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ABSTRACT: N-terminal acetylation is a common protein
modification in eukaryotes associated with numerous cel-
lular processes. Inherited mutations in NAA10, encod-
ing the catalytic subunit of the major N-terminal acety-
lation complex NatA have been associated with diverse,
syndromic X-linked recessive disorders, whereas de novo
missense mutations have been reported in one male and
one female individual with severe intellectual disability
but otherwise unspecific phenotypes. Thus, the full ge-
netic and clinical spectrum of NAA10 deficiency is yet
to be delineated. We identified three different novel and
one known missense mutation in NAA10, de novo in
11 females, and due to maternal germ line mosaicism in
another girl and her more severely affected and deceased
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brother. In vitro enzymatic assays for the novel, recurrent
mutations p.(Arg83Cys) and p.(Phe128Leu) revealed re-
duced catalytic activity. X-inactivation was random in five
females. The core phenotype of X-linked NAA10-related
N-terminal-acetyltransferase deficiency in both males and
females includes developmental delay, severe intellectual
disability, postnatal growth failure with severe micro-
cephaly, and skeletal or cardiac anomalies. Genotype–
phenotype correlations within and between both genders
are complex and may include various factors such as lo-
cation and nature of mutations, enzymatic stability and
activity, and X-inactivation in females.
Hum Mutat 37:755–764, 2016. Published 2016 Wiley Periodi-
cals, Inc.∗∗

KEY WORDS: NAA10; X-linked; intellectual disability;
N-terminal acetylation

Introduction
N-terminal acetylation is a common protein modification in eu-

karyotes [Arnesen et al., 2009]. Recently, N-terminal acetylation
was shown to act as a degradation signal to regulate protein com-
plex stoichiometry, protein complex formation, subcellular target-
ing, and protein folding [Behnia et al., 2004; Setty et al., 2004; Forte
et al., 2011; Scott et al., 2011; Shemorry et al., 2013; Holmes et al.,
2014]. It is likely that the physiological role of N-terminal acety-
lation may vary, depending on the protein substrate. Six human

C© 2016 The Authors. ∗∗Human Mutation published by Wiley Periodicals, Inc.
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N-acetyltransferase enzymes (NATs) have been identified and des-
ignated NatA-NatF [Aksnes et al., 2015]. NatA has a major role
and modifies approximately 40% of all human proteins [Arnesen
et al., 2009]. It is composed of a catalytic subunit encoded by NAA10
(ARD1; MIM #300013) (http://www.ncbi.nlm.nih.gov/omim) and
an auxiliary subunit encoded by NAA15 (NAT1/NATH; MIM
#608000) [Mullen et al., 1989; Arnesen et al., 2005].

In recent years, mutations in the X-chromosomal NAA10 gene
have been implicated in various disease phenotypes. In 2011, Rope
et al. identified the same missense mutation, p.(Ser37Pro) in two
independent families with Ogden syndrome (MIM #300855), an X-
linked recessive lethal disorder. Five affected males from one family
and three affected males from the other family presented with a dis-
tinctive phenotype including postnatal growth failure, global severe
developmental delay, an aged appearance with reduced subcuta-
neous fat, skin laxity, wrinkled foreheads, and facial dysmorphism
such as prominent eyes, down-slanting palpebral fissures, thick-
ened lids, large ears, flared nares with hypoplastic alae, short col-
umella, protruding upper lip and microretrognathia. Furthermore,
hypotonia progressing to hypertonia, cryptorchidism, hernias, large
fontanels, and structural cardiac anomalies and/or arrhythmias were
commonly noted. These individuals died between the ages of 5 and
16 months, mainly due to cardiac arrhythmias [Rope et al., 2011].

In 2014, NAA10 was implicated in a second, distinct X-linked re-
cessive disorder with syndromic microphthalmia (MCOPS1; MIM
#309800). Esmailpour et al. identified the splice-site mutation
c.471+2T>A in a family with Lenz microphthalmia syndrome.
Several affected males presented with congenital bilateral anoph-
thalmia, postnatal growth failure, hypotonia, skeletal anomalies
such as scoliosis, pectus excavatum, finger, and toe syndactyly or
clinodactyly, and with abnormal ears, fetal pads, and cardiac and
renal anomalies. They had delayed motor development and mild
to severe intellectual disability (ID) with remarkable intrafamilial
variability. Furthermore, behavioral anomalies and seizures were re-
ported. Three female carriers showed mild symptoms such as abnor-
mally shaped ears and syndactyly of toes [Esmailpour et al., 2014].

Trio whole-exome sequencing within a larger study revealed the
de novo missense mutation p.(Arg116Trp) in a boy with severe
intellectual disability [Rauch et al., 2012]. Interestingly, shortly after
another de novo missense mutation p.(Val107Phe) was identified
in a female [Popp et al., 2015]. Both individuals with de novo
mutations had severe cognitive impairment and showed variable
other anomalies such as postnatal growth retardation, muscular hy-
potonia and skeletal, cardiac, and behavioral anomalies [Popp et al.,
2015]. However, their phenotype was milder and less recognizable
due to fewer malformations compared with the distinct syndromic
entities of Ogden and syndromic microphthalmia syndromes
[Popp et al., 2015]. Only very recently, another mutation in NAA10,
p.(Tyr43Ser), was reported in two brothers with mild to moderate
intellectual disability, scoliosis, and long QT and in their mildly
affected mother [Casey et al., 2015].

Different levels of remaining enzymatic activity, but also the di-
versity of NAA10 function, of which various aspects are poten-
tially specifically targeted by different mutations, were discussed as
underlying the various NAA10 associated phenotypes [Esmailpour
et al., 2014; Aksnes et al., 2015; Casey et al., 2015; Dorfel and Lyon,
2015; Popp et al., 2015]. However, given the small number of af-
fected individuals and genetic variants identified as well as the lack
of complete and comparative mechanistic investigations, no solid
conclusion could yet be drawn.

We now report on a total of 12 affected females with four different
de novo missense mutations in NAA10 and one inherited mutation
in a familial case due to germline mosaicism, thus further expanding

the mutational and clinical spectrum associated with NAA10 related
N-terminal-acetyltransferase deficiency.

Material and Methods

Individuals and Mutation Detection

All novel 11 affected females were seen and diagnosed in different
centers worldwide. In all but individuals 4, 6, and 7, the mutation
was detected by (trio) exome sequencing. Testing strategy in individ-
ual 5 has been recently published elsewhere [Thevenon et al., 2016].
In individuals 4, 6, and 7, the mutations were identified by targeted
high-throughput sequencing of 275 genes implicated in intellectual
disability (individual 6 and 7) as described elsewhere for a previous
version of the sequencing approach [Redin et al., 2014] or by using
the TruSight One sequencing panel by Illumina, containing approx-
imately 4,800 disease associated genes (individual 4). In addition,
we re-evaluated in detail a female with de novo mutation in NAA10
who we recently reported (individual 1) [Popp et al., 2015]. Targeted
mutation testing in the affected brother of individual 12 was done
by Sanger sequencing. Analyses were performed either in a diag-
nostic or research setting, and informed consent was obtained from
parents or guardians of all affected. If done in a research setting,
the studies were approved by the ethic committees of the respective
universities or centers.

Mutations and their de novo occurrence were confirmed
by Sanger sequencing in the respective center. Gene version
NM 003491.3 was used as reference. Nucleotide numbering uses
+1 as the A of the ATG translation initiation codon in the reference
sequence, with the initiation codon as codon 1. The identified vari-
ants in NAA10 were submitted to the LOVD gene variant database
at http://www.lovd.nl/NAA10 (individual IDs 60301—60312).

In silico prediction was performed with online programs SIFT
[Kumar et al., 2009] (http://sift.jcvi.org/), PolyPhen-2 [Adzhubei
et al., 2010] (http://genetics.bwh.harvard.edu/pph2/), and Mutation
Taster [Schwarz et al., 2014] (http://www.mutationtaster.org/).

X-inactivation

X-Inactivation testing at the androgen receptor locus was per-
formed on lymphocytes of seven individuals according to standard
procedures [Allen et al., 1992; Lau et al., 1997].

Homology modelling

Structural consequences of the p.(Arg83Cys), the p.(Phe128Leu),
and the p.(Phe128Ile) mutations were studied using a previously
established homology model of the human NAA10 enzyme based
on the structural coordinates of S. pombe Naa10 [Myklebust et al.,
2015] and visualized using MODELLER [Eswar et al., 2007].

Plasmid construction and protein purification

Mutant His/MPB-NAA10 and NAA10-V5 plasmids containing
the p.(Arg83Cys), the p.(Phe128Leu), or p.(Phe128Ile) mutation
were created by site-directed mutagenesis (QuikChange R© Multi
Site-Directed Mutagenesis Kit, Agilent Technologies, Santa Clara,
CA) according to the manufacturer’s protocol and as described pre-
viously [Popp et al., 2015] with the primers NAA10 R83C Fwd:
5′ GCGTTCCCACCGGCGCCTCGGTCTGGCTCAGAAACTGAT
GG and NAA10 R83C Rev: 5′ CCATCAGTTTCTGAGCCAGACCG
AGGCGCCGGTGGGAACGC. Protein purification was performed
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Figure 1. Mutations identified in NAA10. A: Schematic representation of the NAA10 protein, encoding exons (numbered after NM_003491.3),
domains (based on NCBI reference NP_003482.1, UniProt P41227 and the crystal structure of the NatA complex [Liszczak et al., 2013]), and
localization of mutations in affected males (blue circles) and females (red circles). #, previously published mutations [Rauch et al., 2012; Rope et al.,
2011; Esmailpour et al., 2014; Popp et al., 2015]. One letter codes were used due to space constraint. For the mutation c.471+2T>A described by
Esmailpour et al. (2014) and the deduced protein level changes (p.(Leu158Valfs∗46), p.(Glu157_Leu158ins9)), the presumably expressed truncated
transcript 1 was used for labelling. B: NAA10 homology model highlighting Arginine 83 and 116. These are localized in the Ac-CoA binding pocket.
C: NAA10 homology model showing the localization of Phe128, with its side chain pointing toward the hydrophobic core, similar to Val107. This
amino acid was mutated in a previously published patient [Popp et al., 2015].

as described previously [Popp et al., 2015]. Buffers used for pro-
tein purification were: IMAC wash buffer (50 mM Tris-HCl [pH
7.4], 300 mM NaCl, 1 mM DTT, 25 mM Imidazole), IMAC elution
buffer (50 mM Tris-HCl [pH 7.4], 300 mM NaCl, 1 mM DTT, 300
mM Imidazole), and size-exclusion chromatography buffer (50 mM
HEPES [pH 7.5], 300 mM NaCl, 1 mM DTT. All enzymes that were
purified and used for enzymatic acetylation assays were more than
95% pure.

In vitro acetylation assays

A colorimetric acetylation assay [Thompson et al., 2004] and a
quantitative HPLC assay [Evjenth et al., 2009] were used to measure
the catalytic activity of the NAA10 variants as described previously
[Popp et al., 2015]. Purified enzyme was mixed with Acetyl-CoA
(Ac-CoA), substrate peptides, and acetylation buffer (50 mM
HEPES pH 7.5, 100 mM NaCl, and 2 mM EDTA), and reactions
were carried out at 37˚C. NAT activity was measured in the linear
phase of the reaction. For Km and kcat determination, enzymes were
mixed with 500 μM oligopeptide and Ac-CoA ranging from 10
μM to 1 mM. Due to the low catalytic activity of p.(Phe128Leu),
kinetic constants were determined only for NAA10 WT and NAA10
p.(Arg83Cys).

Protein stability analysis for the p.(Arg83Cys) and the
p.(Phe128Leu) mutations by cycloheximide chase assay

Cycloheximide chase experiments were performed as described
previously [Casey et al., 2015]. Briefly, HeLa cells were plated on six-

well plates and transfected with 2.6 μg plasmid using X-tremeGENE
nine DNA transfection reagent (Roche, Basel, Switzerland). Forty
eight hours after transfection, 50 μg/ml cycloheximide was added
to the cells that subsequently were harvested at 0, 2, 4, and 6 hr
post-treatment. V5-tagged NAA10 variants were detected using
a standard Western blotting procedure with anti-V5-tag antibody
(R960-25; Invitrogen, ThermoFisher Scientific, Waltham, MA),
anti-β-Tubulin antibody (T5293; Sigma–Aldrich, St. Louis, MO),
and anti-NAA15 antibody (anti-NATH). Signals were detected by
using ChemiDocTM XRS+ system of Bio-RAD (Hercules, CA),
and normalization and quantification of the signals was done with
ImageLabTM system 5 of Bio-RAD. Each mutant was analyzed at
least three times in independent experiments.

Results

Mutational Spectrum

Five different missense mutations in NAA10 were identified in
12 female patients and one affected male (Fig. 1A; Supp. Table S1).
The p.(Val107Phe) mutation has been reported previously [Popp
et al., 2015] and is so far unique. Also, the p.(Arg116Trp) mutation
has been reported previously, but in an affected boy [Popp et al.,
2015]. Two mutations, p.(Phe128Ile) and p.(Phe128Leu), affect the
same, highly conserved amino acid. The mutation p.(Phe128Ile)
was identified in one female as recently reported [Thevenon et al.,
2016], whereas p.(Phe128Leu) was identified in two unrelated
female individuals. The recurrent mutation p.(Arg83Cys) was
detected in seven females, one of them having an affected brother

HUMAN MUTATION, Vol. 37, No. 8, 755–764, 2016 757



who deceased at the age of 1 week. In this family, maternal germ
line mosaicism was assumed because exome data did not reveal the
mutation in the mother’s blood sample and because of recurrence
in a third pregnancy terminated after prenatal diagnosis. In all other
11 individuals, the mutation was shown to have occurred de novo.

None of the five missense mutations was found in the
ExAC browser [Lek et al., 2015] (status November 2015)
(http://exac.broadinstitute.org/). All affect highly conserved amino
acids (Supp. Fig. S1 and [Popp et al., 2015]) and were classified as
damaging or disease causing by Mutation Taster and SIFT and four
of them as possibly or probably damaging by PolyPhen-2 (Supp. Ta-
ble S2). X-inactivation was random in four tested individuals, mildly
skewed (92%) in one and completely skewed (100%) in another.

Clinical Phenotype

Clinical details of the affected individuals are displayed in
Table 1. All 12 females are moderately to severely intellectually
disabled. Age of walking ranges from 18 months to not being able
to walk unassisted at age 8 years 6 months. Age of first words
ranges from 15 months to no speech at age 8 years 6 months.
Most of the individuals, though many still young, are nonverbal;
one is reported to have a good vocabulary but not regularly using
full sentences. Behavioral anomalies are described in seven girls
and include stereotypic movements, self-hugging, attention deficit,
aggressivity, and unmotivated laughter. Possible seizures or EEG
anomalies were reported in only two of the individuals.

Birth measurements were in the normal or low normal range for
most of the individuals. However, postnatal growth failure of length
and/or head circumference occurred in most of the girls for whom
this data were available. At age of last investigation (17 months–
9 years), all but individuals 2 and 11 had head circumferences be-
tween –2.8 to –5.3 standard deviations (SD) below the mean. In
relation, growth retardation regarding height was milder, and at age
of last investigation length/height was in the normal or low normal
range in seven individuals and between –2.5 and –3.75 SD in five.
Feeding difficulties, either temporarily in infancy or continuously
with the need of tube feeding, were reported in nine girls.

Muscular hypotonia was noted in almost all individuals, often
more pronounced axially and with hypertonia of the extremities.
Brain imaging, either by MRI or CNS ultrasound revealed frequent
but rather unspecific anomalies. Structural cardiac anomalies such
as pulmonary stenosis and atrium septum defects were observed
in two females, cardiac conduction anomalies in five (twice long
QT and three times incomplete right bundle branch block). Large
fontanels were reported in four girls, and delayed bone age in one,
but not tested in the others. Skeletal anomalies such as pectus
excavatum or carinatum or vertebral anomalies were reported in
five girls.

Various, but rather unspecific facial dysmorphism such as bitem-
poral narrowing, mildly up-slanting palpebral fissures, a prominent
forehead, uplifted earlobes, hirsutism, or an up-turned nose were
common. In several individuals, long eyelashes and arched, promi-
nent eyebrows, or synophrys were noted (Fig. 2).

In one of the families, the p.(Arg83Cys) mutation also occurred
in an affected brother due to maternal germ line mosaicism. This
boy was born at gestational week 36 with normal birth length and
weight. He had generalized hypotonia, lack of spontaneous respira-
tion, and died at age 1 week. He had persistent pulmonary hyperten-
sion, supraventricular tachycardia, and mild ventricular hypertro-
phy. Ultrasound examination of the CNS showed ventriculomegaly,
and small cortical kidney cysts were noted. Furthermore, he was

reported to have had large fontanels, bilateral hallux valgi, sandal
gaps, a broad forehead, and micrognathia. A third, male pregnancy
in this family was terminated after identifying the NAA10 mutation
prenatally.

Homology Modelling

The missense mutation p.(Arg83Cys) is located in the Ac-CoA
binding site of NAA10, and the amino acid Arg83 might thus play
an important role in the recruitment of Ac-CoA to the enzyme
(Fig. 1B). The amino acids Arg83 and Arg116, the latter also
mutated in a male individual (p.Arg116Trp) in an earlier study
[Popp et al., 2015], are both positively charged and positioned
on the rim of the Ac-CoA binding site. We thus suspect that the
p.(Arg83Cys) mutation will have similar (or more adverse) effects
as the p.(Arg116Trp) mutation previously identified. Phe128 on the
other hand is not located in the active site of the enzyme (Fig. 1C).
This residue is located in the loop region between α4 and β6 of
NAA10. The sidechain of Phe128 is pointing in toward a hydropho-
bic pocket between β4, α3, β5, α4, and β7. Previously, we described
the p.(Val107Phe) variant whose sidechain is pointing toward the
very same hydrophobic pocket and which resulted in more than
90% reduction of catalytic activity, most likely due to structural
alterations or a reduced stability [Popp et al., 2015]. This indicates
that the large bulky sidechain of Phe128 is necessary for this
hydrophobic pocket and that the introduction of the much smaller
Leucine or Isoleucine is causing a destabilization of the enzyme.

In vitro enzymatic assays and in cellula stability
measurements

In order to study the catalytic activity of NAA10 variants,
plasmids coding for a His/MBP-NAA10 WT fusion protein, a
His/MBP-NAA10 p.(Arg83Cys) fusion protein and a His/MBP-
NAA10 p.(Phe128Leu) fusion protein were expressed in E. coli
BL21 cells and purified. Interestingly, while NAA10 WT and NAA10
p.(Arg83Cys) eluted as monomers from the size-exclusion chro-
matography column, the NAA10 p.(Phe128Leu) eluted mainly in
the void volume of the column (Supp. Fig. S2). This was also seen for
another previously described NAA10 variant (p.(Tyr43Ser)) [Casey
et al., 2015], and suggests that the protein has an altered protein
structure or a reduced protein stability, causing it to aggregate in
units larger than 200 kDa. For further enzymatic testing, only frac-
tions of monomeric enzymes were used.

In vitro enzymatic assays revealed a drastic reduction of catalytic
activity for NAA10 p.(Phe128Leu) (similarly to previously published
NAA10 p.(Val107Phe) [Popp et al., 2015] and p.(Tyr43Ser) [Casey
et al., 2015]), whereas the p.(Arg83Cys) mutation resulted in an ap-
proximately 60% reduction of catalytic activity (Fig. 3A). Together,
these data support our findings from the homology model, suggest-
ing that the p.(Phe128Leu) and p.(Phe128Ile) mutations interfere
with the overall structure of NAA10 and possibly also destabilize the
protein, whereas the p.(Arg83Cys) mutation interferes with Ac-CoA
binding.

In order to further study whether the p.(Arg83Cys) mutation af-
fects Ac-CoA, we determined steady-state kinetic constants (Supp.
Fig. S3). The Km for Ac-CoA is approximately threefold higher for
the p.(Arg83Cys) variant compared with wild-type (WT) NAA10,
indicating that the p.(Arg83Cys) variant has a reduced affinity to-
ward Ac-CoA, and that this is the main cause of the reduced overall
catalytic activity for this variant.
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Figure 2. Facial phenotypes of females with NAA10-related N-terminal-acetyltransferase deficiency. Note only minor dysmorphic aspects and
a rather unspecific facial gestalt in most of the girls. Some have prominent or arched eyebrows.

We also assessed the stability of the NAA10 variants by over-
expression in HeLa cells followed by cycloheximide-chase experi-
ments. The NAA10 p.(Phe128Leu) variant was less stable compared
with NAA10 WT (Fig. 3B–E). Similar findings were observed for
NAA10 Phe128Ile (data not shown). In contrast, protein stability
does not seem to be affected by the p.(Arg83Cys) mutation.

Discussion

Delineation of the Phenotype in Females with
NAA10-Related N-Terminal-Acetyltransferase Deficiency

We describe 12 female individuals, 11 of whom carry de novo
missense mutations in NAA10, a gene previously implicated in dif-
ferent X-linked recessive disorders. The herewith reported females
all have moderate to severe ID and variable other anomalies, partly
overlapping with those in the affected males but with a generally
milder and less characteristic phenotype.

Several common clinical aspects could be noted among the af-
fected females. All had moderate to severe developmental delay and
ID with no or very limited speech and often with limited mobility.
While birth measurements were often in the normal or low normal
range, postnatal growth failure commonly occurred, also resulting
in severe microcephaly. Skeletal, brain, and organ anomalies were
frequent, but without any apparent specific pattern. Minor, but of-
ten rather unspecific facial dysmorphism were observed in most
of the patients. In several individuals, arched eyebrows or syn-
ophrys were noted, which, if present, in combination with short

stature and intellectual disability might bear some resemblance
to Cornelia-de-Lange syndrome (CDLS1; MIM #122470, CDLS2;
MIM #300590, CDLS3; MIM #610759, CDLS4; MIM #614701,
CDLS5; MIM #300882). As the p.(Arg83Cys) mutation was recur-
rently identified in seven girls, we wondered whether it might be
accompanied by specific phenotypic aspects. However, we could
not deduce any obvious differences in clinical appearance be-
tween individuals with this mutation or one of the other missense
mutations.

Importantly, cardiac conduction anomalies were observed in five
of the females. This might be a milder manifestation of the car-
diac arrhythmias that were frequent and often lethal in many of the
boys with Ogden syndrome [Rope et al., 2011]. Also, very recently,
long-QT was observed in two male individuals and their mother
with NAA10-related N-terminal acetylation deficiency [Casey et al.,
2015]. As the observation of conduction defects has important con-
sequences, such anomalies should be specifically tested in newly
identified individuals. Furthermore, specific recommendations for
surveillance, medication, or avoidance of risk factors should be
given to families with affected children. As long as little information
on the course of NAA10-related N-terminal-acetyltransferase defi-
ciency in females is available, general recommendations for cardiac
conduction anomalies such as long-QT syndrome might be ap-
plied. One should also consider electrocardiographic examination
in otherwise asymptomatic female carriers in families with X-linked
recessive NAA10-related N-terminal-acetyltransferase deficiency, as
conduction anomalies might occur as a minimal manifestation of
the disease in them, similar to cardiomyopathies in female carriers
of Duchenne muscular dystrophy [Hoogerwaard et al., 1999].
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Figure 3. Functional consequences of NAA10 mutations. A: Purified wild-type (WT) or mutant NAA10 were each mixed with acetylation buffer,
500 μM peptide and 500 μM Ac-CoA, and incubated at 37°C. Reactions were stopped in the linear phase of the reaction. The p.(Arg83Cys) mutation
resulted in an approximately 60% reduction in catalytic activity of NAA10 for all tested oligopeptides, whereas the p.(Phe128Leu) mutation lead to
a very low catalytic activity (more than 90% reduction). B–E: NAA10 stability in vivo, tested pairwise (mutant and control) by cyclohexamide chase
experiments and monitored at different time points (between 0 and 6 hr post-treatment) and by Western blotting. Figures show representative
results from at least three independent experiments. B: Western blot for NAA10-V5 WT or NAA10-V5 carrying the mutation p.(Arg83C). Bands were
quantified, and the relative amount of NAA10 present at each time point is showed in (C). D: Western blot for NAA10-V5 WT or NAA10-V5 carrying
the mutation p.(Phe128Leu). Bands were quantified, and the relative amount of NAA10 present at each time point is showed in (E).

Genotype–Phenotype Correlations

Developmental delay and intellectual disability, postnatal growth
failure, and cardiac and skeletal anomalies are overlapping clinical
aspects between male individuals with X-linked recessive Ogden
syndrome and syndromic microphthalmia and with males or
females with severe ID due to de novo mutations in NAA10. These
features therefore probably represent general clinical consequences
of NAA10-related N-terminal acetylation deficiency. We therefore
suggest using this or the shorter term “NAA10 deficiency” to
describe the associated phenotypes instead of splitting them into
different syndromic entities. The more specific aspects such as
aged appearance or wrinkled skin in Ogden syndrome [Rope

et al., 2011], anophthalmia, seizures, and syndactyly in syndromic
microphthalmia [Esmailpour et al., 2014] or a rather mild phe-
notype in two brothers with mild to moderate ID, scoliosis, and
long-QT [Casey et al., 2015] might be related to specific effects of
the respective, causative mutations.

Different levels of remaining enzymatic activity and specifically
affected properties of NAA10 function were reported for different
NAA10 mutations [Esmailpour et al., 2014; Aksnes et al., 2015;
Casey et al., 2015; Dorfel and Lyon, 2015; Popp et al., 2015]. In
the family with syndromic microphthalmia due to a splice-site
mutation (c.471+2T>A), absent expression of WT NAA10 in
fibroblasts derived from affected individuals and only minimal
expression of mutant NAA10 was shown [Esmailpour et al., 2014].
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For the p.(Ser37Pro) mutation from the Ogden syndrome families,
disruption of the catalytic activity was confirmed [Rope et al., 2011].
Furthermore, the integrity of the NatA complex was disturbed
and N-terminal acetylome analyses of B-cells, and fibroblasts from
affected individuals revealed a reduction of the NatA-mediated
N-terminal acetylation [Van Damme et al., 2014; Myklebust et al.,
2015]. In contrast, the de novo p.(Arg116Trp) mutation resulted
in a high remaining catalytic activity, therefore being in accordance
with the relatively mild phenotype in the affected boy [Popp et al.,
2015], whereas the de novo p.(Val107Phe) mutation, identified in a
girl, had a more severe effect with almost abolished catalytic activity,
thus explaining the pronounced manifestation of symptoms in a
female [Popp et al., 2015].

However, the hypothesis of phenotypic severity correlating with
levels of catalytic activity is challenged by a report on two affected
brothers with a rather mild phenotype but carrying a mutation with
a severe impact on catalytic activity [Casey et al., 2015].

Our functional studies, comparing all de novo missense mu-
tations identified in females, show that the p.(Phe128Leu) and
the p.(Phe128Ile) mutations cause a reduced stability of NAA10
and loss of NAA10 NAT-activity. Based on the close proximity of
Phe128 and Val107 in the NAA10 structure, our data suggest that
individuals with either mutation might be affected through the
same molecular mechanisms. The p.(Arg83Cys) mutation also has a
clearly reduced catalytic activity, due to a lower affinity for AC–CoA,
but does not seem to affect NAA10 structurally. The homogenous
phenotype in all girls with either the p.(Val107Phe), p.(Phe128Leu),
p.(Phe128Ile), or p.(Arg83Cys) mutation suggests that rather the
loss of the NAT activity, which is shared by all missense mutations,
and not the impaired structural stability, found for all but the
p.(Arg83Cys) mutation, is underlying their similar phenotype.
The milder catalytic impairment by the p.(Arg83Cys) mutation
of 60% compared to a >90% abolishment of catalytic activity by
p.(Phe128Leu) or the previously published p.(Val107Phe) variant
is not reflected in an obviously milder clinical phenotype in the
respective individuals, suggesting a critical threshold of enzyme ac-
tivity necessary for normal function. This critical threshold might,
however, be met by individual 2. She showed a milder phenotype
with an IQ of 50 and no postnatal growth deficiency. This girl
carries the mutation p.(Arg116Trp), that has previously been shown
to result in a rather mild reduction of NAA10 catalytic activity
[Popp et al., 2015].

According to the observation of the p.(Arg116Trp) mutation caus-
ing a more severe phenotype in a male [Popp et al., 2015] compared
to the herewith reported female, also the other missense mutations
might have a significantly more pronounced effect in males, possibly
leading to lethality. This would be in accordance with the observa-
tion in family 12, in which the affected boy deceased 1 week after
birth. Nevertheless, the contrast between the severe ID and micro-
cephaly phenotypes in the herewith reported females with mainly de
novo mutations in NAA10 and the mostly asymptomatic carrier fe-
males in families with Ogden and Lenz microphthalmia syndromes
is still striking. A possible cause might be the X-inactivation pattern.
Its possible impact on the phenotype is reflected in Individual 11.
This girl has an 100% skewed X-inactivation in lymphocytes and
is the only individual carrying the p.(Arg83Cys) mutation but not
showing microcephaly or postnatal growth retardation. In contrast,
X-inactivation was random in lymphocytes of four of the other five
tested females in our study and only mildly skewed in the fifth. All
carrier females in the original Ogden syndrome family were reported
to have skewed X-inactivation, which would be in accordance with
them not showing any or only mild symptoms [Myklebust et al.,
2015]. However, an explanation why skewing of X-inactivation oc-

curred in the females with inherited mutations and only twice in the
females with de novo mutations and still causing a severe pheno-
type, is still lacking. As NAA10-related N-terminal acetyltransferase
deficiency seems to be caused by different mutations and to be
accompanied by various phenotypes, there might be tissue speci-
ficity or a correlation between specific mutations and skewing or
nonskewing of X-inactivation.

De novo mutations in X-linked recessive genes in females

The relatively high number of 12 individuals indicates that mis-
sense mutations affecting the catalytic activity of X-chromosomal
encoded NAA10 might be a relatively frequent cause of severe ID in
females. Similar observations of de novo mutations in X-linked genes
causing severe ID phenotypes in females while female carriers of mu-
tations in families with affected males were normal, were recently
made for other genes such as DDX3X (MIM# 300160) [Snijders
Blok et al., 2015] or PHF6 (MIM# 300414) [Zweier et al., 2013]. We
therefore hypothesize that de novo mutations in supposedly X-linked
recessive genes might be more common than previously expected.

To conclude, our findings show that different missense muta-
tions in NAA10 in females result in severe ID and postnatal growth
failure with severe microcephaly and thus expand the clinical and
mutational spectrum associated with X-linked NAA10 related N-
terminal-acetyltransferase deficiency. Particularly the observation
of cardiac conduction anomalies in both males and females has
relevant consequences for the clinical management of known and
newly identified individuals.
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