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Abstract

Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium
tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral
morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and
comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at
large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated
from geographically distinct locations within the United States. Although no clear correlation between location and
genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our
understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped
within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a
novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college
students provides an example of an authentic research experience for novice scientists.
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Introduction

Bacteriophages are the most numerous biological entities in the

biosphere, with an estimated 1031 particles [1]. The global

population is highly dynamic with an estimated 1023 phage

infections per second [2], and has likely been evolving for perhaps

two to four billion years. Not surprisingly, this has given rise to a

genetically highly diverse population [3,4]. Most bacteriophages

do not extend their host range beyond a single bacterial genus, and

host specificity likely offers a substantial impediment to the free

exchange of genetic material between phages of different bacterial

hosts [5]. Consequently, it is unusual to find extensive nucleotide

sequence similarity among phages of different hosts; such phages

often share few if any genes identifiable through amino acid

sequence comparisons.

Remarkably, phages capable of infecting a single bacterial

species can also be highly diverse, as are for example the

genetically distinct DNA phages of Escherichia coli, such as wX174,

M13, lambda, T1, T4, T5, and T7 [6]. This is further exemplified

with the mycobacteriophages – viruses infecting mycobacterial

hosts – of which sixty-two genomes of phages known to infect

Mycobacterium smegmatis mc2155 have been sequenced [7,8,9]. All of

these are dsDNA tailed phages, restricted to two morphotypes, the

Siphoviridae and the Myoviridae [10]. When grouped according

to gross nucleotide sequence comparisons, nine major clusters

emerge (A–I), with five genomes (Giles, Corndog, Wildcat,

Omega, TM4) being singletons with no close relatives [7]. Five

of the clusters are quite diverse and can be divided into subclusters,

such that there are approximately 21 distinct genome types [7].

Only two of these (Subclusters C1 and C2) correspond to phages

with myoviral morphologies (with contractile tails), illustrating the

high genetic repertoire of those with siphoviral morphotypes (long

non-contractile tails).

As with other groups of bacteriophages – including those

infecting Burkholderia [11], Pseudomonas [12], Salmonella [13], or

Staphylococcus [14] – a high proportion (,80%) of the predicted

mycobacteriophage protein-coding genes are novel in the sense of

not having detectable homologues in the public databases [7]. The

genomes also have characteristic mosaic architectures, such that

each individual genome can be considered to be composed of a

series of individual modules, each of which may be shared by

genomes that otherwise may not be closely related [15,16]. In the

mycobacteriophages it is common for these individual modules to

correspond to single genes, and this mosaicism can be presented

by assorting related genes (through shared amino acid sequences)

into phamilies (phams), representing phylogenies of these phams

using phamily circles [7,16].

Bacteriophage genome mosaicism as revealed by comparative

analyses can be generated by a variety of mechanisms. For

example, it is not uncommon to find morons, segments of DNA

present in one genome but absent from a related genome, which

typically contain an open reading frame flanked by a promoter

and a terminator [3,17]. Insertions and rearrangements can also

arise by the action of transposons [8] and the action of other

mobile elements such as introns [18], inteins [19] and those coding

for homing endonucleases [20], all of which are observed. Many

phages encode conservative site-specific recombination systems

such as integrases and DNA-invertases, which also mediate DNA

rearrangements. Junctions between mosaic modules could be

generated by homologous recombination at short conserved

boundary sequences [21,22], but because such sequences cannot

be identified at most mosaic boundaries, illegitimate recombina-

tion events independent of extensive sequence homology represent

an attractive mechanism for generating mosaicism [23,24]. Phage-

encoded recombinases may facilitate such events [25].

Here we describe the sequence determination of eighteen new

mycobacteriophage genomes isolated from geographically dis-

persed locations across the United States. The majority of these

phages were isolated, sequenced, and annotated by freshman

students in a structured and integrated education and research

program supported by the Howard Hughes Medical Institute

(HHMI) Science Education Alliance (SEA). Genomic comparison

Mycobacteriophage Genomics and Evolution
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with previously described mycobacteriophage genomes reveals

many new insights into mycobacteriophage diversity, evolution,

and biological functions. First, we do not see any close correlation

between genome type and geographical location or time of

isolation. Second, it is evident that the mycobacteriophage

population at-large remains under-sampled, because new singleton

phages with genomes entirely unrelated to known phages – as well

as new relatives of previously classified singleton genomes – can

still be isolated. Third, the newly sequenced genomes provide

insights into the mechanisms for genome variability including

mycobacteriophage mobile elements (MPME), homing endonu-

cleases and inteins. Lastly, we describe new insights into the basis

of superinfection immunity among the Cluster A mycobacter-

iophages, and identify an unusual example of immunity theft.

Results and Discussion

1. Isolation, clustering, and demography of newly
isolated mycobacteriophages

Isolation and genomic characterization of new mycobac-

teriophages. Thirteen newmycobacteriophages were isolated at 12

different institutions in the autumn of 2008 as part of a freshman

research course in phage discovery and genomics administered by the

Howard Hughes Medical Institute (HHMI) Science Education

Alliance (SEA) [26] (Table 1). An additional five

mycobacteriophages were isolated and characterized within the

Phage Hunters Integrating Research and Education (PHIRE)

program at the University of Pittsburgh [16] (Table 1). All of these

mycobacteriophages were isolated from environmental samples as

described previously [7,16] using M. smegmatis mc2155 [27] as a host.

Seven of the phages were isolated by direct plating of samples on M.

smegmatis lawns (ET08, Fang, Phlyer, Puhltonio, RedRock, Scoot17C,

SkiPole), and eleven were recovered after enrichment in liquid cultures

of M. smegmatis (Angelica, Colbert, CrimD, Island3, Eagle, Hope,

LeBron, LRRHood, Peaches, Pumpkin, and, UncleHowie). The

isolation of Puhltonio and description of some of its characteristics has

been reported recently [26].

Nucleic acids were isolated from each of the 18 phages and all

were shown to have dsDNA genomes. Complete genome

sequences were determined either by shotgun Sanger sequencing

or by 454 pyrosequencing. Sequence ambiguities and genome

ends were resolved by direct sequencing of genomic DNA

templates using oligonucleotide primers. Eight of the phages were

shown to have circularly permuted genomes, and for annotation

purposes the left end was defined as either codon one of the large

terminase gene, or such as to correspond to the left end of closely

related genomes (Table 1). Ten of the genomes have defined

termini with 39 single strand extensions of 9, 10, or 11 bases in

length (Table 1). Genome lengths vary from 41,901 bp (Hope) to

155,445 bp (ET08) (Table 1). Comparative analysis of the eighteen

newly isolated mycobacteriophage genomes was carried out using

the 60 mycobacteriophages analyzed previously [7] as well as

mycobacteriophages Angel [8] and Ardmore [9].

All of the newly sequenced genomes were annotated for open

reading frames (orfs), tRNA genes, and other features. All of the

predicted protein-coding genes – together with those of the 62

previously annotated genomes – were used to assemble a database

in the program Phamerator (S.G.C., R.W.H, and G.F.H,

unpublished), which compares each of the predicted amino acid

sequences with all others and sorts the genes into phams [16].

Using threshold criteria of 32.5% identity with ClustalW and a

BlastP E-value of 10250, the 9,014 predicted genes assembled into

2,345 phams, of which 1,108 (47.2%) are orphams (phams with

only a single gene member). The largest pham contains 104

members, and the mean pham size is 3.84 (median is 2.0). The

pham assignments are shown in Table S2.

Table 1. New mycobacteriophages described in this study.

Phage Size (bp) GC (%) ORFs

tRNA

(#) tmRNA (#) Ends Accession Cluster Origins Finder#

Angelica 59598 66.4 94 1 0 11-base 39 HM152764 K1 Clayton MO Washington Univ. (SEA)

Colbert 67774 66.5 100 0 0 Circ Perm GQ303259.1 B1 Corvallis OR Oregon State (SEA)

CrimD 59798 66.5 95 1 0 11-base 39 HM152767 K1 Williamsburg VA Wm & Mary (SEA)

Eagle 51436 63.4 87 0 0 10-base 39 HM152766 A4 Fredericksburg VA Mary Washington (SEA)

ET08 155445 64.6 218 30 1 Circ Perm GQ303260.1 C1 La Jolla CA UCSD (SEA)

Hope 41901 66.6 63 0 0 11-base 39 GQ303261.1 G Lithonia GA Spelman College (SEA)

Island3 47287 66.8 76 0 0 11-base 39 HM152765 I1 Pittsburgh PA CMU (SEA)

LeBron 73453 58.8 123 9 0 10-base 39 HM152763 Sin Allensville NC JMU (SEA)

LRRHood 154349 64.7 224 30 1 Circ Perm GQ303262.1 C1 Santa Cruz CA UCSC (SEA)

Peaches 51376 63.9 86 0 0 10-base 39 GQ303263.1 A4 Monroe, LA UL Monroe (SEA)

Puhltonio 68323 66.4 97 0 0 Circ Perm GQ303264.1 B1 Catonsville MD UMBC (SEA)

Pumpkin 74491 63.0 143 2 0 9-base 39 GQ303265.1 E Holland MI Hope College (SEA)

UncleHowie 68016 66.5 98 0 0 Circ Perm GQ303266.1 B1 University City MO Washington Univ. (SEA)

Fang 68569 66.5 102 0 0 Circ Perm GU247133 B1 O’Hara Twp PA S. Leuba (PHIRE)

Phlyer 69378 67.5 103 0 0 Circ Perm FJ641182.1 B3 Pittsburgh PA D. Altman (PHIRE)

RedRock 53332 64.5 95 1 0 10-base 39 GU339467 A2 Sedona AZ D. Jacobs-Sera

Scoot17C 68432 66.5 102 0 0 Circ Perm GU247134 B1 Pittsburgh PA V. Hohenstein (PHIRE)

Skipole 53137 62.7 102 0 0 10-base 39 GU247132 A1 Champlin Park MN S. Glennon (PHIRE)

#Finder is shown as either a participating institution in the Science Education Alliance (SEA), or a student in the Phage Hunters Integrating Research and Education
(PHIRE) program at the University of Pittsburgh.

doi:10.1371/journal.pone.0016329.t001
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Virion morphologies. Each of the 18 newly isolated

mycobacteriophages was examined by electron microscopy (data

not shown). Sixteen of these have siphoviral morphologies—long

flexible non-contractile tails—and two (ET08 and LRRHood)

have myoviral morphologies—shorter contractile tails; all have

isometric icosahedral heads, with the exception of Island3, which

is prolate (data not shown). The length:width ratio of the Island3

capsid is 2.5:1, which is similar to those measured for

mycobacteriophages of Cluster I, Brujita and Che9c [7], and the

unsequenced phage R1 [28].

Classification of newly isolated mycobacteriophages into

clusters and subclusters. Each of the newly sequenced

genomes was compared with known mycobacteriophage

genomes using the dotplot program Gepard [29] (Fig. 1). A

variety of relationships are observed, and 15 of the 18 can be

assigned readily to one of the previously designated clusters (Fig. 1,

Table 2), using the previously stated criteria that cluster

membership is warranted if there is nucleotide sequence

similarity recognizable in the dotplot and spanning more than

half of the genome lengths [7]. Six of the phages clearly belong to

Cluster B with five (Colbert, Fang, Puhltonio, Scoot17C and

UncleHowie) in the B1 subcluster and one (Phlyer) in B3 (Fig. 1);

no new members of Subclusters B2 or B4 were identified (Table 2).

ET08 and LRRHood are members of the C1 subcluster, Pumpkin

is a new member of E cluster, and Hope is a Cluster G phage

(Fig. 1, Table 2). Genome maps of the newly sequenced phages are

shown in Fig. S1.

Phages Eagle, Peaches, SkiPole and RedRock are all members

of Cluster A as evident by nucleotide sequence comparison (Fig. 1),

but their relationships with other Cluster A phages suggest a

revision of the number of subclusters to create new Subclusters A3

and A4 (Table 3). Details of this analysis are given in Figure S2.

Island3 has close similarity with Cluster I phages (Fig. 1,

Fig. 2A), which as we noted above, also share similar prolate

capsid morphologies. Previously, there were two members of

Cluster I, Brujita and Che9c, although these are quite distantly

related (75.7% ANI; Table 4) [7]. Island3 is, however, a very close

relative of Brujita (99.8% ANI; Fig. 2A, Table 4) and we propose

Figure 1. Nucleotide sequence comparison of 18 newly isolated mycobacteriophage genomes. A concatenated file of all 18 newly
sequenced genomes (horizontal axis) was compared against a concatenated file of a representative genome of each of the clusters, subclusters, and
singleton genomes [as defined in [7]] (vertical axis) using Gepard [29]. The representative genomes on the vertical axis are: A1 (Bethlehem), A2 (D29),
B1 (Chah), B2 (Qyrzula), B3 (Phaedrus), B4 (Cooper), C1 (Bxz1), C2 (Myrna), D (Adjutor), E (244), F1 (Boomer), F2 (Che9d), G (Angel), H1 (Konstantine),
H2 (Barnyard), I (Brujita), singletons shown are Corndog, Giles, Omega, TM4, and Wildcat.
doi:10.1371/journal.pone.0016329.g001
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Table 2. Assignment of mycobacteriophage genomes into clusters and subclusters.

A B C D E F G H I K Sin

A1 B1 C1 F1 H1 I1 K1

Bxb1 Chah Bxz1 PBI1 Cjw1 Che8 Halo Predator Brujita Angelica Corndog

Bethlehem Orion Catera Plot 244 PMC BPs Konstantine Island3 CrimD Omega

U2 PG1 Cali Adjutor Kostya Llij Angel Wildcat

DD5 Colbert Rizal Butterscotch Porky Boomer Hope H2 I2 K2 Giles

Jasper Fang ScottMcG Gumball Pumpkin Fruitloop Barnyard Che9c TM4 LeBron

KBG Puhltonio Spud Troll4 Pacc40

Lockley Scoot17c ET08 Ramsey

Solon UncleHowie LRRHood Tweety

SkiPole Ardmore

B2 C2

A2 Rosebush Myrna F2

D29 Qyrzula Che9d

L5

Che12 B3

Pukovnik Pipefish

RedRock Phaedrus

Phlyer

A3

Bxz2 B4

Cooper

A4 Nigel

Eagle

Peaches

Newly sequenced genomes are shown in bold italic type. Sin: Singletons.
doi:10.1371/journal.pone.0016329.t002

Table 3. Division of Cluster A into Subclusters A1, A2, A3, and A4.

Beth Bxb1 DD5 J’per KBG L’ley U2 S’on S’Pole Che12 D29 L5 P’vnik R’ock Bxz2 Eagle P’hes

Bethlehem 1 0.89 0.93 0.91 0.94 0.92 0.94 0.94 0.92 0.62 0.62 0.61 0.61 0.61 0.63 0.63 0.62

Bxb1 1 0.88 0.86 0.89 0.89 0.90 0.91 0.87 0.64 0.63 0.63 0.63 0.62 0.65 0.64 0.63

DD5 1 0.92 0.92 0.99 0.92 0.93 0.93 0.61 0.61 0.61 0.62 0.61 0.63 0.63 0.62

Jasper 1 0.89 0.92 0.90 0.91 0.91 0.62 0.61 0.61 0.62 0.61 0.67 0.62 0.62

KBG 1 0.91 0.93 0.93 0.91 0.62 0.61 0.61 0.62 0.61 0.64 0.63 0.63

Lockley 1 0.92 0.93 0.93 0.62 0.61 0.61 0.62 0.61 0.63 0.63 0.62

U2 1 0.93 0.91 0.62 0.62 0.62 0.62 0.61 0.63 0.63 0.63

Solon 1 0.92 0.62 0.62 0.62 0.62 0.61 0.63 0.63 0.63

SkiPole 1 0.62 0.62 0.62 0.62 0.62 0.63 0.63 0.63

Che12 1 0.79 0.81 0.75 0.75 0.67 0.68 0.68

D29 1 0.80 0.76 0.76 0.69 0.69 0.68

L5 1 0.76 0.76 0.68 0.66 0.66

Pukovnik 1 0.76 0.67 0.69 0.68

RedRock 1 0.68 0.66 0.67

Bxz2 1 0.70 0.70

Eagle 1 0.97

Peaches 1

Values show Average Nucleotide Identities. Newly isolated phage names are shown in bold italic type. Bethlehem, Bxb1, DD5, Jasper, KBG, Lockley, U2, Solon and
SkiPole constitute Subcluster A1. Che12, D29, L5, Pukovnik, and RedRock constitute Subcluster A2. Bxz2 is the sole member of Subcluster A3, and Eagle and Peaches
form Subcluster A4.
doi:10.1371/journal.pone.0016329.t003
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that Brujita and Island3 form Subcluster I1, whereas Che9c is

currently the sole member of Subcluster I2 (Fig. 2A, Table 4).

TM4 was previously identified as a singleton phage with, by

definition, no other closely related genomes. However, two of the

new phages described here – Angelica and CrimD –have evident

sequence similarity to TM4 (Fig. 1, Fig. 2B). Angelica and CrimD

are quite closely related to each other (93.5% ANI; Table 5), so we

propose that these two constitute Subcluster K1, and that the more

distant TM4 forms Subcluster K2 (Fig. 2B, Table 5).

LeBron is a singleton phage and thus presents a new genome

type not closely related at the nucleotide level to any previously

sequenced mycobacteriophages (Fig. 1). It has a 73,453 bp

genome and contains nine tRNA genes and 123 predicted open

reading frames; 80 of these (65%) are orphams, not closely related

to other known mycobacteriophage genes (Fig. 3). We suspect

LeBron is a temperate phage because it encodes a tyrosine-

integrase (gp36), although no homologues of known phage

repressors are evident. LeBron is unusual in that an attP site

cannot be readily predicted from bioinformatic analysis. BlastN

searches of regions close to the integrase gene identified no

segments of nucleotide similarity to tRNA genes within the M.

smegmatis chromosome. A number of smaller segments of sequence

similarity (,20 bp) were identified, one of which may correspond

to an attP common core, presumably reflecting integration into a

non-tRNA attB site. LeBron encodes a number of genes of interest

including two predicted Holliday-junction enzymes, one related to

RusA (gp 76) and one an endonuclease VII-like protein (gp96)

(Fig. 3).

Among the LeBron putative virion structure and assembly

genes, eight (gp4, gp5, gp8, gp13, gp14, gp15, gp16, gp18) are

most closely related to predicted structural proteins of Wildcat

(also a singleton phage). These include the major capsid subunit

(gp8) and major tail subunit (gp13) proteins, which share a

common ,70 aa C-terminal extension, a property described

previously for proteins of analogous function in both Bxb1 [30]

and Wildcat [7]. In both LeBron and Wildcat these extensions are

related to Ig-like domains which have been reported as common

features of other viruses [31]. The functional roles of these

mycobacteriophage extensions are unknown, but a suggestion has

been made that they may have a role in the initial stages of the

phage’s adsorption to a cell [31]. We note that in total there are

likely to be .750 copies of these Ig-like domains on each virion

particle, 415 in the capsid and the remainder in the tail, indicating

that they must be a dominant feature of the virion surface.

Geographic and temporal distribution of newly isolated

mycobacteriophages. As the number of sequenced

mycobacteriophage genomes has expanded over time, the

collection has grown in unpredictable patterns. The majority (39

Figure 2. Nucleotide comparison of Cluster I and Cluster K genomes. The three genomes of Cluster I (A) and the three genomes of Cluster K
(B) were concatenated and compared against themselves using Gepard [29]. Each Cluster is subdivided into Subclusters (I1 and I2, and K1 and K2
respectively), as shown below the dotplots.
doi:10.1371/journal.pone.0016329.g002

Table 4. Division of Cluster I into subclusters.

Brujita Island3 Che9c

Brujita 1 0.998 0.757

Island3 1 0.755

Che9c 1

Values show Average Nucleotide Identities. Newly isolated phage name is
shown in bold italic type. Brujita and Island3 constitute Subcluster I1, and Che9c
forms Subcluster I2.
doi:10.1371/journal.pone.0016329.t004

Table 5. Division of Cluster K into subclusters.

Angelica CrimD TM4

Angelica 1 0.935 0.689

CrimD 1 0.692

TM4 1

Values show Average Nucleotide Identities. Newly isolated phage names are
shown in bold italic type. Angelica and CrimD constitute Subcluster K1, and
TM4 forms Subcluster K2.
doi:10.1371/journal.pone.0016329.t005
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of 62) of previously described and genomically characterized

mycobacteriophages were isolated in Pennsylvania, USA, but the

distributed phage discovery education program implemented by

the HHMI Science Education Alliance provides a geographically

broad basis for isolating new phages, raising the question as to

whether there are geographical constraints to the types of phages

that are present and can be isolated with the commonly used

procedures. The locations of the new phages’ isolation are shown

in Figure 4D. We find no strong correlation between the cluster

types of newly isolated phages and their discovery locations, but

there are nonetheless hints that the distribution may not be

completely random. For example, the F1 subcluster contains a

substantial proportion of the 80 genomes characterized (11%) but

all except for one (Ardmore, isolated in Ireland) were isolated

previously in the Pittsburgh, PA region; none of the 18 newly

identified genomes are in the F1 subcluster. In addition, we note

that only one new A1 genome – SkiPole, from Minneapolis – was

isolated outside of Pennsylvania. The number of genomes is still

small, and it remains to be seen whether these potential

geographical preferences for certain phage types are observed

with a larger sampling of mycobacteriophages.

An alternative explanation for non-random recovery of phage

types is that there are temporal patterns of phage prevalence. We

have therefore also examined the emergence and accumulation of

mycobacteriophage isolates for which complete genome sequences

have been determined (Fig. S3). While again there are no strong

patterns, there are some hints of non-randomness, but substan-

tially more data will be required before such indications of patterns

rise to the level of statistical significance.

2. New insights into mycobacteriophage evolution and
function

New integration specificities: CrimD and Angelica

integrate into the host tmRNA gene. Nine of the newly

sequenced phages encode integrases, of which two are serine-

recombinases (Peaches and SkiPole), and seven are tyrosine-

recombinases (Angelica, CrimD, Eagle, Hope, Island3, LeBron,

Pumpkin). Because of the small common core sequences used by

serine-integrases [32] the attB sites cannot be predicted readily for

Peaches and SkiPole, but BlastN analysis suggests that the attB sites

for Eagle and Hope are the host tRNA-gly (Msmeg_4767) and

tRNA-Arg (Msmeg_6349) genes respectively, which are the known

integration sites for L5 [33] and BPs [8]. Similar analyses suggest

that Island3 integrates into a tRNA-Thr (Msmeg_6152) gene. As

noted above, we have been unable to identify a potential attB site

for LeBron, and this is also true for Pumpkin and all of its Cluster

E relatives (Cjw1, 244, Kostya and Porky).

CrimD and Angelica encode very similar tyrosine integrases

(97.2% identical) whose closest relatives are those of the F1

subcluster phages (,44% aa identity). BlastN analysis of the

nucleotide sequence immediately upstream of these integrases

shows that both phages contain a 23 bp sequence with identity to

the 39 half of the M. smegmatis tmRNA (Msmeg_2093), strongly

suggesting that the tmRNA gene provides the attB site for these

phages to integrate. While the use of tmRNA genes for phage

integration has been noted previously [34] these are the first

mycobacteriophages reported to use this type of site.

Evolution of genome anatomies in Cluster I

phages. Brujita, Island3, and the previously described Che9c

constitute Cluster I, with the closely related Brujita and Island3

forming Subcluster I1. These two genomes are very closely related

with only about 100 nucleotide differences across the syntenic

parts of the genomes, which extend across the entire genome with

two notable exceptions near the right ends (Fig. 5A, Fig. S1).

Because the genomes are so closely related it is likely that the

recombination events giving rise to these changes in genome

anatomy occurred relatively recently in evolutionary time,

warranting a closer examination to elucidate how they occurred.

The first of these differences is the substitution of Brujita gene

65 for Island3 gene 66 (Fig. 5A). The Island3 gene order is

maintained in Che9c suggesting that this is the ancestral state

(since independent acquisition of the same gene in Island3 and

Che9c seems unlikely); Brujita gene 65 is an orpham and database

searching reveals no close relatives. Alignment of the Island3 and

Brujita genomes shows that the leftmost boundary between shared

and unshared sequences occurs near, but not precisely at the

Figure 3. Genome organization of mycobacteriophage LeBron. The LeBron genome is represented as a horizontal bar with markers, and the
132 predicted ORFs are shown as colored boxes either above (rightwards transcribed) or below (leftwards transcribed) the genome. Gene names are
shown inside the boxes and the phams to which they belong are indicated above, with the total number of pham members shown in parentheses;
white ORFs are orphams with, by definition, no close mycobacteriophage homologues. tRNA genes are shown as short black bars. Putative gene
functions primarily identified through database searches are shown.
doi:10.1371/journal.pone.0016329.g003
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termination codons of Brujita 64 and Island3 65 (Fig. 5B), leading

to amino acid changes in the C-terminal two residues. The stop

codons appear in the same relative locations, but the sequences

immediately to their right are unrelated at the nucleotide and

amino acid sequence levels (Fig. 5B). The right boundary is close

to the initiation codons of Brujita gene 66 and Island3 gene 67.

The genome substitution in Brujita can therefore be accounted for

by two separate recombination events, one at each of the sequence

discontinuities. Because we do not know the genome partner that

contributed Brujita gene 65 we cannot rule out that recombination

occurred between longer segments of homology by general

recombination enzymes; however, the Brujita structure is

consistent with illegitimate or non-sequence directed exchanges

that occurred close to the gene boundaries, maintaining gene

functions.

The second interruption in the synteny is the insertion of

Island3 gene 68; this gene has no counterpart in Brujita (Fig. 5A).

The 85-residue predicted product (gp68) has no homologues, but

the C-terminal 18 residues are closely related to the 18 C-terminal

residues of the upstream gene 67 (Fig. 5C). This similarity is also

reflected at the nucleotide sequence level (Fig. 5C), suggesting

strongly that recombination occurred between ,50 bp sequences

to yield the observed structures. While this could have involved an

intramolecular recombination event in an Island3-like parent to

produce a Brujita deletion, it also could have occurred by

intermolecular recombination between Brujita and an unknown

partner genome to generate the Island3 structure. While we

cannot readily distinguish between these possibilities, we note that

both could be mediated by general recombination enzymes, a

mechanism which is fundamentally similar to the process whereby

short conserved boundary sequences are proposed to contribute to

genomic mosaicism [21,22]. This is the first example of such an

event described in the mycobacteriophages.

Immune diversity in Cluster A phages. Expansion of the

A cluster and the addition of new Subclusters A3 and A4 provides

insights into the superinfection immunity systems among these

phages. The basis of immunity has been established previously in

L5 (Subcluster A2) and Bxb1 (Subcluster A1) [35,36,37]. Both

encode a repressor protein (gp71 and gp69 respectively) containing

a predicted helix-turn-helix (HTH) DNA binding domain that

binds to 13 bp asymmetric DNA sites. There are multiple copies of

this binding site located throughout the genomes (24 in L5 and 34

in Bxb1) – situated primarily in intergenic regions and oriented in

one direction relative to transcription – and are referred to as

stoperators [36,37]. Their proposed role is to silence prophage

transcription by blocking elongation of accidental expression

events [36]. Bxb1 and L5 are heteroimmune, consistent with their

having different consensus stoperator sequences (L5: 59-

GGTGGMTGTCAAG; Bxb1: 59-GTTACGWDTCAAG, diff-

erences in Bxb1 underlined).

We have established the immunity patterns for the Cluster A

phages that form stable lysogens (Table 6). Two of the phages –

Bxz2 and KBG – form clear plaques from which we have been

unable to recover stable lysogens, and the genome sequences of

both appear to have single base substitutions in the repressor gene

that would render them non-functional. The patterns of immunity

Figure 4. Geographical distributions of genomically characterized mycobacteriophages. A–C. Geographical distribution of the isolation
sites of 60 previously described sequenced mycobacteriophages according to cluster assignation: United States (A), India, Ireland, and Japan (B), and
Pittsburgh, PA (C). Locations of newly isolated mycobacteriophages reported in this study colored according to cluster; locations of previously
isolated genomes are shown in black (D).
doi:10.1371/journal.pone.0016329.g004
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closely reflect the subcluster designations of the phages derived

from whole genome comparisons, such that phages within a

subcluster are homoimmune, but each of the subcluster phages is

heteroimmune with phages from other subclusters (Table 6).

Currently Bxz2 is the sole member of subcluster B3 and although

we are not able to recover lysogens, we did find that it is not

subject to superinfection immunity by any other Cluster A phages

(Table 6). We note that although it was previously reported that

both L5 and D29 form plaques on a Che12 lysogen [38], they

behaved as homoimmune in our experiments (Fig. S4).

Phylogenetic comparison of Cluster A repressors shows that

they have generally evolved in concert with their overall genomes,

with clades closely corresponding to cluster assignments (Fig. 6A).

The A1 subcluster repressors are almost identical to each other,

with the exception of KBG, primarily because of the frameshift

mutation. The A2 subcluster repressors are somewhat more

diverse, and the Eagle and Peaches (Subcluster A4) repressors are

distinctly different from the other repressors, but very similar to

each other (Fig. 6A).

The repressor-DNA recognition systems of the Cluster A

genomes are non-canonical because of the asymmetry of the

recognition sites [36,37]. However, it seems likely that the second

recognition helix of the repressor HTH motif contributes to

specificity even though it may not be the sole determinant [39].

While recognition is not expected to follow a specific code for

amino acid-base pair correspondence [39], comparison of

variations among the Cluster A repressors and their sites may

provide clues to immune specificity. For example, alignment of the

putative helix-turn-helix motifs [35,37] shows that the turn (GVT)

is absolutely conserved in all of the repressors (Fig. 6B), as well as

glutamine, valine, and tryptophan residues at positions 2, 4, and 6

respectively in the recognition helix (the second of the helix-turn-

helix pair), and the YGG motif immediately following it (Fig. 6B).

The main differences are thus at positions 1, 3, 5, and 7–10 in the

Figure 5. Evolution of Cluster I genome anatomies. A. Alignment of genome segments of phages Brujita, Island3, and Che9c. Genes are shown
as colored boxes with gene names (a serial number based on that phage) inside the boxes and the pham number indicated above the box with the
number of pham members in parentheses. Pairwise nucleotide sequence similarity is shown as colored areas between adjacent genomes, with
strength of similarity according to the color spectrum, violet being the most similar, and red the least. B. Alignment of Brujita and Island3 shows that
Brujita genes 64 and 66 are related to Island3 genes 65 and 67, respectively, whereas Brujita gene 65 and Island3 gene 66 are distinctly different. The
sequences in common are shown bold, and the common genes are shaded dark blue. C. Island3 genes 67 and 68 share a common 60 bp sequence at
their 39 ends. Brujita contains only a single copy of this sequence which represents a recombinant version that matches the upstream part of Island3
67 and the downstream part of Island3 68. Che9c also shares the upstream sequence but is different downstream of gene 75 with sequence
discontinuity close to the end of the gene.
doi:10.1371/journal.pone.0016329.g005
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recognition helix, which are thus implicated in DNA binding

specificity as determinants of heteroimmunity.

We have examined each of the A cluster phages and identified

23–36 potential binding sites in each genome (Fig. S5). Although

we do not have biochemical evidence to confirm that each site is

bound by its cognate repressor, we note that all of the sites

conform to a consensus sequence (Fig. 6C; Fig. S5) with no more

than two nucleotide departures; they predominantly lie in

intergenic regions or overlap gene ends, and in one orientation

relative to the direction of transcription, as described for L5 and

Bxb1 [36,37]. Alignment of the 13-base asymmetric consensus

sequences reveals those positions that are invariant and those that

vary and are thus good candidates for discrimination of repressor

binding and determination of specificity (Fig. 6C). The invariant

positions are 1, 9, 10, 11, 12 and 13 (Fig. 6C), and we note for

example that there is not a single departure from a G in any of the

453 sites identified here in position 1, there are only two

departures from the A at position 12, five sites have a base other

than a G in position 13, and nine sites have a base other than a T

at position 9. The least conserved of the consensus nucleotides is

the C at position 10 (58 sites have a different base pair) (Fig. S5).

Because positions 7 and 8 show considerable variability in the A1

phages (note the use of W, D, and N alternatives), it seems unlikely

that they make major contributions to binding of that repressor;

59-TG is well conserved in the A2, A3, and A4 subcluster

genomes, but TG is also the most common dinucleotide in all of

the A1 genomes (Fig. 6C, Fig. S5). We therefore predict that

positions 2–6 encompass most of the site specificity determinants.

A comparison of the site sequences and the repressor helix-turn-

helix motif reveals some interesting correlations, including some

very apparent ones involving positions 2, 3, and 4 in the stoperator

nucleotide sequences. For example, all of the sites contain a T at

position 2 with the exception of the Cluster A2 phages, which have

a G in that position (Fig. 6C). In the putative recognition helix of

the repressor HTH motif there is only one position that mirrors

this distribution, which is residue 9, a histidine in all members

except for Cluster A2, and a lysine residue in members of

Subcluster A2 (Fig. 6B). This suggests the possibility that residue 9

of HTH may be specifically involved in discriminating between

stoperator sites with nucleotide differences at position 2; we note

that there is not a single departure from the respective consensus

sequence in any of the constituent sites at this position (Fig. S5). It

has also been shown that substitution of a T at position 2 in the L5

site strongly inhibits repressor binding [40]. A similar case can be

made for position 3 in the binding site and residue 10 in the

recognition helix, where Subcluster A4 sites have a G and all

others have a T; in the repressor, residue 10 is a threonine in all

repressors except for Cluster A4, in which it is a tyrosine. We also

note that at site position 4, which is an A in the A1 sites, and either

a C or a G in all other sites, multiple residues in the HTH may be

involved in binding specificity; as residue 1 of the recognition helix

in the HTH is a proline in all of the A1 repressors, but an arginine

in all of the rest; while residue 3 of the HTH is a tyrosine residue in

Subclusters A3 and A4 but an alanine in Subclusters A1 and A2,

correlating with a C base at position 4 in A3 and A4 sites, and

either a G or an A in Subclusters A1 and A2. Substituting a C at

position 4 in the L5 site prevents repressor binding [40]. The other

variable positions in the HTH are at positions 5, 7, and 8, and

while these may contribute to specificity, there are no clear

correlations with site differences. Experimental dissection is clearly

required to test the contributions of any of these correlations to

immune specificity.

Unexpected presence of a Cluster A1 phage repressor in

Cluster C phage LRRHood. Two of the newly sequenced

Table 6. Immune specificities of Cluster A mycobacteriophages.

Lysogen Bxb1 DD5 Jasper SkiPole Solon Che12 L5 Pukovnik RedRock Eagle Peaches

Beth + + + + + - - - - - -

Bxb1 + + + + + - - - - - -

DD5 + + + + + - - - - - -

Jasper + + + + + - - - - - -

KBG + + + + + - - - - - -

Lockley + + + + + - - - - - -

SkiPole + + + + + - - - - - -

Solon + + + + + - - - - - -

Che12 - - - - - + + + + - -

L5 - - - - - + + + + - -

Pukovnik - - - - - + + + + - -

RedRock - - - - - + + + + - -

D29 - - - - - + + + + - -

Bxz2 - - - - - - - - - - -

Eagle - - - - - - - - - + +

Peaches - - - - - - - - - + +

LRRH - - - - - - - - - - -

Lysogens made from Cluster A phages are listed in the top row. Serial dilutions of phages (left column) were spotted onto lawns of lysogens and scored ‘+’ if the
lysogen is immune to superinfection (i.e. homoimmune) and ‘-‘ if the lysogen is not immune (i.e. heteroimmunity). ‘Beth’ = Bethlehem, ‘LRRH’ = LRRHood. Lysogens were
not successfully recovered from Bethlehem, KBG, Lockley, LRRHood, or Bxz2, and thus not listed in the top row. Bethlehem, Bxb1, DD5, Jasper, KBG, Lockley, SkiPole and
Solon belong to Subcluster A1, Che12, L5, Pukovnik, Redrock and D29 belong to Subcluster A2, Bxz2 is the sole member of Subcluster A3, and Eagle and Peaches
belong to Subcluster A4; LRRHood is in Subcluster C1. Newly isolated phages are indicated by bold italic type.
doi:10.1371/journal.pone.0016329.t006
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phages, ET08 and LRRHood are clearly members of Subcluster

C1. Although LRRHood shares close similarity to other

Subcluster C1 phages, it contains a 1.35 kbp segment that is

absent from closely related genomes such as Cali (Fig. 7A). This

segment includes four putative genes, 43–46, all of which have

homologues located in other mycobacteriophage genomes. The

homologues of genes 45 and 46 are in Cluster F1 genomes, and

gp43 has a single homologue that is present in the Cluster A1

phage KBG (gp86). Interestingly, LRRHood gp44 is a close

relative to the repressor proteins of Cluster A phages discussed

above, having only a single amino acid difference with Bxb1 gp69

(an Arg for His substitution at position 161, away from the HTH

motif); there is strong experimental support for the repressor

function of Bxb1 gp69 [37]. The DNA sequence of LRRHood

gp44 is 99% identical to Bxb1 gene 69 suggesting that it has been

acquired recently in evolutionary time. However, none of the

Cluster C phages have previously been shown to be temperate,

and we have not been successful in isolating stable LRRHood

lysogens; we note also that no Cluster C genomes encode either an

integrase or other functions associated with prophage

maintenance. The presence of a putative repressor gene of the

Cluster A type is therefore highly unexpected.

Further examination reveals that the 1.35 kbp region of

LRRHood containing genes 43–46 is flanked by 29 bp direct

repeats (Fig. 7B). There is only a single copy of the sequence in

other Subcluster C1 phages, suggesting either that all of the

Subcluster C1 phages have lost a 1.35 kbp segment via

recombination between the two repeat copies, or alternatively

that LRRHood acquired this DNA segment by recombination

with a second phage partner of unknown origin (Fig. 7B). We favor

Figure 6. Determinants of immunity specificity in Cluster A genomes. A. Phylogenetic relationship of Cluster A repressors. The neighbor-
joining (NJ) tree was drawn by NJPlot using output from an alignment in ClustalW; bootstrap values from 1000 iterations are shown. The repressor
clades correspond closely to the subclustering of the genomes as indicated by color shading: Subcluster A1, red: A2, green, A3, yellow, A4, blue.
B. The predicted helix-turn-helix motifs of the Cluster A repressor are aligned to show conserved and variant residues. The positions in the second
recognition helix of the HTH motif are numbered. The Cluster assignation of the genome encoding the repressors is colored as in A. Bxz2 gp74 and
KBG gp73 are included even though both contain frameshift mutations in the repressor gene. In KBG gp73 the mutation lies downstream of the HTH
motif. There is a presumed single base deletion in Bxz2 at coordinate 44,987 upstream of the HTH motif, and we have used the ‘corrected’ sequence
in the alignment that would results from inclusion of one additional bp at that position. C. Alignment of the consensus stoperator sites in Cluster A
genomes. Consensus sequences were derived from alignments of putative operator and stoperator sites (shown in Fig. S4); mixed base consensus
positions are indicated as W: A or T, D: A, G or T, V: C, G or T, M: A or C, N: A, C, G or T. Color shading indicates identical consensus positions.
doi:10.1371/journal.pone.0016329.g006
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Figure 7. Immunity theft in mycobacteriophage LRRHood? A. LRRHood is a Cluster C1 phage that contains a ,1.4 kbp insertion relative to
other C1 phages such as Cali. The insertion contains gene 44 encoding a repressor with.99% identity to Subcluster A1 repressors such as Bxb1 gp69.
LRRHood does not contain any copies of the repressor binding site, and we propose that its gene 44 functions to protect LRRHood-infected cells from
superinfection by Subcluster A1 phages. B. LRRHood gene 44 is one of four genes (43–46) that are absent from the related phage Cali. The 1.35 kbp
additional DNA in LRRHood is flanked by 29 bp direct repeats, of which there is only a single copy in Cali and other Cluster C1 phages. Presumably,
either LRRHood acquired this 1.35 kbp segment from another phage by recombination within the 29 bp region, or it has been lost from each of the
other Cluster C1 phages. The 29 bp repeat is shown in the red box and is present once in Cali at the extreme 39 end of gene 46, and twice in LRRHood
in the end of gene 42 and upstream of gene 47. The upstream and downstream regions common to LRRHood and Cali are shown in green and blue
respectively.
doi:10.1371/journal.pone.0016329.g007

Mycobacteriophage Genomics and Evolution

PLoS ONE | www.plosone.org 12 January 2011 | Volume 6 | Issue 1 | e16329



the second explanation although this 29 bp sequence is absent

from all phages other than the Subcluster C1 and thus it is not

possible at this time to reconstruct how this presumed acquisition

occurred.

Because Cluster A genome repressors are associated with

multiple operator and stoperator binding sites, we examined

LRRHood for the presence of these. However, we were not able to

identify a single copy of a 13 bp sequence corresponding to the

consensus sequence for stoperators of the Cluster A1 type (Fig. 6)

and it therefore seems unlikely that LRRHood has acquired gene

44 as a core component to its own immunity system. We also

showed that LRRHood is not subject to immunity from any

Cluster A phage (Table 6). We therefore propose that LRRHood

has acquired gp44 and retained it in its genome because it confers

protection to LRRHood-infected cells against superinfection by

Cluster A1-like phages, presumably during lytic growth. This is the

first example of apparent repressor theft that we are aware of in

any characterized bacteriophage.

We note that the data do not allow us to rule out an interesting

alternative interpretation of gene 449s presence in the LRRHood

genome. That is, it is possible that gene 44 may not be providing

any selective benefit to LRRHood and is found there simply

because it, together with the three associated genes (43, 45 and 46),

entered the genome adventitiously very recently and has not yet

been removed by random deletion.

Identification of new intein insertions in phage ET08.

Several mycobacteriophage inteins, sequences able to splice out of

a protein precursor, have been described previously, one of which

has been shown to have novel biochemical activities [41].

Comparison with other Cluster C genomes and searching

against the InBase intein database (http://www.neb.com/neb/

inteins.html) showed that ET08 has at least five inteins within gene

products gp3, gp79, gp202, gp239 and gp248, the most of any

mycobacteriophage sequenced to date. ET08 gp3 and its

homologues are predicted to encode nucleotidyltransferases, and

the exteins are very closely related (92–96% amino acid identity).

Two other Cluster C orthologs (Cali gp3 and LRRHood gp3)

contain a related intein, but it shares only 67% amino acid

identity, suggesting that ET08 gp3 has a recent intein insertion.

Two of the ET08 intein-containing proteins (gp202 and gp239) are

nearly identical across their spans to homologues in other

Subcluster C1 phages, although some of the related proteins are

intein-less. ET08 gp202 shares 99% amino acid identity with

intein-containing homologues in ScottMcG gp208, Spud gp208,

Catera gp206 and Rizal gp206, and the exteins are 98–99%

identical to the intein-less homologues Bxz1 gp204, LRRHood

gp207, and Cali gp207; more distantly related versions of this

intein are present in the unrelated genomes Omega gp11 and

Kostya gp19 (49% and 39% identity respectively). ET08 gp239

shares 98% identity with Spud gp245, Rizal gp242, Cali gp243,

LRRHood gp245, ScottMcG gp245 and Catera gp242, and the

exteins are 99–100% identical to Bxz1 gp239.

Two of the ET08 inteins (in gp79 and gp248) appear to have

been acquired recently and are absent from all other homologues

in other phages (Fig. 8). The extein homologues are .95%

identical to their intein-less Subcluster C1 homologues, and there

are no close relatives of either intein in any of the sequenced

mycobacteriophage genomes. There is an intein distantly related

to the ET08 gp79 intein in Corynebacterium phage P1201 (25%

amino acid identical), and the ET08 gp248 intein is a distant

relative (,25% identity) of the inteins present in ET08 gp239 and

ET08 gp79 (23% identity). With the exception of ET08 gp3, there

are no known or predicted functions of the ET08 intein-containing

proteins, although because inteins are commonly associated with

essential gene functions [42], we predict that all of these genes are

required for ET08 propagation.

A new MPME1 insertion in phage Hope. Mycobac-

teriophage Hope is a member of Cluster G and all of the

Cluster G phages, BPs, Halo, Angel, and Hope are extremely

similar at the nucleotide sequence level [8]. Prior analysis of Angel,

Halo and BPs revealed the presence of a family of novel ultra-small

mobile mycobacteriophage elements (MPMEs) of which there are

two related types, MPME1 and MPME2 [8]. Separate insertion

sites were identified in BPs and Hope, although Angel is devoid of

these elements.

Comparison of Cluster G genome maps shows that Hope

contains an MPME1 insertion, although it is inserted at a novel

genomic site within the related Angel gene 56, near the 59 end

(Fig. 9A). The much larger 39 end of Angel gene 56, encoding

residues 38–263 of gp56, is conserved in Hope as gp58. The Hope

MPME1 is 439 bp in length and identical in sequence to the

MPME1 element in BPs. The identity of the Angel and Hope

sequences in this region enables identification of the precise site of

insertion, and we note that like all other MPME insertion events,

there is addition of a 6 bp sequence between IR-L of the MPME1

and the target sequence (Fig. 9B). This 6 bp sequence is different

from any of those found at other MPME insertion events, and its

origin remains a mystery. Although the functions of Angel gp56

and its full-length homologues in Halo and BPs are not known, the

MPME1 insertion in Hope suggests that the N-terminal domain of

Angel gp56 is not essential for protein function. It is notable that

three of the four closely related Cluster G genomes contain

independent MPME insertions, consistent with the interpretation

that these elements are actively mobile and move at reasonable

frequencies.

Gene swapping in Subcluster B1 genomes. Five of the

newly sequenced genomes, UncleHowie, Puhltonio, Fang,

Scoot17C, and Colbert are members of Subcluster B1, more

than doubling the size of this subcluster, joining the three B1

genomes reported previously. Subcluster B1 is notable in that its

genomes show a high degree of similarity to each other (pairwise

ANI values.98%) [7], and this remains true after the addition of

the three new genomes. However, alignment of the B1 genome

maps reveals notable differences between these genomes. The

most apparent difference is a region of ,2 kbp in which two

alternative segments are observed; one in UncleHowie, Puhltonio,

and Fang, and a second in PG1, Orion, Scoot17C, Chah, and

Colbert (Fig. 10). The first group contains two ORFs of unknown

function (UncleHowie genes 64 and 65) as well as an upstream

,380 bp region that is non-coding, AT-rich, and likely contains

control sequences. Fang contains an additional gene, 67, which is

also of unknown function. The second group contains two genes of

similar size to UncleHowie 64 and 65 (genes 65 and 66 in Colbert),

as well as an upstream gene, 64; all are of unknown function.

Interestingly, the sequence upstream of Colbert 64 also contains

an AT-rich region that is consistent with a regulatory function

(Fig. 10B). These mosaic substitutions with the inclusion of

predicted regulatory sequences are reminiscent of previously

described phage morons, DNA elements inserted between a pair

of gene that are contiguous in other phages [17]. The functional

consequences of this genetic swap are not known.

HNH Homing Endonuclease Elements in Cluster E

genomes. One of the newly sequenced genomes, Pumpkin, is

a member of Cluster E, a group of five genomes with substantial

similarity but with more syntenic interruptions than seen in the

Subcluster B1 genomes discussed above. Some of these

interruptions are caused by genes whose products are strongly

predicted to contain HNH homing endonuclease domains, and
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Figure 8. Novel intein insertions in mycobacteriophage ET08. ET08 is a Subcluster C1 phage and encodes two products, gp79 (A) and gp248
(B) that contain intein insertions that are absent from other C1 genomes such as Catera and Bxz1.
doi:10.1371/journal.pone.0016329.g008
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are thus expected to be mobile within phage populations and

contribute to genome mosaicism. An example is presented by

Pumpkin gene 40, which is absent from other Cluster E genomes

at that syntenic location (Fig. 11A). The genome mosaicism is

illustrated by the phamily circles of Phams 1706, 1707, 1567 and

2942, to which the four consecutive Pumpkin genes 37, 38, 39,

and 40 belong (Fig. 11B). Phams 1706 and 1707 are restricted to

pham members within the Cluster E genomes, whereas Phams

1567 and 2942 are much more widely distributed. Pham 1567

encodes a putative glutaredoxin protein and is presumably widely

Figure 9. MPME1 insertion in mycobacteriophage Hope. A. Alignment of the four closely related phages in Cluster G reveals insertions of
MPME elements in BPs, Hope, and Halo. Hope contains an MPME1 insertion at a new site corresponding to Angel 56. B. Comparison of the Hope and
Angel sequences reveals the pre-integration site; left and right inverted repeats (IR-L and IR-R) are shown in bold type. At the left end there is the
presence of an atypical 6 bp insertion (shown in turquoise) between IR-L of MPME1 and the target.
doi:10.1371/journal.pone.0016329.g009
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distributed because it confers an advantageous function. In

contrast, Pham 2942 presumably enjoys a wide distribution

because of its ability to self-mobilize. We note that two other

Cluster E genomes, 244 and Porky, also encode Pham 2942

members, although they are distantly related to Pumpkin gp40

(Fig. 11C) and are located at a remote location in the right arms of

the genomes. The high sequence diversity of this pham (,30%

amino acid identity) suggests that Pumpkin did not acquire gp40

from other Cluster E genomes, or any other close relative of the

currently sequenced genomes.

3. Summary
Expansion of the current collection of sequenced mycobacter-

iophage genomes clearly demonstrates the remarkable genomic

diversity of a set of bacteriophages known to infect a common host,

Mycobacterium smegmatis. The addition of these 18 genomes allowed us

to examine the mechanism and evolution of the Cluster A repressor/

stoperator system and analyze the distribution of mobile elements,

inteins, and HNH endonucleases in mycobacteriophages. Even with

80 sequenced genomes, it appears that we have still sampled only a

proportion of the total mycobacteriophage population in the

environment, and it remains difficult to predict what pattern of

new genomes might be expected; novel genomes clearly remain to be

discovered. The expansion of the geographical locations from which

the phages were isolated does not provide any strong evidence for

geographical restriction of phage subtypes, as most of the newly

sequenced genomes are identifiably related to those recovered

predominantly from the Western Pennsylvania area. Likewise, an

examination of the temporal distribution of phage type isolation does

not yield any obvious pattern at this time. In both cases, it is likely that

we have drastically under-sampled the pool of possible genomes, and

further isolates will need to be analyzed in order to draw any

conclusions as to the roles space and time play in phage distribution.

Finally, twelve of the new phages isolated, described, and

analyzed here resulted from a new program implemented by the

HHMI Science Education Alliance – as a component of the

National Genomics Research Initiative (NGRI) – in which

freshman undergraduate students at 12 colleges and universities

Figure 10. Gene swapping in Cluster B1 genomes. A. Alignment of the Cluster B1 genomes shows a swap of genes between Chah genes 63
and 73 and their homologues. Segments of genome maps of phages Chah, Colbert, UncleHowie and Puhltonio are shown with regions of nucleotide
similarity identified by colored shading between them; shading reflects degrees of similarity with the color spectrum, such that violet is most similar
and red the least similar. B. A reduction in GC% content in an intergenic region between Colbert genes 63 and 64 and UncleHowie genes 63 and 64
suggests the presence of regulatory elements notwithstanding the swapping of the downstream genes.
doi:10.1371/journal.pone.0016329.g010
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engaged in phage discovery and genomics. The other six phages were

isolated within the Phage Hunters Integrating Research and

Education (PHIRE) program at the University of Pittsburgh

[16,43,44] that provided the framework for the SEA initiative. The

successful isolation, sequencing, and comparative genomic analysis –

together with the considerable insights into viral diversity and into the

evolutionary mechanisms that shape genome architectures reported

here – attests to the effectiveness of phage discovery and genomics for

introducing freshman undergraduates to authentic scientific research

in a broad range of institutional contexts.

Materials and Methods

Phage isolation and purification
All phages isolated at the Pittsburgh Bacteriophage Institute

(PBI) were isolated by co-plating of soil extracts, prepared with

Phage Buffer (10 mM Tris/HCl pH 7.5, 10 mM MgSO4, 1 mM

CaCl2, 68.5 mM NaCl), and M. smegmatis mc2155. The soil extract

was filtered through a 0.22 mm filter and 50 ml of this sample was

plated with 0.5 ml late-exponential-phase M. smegmatis mc2155 in

4.5 ml 0.35% mycobacterial top agar (MBTA) with 1 mM CaCl2.

Phages isolated through the SEA Alliance were either found

through direct plating or by enrichment cultures. Phages isolated

by direct plating were found using the same protocol as PBI.

Phages found via enrichment were isolated as follows: approxi-

mately one gram of a soil sample and 5 ml of late log/early

stationary phage M. smegmatis mc2155 was incubated in 50 ml of

7H9 plus 1 mM CaCl2 at 37uC shaking for 24 hours. Any

remaining cells were then pelleted by centrifugation, and the

supernatant was filter-sterilized through a 0.22 m filter. The

sterilized filtrate was serially diluted with phage buffer and plated

as above with MBTA and M. smegmatis mc2155. For both direct

plating and enrichment plates, the MBTA/phage/bacterial

mixture was distributed evenly on a plate of 7H10 agar (Difco)

supplemented with carbenicillin, cycloheximide, 1 mM CaCl2 and

10% albumin dextrose complex (ADC). Plaques were picked into

phage buffer and replated with bacteria for several rounds of

infection to purify phage isolates. After several rounds of

purification, high-titer phage stocks were prepared at PBI using

CsCl gradients and ultracentrifugation (Sarkis & Hatfull, 1998).

DNA from SEA Alliance phages was harvested by treating 10 ml

of a filtered phage crude lysate (about 109 plaque forming units

(pfu)/ml) with RNaseA and DNaseI for 30 min at 37uC followed

by a 60-minute incubation at room temperature. Intact particles

were then precipitated with 30% polyethylene glycol (PEG) 8000/

3.3 M NaCl overnight at 4uC and then pelleted by centrifugation

at 10000 g for 20 min. DNA was extracted from the phage pellet

using the Promega Wizard DNA clean-up kit as per manufactur-

er’s instructions.

Phage genome sequencing
At PBI, double-stranded DNA was phenol extracted from the

dialyzed CsCl banded phages, and pyro-sequenced at the

University of Pittsburgh Genomics and Proteomics Core Labora-

tories (UPGPCL) as described previously [8]. SEA-associated

phages were sequenced by the Joint Genome Institute using

Sanger Sequencing on a 3730 ABI capillary sequencer. Finishing

work for both PBI and SEA phages was done at PBI using Sanger

sequencing on a 3730 ABI capillary sequencer. Sequence data

were assembled using NewBler assembler and Consed. Finished

sequences were analyzed and annotated in genome editors

including DNAMaster (http://cobamide2.bio.pitt.edu), G Browse

[45], Apollo [46], and the University California Santa Cruz

Genome Browser [47]; Glimmer [48], GeneMark [49], tRNA

ScanSE [50], Aragorn [51], and Programmed Frameshift Finder

[52] were used to identify genome features. Genes were assigned to

phams, and genome maps and phamily circle diagrams were

drawn using Phamerator [7,16]. The threshold parameters of

32.5% identity with ClustalW and a BlastP E-value of 10250, are

different to those used previously, and were derived by optimizing

pham assembly over a range of possible values (S.G.C., R.W.H.,

G.F.H., manuscript in preparation). GenBank accession numbers

are shown in Table 1. DotPlots were made using Gepard [29].

Electron Microscopy
At the University of Pittsburgh, electron microscopy was

performed by placing a suspension of virion particles on a grid with

a carbon-coated nitrocellulose film, staining with 2% uranyl acetate,

and examining the grid in an FEI Morgagni 268 transmission

electron microscope equipped with an AMT digital camera system.

Schools participating in the SEA program used locally available

electron microscopy resources to obtain micrographs.

Supporting Information

Figure S1 Genome maps of 18 newly sequenced myco-

bacteriophage genomes. Genome maps for each of the 18

newly sequenced mycobacteriophage genomes were generated

using Phamerator. The order of the genomes from top to bottom is

according to cluster, numerically[#alphabetically?] from A to

singleton. Genes are represented as colored boxes above (right-

wards transcribed) or below (leftwards transcribed) each genome,

and are colored according to their pham assignation. The pham

number is shown above or below each gene with the number of

pham members in parentheses. The nucleotide similarity between

adjacently displayed genomes is represented by the coloring

between genomes, with the strength of the relationship represented

according to the color spectrum, with violet being the most similar.

(PDF)

Figure S2 Nucleotide sequence comparison of 17 Clus-

ter A mycobacteriophage genomes. Nucleotide sequences of

all 17 Cluster A genomes were concatenated into a single file and

compared against themselves using Gepard [29]. The 17 genomes

can be grouped into four subclusters, A1–A4, as shown below the

dotplot. Subcluster assignments are warranted as follows. SkiPole

Figure 11. Acquisition of an HNH homing endonuclease in mycobacteriophage Pumpkin. A. Alignment of the Cluster E genomes 244,
Pumpkin, and Cjw1 reveals the presence of a Pumpkin gene (40) that is absent from other Cluster E genomes. B. Phamily circles of Phams 1706, 1707,
1567, and 2942, which include Pumpkin genes 37, 38, 39, and 40. Pham1706 and 1707 have members exclusively within Cluster E genomes. Pham
1567 is more widely distributed with members in Subcluster A1, some in A2, F2, and singleton genomes, and is functionally a glutaredoxin. Pham
2942 is a homing endonuclease and is broadly distributed among the mycobacteriophages. Each of the 80 genomes is shown on the circumference
of each circle – arranged by cluster – with arcs indicating pairs of genomes containing a pham member; thicker arcs indicate closer similarity. Red and
blue arcs show BlastP and ClustalW comparisons respectively. C. Phylogenetic reconstruction of Pham2942. All members are distantly related, and
Pumpkin gp40 probably was acquired independently from other Cluster E acquisitions (Porky gp109, 244 gp112). Members are colored according to
cluster of parent genome: A1, green; F1, purple; E, orange; I1, blue; B3, yellow; Omega is a singleton. The neighbor-joining (NJ) tree was drawn by
NJPlot using output from an alignment in ClustalW; bootstrap values from 1000 iterations are shown.
doi:10.1371/journal.pone.0016329.g011
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is assigned to subcluster A1 and shares a minimum of 87.5%

average nucleotide identity (ANI) with other A1 phages; RedRock

is assigned to subcluster A2 and shares a minimum of 75.1% ANI

with other A2 phages (although we note that the diversity of this

subcluster is substantially greater than within A1); phages Eagle

and Peaches are very similar to each other (97.5% ANI) but have

no more than 70.4% ANI with any other Cluster A phage and we

assigned them to a new A4 subcluster; phage Bxz2 was previously

assigned to Subcluster A2, but it shares no more than 70.4% ANI

with any other genome, and is therefore re-assigned as the

founding member of the new subcluster A3.

(PDF)

Figure S3 Annual changes in types of isolated myco-
bacteriophages. A. Annual changes in the total accumulated

numbers of sequenced mycobacteriophages are shown by cluster.

Date reflects date of isolation. The accumulated numbers of

subclusters within Cluster A (B) and Cluster B (C) are also shown.

Some weak patterns in phage isolation are evident. For example,

by 2004 there were seven Subcluster C1 phage genomes, but then

no more were isolated until 2008. Likewise, by 2006 there were

more A1 subcluster genomes than any other, but no new ones

have been isolated since then. In contrast, the number of

Subcluster B1 phages more than doubled during this period.

Because of the high genetic diversity of the mycobacteriophage

population, the sizes of each of the cluster or subcluster groups is

small and statistically significant numbers of phages will not be

available until there is a 5 to10 –fold increase in the total number

of sequenced mycobacteriophage genomes. Subtle changes in

isolation methods – including enrichment versus direct plating –

could influence the types of phages recovered, as well as changes at

the population level.

(PDF)

Figure S4 Immunity patterns of Bxb1, DD5, Jasper,
SkiPole, Che12 and L5. Ten-fold serial dilutions of phages were

spotted onto either a non-lysogen or a lysogen as indicated, and

incubated. Che12 and L5 are homoimmune, and Bxb1, DD5,

Jasper, and SkiPole are homoimmune.

(PDF)

Figure S5 Derivation of consensus sequences for Clus-
ter A genome stoperator sites. The 13 bp consensus

stoperator sequence for each of 16 Cluster A phages was derived

by searching for related sequences in each genome. The base

distribution of each of the 13 positions is shown for each genome,

with the consensus shown below. A single consensus base was

assigned if it occurred in greater than 85% of the sites, and if not

then standard abbreviations are used, W: A or T; D: G, T or A; V:

G, C or A; M: A or C; N: anything. All sites listed have no more

than two deviations from the consensus. For L5, the sites are the

same as those described previously [36] where there is experi-

mental evidence supporting repressor binding. For Bxb1, the sites

listed are the same as described previously [37] except for

inclusion of one additional potential site identified at coordinates

508–520 on the complement strand, and omission of one site

previously identified at coordinates 44,803–44,815 that has more

than two departures from the consensus. The previously described

site at 48,867–48,855 has more than two departures from the

consensus but has been show experimentally to be bound by the

Bxb1 repressor [37]. We note that in the absence of experimental

evidence to address the binding specificity of each of the A1

repressors that these compilations are likely to have omitted some

additional binding sites while including some that may be

recognized poorly by the cognate repressor. Phage D29 was

omitted from the list since it does not express an active repressor,

although a consensus stoperator sequence has been described

previously which is identical to that of L5 [53].

(XLSX)
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(XLSX)

Table S2 Pham assignment table.

(XLS)
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