− 2)δ ≤ α‖(Aδα + αI)−1(F (xα)− y)‖ ≤ (c+ 2)δ.

Let

aα := α(A0 + αI)−1(F (xα)− y).

Then

α‖(Aδα + αI)−1(F (xα)− y)‖
≤ ‖aα‖+ ‖α[(Aδα + αI)−1 − (A0 + αI)−1](F (xα)− y)‖
≤ ‖aα‖+ ‖(Aδα + αI)−1(A0 −Aδα)aα‖
≤ ‖aα‖+ ‖(Aδα + αI)−1Aδαϕ(x0, x

δ
α, aα)‖

≤ ‖aα‖(1 +K0‖x0 − xδα‖)
≤ ‖aα‖(1 +K0(‖x0 − x̂‖+ ‖x̂− xδα‖))

≤ ‖aα‖
(

1 +K0

(
‖x0 − x̂‖+

δ

α
+ ‖x̂− x0‖

))
≤ ‖aα‖

(
1 +K0

(
2‖x0 − x̂‖+

δ

α

))
≤ ‖aα‖

(
1 +K0

(
2‖x0 − x̂‖+

‖x0 − x̂‖
c− 1

))
≤ ‖aα‖(1 + k1),

which in turn implies ‖α(A0 + αI)−1(F (xα)− y)‖ ≥ (c−2)δ
1+k1

. �

Lemma 3.6. Let the assumptions of Theorem 3.1 and Proposition 3.4 hold.
Then

(1) ‖α(A0 + αI)−1(F (xα)− y)‖ ≤ µαϕ(α),

(2) α ≥ ϕ−1(ψ−1(ξδ)), where µ = C(1 + 3K0
2 ‖x0 − x̂‖) and ξ = c−2

1+k1
.
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Proof. By Assumption 2.1, we know that for x, z ∈ U(x0, r) and u ∈ X,

F ′(z)u = F ′(x0)u− F ′(z)ϕ(x0, z, u), ‖ϕ(x0, z, u)‖ ≤ K0‖x0 − z‖‖u‖.

So

F (xα)− F (x̂) =

∫ 1

0
F ′(x̂+ t(xα − x̂))(xα − x̂)dt

= A0(xα − x̂)−
∫ 1

0
F ′(x̂+ t(xα − x̂))

×ϕ(x0, x̂+ t(xα − x̂), xα − x̂)dt.

Hence

‖α(A0 + αI)−1(F (xα)− F (x̂))‖

=

∥∥∥∥α(A0 + αI)−1A0(xα − x̂)

−
∫ 1

0
α(A0 + αI)−1F ′(x̂+ t(xα − x̂))ϕ(x0, x̂+ t(xα − x̂), xα − x̂)dt

∥∥∥∥
≤ α

(
‖xα − x̂‖+K0

(
‖x0 − x̂‖+

‖xα − x̂‖
2

)
‖xα − x̂‖

)
≤ α

(
1 +

3K0

2
‖x0 − x̂‖

)
‖xα − x̂‖.

The last follows from Theorem 2.5. Now by using Theorem 3.1, we have

‖α(A0 + αI)−1(F (xα)− F (x̂))‖ ≤ C
(

1 +
3K0

2
‖x0 − x̂‖

)
αϕ(α) = µαϕ(α).

In view of (3.8), we get

(c− 2)δ

1 + k1
≤ µαϕ(α)

which implies, by definition of ψ

ψ(ϕ(α)) = αϕ(α) ≥ (c− 2)δ

1 + k1
:= ξδ,

where ξ = (c−2)
1+k1

. Thus α ≥ ϕ−1(ψ−1(ξδ)). This completes the proof. �

Theorem 3.7. Let Assumption 2.1 be satisfied and 4K0‖x0 − x̂‖ < 1. Then
for 0 < α0 ≤ α,

‖xα − xα0‖ ≤
‖α(A0 + αI)−1(F (xα)− F (x̂))‖

(1− 4‖x0 − x̂‖)α0
.
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Proof. Since

F (xα)− y + α(xα − x0) = 0, (3.9)

F (xα0)− y + α0(xα0 − x0) = 0, (3.10)

and

α0(xα − xα0) = (α− α0)(x0 − xα) + α0(x0 − xα0)− α(x0 − xα),

we have by (3.9) and (3.10),

α0(xα − xα0) =
α− α0

α
(F (xα)− y) + F (xα0)− F (xα),

and

(Aα + α0I)(xα − xα0)

=
α− α0

α
(F (xα)− y) + [F (xα0)− F (xα) +Aα(xα − xα0)].

Hence

xα − xα0 =
α− α0

α
(Aα + α0I)−1(F (xα)− y)

+(Aα + α0I)−1[F (xα0)− F (xα) +Aα(xα − xα0)].

Thus by Proposition 3.4

‖xα − xα0‖ ≤ ‖
α− α0

α
(Aα + α0I)−1(F (xα)− y)‖+ Γ1, (3.11)

where Γ1 = ‖(Aα+α0I)−1[F (xα0)−F (xα)+Aα(xα−xα0)]‖. By Fundamental
Theorem of Integration and Assumption 2.1, we have

F (xα0)− F (xα) +Aα(xα − xα0)

=

∫ 1

0
[F ′(xα + t(xα0 − xα))−Aα](xα0 − xα)dt

=

∫ 1

0
[F ′(xα + t(xα0 − xα))− F ′(x0) + F ′(x0)−Aα](xα0 − xα)dt

=

∫ 1

0
[−F ′(uθ)ϕ(x0, uθ, xα0 − xα) +Aαϕ(x0, xα, xα0 − xα)]dt,
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where uθ = x0 + θ(x0 − (xα + t(xα0 − xα))). Therefore again by Assumption
2.1, we have

Γ1 ≤
∥∥∥∥∫ 1

0
ϕ(x0, uθ, xα0 − xα)dt

∥∥∥∥+ ‖ϕ(x0, xα, xα0 − xα)‖

≤ K0

[ ∫ 1

0
‖x0 − uθ‖dt+ ‖x0 − xα‖

]
‖xα0 − xα‖

≤ K0[‖x0 − xθ‖/2 + ‖x0 − xα‖]‖xα0 − xα‖
≤ K0[‖x0 − xα‖/2 + ‖x0 − xα0‖/2 + ‖x0 − xα‖]‖xα0 − xα‖
≤ K0[3(‖x0 − x̂‖+‖x̂− xα‖)/2 +(‖x0 − x̂‖+‖x̂− xα0‖)/2]‖xα0 − xα‖
≤ 4K0‖x0 − x̂‖‖xα0 − xα‖. (3.12)

The last step follows from Theorem 2.5. Now since α−α0
α < 1, we have∥∥∥∥α− α0

α
(Aα + α0I)−1(F (xα)− y)

∥∥∥∥
≤ ‖(Aα + α0I)−1(F (xα)− y)‖

≤ 1

α0α
‖α0(Aα + α0I)−1(Aα + α0I)α(Aα + α0I)−1(F (xα)− y)‖

≤ sup
λ≥0

∣∣∣∣α0(λ+ α)

α(λ+ α0

∣∣∣∣‖α(Aα + α0I)−1(F (xα)− y)‖
α0

≤ ‖α(Aα + α0I)−1(F (xα)− y)‖
α0

. (3.13)

So by (3.11), (3.12) and (3.13) we have

‖xα − xα0‖ ≤
‖α(Aα + α0I)−1(F (xα)− y)‖

α0(1− 4K0‖x− x̂‖)
.

This completes the proof. �

Lemma 3.8. Let assumptions of Lemma 3.6 hold. Then

‖α(Aα + α0I)−1(F (xα)− y)‖ ≤ βδ,

where β = (c+ 2)(1 + K0(4c−3)‖x0−x̂‖
c−1 ).

Proof. Observe that
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‖α(Aα + α0I)−1(F (xα)− y)‖
≤ ‖α(Aδα + α0I)−1(F (xα)− y)‖

+‖α[(Aα + α0I)−1 − (Aδα + α0I)−1](F (xα)− y)‖
≤ ‖α(Aδα + α0I)−1(F (xα)− y)‖ (3.14)

+‖α(Aα + α0I)−1(Aδα −Aα)(Aδα + α0I)−1(F (xα)− y)‖.

Let aδ = α(Aδα + α0I)−1(F (xα)− y). Then

‖α(Aα + α0I)−1(F (xα)− y)‖
≤ ‖aδ‖+ ‖α(Aα + α0I)−1(Aδα−A0+A0−Aα)(Aδα + α0I)−1(F (xα)− y)‖
≤ ‖aδ‖+ ‖ − (Aα + α0I)−1Aδαϕ(x0, x

δ
α, aδ)‖

+‖(Aα + α0I)−1Aαϕ(x0, xα, aδ)‖
≤ ‖aδ‖(1 +K0(‖x0 − xδα‖+ ‖x0 − xα‖))
≤ ‖aδ‖(1 +K0(‖xα − xδα‖+ 2‖x0 − xα‖))

≤ ‖aδ‖
(

1 +K0

(
δ

α
+ 4‖x0 − x̂‖

))
≤ ‖aδ‖

(
1 +K0

(
1

c− 1
+ 4

)
‖x0 − x̂‖

)
≤ ‖aδ‖

(
1 +K0

4c− 3

c− 1
‖x0 − x̂‖

)
.

Now since ‖aδ‖ ≤ (c+ 2)δ, we have

‖α(Aα + α0I)−1(F (xα)− y)‖ ≤
(

1 +K0
4c− 3

c− 1
‖x0 − x̂‖

)
(c+ 2)δ.

This completes the proof. �

The main results of the paper is the following.

Theorem 3.9. Let assumptions of Lemma 3.6 hold. If, in addition, 9K0‖x0−
x̂‖ < 2, then

‖xδα − x̂‖ ≤ ℘ψ−1(ηδ),
where ℘ = 1

ξ + 1
1−4K0‖x0−x̂‖ + C and η = max{ξ, β}.

Proof. First consider the case α := α(δ) ≤ α0. Then by Theorem 3.2 we have

‖xδα − x̂‖ ≤ C
(
δ

α
+ ϕ(α0)

)
. (3.15)
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Now consider the case α := α(δ) > α0. In this case by Theorem 3.7, we have

‖xδα − x̂‖ ≤ ‖xδα − xα‖+ ‖xα − xα0‖+ ‖xα0 − x̂‖

≤ δ

α
+ Cϕ(α0) +

‖α(Aα + α0I)−1(F (xα)− y)‖
α0(1− 4K0‖x− x̂‖)

. (3.16)

From (3.15) and (3.16)

‖xδα − x̂‖ ≤
δ

α
+ Cϕ(α0) +

‖α(Aα + α0I)−1(F (xα)− y)‖
α0(1− 4K0‖x− x̂‖)

for all α ∈ (0, a]. Let α0 := ϕ−1ψ−1(βδ) with β = (1 +K0(4c− 3)‖x0− x̂‖(c+
2)/(c− 1). Then by Lemma 3.6 and 3.8, we get

‖xδα − x̂‖ ≤
δ

α
+ Cϕ(α0) +

‖α(Aα + α0I)−1(F (xα)− y)‖
α0(1− 4K0‖x− x̂‖)

≤ δ

ϕ−1ψ−1(ξδ)
+

βδ

(1− 4K0‖x− x̂‖)ϕ−1ψ−1(βδ)
+ Cψ−1(βδ).

Now since ϕ−1ψ−1(λ) = λ
ψ−1(λ)

we have

‖xδα − x̂‖ ≤
ψ−1(ξδ)

ξ
+

ψ−1(βδ)

1− 4K0‖x− x̂‖
+ Cψ−1(βδ)

≤
(

1

ξ
+

1

1− 4K0‖x0 − x̂‖
+ C

)
ψ−1(ηδ), (3.17)

where η = max{ξ, β}. This completes the proof. �

4. Numerical Examples

We provide two numerical examples, where K0 < K.

Example 4.1. Let X = R, D(F ) = U(0, 1), x0 = 0 and define a function F
on D(F ) by

F (x) = ex − 1. (4.1)

Then, using (4.1) and Assumptions 2.1 (2) and 2.2, we get

K0 = e− 1 < K = e.

Example 4.2. Let X = C([0, 1]) (:the space of continuous functions defined

on [0, 1] equipped with the max norm) and D(F ) = U(0, 1). Define an operator
F on D(F ) by

F (h)(x) = h(x)− 5

∫ 1

0
xθh(θ)3dθ. (4.2)
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Then the Fréchet-derivative is given by

F ′(h[u])(x) = u(x)− 15

∫ 1

0
xθh(θ)2u(θ)dθ (4.3)

for all u ∈ D(F ). Using (4.2), (4.3), Assumptions 2.1 (2), 2.2 for x0 = 0, we
get K0 = 7.5 < K = 15.

Next, we provide an example where K
K0

can be arbitrarily large.

Example 4.3. Let X = D(F ) = R, x0 = 0 and define a function F on D(F )
by

F (x) = d0x− d1 sin 1 + d1 sin ed2x, (4.4)

where d0, d1 and d2 are the given parameters. Note that F (x0) = F (0) = 0.
Then it can easily be seen that, for d2 sufficiently large and d1 sufficiently
small, K

K0
can be arbitrarily large.

We now present two examples where Assumption 2.2 is not satisfied, but
Assumption 2.1 (2) is satisfied.

Example 4.4. Let X = D(F ) = R, x0 = 0 and define a function F on D by

F (x) =
x1+

1
i

1 + 1
i

+ c1x− c1 −
i

i+ 1
, (4.5)

where c1 is a real parameter and i > 2 is an integer. Then F ′(x) = x1/i + c1
is not Lipschitz on D. Hence Assumption 2.2 is not satisfied. However, the
central Lipschitz condition in Assumption 2.2 (2) holds for K0 = 1. We also
have that F (x0) = 0. Indeed, we have

‖F ′(x)− F ′(x0)‖ = |x1/i − x1/i0 |

=
|x− x0|

x̂
i−1
i + · · ·+ x

i−1
i

and so

‖F ′(x)− F ′(x0)‖ ≤ K0|x− x0|.

Example 4.5. We consider the integral equation

u(s) = f(s) + λ

∫ b

a
G(s, t)u(t)1+1/ndt (4.6)

for all n ∈ N, where f is a given continuous function satisfying f(s) > 0 for
all s ∈ [a, b], λ is a real number and the kernel G is continuous and positive in
[a, b]× [a, b].
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For example, when G(s, t) is the Green kernel, the corresponding integral
equation is equivalent to the boundary value problem

u′′ = λu1+1/n,

u(a) = f(a), u(b) = f(b).

These type of the problems have been considered in [1]–[5]. The equation of
the form (4.6) generalize the equation of the form

u(s) =

∫ b

a
G(s, t)u(t)ndt, (4.7)

which was studied in [1]-[5]. Instead of (4.6), we can try to solve the equation
F (u) = 0, where

F : Ω ⊆ C[a, b]→ C[a, b], Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]}

and

F (u)(s) = u(s)− f(s)− λ
∫ b

a
G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm. The derivative F ′ is given by

F ′(u)v(s) = v(s)− λ(1 +
1

n
)

∫ b

a
G(s, t)u(t)1/nv(t)dt

for all v ∈ Ω. First of all, we notice that F ′ does not satisfy the Lipschitz-type
condition in Ω. Let us consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and
y(t) = 0. Then we have F ′(y)v(s) = v(s) and

‖F ′(x)− F ′(y)‖ = |λ|(1 +
1

n
)

∫ b

a
x(t)1/ndt.

If F ′ were the Lipschitz function, then we have

‖F ′(x)− F ′(y)‖ ≤ L1‖x− y‖

or, equivalently, the inequality∫ 1

0
x(t)1/ndt ≤ L2 max

x∈[0,1]
x(s) (4.8)

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider,
for example, the function

xj(t) =
t

j

for all j ≥ 1 and t ∈ [0, 1]. If these are substituted into (4.7), then we have

1

j1/n(1 + 1/n)
≤ L2

j
⇐⇒ j1−1/n ≤ L2(1 + 1/n)
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for all j ≥ 1. This inequality is not true when j →∞. Therefore, Assumption
2.2 is not satisfied in this case. However, Assumption 2.1 (2) holds. To show
this, suppose that x0(t) = f(t) and γ = mins∈[a,b] f(s). Then, for all v ∈ Ω,
we have

‖[F ′(x)− F ′(x0)]v‖

= |λ|
(

1 +
1

n

)
max
s∈[a,b]

∣∣∣ ∫ b

a
G(s, t)(x(t)1/n − f(t)1/n)v(t)dt

∣∣∣
≤ |λ|

(
1 +

1

n

)
max
s∈[a,b]

Gn(s, t),

where Gn(s, t) = G(s,t)|x(t)−f(t)|
x(t)(n−1)/n+x(t)(n−2)/nf(t)1/n+···+f(t)(n−1)/n ‖v‖. Hence it follows

that

‖[F ′(x)− F ′(x0)]v‖ =
|λ|(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

∫ b

a
G(s, t)dt‖x− x0‖

≤ K0‖x− x0‖,

where K0 = |λ|(1+1/n)

γ(n−1)/n N and N = maxs∈[a,b]
∫ b
a G(s, t)dt. Then Assumption

2.1 (2) holds for sufficiently small λ.

Remark 4.6. The results obtained here can also be realized for the operators
F satisfying an autonomous differential equation of the form

F ′(x) = P (F (x)),

where P : X → X is a known continuous operator. Since F ′(x0) = P (F (x0)) =
P (0), we can compute K0 in Assumption 2.1 (2) without actually knowing x0.
Returning back to Example 4.1, we see that we can set P (x) = x+ 1.
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