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Abstract

High dynamic range (HDR) imaging provides the capability of handling real world lighting as opposed to the traditional

low dynamic range (LDR) which struggles to accurately represent images with higher dynamic range. However, most imaging

content is still available only in LDR. This paper presents a method for generating HDR content from LDR content based on deep

Convolutional Neural Networks (CNNs) termed ExpandNet. ExpandNet accepts LDR images as input and generates images

with an expanded range in an end-to-end fashion. The model attempts to reconstruct missing information that was lost from

the original signal due to quantization, clipping, tone mapping or gamma correction. The added information is reconstructed

from learned features, as the network is trained in a supervised fashion using a dataset of HDR images. The approach is fully

automatic and data driven; it does not require any heuristics or human expertise. ExpandNet uses a multiscale architecture

which avoids the use of upsampling layers to improve image quality. The method performs well compared to expansion/inverse

tone mapping operators quantitatively on multiple metrics, even for badly exposed inputs.

CCS Concepts

•Computing methodologies → Neural networks; Image processing;

1. Introduction

High dynamic range (HDR) imaging provides the capability to cap-
ture, manipulate and display real-world lighting, unlike traditional,
low dynamic range (LDR) imaging. HDR has found many appli-
cations in photography, physically-based rendering, gaming, films,
medical and industrial imaging and recent displays support HDR
content [SHS∗04,MdPVA16]. While HDR imaging has seen many
advances, LDR remains the status quo, and the majority of both
current and legacy content is predominantly LDR. In order to gain
an improved viewing experience [AFR∗07], or to use this content
in future HDR pipelines, LDR content needs to be converted to
HDR.

A number of methods which can retarget LDR to HDR content
have been presented [BADC17]. These methods make it possible
to utilise and manipulate the vast amounts of LDR content within
HDR pipelines and visualise them on HDR displays. However, such
methods are primarily model-driven, use various parameters which
make them difficult to use by non-experts, and are not suitable for
all types of content.

Recent machine learning advances for applications in image pro-
cessing provide data driven solutions for imaging problems, by-
passing reliance on human expertise and heuristics. CNNs are the
current de-facto approach used for many imaging tasks, due to their

high learning capacity as well as their architectural qualities which
make them highly suitable for image processing [Sch14]. The net-
works allow for abstract representations to be acquired directly
from data, surpassing simplistic pixelwise processing. This acqui-
sition of abstractness is especially strong when the networks are of
sufficient depth [HZRS15]. This paper presents a method for HDR
expansion based on deep Convolutional Neural Networks (CNNs).

In this work, a novel multiscale CNN architecture, called Ex-
pandNet, is presented. On a local scale, one branch of the net-
work learns how to maintain and expand high frequency detail,
while a dilation branch learns information on larger pixel neigh-
bourhoods. A final third branch provides overall information by
learning the global context of the input. The architecture is de-
signed to avoid upsampling of downsampled features, in an attempt
to reduce blocking and/or haloing artefacts that may arise from
more straightforward approaches, for example autoencoder archi-
tectures [Ben09]. Results demonstrate an improvement in quality
over all other previous approaches that were tested, including some
other CNN architectures.

In summary, the primary contributions of this work are:

• A fully automatic, end-to-end, parameter free method for the
expansion of LDR content based on a novel CNN architecture
which improves image quality for HDR expansion.

c© 2018 The Author(s)
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• Results which are competitive with the other approaches tested,
including other CNN architectures applied to single exposure
LDR to HDR.

• Data augmentation for limited HDR content via different expo-
sure and position selection to obtain more LDR-HDR training
pairs.

• A comprehensive quantitative comparison of LDR to HDR ex-
pansion methods.

2. Related Work

A number of methods to expand LDR to HDR have been presented
in the literature. Furthermore, deep learning methods have been
used for similar problems in the past. The following subsections
discuss these topics.

2.1. LDR to HDR

Expansion operators (EOs), also known as inverse or reverse tone
mapping operators, attempt to generate HDR content from LDR
content. EOs can generally be expressed as:

Le = f (Ld), where f : [0,255]→ R
+ (1)

where Le corresponds to the expanded HDR content, Ld to the LDR
input and f (·) is the EO. In this context f (·) could be considered as
an ill-posed function. However, a variety of methods have emerged
that attempt to tackle this issue. The majority of EOs can be broadly
divided into two categories: global and local methods [BADC17].

The global methods use a straightforward function to expand the
content equally across all pixels. One of the first of such meth-
ods was the technique presented by Landis [Lan02] which expands
content based on power functions. A straightforward method that
uses a linear transformation combined with gamma correction was
presented by Akyüz et al. [AFR∗07] and evaluated using a subjec-
tive experiment. Masia et al. [MAF∗09, MSG17] also presented a
global method which expands the content based on image attributes
defined by an image key.

Local methods typically expand LDR content to HDR through
the use of an analytical function combined with an expand map.
The inverse tone mapping method [BLDC06] initially expands
the content using an inverted photographic tone reproduction tone
mapper [RSSF02], although this could be applied to other tone
mappers that are invertible. An expand map is generated by select-
ing a constellation of bright points and expanding them via density
estimation. This is subsequently used in conjunction with the in-
verse tone mapping equation to map LDR values to HDR values to
avoid quantization errors that would arise via inverse tone mapping
only. Rempel et al. [RTS∗07] also used an expand map, however
this was computed through the use of a Gaussian filter in conjunc-
tion with an edge-stopping function to maintain contrast. Kovaleski
and Oliviera [KO14] extended the work of Rempel et al. via the
use of a cross bilateral filter. Subsequently, Huo et al. [HYDB14]
further extended this work to remove the thresholding used by Ko-
valeski and Oliviera.

Other methods include inpainting as used by Wang et

al. [WWZ∗07] which is partially user-based, and classification
based methods such as by Meylan et al. [MDS06] and Didyk et
al. [DMHS08], which operate on different parts of the image by
classifying these parts accordingly.

Banterle et al. [BDA∗09] provide a broader view of these meth-
ods. With most of the above, the added information is derived from
heuristics that may produce sufficient results for well behaved in-
puts, but are not data driven. Most importantly, most existing EOs
find it difficult to handle under/over-exposed LDR content.

2.2. Deep Learning for Image Processing

Deep learning has been extensively used for image processing
problems recently. In image-to-image translation [IZZE16b] the
authors present a method based on Generative Adversarial Net-
works [GPAM∗14] and the U-Net [RFB15] architecture that trans-
forms images from one domain to another (e.g. maps to satel-
lite). Many approaches have also been developed for other kinds
of ill-posed or inverse problems, including image super-resolution
and upsampling [DLHT16, KLL15, YKK17] as well as inpaint-
ing/hallucination of missing information [ISSI17]. Automatic col-
orization [ISSI16] converts grey scale to color images using a CNN
which uses two routes of computation, fusing local and global con-
text for improved image quality.

In visualization, graphics and HDR imaging, neural net-
works have been used for predicting sky illumination for ren-
dering [SBRCD17, HGSH∗17], denoising Monte Carlo render-
ings [KBS15, CKS∗17, BVM∗17], predicting HDR environment
maps [ZL17a], reducing artefacts such as ghosting when fusing
multiple LDR exposures to create HDR content [KR17] and for
tone mapping [HDQ17].

Concurrently to this work, two other deep learning approaches
that expand LDR content to HDR have been developed. Eilertsen
et al. [EKD∗17], use a U-Net like architecture to predict values for
saturated areas of badly exposed content, whereas non-saturated
areas are linearised by applying an inverse camera response curve.
Endo et al. [EKM17] use a modified U-Net architecture that pre-
dicts multiple exposures from a single exposure which are then
used to generate an HDR image using standard merging algorithms.

The first method does not suffer greatly from artefacts pro-
duced from upsampling that are common with U-Net and simi-
lar architectures [ODO16] since only areas of badly exposed con-
tent are expanded by the network. In the latter, the authors men-
tion the appearance of tiling artefacts in some cases. There are
other examples in literature when fully converged U-Net like net-
works exhibit artefacts, for example in image-to-image translation
tasks [IZZE16a], or semantic segmentation [ZL17b]. Our approach
differs from these methods methods as it presents a dedicated ar-
chitecture for and end-to-end image expansion, without using up-
sampling.

3. ExpandNet

This section describes the ExpandNet architecture in detail. The
network is designed to tackle the problem directly via a novel three

c© 2018 The Author(s)
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Figure 1: ExpandNet architecture. The LDR input is propagated through the the local and dilation branches, while a resized input (256×256)

is propagated through the global branch. The output of the global branch is superposed over each pixel of the outputs of the other two

branches. The resulting features are fused using 1×1 convolutions to form the last feature layer which then gives an RGB HDR prediction.

branch architecture. Figure 1 presents an overview of the architec-
ture. The three branches of computation are a local, a dilation and
a global one. Each branch is itself a CNN that accepts an RGB
LDR image as input. Each one of the three branches is responsible
for a particular aspect, with the local branch handling local detail,
the dilation branch for medium level detail, and a global branch
accounting for higher level image-wide features.

The local and dilation branches avoid any use of downsampling
and upsampling, which is a common approach in the design of
CNNs, and the global branch only downsamples. In image process-
ing CNNs it is common to downsample the width and height of the
input image, while expanding the channel dimension. This forms a
set of more abstract features after a few layers of downsampling.
The features are then upsampled to the original dimensions, for ex-
ample in autoencoders. As also mentioned in the previous section,
it is argued [ODO16] that upsampling, especially the frequently
used deconvolutional layers [SCT∗16], cause checkerboard arte-
facts. Furthermore, upsampling may cause unwanted information
bleeding in areas where context is missing, for example large over-
exposed areas. Figure 11 and Figure 12 (b) and (c), discussed fur-
ther in Section 5, provide examples where such artefacts can arise
in upsampling networks, seen as blocking in (b) due to deconvo-
lutions, and banding in (c) due to nearest-neighbour upsampling.
ExpandNet avoids the use of upsampling layers to reduce such arte-
facts and improves the quality of the predicted HDR images.

The outputs of the three branches are fused and further processed
by a small final convolutional layer that produces the predicted
HDR image. The input LDR and the predicted HDR are both in
the [0,1] range.

The following subsection briefly introduces CNNs, followed by
a detailed overview of the three branches of the ExpandNet archi-
tecture, including design characteristics for feature fusion, activa-
tion functions and the loss function used for optimization.

3.1. Convolutional Neural Networks

A feed-forward neural network (NN) is a function composed of
multiple layers of non-linear transformations. Given an input vec-
tor x, a network of M layers (with no skip connections) can be
expressed as follows:

fNN(x) = (lM ◦ lM−1 ◦ · · · ◦ l2 ◦ l1)(x) (2)

where li is the ith hidden layer of the network and ◦ is the compo-
sition operator. Each layer accepts the output of the previous layer,
oi−1, and applies a linear map followed by a non-linear transfor-
mation:

oi = li(oi−1) = α(Wioi−1) (3)

where Wi is a matrix of learnable parameters (weights), oN is the
network output and o0 = x. α(z) is a non-linear (scalar) activa-
tion function, applied to each value of the resulting vector inde-
pendently. A learnable bias term exists in the linear map as well,
but is folded in Wi (and x) for ease of notation.

A convolutional layer, ci, uses sparse parameter matrices with
repeated values. The sparsity and repetition structure is such, so that
the linear product can be expressed as a convolution, ∗, between a
learnable parameter filter w̃ and the input to the layer.

ci(oi−1) = α(w̃i ∗oi−1) (4)

This formulation is analogous for higher dimensions. In the
scope of this work, images are three dimensional objects (width ×
height × channels / features), thus the parameter matrices become
four-dimensional tensors. For image processing CNNs, the convo-
lutions are usually only in the width and height dimensions, while
the third dimension is fully connected (dense tensor dimension).

The convolutional architecture is extremely suitable for images
since it exploits spatial correlations and symmetries, and dramati-
cally reduces the number of learnable parameters compared to fully
connected networks. It also allows for efficient implementations on
GPUs as well as more stable training of deeper models [Sch14].

c© 2018 The Author(s)
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Figure 2: General overview of the workflow. (left) The training dataset is sampled and preprocessed on-the-fly to form 256×256 resolution

input-output pairs, which are then used to optimize the network weights. (right) For testing, the images are full-HD (1,920× 1,080). The

luminance of the predictions of all methods is scaled either to match the original HDR image (scene-referred) or that of a 1,000 cd/m2

display (display-referred).

3.2. Branches

The three branches play different roles in expanding the dynamic
range of the input LDR. The global branch seeks to reduce the di-
mensionality of the input and capture abstract features. It has a suf-
ficiently large receptive field that covers the whole image. It accepts
the entire LDR image as input, re-sized to 256× 256, and eventu-
ally downsamples it to 1×1 over a total of seven layers. Each layer
has 64 feature maps and uses stride 2 convolutions which consecu-
tively downsample the spatial dimensions by a factor of 2. All the
global branch layers use a convolutional kernel of size 3× 3, with
padding 1 except the last layer which uses a 4× 4 kernel with no
padding, essentially densely connecting the previous layer, which
consists of 4× 4 features, with the last layer, creating a vector of
1×1 features.

The other two branches provide localized processing without
downsampling that captures higher frequencies and neighbouring
features. The local branch has a receptive field of 5 × 5 pixels
and consists of two layers with 3× 3 convolutions of stride 1 and
padding 1, with 64 and 128 feature maps respectively. The small re-
ceptive field of the local branch provides learning at the pixel level,
preserving high frequency detail.

The dilation branch has a wider receptive field of 17× 17 pix-
els and uses dilated convolutions [YK15] of dilation size 2, kernel
3×3, stride 1, and padding 2. Dilated convolutions are large, sparse
convolutional kernels, used to quickly increase the receptive field of
CNNs. A total of four dilation layers are used each with 64 features.
With an increased receptive field, the dilation network captures lo-
cal features with medium range frequencies otherwise missed by
the other two branches whose focus is on the two extremes of the
frequency spectrum.

The effects of each individual branch are presented in Figure 3.
Masking the input to an individual branch causes the output ap-
pearance to change, depending on which branch was masked, high-
lighting its role. The local branch produces high frequency fea-
tures, while the dilation branch adds medium range frequencies.
The global branch changes the overall appearance of the output by

adding low frequencies and adjusting the overall sharpness of the
image. Results, shown in Section 5.3, further help to illustrate the
advantages posed by the three distinct branches.

3.3. Fusion

The outputs of the three branches are merged in a manner similar
to the fusion layer by Iizuka et al. [ISSI16]. The local and dilation
outputs, which have the same height and width as the input, are
concatenated along the feature map dimension. The output of the
global network is a vector of 64 features which is replicated along
the width and height dimensions to match the dimensions of the
other two outputs. The replication superposes the vector over each
pixel of the predictions of the other two branches. It is then concate-
nated with the rest of the outputs along the feature map dimension
resulting in a total of 256 features. The concatenation is followed
by a convolution of kernel size 1×1 which fuses the global feature
vector with each individual pixel of the local and dilated features,
thus combining context from multiple scales. The output of the fu-
sion layer is further processed by a final convolutional layer with
3×3 kernels, stride 1 and padding 1.

3.4. Activations

All the layers, besides the output layer, use the Scaled Exponential
Linear Unit (SELU) activation function [KUMH17], a variation of
the Exponential Linear Unit (ELU).

SELU(z) = β

{

z if z > 0

αez −α if z ≤ 0
(5)

where β ≈ 1.05070 and α ≈ 1.67326. SELU was recently intro-
duced for the creation of self normalizing neural networks and it
ensures that the distributions of the activations at each layer have
a mean of zero and unit variance. It provides a solution to the in-
ternal covariate shift problem during training at a lower memory
cost compared to the frequently used batch normalization tech-
nique [IS15]. The SELU unit also preserves all the properties of
the ELU, which in its turn improves on the Rectified Linear Unit

c© 2018 The Author(s)
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(a) Local + Dilated + Global (b) Local + Global (c) Dilated + Global

(d) Local + Dilated (e) Local (f) Dilated

Figure 3: Illustration of the contribution of each of the three branches of ExpandNet. These images were obtained by masking one or more

branches with zero inputs. The bottom row is produced with the global branch masked. This causes the overall appearance of the images to be

darker and sharper, since there are low frequencies missing. The middle column masks the dilation branch, resulting in sharp high-frequency

images. The right column masks the local branch which causes most of the fine details to be lost.

Table 1: Parameters used for tone mapping. All images are fol-

lowed by a gamma correction curve with γ∈ [1.8,2.2]. Values given

within ranges are sampled from a uniform distribution.

TMO Parameters

Photoreceptor
Intensity: [−1.0,1.0]
Light adaptation: [0.8,1.0]
Color adaptation: [0.0,0.2]

ALM Saturation: 1.0, Bias: [0.7,0.9]

Display Adaptive Saturation: 1.0, Scale: [0.65,0.85]

Bilateral
Saturation: 1.0, Contrast: [3,5]
σspace : 8, σcolor : 4

Exposure Percentile: [0,15] to [85,100]

(ReLU). ReLUs alleviate the vanishing/exploding gradient prob-
lem [KSH17] that was frequent with the traditional Sigmoid acti-
vations (when stacked), while ELUs improve the sparse activation
problem of the ReLUs by providing negative activation values.

The final layer of the network uses a Sigmoid activation,

σ(z) =
1

1+ e−z
(6)

which maps the output to the [0,1] range.

3.5. Loss function

The Loss function, L, used for optimizing the network is the L1
distance between the predicted image, Ĩ, and real HDR image, I,
from the dataset. The L1 distance is chosen for this problem since

the more frequently used L2 distance was found to cause blurry
results for images [MCL15]. An additional cosine similarity term
is added to ensure color correctness of the RGB vectors of each
pixel.

Li = ‖Ĩi − Ii‖1 +λ

(

1−
1
K

K

∑
j=i

Ĩ
j
i · I

j
i

‖Ĩ
j
i ‖2‖I

j
i ‖2

)

(7)

where Li is the loss contribution of the ith image of the dataset,
λ is a constant factor that adjusts the contribution of the cosine
similarity term, I

j
i is the jth RGB pixel vector of image Ii and K is

the total number of pixels of the image.

Cosine similarity measures how close two vectors are by com-
paring the angle between them, not taking magnitude into account.
For the context of this work, it ensures that each pixel points in the
same direction of the three dimensional RGB space. It provides im-
proved color stability, especially for low luminance values, which
are frequent in HDR images, since slight variations in any of the
RGB components of these low values do not contribute much to
the L1 loss, but they may however cause noticeable color shifts.

3.6. Training

4. Training and Implementation

This section presents the implementation details used for Expand-
Net, including the dataset used and how it was augmented, and
implementation and optimization details. Results are presented in
Section 5. Figure 2 gives an overview of the training and testing
methodology employed.

c© 2018 The Author(s)
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Table 2: Average values of the four metrics for all methods for

scene-referred scaling. Bold values indicate the best value.

Method SSIM MS-SSIM PSNR HDR-VDP-2.2

optimal

LAN 0.72 0.78 22.21 39.01
AKY 0.72 0.78 22.70 39.11
MAS 0.75 0.80 23.29 38.98
BNT 0.70 0.73 19.56 37.63
KOV 0.74 0.80 25.03 38.39
HUO 0.74 0.78 19.71 38.04
REM 0.68 0.64 15.68 33.61
COL 0.58 0.69 23.21 31.23
UNT 0.68 0.71 20.52 34.88
EIL 0.72 0.78 22.90 39.06
EXP 0.74 0.79 25.54 39.27

culling

LAN 0.73 0.65 17.49 31.25
AKY 0.72 0.64 17.08 30.75
MAS 0.72 0.63 16.87 30.59
BNT 0.74 0.66 18.91 32.03
KOV 0.75 0.68 18.60 31.92
HUO 0.75 0.64 16.27 29.95
REM 0.63 0.49 13.55 27.34
COL 0.63 0.69 22.08 29.74
UNT 0.77 0.70 19.66 34.65
EIL 0.52 0.53 17.92 28.14
EXP 0.81 0.79 22.58 35.04

4.1. Dataset

A dataset of HDR images was created consisting of 1,013 training
images and 50 test images, with resolutions ranging from 800×800
up to 4,916 × 3,273. The images were collected from various
sources, including in-house images, frames from HDR videos and
the web. Only 100 of the images contained calibrated luminance
values, sourced from the Fairchild database [Fai07]. All the images
contained linear RGB values. The 50 test images used for evalua-
tion in Section 5 were selected randomly from the Fairchild images
with calibrated absolute luminance. LDR content for training was
generated on-the-fly, directly from the dataset, and was augmented
in a number of ways as outlined below.

At every epoch each HDR image from the training set is used as
input in the network once after preprocessing. Preprocessing con-
sists of randomly selecting a position for a sub image, cropping, and
having its dynamic range reduced using one of a set of operators.
The randomness entails that at every epoch a different LDR-HDR
pair is generated from a single HDR image in the training set.

Initially, the HDR image has its cropping position selected. The
position is drawn from a spatial Gaussian distribution such that the
most frequently selected regions are towards the center of the im-
age. The crop size is drawn from an exponential distribution such
that smaller crops are more frequent than larger ones, with a min-
imum crop size of 384× 384. Randomly cropping the images is a

Table 3: Average values of the four metrics for all methods for

display-referred scaling. Bold values indicate the best value.

Method SSIM MS-SSIM PSNR HDR-VDP-2.2

optimal

LAN 0.76 0.80 19.89 41.01

AKY 0.76 0.80 20.37 40.89
MAS 0.79 0.82 21.03 40.83
BNT 0.74 0.75 17.22 39.99
KOV 0.80 0.83 23.01 40.00
HUO 0.77 0.77 17.83 38.58
REM 0.66 0.59 14.60 33.74
COL 0.63 0.71 21.00 31.41
UNT 0.72 0.73 18.23 35.68
EIL 0.77 0.80 20.66 41.01

EXP 0.79 0.82 23.43 40.81

culling

LAN 0.31 0.17 9.12 18.01
AKY 0.74 0.66 15.00 31.39
MAS 0.73 0.64 14.77 31.11
BNT 0.36 0.27 9.61 24.51
KOV 0.77 0.69 16.54 31.78
HUO 0.74 0.64 14.85 30.57
REM 0.59 0.46 12.81 27.96
COL 0.66 0.70 19.99 30.26
UNT 0.78 0.69 17.02 35.27
EIL 0.54 0.55 15.96 27.58
EXP 0.83 0.79 19.93 36.21

standard technique for data augmentation. Choosing the crop size
at random adds another layer of augmentation, since the likelihood
of picking the same crop is reduced, but it also aids in how well
the model generalizes since it provides different sized content for
similar scenes.

The cropped image is resized to 256×256 and linearly mapped
to the [0,1] range to create the output. Since only a small fraction of
the dataset images contain absolute luminance values, the network
was trained to predict relative luminance values in the [0,1] range.

A tone mapping operator (TMO) [TR93] or single exposure op-
erator is applied to form the input LDR from the output HDR, cho-
sen uniformly from a list of five operators: dynamic range reduc-
tion inspired by photoreceptor physiology (Photoreceptor) [RD05],
Adaptive Logarithmic Mapping (ALM) [DMAC03], Display
Adaptive Tone Mapping (display) [MDK08], Bilateral [DD02] and
Exposure. The OpenCV3 implementations of the TMOs were used.
The Exposure operator was implemented for this work and clamps
the top and bottom percentiles of the image and adds a gamma
curve. In addition to using a random operator for each input-output
pair, the parameters of the operators are also randomized. The pa-
rameters of the functions used are summarized in Table 1. The
TMO parameter randomization was done to ensure that the model
performs well under a variety of inputs when tested with real LDR
inputs and does not just learn to invert specific TMOs. It acts as yet
another layer of data augmentation. Results shown in the following

c© 2018 The Author(s)
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Figure 4: Box plots for scene-referred HDR obtained from LDR via

optimal exposure.

Figure 5: Box plots for scene-referred HDR obtained from LDR via

culling.

section only use single exposures for generating HDR; the TMOs
are just used for data augmentation during training.

4.2. Optimization

The network parameters are optimized to minimize the loss given in
Equation 7, with λ = 5, using mini-batch gradient descent and the
backpropagation algorithm [RHW86]. The Adam optimizer was
used [KB14], with an initial learning rate of 7e − 5 and a batch
size of 12. After the first 10,000 epochs, the learning rate was re-
duced by a factor of 0.8 whenever the loss reached a plateau, until
the learning rate reached values less than 1e−7 for a total of 1,600
epochs extra. L2 regularization (weight decay) was used to reduce
the chance of overfitting. All experiments were implemented using
the PyTorch library [pyt]. Training time took a total of 130 hours
on an Nvidia P100.

Figure 6: Box plots for display-referred HDR obtained from LDR

via optimal exposure.

Figure 7: Box plots for display-referred HDR obtained from LDR

via culling.

5. Results

This section presents an evaluation of ExpandNet compared to
other EOs and deep learning architectures. Figure 2 (right) shows
an overview of the evaluation method.

5.1. Quantitative

For a quantitative evaluation of the work, four metrics are con-
sidered, Peak Signal to Noise Ratio (PSNR), Structural Similarity
(SSIM), Multi-Scale Structural Similarity (MS-SSIM), and HDR-
VDP-2.2 [NMDSLC15]. For the first three metrics, a perceptual
uniformity (PU) encoding [AMS08] is applied to the prediction
and reference images to make them suitable for HDR comparisons.
HDR-VDP-2.2 includes the PU-encoding in its implementation.
The values from HDR-VDP-2.2 are those of the VDP-Q quality
score.
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(a) LDR (b) AKY (c) LAN (d) BNT (e) HUO (f) REM

(g) MAS (h) KOV (i) COL (j) UNT (k) EIL (l) EXP

Figure 8: HDR-VDP-2.2 visibility probability maps for predictions of (culling) M3 Middle Pond using all methods. Blue indicates impercep-

tible differences, red indicates perceptible differences.

(a) LDR (b) AKY (c) LAN (d) BNT (e) HUO (f) REM

(g) MAS (h) KOV (i) COL (j) UNT (k) EIL (l) EXP

Figure 9: HDR-VDP-2.2 visibility probability maps for predictions of (culling) Devils Bathtub using all methods. Blue indicates impercepti-

ble differences, red indicates perceptible differences.

The ExpandNet architecture is compared against seven other
previous methods for dynamic range expansion/inverse tone map-
ping. The chosen methods were the methods of: Landis [Lan02]
(LAN), Banterle et al. [BLDC06] (BNT), Akyüz et al. [AFR∗07]
(AKY), Rempel et al. [RTS∗07] (REM), Masia et al. [MAF∗09]
(MAS), Kovaleski and Oliveira [KO14] (KOV) and Huo et
al. [HYDB14] (HUO). The Matlab implementations from the HDR
toolbox [BADC17] were used to obtain these results.

Four CNN architectures are compared, including the proposed
ExpandNet method (EXP). Two other network architectures that
have been used for similar problems have been adopted and trained
in the same way as EXP. The first network is based on U-
Net [RFB15] (UNT), an architecture that has shown strong results
with image translation tasks between domains. The second network
is an architecture first used for colorization [ISSI16] (COL), which
uses two branches and a fusion layer similar to the one used for
ExpandNet. These three are implemented using the same pyTorch
framework and trained on the same training dataset. The recent
network architecture used for LDR to HDR conversion [EKD∗17]
(EIL) is also included. The predictions from this method were cre-
ated using the trained network which was made available online by
the authors, applied on the same test dataset used for all the other
methods.

The inputs to the methods are single exposure LDR images of
the 50 full HD (1920×1080) images in the HDR test dataset. The
single exposures are obtained using two methods. The first method
(optimal) finds the optimal/automatic exposure [DBRS∗15] using
the HDR image histogram, resulting in minimal clipping at the two

ends of the luminance range. The second method (culling) simply
clips the top and bottom 10% of the values of the images, resulting
in more information loss and distortion of the input LDR. The re-
sulting test LDR input images are saved with JPEG encoding before
testing. When compared to the 10th percentile loss for the images
generated using culling, on average, the number of pixels over the
test dataset that are over-exposed when using optimal is 3.89% and
the number of pixels under-exposed is 0.35%.

The outputs of the methods are in the [0,1] range, predicting rel-
ative luminance. The scaling permits evaluation for scene-referred
and display-referred output. Hence, the predicted HDR images are
scaled to match the original HDR content (scene-referred) and a
1,000 cd/m2 display (display-referred), which represents current
commercial HDR display technology. The scaling is done to match
the 0.1 and 99.9 percentiles of the predictions with the correspond-
ing percentiles of the HDR test images. Furthermore, scaling is use-
ful as the PU-encoded HDR metrics are dependent on absolute lu-
minance values in cd/m2. By scaling the prediction outputs, the
PU-encoded metrics can be used to quantify the ability of the net-
work to reconstruct the original signal.

Table 2 and Table 3 summarize the results of the four metrics ap-
plied on all the methods, using the optimal and culling, for scene-
referred and display-referred respectively. Box plots for the distri-
bution of the four metrics are presented in Figure 4 and Figure 5 for
the scene-referred results of optimal and culling respectively. Sim-
ilarly Figure 6 and Figure 7 show the display-referred results of
optimal and culling respectively. Box plots are sorted by ascending
order of median value. When analysed for significant differences

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Marnerides et al. / ExpandNet

(a) LDR (b) AKY (c) LAN (d) BNT (e) HUO (f) REM

(g) MAS (h) KOV (i) COL (j) UNT (k) EIL (l) EXP

Figure 10: HDR-VDP-2.2 visibility probability maps for predictions of (culling) Tunnel View using all methods. Blue indicates imperceptible

differences, red indicates perceptible differences.

(a) Input LDR (culling) (b) UNT (c) COL

(d) Exposure of original HDR (e) EIL (f) EXP

Figure 11: (a) LDR input image created using culling from the Balanced Rock HDR image. (d) Low exposure of the original HDR image.

(b,c,e,f) Low exposure slices of the predictions from methods that use CNN architectures showing artefacts.

amongst all the methods, a significance is found for all tests (at p
< 0.001) using Friedman’s test. Pairwise comparisons ranked EXP
in the top group, consisting of the group of methods that cannot be
significantly differentiated, in 13 of the 16 results (these consist of
all four metrics for both optimal and culling and for both scene-
referred and display referred). The conditions where EXP was not
in the top group were: pu-SSIM (in the cases of scene-referred and
display-referred) and pu-MMSIM (for scene-referred only); in all
three cases this occurred for the optimal condition.

As can be seen in the overall, EXP performs reasonably well. In
particular for the culling case when a significant number of pixels
are over or under-exposed EXP appears to reproduce HDR better
than the other methods. For optimal, EIL performs very well also,
and this is expected as in such cases the number of pixels that are
required to be predicted from the CNN are smaller. Similarly, the
non deep learning based expansion methods such as MAS perform
well especially for SSIM which quantifies structural similarity.

5.2. Visual Inspection

This section presents some qualitative aspects of the results. HDR-
VDP-2.2 visibility probability maps for all the methods are pre-

sented, as well as images from the CNN predictions exhibiting ef-
fects such as hallucination, blocking and information bleeding.

Figure 8, Figure 9 and Figure 10 show the HDR-VDP-2.2 prob-
ability maps for the predictions of all the methods from the test set.
The HDRs are predicted from culling LDRs with scene-referred
scaling. The HDR-VDP-2.2 visibility probability map describes
how likely it is for a difference to be noticed by the average ob-
server, at each pixel. Red values indicate high probability, while
blue values indicate low probability. Results show EXP performs
better than most other methods for these scenes. EIL also performs
well, particularly for the challenging scenario in Figure 10.

Figure 11 and Figure 12 show single exposure slices (both these
cases are from low exposure slices) from the predicted HDRs for
the four CNN architectures. The input LDRs were created with
culling and are shown in the respective sub figure (f). It is clear that
UNT and COL have issues with blocking or banding and informa-
tion bleeding, and this can be observed, to a certain extent, for EIL
as well, but to a much lesser degree. Figure 14 presents predictions
at multiple exposures comparing EXP and EIL. The images contain
saturated areas of different sizes as well as different combinations
of saturated channels. Figure 14a contains blue pixels which after

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Marnerides et al. / ExpandNet

(a) Input LDR (culling) (b) UNT (c) COL

(d) Exposure of original HDR (e) EIL (f) EXP

Figure 12: (a) LDR input image created using culling from The Grotto HDR image. (d) Low exposure of the original HDR image.

(b,c,e,f) Low exposure slices of the predictions from methods that use CNN architectures showing artefacts.

exposure (scaling and clipping at 255) only have their B channel
saturated (e.g. a pixel [x, x, 243] becomes [x+y, x+y, 255] where
B is clipped at 255). Figure 14b contains saturated purple pixels,
where both the R and B channels are clipped. Figure 14d contains a
saturated colour chart. It can be noticed that EXP tries to minimize
the bleeding of information into large overexposed areas, recov-
ering high frequency contrast, for example around text. It is also
worth noting that artefacts around sharp edges are not completely
eliminated, but are much less pronounced and with a much smaller
extend.

Figure 13: Training convergence for all the possible combinations

of branches. Each point is an average of 10,000 gradient steps for a

total of 254,000 steps, the equivalent of 10,000 epochs (each epoch

has 254 mini-batches). Axes are logarithmic.

5.3. Further Investigation

Data Augmentation: The method used to generate input-output
pairs significantly affects the end result. To demonstrate, the Ex-
pandNet architecture was trained on LDR inputs generated using
only the Photoreceptor TMO (EXP-Photo). In this case it consis-
tently underperforms when tested against EXP trained with all the
TMOs mentioned in Section 4.1, giving an average PSNR of 19.93
for display-referred culling. However, if the testing is done on LDR
images produced not by culling, but instead Photoreceptor, then
EXP-Photo produces significantly better results (PSNR of 24.28 vs
21.52 for EXP) since it was specialized to invert the Photorecep-

tor TMO. This can be useful if, for example, to convert images
captured by commercial mobile phones which are stored as tone
mapped images using a particular tone mapper back to HDR.

To further investigate the effects of data augmentation, a network
was trained using Camera Response Functions (CRFs) in addition
to the TMOs used for EXP reported in the previous section. Follow-
ing the Deep Reverse Tone Mapping [EKM17], the same database
of CRFs was used [GN03], and the same method of obtaining five
representative CRFs by k-means clustering was adopted. The re-
sults do not show any improvement and are almost identical to EXP
on all metrics (within 1%). This might be because CRFs are mono-
tonically increasing functions, which can be approximated in many
cases by the randomized exposure and gamma TMO used in the
initial set of results.

Branches: To gain insight on the effect of the individual branches
and further motivate the three-branch architecture, different branch
combinations were trained from scratch. Figure 13 shows the train-
ing convergence for 10,000 epochs. It is evident that the global
branch which is fused with each pixel makes the largest contribu-
tion. On average, the full ExpandNet architecture is the quickest to
converge and has the lowest loss. The combination of the local and
dilation branches improves the performance of each one individu-
ally.
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(a) Ben Jerrys (b) Las Vegas Store

(c) Peppermill (d) Willy Desk

Figure 14: Examples of expanded images using EXP and EIL at three different exposures. The examples are cropped from larger images,

showing under various lighting conditions and from different scenes. The top row of each sub-figure shows the input LDR created with

culling. The second row of each sub-figure shows the exposures of the original HDR. The following row shows exposures of predicted HDR

using EIL. The last row shows exposures of predicted HDR using EXP.

We can further understand the architecture by comparing fig-
ures 3 and 13. The performance of Dilated + Global is comparable
to that of Local + Global, even though figure 3b is visually much
better than 3c. This is because the images from figure 3 are pre-
dictions from an ExpandNet with all branches (some zeroed out
when predicting), where the local and dilated branches have ac-
quired separate scales of focus during training (high and medium
frequencies respectively). In figure 13, where each one is trained in-
dividually, these scales are not separated; each branch tries to learn
all the scales simultaneously. Separating scales in the architecture
leads to improved performance.

6. Conclusions

This paper has introduced a method of expanding single expo-
sure LDR content to HDR via the use of CNNs. The novel three
branch architecture provides a dedicated solution for this type of
problem as each of the branches account for different aspects of
the expansion. Via a number of metrics it was shown that Ex-
pandNet mostly outperforms the traditional expansion operators.

Furthermore, it performs better than non-dedicated CNN architec-
tures based on UNT and COL. Compared to other dedicated CNN
methods [EKD∗17, EKM17] it does well in certain cases, exhibit-
ing fewer artefacts, particularly for content which is heavily under
and over exposed. On the whole, ExpadNet is complementary to
EIL which is designed to expand the saturated areas and does very
well in such cases. Furthermore, EIL has a smaller memory foot-
print. ExpandNet has shown that a dedicated architecture can be
employed without the need of upsampling to convert HDR to LDR,
however, further challenges remain. To completely remove arte-
facts further investigation is required, for example in the receptive
fields of the networks. Dynamic methods may require further care-
ful design to maintain temporal coherence and Long Short Term
Memory networks [HS97] might provide the solution for such con-
tent.
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