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Abstract 1 

Genome-scale network reconstructions are organism-specific representations of metabolism 2 

and powerful tools for analyzing systemic metabolic properties. The use of reconstructions is 3 

limited by the lack of coverage of the metabolic reactome. We present an exhaustive and 4 

validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida 5 

KT2440, greatly expanding its computable metabolic states. The reconstruction, iJN1411, 6 

represents a significant expansion over other reconstructed bacterial metabolic networks. 7 

Computations based on the reconstruction exhibit high accuracy in predicting nutrient sources, 8 

growth rates, carbon flux distributions, and gene essentiality, thus providing a deep 9 

understanding of Pseudomonas metabolism. iJN1411 was used for: i) the assessment of the 10 

metabolic capabilities of P. putida as a species through multi-strain modeling, ii) deciphering 11 

the molecular mechanisms underlying metabolic robustness, and iii) identification of metabolic 12 

”capacitors” based on ATP-fueled metabolic cycles. This study represents the most complete 13 

and comprehensive bacterial metabolic reconstruction built to date, while providing 14 

computational and experimental evidence about how bacteria increase metabolic robustness, 15 

paving the way for engineering more robust biocatalysts and searching for drug targets in 16 

robust pathogens.  17 
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Introduction 1 

 Robustness, understood as the property that allows systems to maintain their functions 2 

despite external and internal perturbations, is a systems-level phenomenon ubiquitously 3 

observed in nature, however it is still poorly understood at molecular level. There is therefore 4 

much interest in deciphering the role of biological robustness in research areas as diverse as 5 

multifactorial human diseases (1), evolution (2, 3), bacterial behavior (4), persistence (5), and 6 

biotechnology (6). Concepts from network theory, control theory, complexity science, and 7 

natural selection have been used to study robustness, however the molecular mechanism 8 

responsible for biological robustness remains uncertain (7). Four mechanisms ensuring 9 

biological robustness have been proposed (8). They included i) system control, e.g., the 10 

integral feedback between the components of a system allowing a coordinate response to 11 

perturbations; ii) alternative (redundant) mechanism, e.g., the presence of more than one 12 

identical, or similar, component  which can replace the other, avoiding the collapse of the 13 

whole system when one of them fails; iii) network modularity, e.g., the spatial and temporal 14 

compartmentalization of biological networks, and iv) decoupling  (non-specificity) e.g., the 15 

mechanism allowing biological networks to decouple low-level genetic variation from high-16 

level functionalities.  17 

Biological robustness in metabolic networks (metabolic robustness) has been studied 18 

in detail in yeast through gene-essentiality analysis (9) and flux analysis (10). Furthermore, 19 

genome-scale network reconstructions (GENREs) have been used to study the buffering 20 

capacity of metabolic networks against genetic perturbations (11, 12). More recently, the 21 

metabolic robustness under genetics and environmental perturbations has been addressed by 22 

using topological models highlighting the role of the network topology and the alternative 23 

(redundant) mechanisms underlying robustness (4). However, the systematic assignment of 24 

organism-specific biological robustness, at the genome-scale, will require the use of more 25 

complete and comprehensive computational models including key metabolic properties of the 26 

target organism extending beyond primary metabolism.  27 

Through an exhaustive analysis of both the content and completeness of available 28 

GENREs we have recently revealed  important shortcomings (13). We showed that i) a large 29 

space of the biological metabolic diversity across the phylogenetic tree has not yet been 30 

reconstructed, and ii) a significant portion of known species-specific reactions is missing from 31 

the corresponding reconstructions. As a result, most of current GENREs are highly similar in 32 

their reactomes content irrespective of their phylogenetic assignment, and thus they 33 
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represent, roughly, models of primary metabolism rather than true organism-specific 1 

reconstructions. Compounding this limitation, the curation process of GENREs that involves 2 

resolving hundreds, even thousands, of ambiguities inherent to reaction properties, still lacks 3 

rigorous confidence standards and bibliomic support in most cases. Overall, these limitations 4 

hamper the use of genome-scale models (GEMs) in systems biology studies and an increasing 5 

number of researchers are calling for a more explicit curation process and the use of higher 6 

standards in the field (13-16). There are some notable exceptions that must be highlighted. 7 

The large metabolic reconstruction efforts on E. coli and yeast have resulted in the availability 8 

of high-quality reconstructions for these organisms (17, 18). The GEMs of E. coli have provided 9 

a better understanding of genotype-phenotype relationships in E. coli metabolism, (19, 20) 10 

while have unraveled systems properties of bacterial metabolism (21, 22). Therefore, similar 11 

efforts are required for other bacterial groups in order to expand the current biological 12 

reactome suitable for computation while providing a chance to unravel new bacterial systems 13 

properties such as metabolic robustness. 14 

The group Pseudomonas comprises a heterogeneous and large group (> 100) of Gram-15 

negative, gamma-proteobacterial species (23). They show a noteworthy metabolic versatility 16 

and adaptability enabling colonization of diverse niches (24). Pseudomonas are of great 17 

interest because of their importance in human and plant diseases, e.g., P. aeruginosa (25) and 18 

P. syringe (26), and due to their potential for promoting plant growth and biotechnological 19 

applications, e.g., P. fluorescens (27) and P. putida (28, 29). Among this group, P. putida has 20 

been widely used as a model environmental bacterium free of undesirable biotechnological 21 

traits such as virulence factors (30). P. putida strains can degrade a large array of chemicals, 22 

including xenobiotic compounds, while exhibiting a remarkable resistance to organic solvents 23 

and other environmental stresses which make P. putida strains highly-valued biocatalysts (31-24 

34). In addition, P. putida strains are susceptible to genetic modification and are therefore 25 

seen by many as ideal workhorses for synthetic biology-based cell factories (34). 26 

This high level of interest in P. putida has led to intense genome-scale metabolic 27 

modeling efforts of the strain KT2440; the best characterized strain and the first to be 28 

completely sequenced (35). Four GEMs for KT2440 have been previously published, formally 29 

known as iJN746 (36), iJP850 (37), PpuMBEL1071 (38), and iJP962 (39). These models have 30 

been used for studying metabolic features of P. putida such as Polyhydroxyalkanoate (PHA) 31 

and aromatic acids metabolisms. Recently, two new so-called consensus models, formally 32 

iEB1050 (40) and PpuQY1140 (41), have been published based on the genome reannotation of 33 
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this strain and the integration of reactome already present in previous P. putida GEMs, 1 

respectively. Unfortunately, due the nature of this approach, which only allows the inclusion of 2 

new metabolic capabilities based on computational evidences with scarce experimental 3 

validation, and/or from previous reconstructions, the available GEMs of P. putida still lack 4 

coverage of the known metabolism in P. putida and fall into what we consider to be models of 5 

primary metabolism. Thus, as often occurs with current GEMs, their utility falls short of true 6 

and full genome-scale studies.  7 

We show here that the entire metabolic knowledge available for a single species, even 8 

a genus, can be manually collected and used for high-quality metabolic modeling of a 9 

particular strain capable of addressing deep systems biology questions. We present a complete 10 

and manually curated metabolic reconstruction of P. putida KT2440, named iJN1411. This 11 

detailed reconstruction not only largely captures the metabolic features of this strain but it 12 

represents a computational scaffold for a future semi-automatic reconstruction of the 13 

Pseudomonas group. We use iJN1411 to develop a better understanding of metabolic 14 

robustness in bacteria, identifying processes non-essential for growth as responsible for this 15 

emergent property. Finally, we identify metabolic robustness cycles acting as metabolic 16 

capacitors responsible for connecting catabolism and anabolism with central metabolism.  17 

Results  18 

Reconstruction content and enhancements 19 

The overall workflow for the reconstruction process is shown in SI1, (Fig. S1), and it is 20 

detailed in methods section. We followed a manual and iterative tri-dimensional approach 21 

based on i) genome annotation, ii) biochemical legacy knowledge, and iii) phenotypic 22 

experimental validation. As a result, a more accurate assignment of function to 246 genes was 23 

achieved (Table S1).  24 

iJN1411, represents a significant expansion over previous GENREs from P. putida 25 

KT2440, and even over E. coli reconstructions (Table 1, SI1 Fig. S2). iJN1411 contains 1411 gene 26 

products (37% of the functionally annotated protein products in the KT2440 genome), 2826 27 

reactions, and 2083 non-unique metabolites distributed over 90 specific subsystems over 28 

three different cellular compartments: extracellular, periplasm, and cytoplasm (Table S1). The 29 

reconstruction includes 409 unique citations and 2035 of the reactions have, at least, one 30 

citation supporting its inclusion (Table S1). 31 
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The major enhancements of iJN1411 over previous P. putida reconstructions are found 1 

in the strain-specific metabolism (Fig. 1A). New subsystems in iJN1411 account for well-known 2 

metabolic features of P. putida. For instance, stressors resistance is included in the subsystem 3 

heavy metal and solvent tolerance. The metabolic versatility of P. putida (42)  has been 4 

captured in new subsystems such as alternate carbon and nitrogen sources. New catabolic 5 

pathways, many of which have been validated experimentally here, were included in iJN1411. 6 

For instance, the complete modeling of the sarcosine and 2,5 dioxopentanoate cataboloms, 7 

polyamines, and isovaleryl-CoA metabolisms have been included based on legacy data and 8 

completely validated by growth and gene knockout analysis (SI1, Fig. S3-6). 9 

With regard to biosynthetic pathways, we performed detailed modeling of alginates, a 10 

Pseudomonas polysaccharide with high biotechnological and clinical interest. Pseudomonas 11 

has robust iron uptake metabolism that has a major role in niche colonization and 12 

pathogenesis (43, 44). Accordingly, the iron metabolism has been modeled including the 13 

biosynthetic pathway for pyoverdine (a non-ribosomal peptide acting as siderophore) of P. 14 

putida KT2440 based on structural studies (45).  15 

The set of existing subsystems was significantly expanded (Fig. 1A). Within the cell 16 

envelope biosynthesis, specific peptidoglycans from P. putida and the complete 17 

lipopolysaccharide biosynthesis pathway have been modeled in great detail based on available 18 

data (46, 47). The modeling of the cellulose, rhamnose and trehalose metabolisms have been 19 

included as well. The biosynthesis for most of the cofactors and prosthetic groups known to be 20 

present in Pseudomonas was revisited in iJN1411, some of them, such as the biosynthesis of 21 

the pyrroloquinoline quinone (PQQ), are modeled here for the first time. These updates 22 

allowed for the assignment of the correct electron carrier to quinoproteins of Pseudomonas 23 

and a very accurate and strain-specific biomass reaction (see below).  24 

P. putida catabolizes a large variety of fatty acids (48). Subsequently, the metabolism 25 

of fatty acids has been extensively expanded. In addition to saturated fatty acids, the 26 

catabolism of triacylglycerides, mono and poly-unsaturated fatty acids, phenylacyl, and 27 

thioacyl fatty acids, both with even- and odd-numbered chains, has been reconstructed.  In 28 

addition, the metabolism of unsaturated fatty acids present in other bacterial models such as 29 

iJO1366 (17) has been revisited and extended by the inclusion of a NADPH-dependent 2,4-30 

dienoyl-CoA reductase which is required for the β-oxidation of polyunsaturated fatty acids and 31 

substrate-specific cis-3-trans-2-enoyl-CoA isomerase reactions (48). As a direct consequence, 32 
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the potential substrates for polyhydroxyalkanoate (PHA) synthesis via β-oxidation have 1 

experienced a significant increase and 24 different PHA monomers can be synthetized by 2 

iJN1411 (Fig. S7). Despite the production of PHA is one of the most prominent biotechnological 3 

capabilities of P. putida, the PHA metabolism is absent in most of the previous GEMs with the 4 

exception of iJN746 and PpuMBEL1071 (Table 1).  5 

Finally, we proceed to construct a very detailed P. putida-specific biomass reaction 6 

(BOF) based on existing experimental data including macromolecular composition (49), 7 

glycerophospholipid content (50), murein composition (46), lipopolysaccharide (51), and 8 

specie-specific soluble metabolites such as pyoverdine (45) and pyroloquinolin quinone. A new 9 

value for non-associated growth maintenance (NGAM) was included as well based on recent 10 

findings (52). This highly strain-specific BOF contrasts with those present in previous 11 

reconstructions which lack P. putida’s specific lipids, lipopolysaccharides, peptidoglycans and 12 

the most of cofactors and vitamins (Fig. S8-9.) In addition, we formulated a core biomass 13 

reaction including those metabolites completely essential for growth according experimental 14 

reports. Details from the new biomass reactions and its formulation are depicted in SI1 and 15 

Table S3. 16 

The metabolic expansion of the reactome represented by iJN1411 becomes evident 17 

when its content was compared with 53 GENREs by means of multiple correspondence 18 

analyses. While previous P. putida reconstructions such as iJN746 and iJP962 are located close 19 

to the center of coordinates together with most of the current GENREs, iJN1411 is placed far 20 

away from the center, illustrating its higher and organism-specific metabolic content (Fig. 1B). 21 

A single comparison with iJO1366 highlights this fact, showing that iJN1411 includes 1406 and 22 

854 unique reactions and metabolites, respectively.  23 

Reconstruction validation through growth performance 24 

To assess the ability of iJN1411 to predict physiological states, we first evaluated all the 25 

potential carbon, nitrogen, sulfur, phosphorus, and iron sources supporting in silico growth 26 

(Table S2). iJN1411 was able to use a significantly higher number of nutrients compared to 27 

previous reconstructions (Fig. 2). In fact, iJN1411 is able to grow on 140 and 71 new carbon 28 

and nitrogen sources, respectively, many of which never have been before experimentally 29 

reported as nutrients in P. putida (Table S2). Therefore, iJN1411 captures the metabolic 30 

versatility of Pseudomonas to a large extent. We then validated experimentally the accuracy of 31 

the growth predictions with special emphasis on those nutrients no tested so far in P. putida 32 
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(SI1 Table S2). The overall accuracy of growth predictions was very high and it correctly 1 

predicted 80% and 82% (two-sided p-values of Fisher‘s exact test were less than 10-13
) of the 2 

growth phenotypes observed for carbon and nitrogen sources, respectively (Fig. 2, Table S2). 3 

However, some discrepancies were found and they are discussed in detail in SI1. These 4 

discrepancies pave the way for reevaluating the metabolic versatility of P. putida in the context 5 

of silent metabolic pathways, underground metabolism, and/or unknown regulatory 6 

mechanisms. Comparisons of growth rate predictions and PHA production rates (Table 2) with 7 

experimental values provided further validation of the model.  The prediction accuracy of 8 

iJN1411 significantly exceeds those from previous P. putida GEMs. However, iJN1411 grew 9 

faster than KT2440, suggesting an incomplete adaptation of KT2440 to these sugars as carbon 10 

sources and/or certain overflow of metabolism. In fact, when the observed secretion rates for 11 

gluconate and 2-ketogluconate were included in the model as additional constraints, iJN1411 12 

fits the experimental growth rate on glucose. A similarly high level of accuracy was found for 13 

the growth rate and production rate of PHA on octanoate. 14 

Because accurate predictions of growth rates alone cannot guarantee the quality of 15 

GEMs,  we compared flux predictions on glucose to experimentally reported values (53). We 16 

found a good correlation between predicted and experimental values, with Kendall’s τ = 0.82, 17 

significantly higher than for the iEB1050 and PpuQY1140 models, τ = 0.53 and τ = 0.68, 18 

respectively (Fig. 3, Fig. S10). A well-known trait of Pseudomonas is the activation of the 19 

pyruvate shunt as a main source of oxaloacetate bypassing to the malate dehydrogenase (53, 20 

54). Despite this alternative pathway being less efficient from an energetic point of view, this 21 

feature of Pseudomonas guarantees a high level of NADPH which is critical in order to provide 22 

metabolic robustness, including tolerance to oxidative stress (5, 53, 55). iJN1411, however fails 23 

to predict the activation of the pyruvate shunt as an alternative source of oxaloacetate that 24 

was somewhat expected since flux balance analysis (FBA) excludes suboptimal flux 25 

distributions (56). We therefore perform a sensitivity analysis of flux predictions as a function 26 

of the flux through Pyruvate Carboxylase (PC) (Fig. 2B). In good agreement with experimental 27 

results, the increasing of PC flux leads a large flux decreasing through Malate Dehydrogenase 28 

(MDH), a significant increase in the flux through Malic Enzyme (ME2) and a slight increase of 29 

TCA cycle, Pyruvate Dehydrogenase (PDH) and Pyruvate Kinase (PYK). When the experimental 30 

flux through pyruvate carboxylase was used as additional constraint, the accuracy in the flux 31 

distribution prediction increased significantly (τ = 0.98) (Fig. 3C). In summary, the flux 32 

predictions demonstrate the high accuracy of iJN1411, as well as the likely role of the 33 
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mechanisms fueling metabolic robustness such as the Pyruvate Shunt, as one of the main 1 

mechanism disturbing the linearity of genotype-phenotype relationship (see below).  iJN1411 2 

can thus predict growth capabilities, growth rates and flux distributions for KT2440 with high 3 

accuracy, at a comparative level as the well-developed E. coli model does. 4 

Gene essentially data contextualization within iJN1411  5 

The validation of GENREs through prediction of gene essentiality is a powerful way to 6 

assess and improve the accuracy of prediction while providing a suitable platform for the 7 

contextualization of knock-out mutant studies at the genome-scale (57-59). We performed a 8 

gene essentiality analysis on rich medium and then mapped the predicted essential genes with 9 

the knockouts available at Pseudomonas Reference Culture Collection (PRCC) (60). This 10 

approach defined an accurate in silico LB (iLB) medium and a core biomass objective function 11 

(See SI1, Table S3). A total of 117 essential genes were predicted under these conditions (Fig. 12 

4, Table S4). The model was highly accurate in predicting essential genes. Only nine gene 13 

knockouts predicted as essential were found to be not essential in PRCC. These false positive 14 

essential genes were involved in the transport of cations and the biosynthesis of cofactors, 15 

suggesting alternative transport or biosynthetic mechanisms encoded in the genome of 16 

KT2440. The accuracy of iJN1411 was further evaluated on glucose minimal media against an 17 

experimental dataset (61). Up to 81 conditionally essential genes in glucose were predicted 18 

after excluding those also essential in iLB. Of those, 54 genes were present in PRCC and could 19 

be validated (Fig. 4C, Table S4).  We found that iJN1411 was significantly more accurate than 20 

iJN746,  iEB1050 and PpuQY1140 with 89% accuracy compared to 57%, 65% and 63% (two-21 

sided p-values of Fisher‘s exact test was less than 10-3
) respectively. The strain-specific BOF of 22 

iJN1411 allowed the correct prediction of several genes involved in cofactors biosynthesis as 23 

essential in contrast to previous reconstructions. In addition, iJN1411 was the only model able 24 

to predict the essentiality of the edd and eda genes, which encode key reactions of Entner-25 

Doudoroff pathway, despite this pathway being well known to be essential for growth in 26 

glucose (54). Finally, the gene essentiality analysis provided a unique opportunity to gain new 27 

insights into the metabolism of KT2440. For instance, thought growth and gene knockouts 28 

analysis we prove the participation of the cob genes in the biosynthesis of vitamin B12, and we 29 

also show that they are only essential for the catabolism of a few nutrients such as 30 

ethanolamine (SI1, Fig. S11).  31 

Functional assignment of metabolic capabilities of P. putida based on multi-strain modeling   32 
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Semi-automatic platforms for metabolic reconstruction are hampered by the lack of 1 

high-quality GENREs that can be used as templates for reconstructing phylogenetically related 2 

organisms. With the sole exception of the semiautomatic reconstruction of Enterobacterias 3 

which took advantage of a highly curated E. coli models (17, 19), this approach is still under-4 

exploited. To show the potential of iJN1411 as template for modeling Pseudomonas group we 5 

performed a reconstruction of the all P. putida strains sequenced to date by employing similar 6 

approach to the one previously used for modeling E. coli and Shigella strains (17) (See 7 

Methods, Table S5). This approach resulted in highly complete metabolic models, which share 8 

more than 95% of the reactions included in iJN1411 (Fig. 5). Furthermore, by keeping only 9 

those genes present in all the P. putida strains, a core-genome metabolic model of P. putida 10 

(PP_CORE) was obtained. This model possesses only the common metabolic capabilities of all 11 

the sequenced strains of this species.  12 

Finally, we evaluated the metabolic capabilities included in each model by analyzing 13 

the array of carbon sources supporting growth (Fig. 5B). We found that the strain-specific 14 

models largely shared the high metabolic versatility of iJN1411. H8234 stood out as the strain 15 

with the lowest metabolic versatility. Interestingly, this strain was isolated from a hospital 16 

patient presenting with bacteremia, which could explain the loss of metabolic capabilities 17 

when compared with environmental isolates (62). Overall, our analysis shows that metabolic 18 

versatility is a general feature of the P. putida group, irrespective of the strain.  19 

De-composition of metabolic robustness in P. putida  20 

 Despite metabolic robustness being one of the main features of P. putida (34, 52, 63), 21 

the molecular mechanisms fueling this emergent property are poorly understood, and only 22 

recently genomics approaches have brought some light on this issue (30). In order to address 23 

the breakdown of the metabolic robustness of KT2440, at the genome scale, we performed a 24 

gene essentiality analysis using iJN1411 in a set of 385 different environmental conditions 25 

including alternative sources for carbon, nitrogen, sulfur, phosphorous, and iron, as well as the 26 

exposure to heavy metals and stressors.  27 

This analysis revealed that KT2440 has a high buffering capability against genetic and 28 

environmental perturbation, as only 106 genes (7.5% of the genes in iJN1411) were found to 29 

be essential in all the conditions analyzed (SEG) (Fig. 6, Table S6). The average number of 30 

essential genes per condition was around 200 (≈14%), with LB rich medium being the condition 31 

with lower number of essential genes, 124. A total of 501 genes were essential in at least one 32 
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condition. This correspond to a surprisingly high number of genes being non-essential, 910 1 

(65%), in any condition.  2 

We further calculate a measure of gene essentiality for each gene in the 3 

reconstruction. The essentiality index (ei) is defined as the number of conditions in which a 4 

gene was predicted to be essential divided by the total number of conditions simulated.  We 5 

then grouped the genes included in the reconstruction into three categories, i) genes that 6 

were essential in all the conditions tested (SEG, ei=1), ii) genes non-essential in any condition 7 

(NEG, ei=0), and iii) conditional essential genes (CEG) which were essential in at least one 8 

condition (0<ei<1). The 395 CEG were additionally grouped as high essential genes (HEG 9 

0.5<ei<1) and low essential genes (LEG 0<ei<0.5), see Fig. 6.  10 

The analysis of the SEG genes showed that they were restricted to the P. putida core 11 

genome (Table S6) (30), and mainly confined to anabolism e.g., biosynthesis of cofactor and 12 

prosthetic groups and cell envelope (Fig. 6). No catabolic processes were identified as super-13 

essential in KT2440. These results are in good agreement with recent predictions of essential 14 

reactions in biological networks which showed a high grade of super-essentiality of anabolic 15 

reactions in nature over key catabolic processes such as central carbon metabolism (64).  16 

The genes classified as HEG and LEG differ considerably in the metabolic processes in 17 

which they are involved. Thus, while the 75% of the genes classified as HEG were responsible 18 

for the biosynthesis of amino acids and nucleotide metabolism, the LEG genes mainly provide 19 

metabolic versatility to KT2440 including subsystems such as alternate carbon and/or nitrogen 20 

sources, degradation of aromatic compounds, transport and amino acids catabolism. The NEG 21 

were widely distributed along the subsystems present in iJN1411 (Table S6).  22 

When we investigated the reason behind of the lack of essentiality of NEG, we found 23 

that around 75% of them provide robustness under genetics perturbations through the 24 

alternative (redundant) mechanism. Thereby, 59% of the NEG have at least one isozyme which 25 

could replace each other.  Similarly, we also found redundant metabolic pathways for 13% of 26 

the genes classified as NEG. This trait is well-known in KT2440; for instance, up to 3 different 27 

peripheral pathways have been reported for the initial catabolism of glucose (65) and lysine 28 

(66). Another important group of NEG was involved in growth optimization since their 29 

absences either decreased the growth rate (fitness optimization) or they were only essential 30 

with respect to the complete biomass function. This large number of non-essential genes in P. 31 

putida is in line with gene essentiality analysis in robust generalist bacteria such as E. coli, 93% 32 
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(67) or P. aeruginosa, 94% (67, 68), but contrast with that reported in specialist organisms such 1 

as cyanobacteria (69). 2 

Systematic identification of ATP-fuelled metabolic robustness modules in P. putida 3 

The fast-growing use of metabolic flux analysis to study bacterial physiology (70), when 4 

combined with the in silico flux analysis provided by genome-scale models (71),  have revealed 5 

the nonlinear relationship between phenotype and genotype in terms of flux, and often, the in 6 

silico predictions differ from those experimentally determined (72). It has recently been shown 7 

via the application of multi-objective optimization that flux distributions computed using 8 

metabolic models agree with experimentally determined values when a combination of 9 

maximum ATP yield, maximum biomass yield, and flux adjustment between multiple 10 

environmental conditions were used (72). This excess of ATP production could increase 11 

biological robustness by acting as biological fuel towards unexpected perturbations at the 12 

expense of lower fitness under stable conditions. Therefore, it is reasonable to assume that 13 

metabolic robustness is a key systems emergent property disturbing the linearity in the 14 

genotype-phenotype relationship.  15 

The molecular mechanisms enabling overproduction of ATP are less clear since its 16 

storage by living systems, under the assumption of a biological steady state, is limited. In order 17 

to maintain an elevated production of ATP, a likely strategy is the development of mechanisms 18 

allowing proper turnover of ATP. Energy-dissipating futile cycles based on enzymes involving 19 

phosphorylation and dephosphorylation or transport systems are well-known in living systems 20 

(73, 74). They are dependent on the physiological state and act to balance the ATP/ADP ratio 21 

when growth is limited by nutrients other than energy, however their participation is unlikely 22 

under optimal growth conditions. Therefore, we became interested in investigating whether 23 

some of non-essential metabolic genes in iJN1411 could be involved in balancing the ATP/ADP 24 

ratio in a biological steady state. This was done by identifying ATP-dependent cycles in the 25 

network by applying an enumeration algorithm (75). We identified 337 reactions taking part in 26 

544 futile cycles composed of at least two reactions (Table S7). We excluded from the analysis 27 

futile cycles based on transport reactions and coupled kinases/phosphatases since we were 28 

not interested in studying conventional futile cycles (74, 75).  A large number of cycles 29 

included a common core of reactions, thus it was possible to reduce even more the number of 30 

potential futile cycles based on this common core of reactions (Table S7). Finally, we applied 31 

two additional criteria in order to identify putative metabolic cycles involved in ATP-fueled 32 
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metabolic robustness: i) a non-zero flux through the cycle should lead to a reduction in the 1 

growth rate, and ii) the reactions forming part of the cycle should be encoded by NEG genes. 2 

Nine cycles fulfilling these criteria were identified: cycles of pyruvate, oxalacetate, glutamate, 3 

polyphosphate (Poly-P), trehalose, glycogen, fatty acids, PHA, and PRPP (Fig. 7).  4 

In addition to the expected energy-dissipating properties of these cycles, we noted 5 

that they additionally provide an ATP-fueled mass-balanced flow of metabolites around key 6 

metabolic nodes (Fig. 7). Thus, the glutamate cycle provides flow of nitrogen metabolites 7 

around the amino acid metabolism and the pyruvate and oxaloacetate cycles (pyruvate shunt) 8 

recirculate organic acids around the TCA. The fatty acids and PHA cycles keep moving fatty 9 

acids-like compounds around and the glycogen and trehalose cycles provide an effective 10 

turnover of sugars and phosphosugars. Finally, the Poly-P cycle supports the turnover of 11 

deoxynucleoside triphosphate around oxidative phosphorylation and the PRPP cycle drives the 12 

flow of pentose phosphate around the nucleotide metabolism. Of the 36 genes encoding these 13 

cycles, 34 belong to the core genome (30), supporting the idea that the presence of these ATP-14 

fueled metabolic cycles is a conserved feature in P. putida, as species.    15 

Following this hypothesis, and in contrast to conventional futile cycles which are solely 16 

expressed under stress conditions, the genes encoding these newly identified metabolic cycles 17 

should be highly expressed under exponential growth phase, irrespective of the nutritional 18 

scenario. By using gene expression datasets from P. putida KT2440 obtained in exponential 19 

growth phase (76), we proceed to analyze if this was indeed the case. To complete the analysis 20 

we performed a gene essentiality analysis using iJN1411 under the four carbon sources for 21 

which transcriptomic data were available, e.g., glucose, fructose, glycerol, and succinate (Table 22 

S8, Fig. S13). This enables the comparison of gene expression levels between essential and 23 

non-essential genes in each nutritional condition. As expected, we found higher expression 24 

levels and lower data variability in the genes predicted to be essential in all the conditions. For 25 

instance, while the average expression level of essential genes in glucose was 450 reads per 26 

kilo base per million mapped reads (RPKM), non-essential genes had a significantly lower 27 

value, 189 RPKM.  28 

We further focused on the expression level of genes encoding enzymes participating in 29 

ATP-fueled metabolic cycles in order to determine if they were expressed. We found that they 30 

exhibited gene expression values even higher than essential genes (Fig. 8, Table S8). However, 31 

since bacterial gene expression is continuous, the stablishing of a threshold gene expression 32 
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value to consider a gene to be significantly expressed is uncertain. A well-accepted assumption 1 

is that which consider a given gene expressed if its expression level is under the 25th 2 

percentile of the expression data (77). To support further this assumption, we searched for the 3 

expression level of genes experimentally seen as not significantly expressed in these conditions 4 

(Table S8), among others the gal genes (PP_2513-9) involved in the degradation of gallate (78). 5 

The expression level of these genes was around 10 RPKM and always within the 25th 6 

percentile in all the conditions (Table S8) that supports the notion that the genes encoding 7 

ATP-fueled metabolic cycles are, indeed, not only expressed but highly expressed despite the 8 

negative impact on growth rate.  9 

Taken together, the cyclic nature, and the level of expression of these ATP-fueled 10 

metabolic cycles under exponential growth phase, which exclude any potential metabolic 11 

unbalance, leads us to think that such cycles are not conventional futile cycles but buffering 12 

cycles. In other words, these cycles would be acting keeping key metabolites recirculating 13 

around central metabolism providing stability in fitness, thus providing metabolic robustness 14 

under changing environmental conditions. The operability of these cycles in robust generalist 15 

bacteria, such as P. putida, would inevitably contribute to disturb the linearity of genotype-16 

phenotype relationship in term of carbon flux distribution. Supporting this idea, we have 17 

shown above how the flux through the pyruvate shunt is the main contributing factor for the in 18 

vivo/in silico flux distribution discrepancy when glucose is used as the sole carbon and energy 19 

source (Fig. 3).  20 

Discussion 21 

iJN1411 expands the metabolic reactome available for computation 22 

A detailed metabolic model is a powerful tool for analyzing the systems metabolic 23 

properties of its target organism (21, 22, 69). The level of completeness and accuracy of 24 

iJN1411 makes it one of the largest and high-quality genome-scale reconstructions built to 25 

date. The careful reconstruction process allowed detailed modeling of P. putida catabolism 26 

and anabolism beyond that of what was known (Fig. 2). iJN1411 expands the metabolic 27 

reactome available for computation, including the metabolic signatures of Pseudomonas, a 28 

bacterial group with significant biotechnological and clinical interest (24, 34). The comparison 29 

of iJN1411 predictions with experimental data shows a high level of accuracy compared to 30 

previous models (Fig. 3D). Despite the large effort done on the metabolic reconstruction of P. 31 
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putida, the current GEMs, exhibit similar performance to iJN746 (Fig. 3D), the first GEMs 1 

published almost a decade ago, in terms of i) computable reactome (active reactions) (Fig.1, 2 

Table 1), ii) nutrients supporting growth (Fig.2), iii) growth rate predictions (Table 2), iv) carbon 3 

flux predictions (Fig.3) and v) gene essentiality predictions (Fig. 4). Mapping the available 4 

computable reactome for a single strain is useful to detect inconsistences between different 5 

GEMs, but this approach, itself, is not enough for constructing high-quality GEMs. Instead, it 6 

should be used as a preliminary step followed of a careful manual curation and experimental 7 

validation process, as we have done here. As we previously warned (13), an abusive use of the 8 

so-called consensus approach for modeling without the proper validation and experimental 9 

contextualization could lead the inclusion of inaccurate metabolic content, closer to be a 10 

collage rather than strain-specific.  11 

In contrast, iJN1411 has proven to be a useful tool for reconstructing other P. putida 12 

strains. The functional comparison between these strains highlighted that the metabolic 13 

versatility and robustness are metabolic traits inherent to the whole P. putida group. 14 

Nevertheless, this collection of P. putida strains GEMs should be considered as drafts, which 15 

still require of careful manual curation, work that is currently ongoing in our lab. Finally, 16 

because an increasing number of P. putida strains have been and continue to be isolated for 17 

strain-specific biotechnological and/or bioremediation purposes, the reconstruction of a P. 18 

putida core genome-scale model has great biotechnological potential. The PP_CORE model can 19 

be widely used for the computational analysis of a huge amount of biotechnological 20 

applications curried up by P. putida strains whose genomes have not been sequenced yet, 21 

simply by adding the reactions responsible for such processes.  22 

Bacterial metabolic robustness capacitators 23 

A significant number of genes non-essential for growth were found to participate in 24 

cycles consuming ATP, irrespective of their primary metabolic function (Fig. 6-7). Futile cycles 25 

occur in micro-organisms inducing a considerable energy burden for the cell (74, 75, 79, 80). 26 

These cycles operate when reactions act in an antagonistic fashion, simultaneously promoting 27 

the dissipation of energy. Overall, such cycles fall in two main categories, those involving 28 

simultaneous phosphorylation and dephosphorylation reactions and those involving transport 29 

reactions in the opposite direction (74). Therefore, it has been suggested that energy spilling 30 

reactions are i) a common feature of growth with an excess of energy, and ii) an indicator of 31 

the imbalance between anabolism and catabolism (73). For instance, we recently showed how 32 
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cyanobacterial photosynthetic networks activate a large array of energy dissipating 1 

mechanisms for balancing the ATP/NADPH ratio under carbon limitation and/or high light 2 

conditions (69).  3 

We identified in our analysis hundreds of putative conventional futile cycles, e.g., 4 

coupled kinase and phosphatase and coupled transport reactions (Table S7).  However, we 5 

additionally identified a set of atypical futile cycles providing a mass balanced flow of 6 

metabolites around basic metabolic hubs. In contrast to conventional futile cycles, we found 7 

that the genes encoding these cycles were highly expressed in the exponential growth phase, 8 

suggesting they are not induced by nutrient limitation and/or imbalanced metabolism. To the 9 

best of our knowledge, there are not systematic experimental studies focused on the 10 

functionality and biological role of these ATP-fuelled metabolic cycles.  However, several lines 11 

of evidence support many of them being active in Pseudomonas and playing an important 12 

biological role.  For instance, it is known that a large amount of the TCA cycle carbon flux 13 

occurs through the so-called pyruvate shunt, which bypasses the conventional and more 14 

energetic pathway through malate dehydrogenase (Fig. 3) (65). This alternatively provides a 15 

higher level of NADPH that is required for fueling mechanisms against oxidative stress (5, 53, 16 

55). Here we show that flux through pyruvate shunt is primary responsible of disturbing the 17 

linearity of phenotype-genotype relationship in P. putida on glucose. This behavior decreased 18 

growth rate slightly (0,556 vs 0,547 h
-1

), but provided additional NADPH equivalents to face 19 

unexpected and sudden environmental insults. It should therefore be expected that other 20 

robustness cycles can replace pyruvate shunt under different environmental conditions. For 21 

instance, the cyclic nature of PHA metabolism and its function as a futile cycle dissipating 22 

energy has been suggested in P. putida when fatty acids are used as carbon sources (81, 82). 23 

The fact that the PHA cycle provides more robust growth during transient nutrient conditions 24 

lends further supports our hypothesis suggesting that such cycles, indeed, can act as sources of 25 

biosynthetic building blocks and energy under environmental perturbations. Finally, it is 26 

noteworthy that P. putida strains lacking the Poly-P cycle exhibit a large lag growth phase (83), 27 

suggesting a key role of this cycle as a guarantor of fitness under changing environmental 28 

conditions. We are not aware of any experimental validation of the rest of metabolic cycles 29 

identified in our analysis, but based on gene expression data and their cyclic nature they could 30 

be expected to have a similar function.  31 

In summary, our computational analysis supports the idea that, far from being futile 32 

cycles, the ATP-fueled metabolic cycles identified could act as buffering cycles or “metabolic 33 
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capacitors” surrounding the primary metabolism and providing a pre-processed source of 1 

energy and anabolic building blocks while balancing and optimizing the redox state. 2 

Additionally, the operation of such cycles in vivo at expense of ATP agree with the suggested 3 

multi-objective of bacterial networks (72) and could explain, to a  great extent, the nonlinear 4 

genotype-phenotype relationship, in terms of flux distributions, as pyruvate shunt does on 5 

glucose catabolism. 6 

Updating the metabolism’s structure of robust environmental bacteria 7 

Similar to other bacteria, the metabolism of P. putida follows the so-called “bow tie” 8 

model, where nutrients are catabolized along a catabolic funnel to produce the precursors and 9 

energy required for synthesis of building blocks (84, 85). Thus, the bow tie can be decomposed 10 

into three modules, catabolism and anabolism, which are organized as the fan-in and fan-out 11 

part of the bow tie, and the knot, which includes the central metabolism. Bow tie structure of 12 

metabolism thus facilitates robust biological functionality. Recently, Sudarsan and colleagues 13 

provide strong evidence suggesting two different operational modes in the P. putida bow tie. 14 

While catabolism and anabolism are shown to be highly flexible and robust with a large 15 

correlation between metabolic flux and transcriptional levels, the central metabolism was 16 

extremely stable, showing no correlation between metabolic fluxes and transcriptional 17 

expression. As a result, it was suggested that the central metabolism of P. putida is finely 18 

regulated at the posttranscriptional and metabolic levels (85). In light of our metabolic analysis 19 

and based on the proposed bow tie model, two interesting questions arise: i) how do bacteria 20 

increase metabolic robustness under this metabolic structure, and ii) how do bacteria merge 21 

the highly flexible catabolism and anabolism modules to the rigid and stable central 22 

metabolism?  23 

Regarding the first question, the large metabolic versatility found in P. putida is 24 

noteworthy. Among the carbon and nitrogen sources supporting growth we found key 25 

anabolic precursors, including amino acids, sugars, fatty acids, nucleotides. This trait provides 26 

high robustness against genetic and nutritional perturbation by avoiding potential deleterious 27 

effects due to mutations in biosynthetic pathways and/or nutrients depletion. P. putida also 28 

exhibits a versatile anabolism, providing a large array of mechanisms to modify 29 

macromolecules and/or synthesize de novo new ones in response to environmental changes. 30 

For instance, under water-limiting conditions, P. putida produces alginates in order to maintain 31 

a hydrated microenvironment, thus protecting itself from desiccation stress and increasing its 32 
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chances of survival (86). Thus, it is reasonable to think that robust bacteria such as P. putida 1 

increase metabolic robustness by expanding the arsenal of both, catabolic and anabolic 2 

pathways (Fig. 9). In addition, the presence of redundant isozymes and/or metabolic pathways 3 

was shown to be responsible for increasing genetic robustness in P. putida. Therefore, the bow 4 

tie model should be understood as multidimensional in robust bacteria including several 5 

functional redundant metabolic layers, thus contributing even more to increased metabolic 6 

robustness (Fig. 9).  7 

As to the second question, it is tempting to think that the bow tie model is still 8 

incomplete and that additional metabolic mechanisms allow the stable transition from 9 

catabolism and anabolism to central metabolism, irrespective of the environmental inputs. The 10 

ATP-fueled metabolic cycles identified in our analysis could indeed fulfilling this task be acting 11 

as “metabolic capacitors” (Fig. 9). They would provide a constitutive flow of key metabolites 12 

around the central metabolism independent of the nutritional conditions. This carbon flow 13 

could feed transitory central metabolism under perturbations such as nutrient depletion and 14 

environmental insults protecting the optimal functionality of the central metabolism while 15 

avoiding the requirement of large changes on gene expression (Fig. 9).  16 

In summary, we here present a high-quality metabolic modeling of P. putida which 17 

represents a large expansion of the current computable metabolic space including important 18 

modules beyond primary metabolism. The systematic and contextualized analysis of this new 19 

metabolic space revealed its role in disturbing the genotype-phenotype relationship. 20 

Furthermore, we have shown how this non-essential metabolism for growth plays a key role in 21 

the metabolic robustness in P. putida, paving the way for i) a better understanding of the 22 

genotype-phenotype relationship, ii) engineering of metabolic robustness cycles in 23 

biotechnology and iii) identifying potential drug targets in robust pathogens such as P. 24 

aeruginosa.    25 

Material and Methods 26 

Metabolic reconstruction process of P. putida KT2440 27 

The workflow of the reconstruction process started with the GEMs of P. putida 28 

available at that time (November 2011): iJN746 (36), iJP850 (37), PpuMBEL1071 (38), and 29 

iJP962 (39).  As often happens for bacteria being reconstructed, the available models for P. 30 

putida KT2440 are significantly different and surprisingly they only share 523 genes from the 31 
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1213 unique genes included in the four models. This data highlights the large bias and lack of 1 

manual curation inherent in many metabolic reconstruction processes (13, 14). The overall 2 

workflow for the reconstruction process used here is shown in the supplemental material (SI1, 3 

Fig. S1). Briefly, the reconstruction was performed manually following an iterative tri-4 

dimensional expansion based on genome annotation, biochemical, and phenotypic legacy 5 

knowledge. For genome-based expansion, the P. putida KT2440 model, Seed160488.1, 6 

(PputSEED) was downloaded from the Model SEED database (87) and its content mapped on 7 

iJN746. The subsequent comparison shows that PputSEED included 497, 881 and 655 exclusive 8 

genes, reactions and metabolites, respectively (SI1, Fig. S2, Table S1). These sets of genes, 9 

reactions and metabolites absent in iJN746 were further manually investigated one by one in 10 

order to justify their inclusion in the updated model based on legacy knowledge and/or 11 

computational evidence. When appropriate, the new content was included in the 12 

reconstruction and the new reactions and metabolites were named following the BIGG 13 

nomenclature (88). This approach significantly increased the content of iJN746, however we 14 

found several inconsistences in PputSEED in four categories; i) lack of specie-specific reaction 15 

formulations, including inappropriate substrate and/or cofactors and/or reversibility; ii) 16 

inaccurate GPR associations; iii) inaccurate compartmentalization of reactions; and iv) 17 

incorrect modeling of most of the biosynthetic pathways including the cell envelope, 18 

phospholipids. Multiple reactions were therefore excluded or reformulated based on 19 

Pseudomonas legacy knowledge.  20 

In the second step, the content from two additional metabolic reconstructions of P. 21 

putida, iJP962 (39) and PpuMBEL1071 (38) were investigated following the above workflow 22 

and when appropriate, new content was added to the model. This second genome-based 23 

expansion step provided minor additions compared to PputSEED and similarly, a large number 24 

of genes were discarded and/or included in different GPRs. Following the recommendations 25 

transparence guidelines for metabolic reconstructions (14), the list of discarded genes from 26 

previous GENREs of P. putida (up to 336) and the reason of their exclusion are provided in 27 

Table S1.  28 

The biochemical and phenotypic expansion was performed simultaneously by 29 

modeling new anabolic and catabolic pathways (SI1, Fig. S1). During this step, legacy 30 

knowledge from Pseudomonas found in databases such as the Pseudomonas Database, 31 

BRENDA etc., as well as in the primary literature was widely used. As a result, up to 409 unique 32 

citations are included in the final reconstruction and 2035 of the reactions have, at least, one 33 
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citation supporting its inclusion in the reconstruction. The list of citations is provided in SI 1 

(Table S1). This detailed search for biological knowledge in Pseudomonas beyond the genome-2 

annotation allowed the accurate modeling of multiple new biosynthetic and catabolic 3 

pathways, many of which were previously unknown in P. putida KT2440 and have been 4 

modeled here for the first time.  Finally, the model built on the reconstruction was thoroughly 5 

evaluated in order to detect inconsistencies by experimental nutrient phenotyping and gene 6 

essentially data (60, 61) (SI, Table S2). This approach allowed the re-annotation and/or more 7 

accurate assignment of function to 246 genes encoded in the P. putida KT2440 genome. The 8 

complete list of re-annotated genes is provided in Table S1.  9 

The SimPheny™ (Genomatica Inc., San Diego, CA) software platform was used to build 10 

the reconstruction. All the metabolites in the reconstruction were introduced according to 11 

their chemical formula and charge using their pKa value at pH 7.2. All reactions were 12 

subsequently mass and charge balanced. The reversibility for each reaction in the 13 

reconstruction was determined from the primary literature, when possible, or taken for 14 

phylogenetically related organisms. In addition, for each reaction included in the model a 15 

confidence score (CS) ranging from 1 to 4 was assigned (Table S1). A value of 1 indicates in 16 

silico evidence supporting the inclusion of a given reaction, e.g., the reaction is solely required 17 

for the functionality of the model. A value of 2 indicates genomic or physiological evidence. 18 

Reactions with a confidence score of 3 are supported by genetic evidence such as knockout 19 

characterization and a value of 4 indicates that the target GPR has been completely 20 

characterized. The average CS was 2.59 (Table S1). The model in SBML format is provided in SI3 21 

and it will be made available in the BIGG database after publication.   22 

Constraints-based analysis. 23 

The iJN1411 model was exported from SimPheny as an SBML file and analyzed with the COBRA 24 

Toolbox v2.0 (89) within the MATLAB environment (The MathWorks Inc.). Tomlab CPLEX and 25 

the GNU Linear Programming Kit (http://www.gnu.org/software/glpk) were used for solving 26 

the linear programing problems. The constrain-based model consists of a 2087 x 2826 matrix 27 

containing all the stoichiometric coefficients in the model of 2087 metabolites and 2826 28 

reactions (S). Flux balance analysis (FBA) was used to predict growth and flux distributions (56). 29 

FBA is based on solving a linear optimization problem by maximizing or minimizing a given 30 

objective function Z subject to a set of constraints. The constraints S·v = 0 correspond to a 31 

situation of steady-state mass conservation where the change in concentration of the 32 
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metabolites as a function of time is zero. The vector v represents the individual flux values for 1 

each reaction. These fluxes are further constrained by defining lower and upper limits for flux 2 

values. For reversible reactions an upper and lower bound of -1000 mmol.gDW
-1

.h
-1

 and 1000 3 

mmol.gDW
-1

.h
-1

 were used, respectively. A lower bound of 0 mmol.gDW
-1

.h
-1

 was used in case 4 

of irreversible reactions. For simulating condition-specific growth conditions, lower bounds of 5 

the corresponding exchange reactions were modified accordingly (See SI1). By default, the 6 

maximum growth rate was used as the cellular objective. Additional model constraints sink 7 

and demand reactions required for the functionality of the model can be found in SI1. 8 

For modelling and analysis some additional constraints were applied. The bounds of 9 

the Pit7pp (Na-dependent phosphate transport) reaction were constrained to 0 mmol.gDW
-1

.h
-

10 

1
 to avoid unrealistic ATP production. Sink and demand reactions are modeling reactions 11 

required for the functionability of the model. Sink reactions are included in order to provide 12 

key metabolites of unknown origin while demand reactions are required for the removal dead 13 

end metabolites. iJN1411 includes two sink reactions, sink_PHAg and sink_pqqA which provide 14 

the PHA granule required for PHA biosynthesis and the initial peptide required for PQQ 15 

biosynthesis, respectively. There are 31 demand reactions of which six are required to allow 16 

dead metabolites to leave the system e.g., DM_acmum6p, DM_5DRIB, DM_acgam, 17 

DM_AMOB, DM_doxopa, and DM_tripeptide, and 25 are needed for allow the accumulation of 18 

cytoplasmic polymers, including the 24 monomers of PHA and polyphosphate  19 

Expansion and validation of nutrient sources supporting growth. 20 

To model the metabolic versatility of P. putida KT2440 primary literature and high-21 

throughput nutrient phenotyping analyses of Pseudomonas spp were extensively scrutinized. 22 

The identification of a nutrient supporting growth in any Pseudomonas spp was the starting 23 

point for searching for potential genes encoding this ability in the genome of KT2440. If 24 

enough computational evidences supported the inclusion of the target catabolic pathway 25 

based on sequence identity, the corresponding reactions were added to the reconstruction. 26 

This iterative process resulted in the inclusion of hundreds of new reactions, many of them 27 

modeled in iJN1411 for the first time. This process concluded by adding the corresponding 28 

transport and exchange reactions. The transport reactions databases TCDB (90) and 29 

TransportDT (91) were used for this purpose. 30 

The potential nutrients sources supporting growth on in silico M9 medium (iM9, See 31 

SI1) including glucose, ammonium, inorganic phosphate, sulfate and Fe
2+

 as default carbon, 32 
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nitrogen, phosphate, sulfur and iron sources, respectively were identified in silico by 1 

maximizing the BOF. Carbon sources were identified constraining the glucose uptake rate to 2 

zero and testing sequentially all the metabolites for growth which an exchange reaction was 3 

present in the reconstruction. Nitrogen, sulfur, phosphate and iron sources were predicted 4 

similarly by constraining the uptake of the corresponding default nutrient to zero. Any 5 

metabolite providing a non-zero growth rate was considered as true nutrient.   6 

The predicted carbon and nitrogen carbon sources were subject to bibliomic and/or 7 

experimental validation. All disagreements between predicted and experimental values were 8 

further carefully analyzed. Several false negatives (growth in vivo, but not in silico) were 9 

resolved by manual gap-filling resulting in the inclusion of new reactions and genes in the 10 

reconstruction. This process contributed to the reannotation of many metabolic genes in P. 11 

putida (the annotation update can be found in SI1, Table S1). If the gene encoding the target 12 

enzymatic activity was unknown, we decided to fit the experimental data by including orphan 13 

reactions only if enough bibliomic support was available. For instance, while the gene encoding 14 

the coniferyl alcohol dehydrogenase (COALCDH) appears to be missing from the genome of the 15 

KT2440, coniferyl alcohol can be utilized as the sole carbon and energy source by this strain 16 

(42). For false positives (growth in silico, but not in vivo), the criteria that we followed was to 17 

keep the corresponding catabolic pathway in the model if strong computational evidence 18 

(sequence identity) was available. For instance, although P. putida KT2440 is unable to use 19 

ethylene glycol as a sole carbon source, the genes encoding its degradation are present in 20 

KT2440, and multiple P. putida strains grow on this compound (92).  Therefore, the 21 

incongruences still remaining in the model pave the way towards targeted identification of 22 

new genes responsible for orphan reactions, the deciphering of unknown regulatory 23 

mechanisms as well as a guide for future adaptive laboratory evolution (ALE) experiments. 24 

Growth experiments on carbon and nitrogen sources. 25 

Individual colonies of P. putida KT2440 and mutant strains available at Pseudomonas 26 

Reference Culture Collection (PRCC) (60) were picked from the surface of cultures freshly 27 

grown on LB medium plates supplemented with 30 μg/ml of chloramphenicol, streaked onto 28 

M8 pre-growth medium plates (0.1% [wt/vol] glucose, 0.1 g/liter NH4Cl, 1 mM MgSO4, 0.6 29 

mg/L Fe-citrate, and micronutrients), and grown overnight at 30°C. Pre-growth of cells on M8 30 

pre-growth medium was sufficient to deplete nutrient reserves such that the subsequent 31 

growth assays with different carbon, nitrogen, and sulfur sources were dependent on the 32 
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nutritional sources provided. The biomass of the overnight plates described above was 1 

recovered from the plate surface and suspended in 15 ml of M9 or M8 liquid medium (Daniels 2 

et al, 2010) to a turbidity at 660 nm (OD660) of 0.1. The wells of the microplates were filled 3 

with 180 μl of the cellular suspension, and 20 μl of each carbon, nitrogen, or sulfur source was 4 

added to reach a final concentration of 5 mM. For sulfur source assays, the MgSO4 in the 5 

medium was replaced with MgCl2. Positive-control wells consisted of full minimal medium 6 

containing glucose, NH4Cl, and MgSO4 as carbon, nitrogen, and sulfur sources, respectively; 7 

negative-control wells contained medium without cell inoculate. 8 

All data recordings were performed using a type FP-1100-C Bioscreen C MBR analyzer system 9 

(OY Growth Curves Ab Ltd., Raisio, Finland) at 30°C, with continuous agitation. The turbidity 10 

was measured using a wideband filter at 420 to 580 nm every 60 min over a 24-h period. Each 11 

strain was assayed at least three times for each of the compounds tested, and plates were 12 

visually examined following each assay in order to verify the results.  13 

Gene essentiality predictions on iLB and glucose. 14 

In silico LB medium (iLB) was formulate based on the composition of commercial LB 15 

medium and the conditional essential gene analysis in P. putida (61) (SI1). For predicting gene 16 

essentiality in glucose, a glucose minimal medium was simulated as described in SI1. The 17 

singleGeneDeletion function in the Cobra Toolbox (89) with minimization of metabolic 18 

adjustment (MOMA) algorithm (93) were used to simulate knockouts. A gene was considered 19 

to be essential if its removal reduced the growth rate below 10% of the growth rate in the 20 

original model. The gene essentiality analysis under environmental perturbations was 21 

performed analogously.  Glucose, ammonium, inorganic phosphate, sulfate and Fe
2+

 were used 22 

as default carbon, nitrogen, phosphate, sulfur and iron sources, respectively. Growth in the iLB 23 

medium and nutrients used by iJN1411 (Figure 2) was simulated and the singleGeneDeletion 24 

function was used to identify the essential genes in each condition. For the stressor analysis, 25 

default glucose minimal medium was used and 34 chemical stressors including heavy metals 26 

e.g., Hg, Pb, SbO3, Cu, CrO4; organic solvents e.g., xylene, toluene; antibiotic e.g., tetracycline, 27 

chloramphenicol, ampicillin; ROS e.g., H2O2; and miscellanea compounds such as TNT and 28 

formaldehyde  were introduced to the model using sink reactions (10 mmol/gDWh) (Table S6). 29 

Identification of robustness cycles. 30 
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For the identification of metabolic cycles consuming ATP we applied an optimization algorithm 1 

developed by Pinchuk and collegues to enumerate ATP-dependent futile cycles (75). Briefly, an 2 

artificial ATP synthesis reaction (ADP + Pi + H
+
 → ATP + H2O) with positive flux is added to the 3 

model and all exchange fluxes are constrained to zero so that no metabolites can enter or exit 4 

the system. This approach ensures that the futile cycle(s) must take on non-zero fluxes in order 5 

to hydrolyze the ATP that is produced by the artificial ATP producing reaction. Futile cycles 6 

based on transport reactions and coupled kinases/phosphatases were subsequently omitted 7 

from the analysis.  8 

P. putida multi-strain genome-scale modeling. 9 

We constructed a gene orthology matrix between KT2440 and the ten sequenced P. putida 10 

strains (Table S5). In addition, we included Pseudomonas entomophila L48 in the analysis, a 11 

phylogenetically related organism, in order to extend the approach beyond of P. putida. We 12 

then identified the genes present in iJN1411 for which no orthologous gene was found in each 13 

of the strains analyzed, and subsequently removed the corresponding GPR from iJN1411 to 14 

obtain the strain-specific GENREs. This process was performed automatically following 15 

established procedures (17, 94).   16 
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Tables 7 

Table 1. Comparison of the metabolic properties of iJN1411 with its antecessor iJN746 (36), 8 

previous P. putida metabolic reconstructions iJP815 (37), PpuMBEL1071 (38), iJP962 (95), the 9 

automatic reconstruction from SEED (87), and the recently published P. putida consensus 10 

models iEB1050 (40) and PpuQY1140 (41). Last E. coli reconstruction iJO1366 (17) was included 11 

as a reference for a high-quality GEM. 
a
Metabolic, 

b
Transport, 

c
Number of PHA monomers. 12 

 13 

 14 

   iJN746 
(2008) 

iJP815 
(2008) 

PpuMBEL1071 
(2010) 

iJP962 
(2011) 

SEEDpput 
(2010) 

iEB1050 
(2016) 

PpuQY1140 
(2017) 

iJN1411 
(This 

study) 

iJO1366 
(E. coli, 
2011) 

Metabolites  911 888 1044 992 1227 1122 1104 2057 1805 

  Unique 709 824 948 897 1106 1011 1009 1376 1136 

  Cytoplasmic 697 824 946 897 1106 1008 1009 1284 1039 

  Periplasmic 125 - - - - - - 443 442 

  Extracellular 90 67 106 95 121 114 95 330 324 

Genes  746 815 900 962 1081 1050 1140 1411 1366 

   (14%) (15%) (16%) (17%) (20%) (19%) (21%) (26%) (32%) 

Reactions  950 877 1071 1070 1406 1256 1171 2754 2581 

  Metabolic 667 

(70%) 

799 (91%) 958 

(90%) 

Nd 1285 

(91%) 

1004 

(80%) 

958 

(81%) 

1670 

(61%) 

1473 

(57%) 

  Transport 193 

(20%) 

78 

(9%) 

113 

(10%) 

Nd Nd 156 

(12%) 

127 

(11%) 

755 

(27%) 

778 

(30%) 

  Exchange 90 

(9%) 

67 

(7.5%) 

Nd 95 

(9%) 

121 

(9%) 

96 

(8%) 

107 

(9%) 

329 

(14%) 

330 

(13%) 

  Orphan 140 

(17%) 

56 

(6%) 

68 

(6%) 

76 

(6%) 

41 

(3%) 

17
a
/70

b
 

(7%) 

80 

(6%) 

124
a
/285

b
 

(14%) 

70
a
/58

b
 

(5%) 

  Blocked 108 

(11%) 

289 (33%) Nd 436 

(41%) 

777 

(45%) 

457 

(36%) 

389 

(33%) 

247 

(9%) 

212 

(8%) 

  Active 842 

(89%) 

588 

(67%) 

Nd 634 

(59%) 

629 

(55%) 

799 

(64%) 

782 

(67%) 

2507 

(91%) 

2369 

(92%) 

Strain Specific Biomass No No No No No No No Yes Yes 

 Lipids Complete Lumped Complete Lumped Lumped Lumped Lumped Complete Complete 

 Peptidoglycan Precursors Precursors Precursors Precursors Precursors Complete Precursors Complete Complete 

 Lipopolysacharide Precursors Precursors Precursors Precursors Precursors Precursors Precursors Complete Complete 

 Specific 

Cofactors/Vitamins 

 

No 

 

No 

 

No 

 

No 

 

No 

 

No 

 

No 

 

Yes 

 

Yes 

PHA Metabolism Yes (7)
c
 No Yes (7)

c
 No No No No Yes (24)

c
 NA 
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Table 2. Comparison of growth performance of iJN1411 with previous GEMs of P. putida. 1 

Constraints used are underlined. NA, not applicable. iEB1050 and PputQY1140 models lack of 2 

Octanoate and PHA metabolisms. For growth on octanoate as carbon source, nitrogen and 3 

oxygen uptake were constrained to 3.1 and 13.5 mmol.gDW
-1

.h
-1

, respectively.  4 

 5 

Figure legends. 6 

Figure 1. Metabolic content of iJN1411. A. Metabolic content of iJN1411 categorized by 7 

subsystems compared with iJN746 and iEB1050. Subsystems belonging to primary and strain-8 

specific metabolisms are shaded in purple and orange, respectively. B. Multiple 9 

correspondence analysis of the metabolic content, in terms of reactions and metabolites, of 10 

available GEMs (Monk et al, 2014) with iJN1411 added. Models that are close to each other in 11 

the diagram are likely to have similar metabolic content. Most of the GEMs analyzed (shaded 12 

in pink), including iJN746 and iJP962 and iMO1056 (P. aeruginosa PA01), cluster around the 13 

origin, together with the reduced model of E. coli (E. coli textbook). Eukaryotic GEMs, including 14 

the model of Chlamydomonas reinhardtii (iRC1080), Zea mais (iRS1563) and yeast (YEAST5) are 15 

significantly different, including specific metabolic content. GEMs of Enterobacteria form a 16 

clearly differentiated group. Finally, iJN1411 is located far away from the origin, taking up a 17 

newly modeled metabolic space. Therefore, iJN1411 illustrates how different the metabolic 18 

space of Pseudomonas is compared to Enterobacteria. P. putida, E. coli MG1655, and other 19 

representative GEMs are indicated in red, orange, and blue, respectively. iIN800 and iFF708 (S. 20 

cerevisiae), iYO844 and iBsu113 (Bacillus subtilis), iYL1228 (Klebsiella pneumoniae), iMA945 21 

and SALTY (Salmonella Typhimurium), iCA1273 (E. coli W).  22 

Figure 2. Identification and validation of nutrients supporting iJN1411 growth. A. The number 23 

of nutrients supporting growth in iJN1411, previous GEMs of P. putida and the latest GEM of E. 24 

coli iJO1366. B and C. A qualitative comparison of the carbon and nitrogen sources supporting 25 

Carbon source Uptake 
rate 

Secretion rate 
(Gluconate) 

Secretion rate 
(2-Ketogluconate) 

Growth rate/PHA production rate (PHAC6 + PHAC8) 
 

(h
-1

)/(mmol.gDW
-1

.h
-1

) 

 Reference 

(mmol.gDW
-1

.h
-1

)   

    iJN746 iEB1050 PpuQY1140 iJN1411 In vivo   

Gluconate 5.1 NA NA 0.58/NA 0.67/NA 0.37/NA 0.47/NA 0.43/NA  (65) 

Glucose 6.3 NA NA 0.76/NA 0.91/NA 0.50/NA 0.61/NA 0.56/NA  (65) 

Glucose 7.3 NA NA 0.86/NA 1.05/NA 0.59/NA 0.71/NA 0.73/NA  (52) 

Glucose 10.9 2.8 2.6 0.70/NA 0.81/NA 0.49/NA 0.57/NA 0.57/NA  (53) 

Octanoatea 3.4 NA NA 0.31/1.9 NA/NA NA/NA 0.2912/1.4

9 

0.29/1.5 
 (81) 
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growth in iJN1411, iJN746, iEB1050 and PpuQY1140. D and E. The prediction accuracy of 1 

iJN1411 for different carbon and nitrogen sources. Details are given in Table S2. 2 

Figure 3. Validation of flux predictions and overall prediction accuracy. A. Comparisons 3 

between experimentally reported flux values in the central metabolism of P. putida growing on 4 

glucose (53) and predicted flux values obtained with iJN1411. B. Robustness analysis of flux 5 

predictions in iJN1411 obtained by varying the flux through Pyruvate Carboxykinase (PC), 6 

dotted line denotes reported flux for PC (3.24 mmol/gDW.h). C. The predicted values when the 7 

experimentally reported flux through the PC reaction was imposed as an additional constraint. 8 

Fluxes across the PC, Malic enzyme (ME2), Pyruvate dehydrogenase (PDH), Pyruvate kinase 9 

(PYK), Phosphoenolpyruvate carboxylase (PPC), Citrate synthase (CS) and Succinate 10 

dehydrogenase (SUCDi) are indicated. Correlation between in vivo and in silico flux values is 11 

expressed as Kendall’s rank correlation coefficient (τ). D. Perceptual accuracies of P. putida 12 

models with respect to in vivo data for growth rates, flux distribution, gene essentiality, carbon 13 

and nitrogen sources predictions are shown. 14 

Figure 4. Gene essentiality analysis and validation. A and B. Prediction of essential genes in 15 

in silico LB medium (iLB) and comparisons with experimental results. Genes predicted to be 16 

essential in the iLB medium were compared with the gene content of iJN1411 and single gene 17 

knockouts present in the Pseudomonas Reference Culture Collection (PRCC) screened in rich 18 

medium. Only 9 false positives were predicted by iJN1411 and are shown in panel B. C. The 19 

capabilities of iJN1411, iJN746, iEB1050 and PpuQY1140 for predicting essential genes in 20 

glucose minimal medium. Purple and green denote genes that were correctly predicted as 21 

essential and non-essential, respectively, while red and orange denote the incorrectly 22 

predicted genes. Genes not included in the GENREs are shown in black. 23 

Figure 5. Genome-scale modeling of the P. putida group. A. Metabolic content of P. putida 24 

GEMs. The table summarizes the number of genes and reactions in each GENRE. The number 25 

of unique genes in each strain is indicated. B. Metabolic versatility of P. putida. The metabolic 26 

versatility of each P. putida strain was estimated by maximizing growth of the corresponding 27 

GEM using the 223 carbon sources supporting growth in iJN1411. In pink are those carbon 28 

sources supporting growth in each GEM while black indicates the absence of growth.   29 

Figure 6. Decomposition of the metabolic robustness of P. putida under environmental and 30 

genetic perturbations. A. The genes from iJN1411 were deleted sequentially and the growth 31 

rate of the resulting in silico knockout strains computed in 385 different environmental 32 
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conditions. The number of essential genes (EG) in each condition, the cumulative number of 1 

essential genes and the number of genes essential in all conditions (super-essential genes, 2 

SEG) are shown. B. A graphical representation of the essentiality index (ei) of each gene in the 3 

reconstruction. The ei is defined as the number of conditions in which a target gene was 4 

predicted to be essential divided by the total number of conditions simulated. C, D and E. The 5 

distribution over subsystems of predicted super-essential genes, highly essential (HEG, 6 

0.5<ei<1) and low essential genes (LEG, 0<ei0.5) respectively. F. A breakdown of genes 7 

predicted as non-essential across all conditions (NEG) in terms of function.   8 

Figure 7. Graphical representation of ATP-fueled metabolic robustness cycles in P. putida. 9 

The ATP-consuming cycles providing metabolic robustness to P. putida are shown in green and 10 

blue while the main elements of the primary metabolism fed by such cycles, i.e. the 11 

metabolism of lipids, amino acids, sugars, nucleotide, the TCA cycle and oxidative 12 

phosphorylation are indicated in brown. The ATP consumed is shown in red. The abbreviations 13 

for reactions and metabolites are given in Table S1. 14 

Figure 8. Contextualization of the genes encoding for robustness cycles in P. putida with 15 

respect to gene essentiality and gene expression. Box plots of gene expression values of each 16 

of the groups identified above. The edges of the boxes represent the 25
th

 and 75
th

 percentage, 17 

respectively while the midpoints represent the median expression values. The notches 18 

represent comparison intervals. Two medians differ significantly at the 5% level if their 19 

intervals (notches) do not overlap. The upper and lower parts of the whiskers represent the 20 

maximum and minimum gene expression values. Outliers are indicated by red crosses.  21 

Figure 9. The bow-tie structure of the P. putida metabolism.  A metabolic network can 22 

increase its metabolic robustness by: i) expanding catabolism and anabolism; ii) increasing 23 

functional redundancy for many metabolic processes; and iii) incorporating buffering cycles 24 

around central metabolism (metabolic robustness cycles), acting as metabolic capacitors to 25 

promote the stable connection of catabolism and anabolism with the central metabolism 26 

under perturbations. 27 

Supplementary Material 28 

SI1: Supplementary Information, including additional text, figures and references (PDF) 29 

Table S1: Model and Manual Curation (.xlsx) 30 
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