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Topographic sensory representations often do not scale propor-

tionally to the size of their input regions, with some expanded

and others contracted. In vision, the foveal representation is

magnified cortically, as are the fingertips in touch. What princi-

ples drive this allocation, and how should receptor density, e.g.

the high innervation of the fovea or the fingertips, and stimulus

statistics, e.g. the higher contact frequencies on the fingertips,

contribute? Building on work in efficient coding, we address

this problem using linear second-order models that maximize

information transmission through decorrelation. We introduce

a sensory bottleneck to impose constraints on resource alloca-

tion and derive the optimal neural allocation. We find that bot-

tleneck width is a crucial factor in resource allocation, induc-

ing either expansion or contraction. Both receptor density and

stimulus statistics affect allocation and jointly determine con-

vergence for wider bottlenecks. Furthermore, we show a close

match between the predicted and empirical cortical allocations

in a well-studied model system, the star-nosed mole. Overall,

our results suggest that the strength of cortical magnification

depends on resource limits.

efficient coding | decorrelation | cortical magnification | sensory representa-
tion | receptor density | stimulus statistics

Correspondence: h.saal@sheffield.ac.uk

Introduction

In many sensory systems, receptors are arranged spatially on

a sensory sheet. The distribution of receptors is typically not

uniform, but instead densities can vary considerably. For

example in vision, cones are an order of magnitude more

dense in the fovea than in the periphery (Goodchild et al.,

1996; Wells-Gray et al., 2016). In the somatosensory sys-

tem, mechanoreceptors are more dense in the fingertips than

the rest of the hand (Johansson and Vallbo, 1979) (see also

Fig. 1A). Alongside the density of receptors, the statistics of

the input stimuli can also vary. For example, the fingertips

are much more likely to make contact with objects than the

palm (Gonzalez et al., 2014).

Subsequent sensory areas are often arranged topographically,

such that neighbouring neurons map to nearby sensory in-

put regions, for example, retinotopy in vision and somato-

topy in touch. However, the size of individual cortical re-

gions is often not proportional to the true physical size of

the respective sensory input regions, and instead representa-

tions might expand (often called magnification) or contract

(see also Fig. 1B). For example, both the fovea and the fin-

gertips exhibit expanded representations in early visual and

somatosensory cortices respectively, compared to their phys-

ical size (Azzopardi and Cowey, 1993; Engel et al., 1997;

Martuzzi et al., 2014; Sereno et al., 1995). What determines

such cortical magnification? For somatotopy, it has been pro-

posed that cortical topography might directly reflect the den-

sity of sensory receptors (Catani, 2017). On the other hand,

receptor density alone is a poor predictor of magnification

(Corniani and Saal, 2020) and work on plasticity has estab-

lished that cortical regions can expand and contract dynam-

ically depending on their usage, suggesting that expansion

and contraction might be driven by the statistics of the sen-

sory stimuli themselves (Coq and Xerri, 1998; Merzenich and

Jenkins, 1993; Xerri et al., 1996).

Here, we tackle this problem from a normative viewpoint,

employing efficient coding theory, which has been widely

used to model and predict sensory processing. Efficient cod-

ing theory (Barlow, 1961) suggests that neural populations

are tuned to maximize the information present in the sen-

sory input signals by removing redundant information (Atick,

1992; Atick and Redlich, 1990; Attneave, 1954; Chechik et

al., 2006; Graham and Field, 2009). Efficient coding mod-

els have been most prominent in vision (Atick, 1992; At-

ick and Redlich, 1990; Bell and Sejnowski, 1997; Doi et

al., 2012; Karklin and Simoncelli, 2011; Kersten, 1987; Ol-

shausen and Field, 1996, 1997, 2004) and audition (Lewicki,

2002; Smith and Lewicki, 2006). This prior work has mostly

focused on predicting the response properties and recep-

tive field structure of individual neurons. In contrast, here

we ask how receptive fields—independent of their precise

structure—should tile the sensory input sheet when the in-

puts themselves differ in density and activation levels.

Some aspects of magnification in topographic representa-

tions have been qualitatively reproduced using self organis-

ing maps (Ritter et al., 1992). However, these models gen-

erally lack a clear cost function and the magnification factor

can be determined exactly only in rare cases, while a gen-

eral expression is lacking (Ritter and Schulten, 1986). How

varying receptor density should be taken into account has not

been extensively studied, and most earlier work has assumed

density of input receptors as constant (Atick, 1992; Doi et al.,

2012) (but see Doi and Lewicki (2014) for an investigation of

receptive field structure under different convergence ratios).

However, signals from regions that are densely packed, such

as the fovea, are likely to show greater spatial correlation than

those from more sparsely innervated regions. These corre-

lations should affect the resulting representation as efficient

coding models aim to minimize redundancy. In contrast to re-
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Fig. 1. Illustration of the resource allocation problem and solution outline. A. Example of problem setup. The density of touch receptors differs across regions of the hand

(e.g. fingertips, shown in orange, versus finger base, yellow). Different fingers make contact with objects at different rates (dark blue versus light blue shading, darker colors

indicating higher contact rates). B. How should cortical resources be divided between the different input regions? In the example shown here, the index digit could be allocated

more resources than the middle digit due to increased activation. Similarly, the more densely innervated fingertips have larger allocation. C. Sensory inputs are correlated

according to a covariance function (here, negative exponential) that decays with distance between receptors on the sensory sheet. This function is evaluated at different

receptor distances depending on the density of sensory receptors (orange versus yellow dots at bottom). Regions with higher probability of activation exhibit greater variance

(dark versus light blue curves). D. In efficient coding models that maximize decorrelation of sensory inputs in the presence of a bottleneck, the resource allocation problem

can be solved by calculating the eigenvalues of the covariance matrix (defined by the covariance functions) for each region individually (here: example with two regions). E.

The combined set of eigenvalues from all regions is then sorted; the region where each successive eigenvalue in the combined sorted set originates from determines where

that output neuron’s receptive field will fall. F. Counting which input regions successive eigenvalues belong to results in the allocation breakdown for different bottlenecks. For

certain forms of the covariance function, this allocation can be calculated analytically.

ceptor density, there has been some work on how populations

of neurons should encode non-uniform stimulus statistics us-

ing Fisher information (Ganguli and Simoncelli, 2010, 2014,

2016; Yerxa et al., 2020), an approximation of mutual infor-

mation that can be used to calculate optimal encoding in a

neural population (Yarrow et al., 2012). Rather than recep-

tive fields uniformly tiling the input space, the optimal pop-

ulation should be heterogeneous, with receptive fields placed

more densely over high probability inputs, at detriment to low

probability regions (Ganguli and Simoncelli, 2014). Our ap-

proach differs from this prior work in two ways. First, rather

than maximizing information between the neural population

and the stimulus itself, we instead consider information be-

tween the neural population and an initial population of re-

ceptor neurons. This places a limit on the total amount of

information that can be represented. Second, we consider the

effects of limiting the population size, for which Fisher infor-

mation is less suited, as it approximates mutual information

best when population sizes are large.

The need for information maximization is often motivated

by resource constraints. These can take the form of an ex-

plicit bottleneck, where the number of receptor neurons is

greater than the number of output neurons. This is the case

in the early visual system, where photoreceptors in the retina

are much more numerous than the retinal ganglion cells to

which they project (Goodchild et al., 1996; Wells-Gray et al.,

2016). Other sensory systems might lack such explicit bottle-

necks, but still place limits on the amount of information that

is represented at a higher-order processing stage. For exam-

ple, perceptual spatial acuity in touch is typically lower than

might be expected from the spatial separation of mechanore-

ceptors, but can be improved with training up to a limit, sug-

gesting that the relevant information is present in the sensory

input but not typically represented in subsequent populations

(Wong et al., 2013). Sensory bottlenecks have been investi-

gated in the context of efficient coding (Tishby et al., 2000;

Tishby and Zaslavsky, 2015) and have had renewed theoreti-

cal interest, especially in deep learning (Lindsey et al., 2019;

Shwartz-Ziv and Tishby, 2017; Tishby and Zaslavsky, 2015).

How then should resource allocation change for different

sized bottlenecks, given varying densities of receptors and

different stimulus statistics? Here, we derive optimal neu-

ral allocations for different bottlenecks, while systematically

varying receptor density and stimulus statistics. A prelim-

inary version of these results restricted to the effects of re-

ceptor density in a one-dimensional space were previously

presented as a conference paper (Edmondson et al., 2019).

Results

We consider linear second-order models which maximise in-

formation by decorrelating the sensory inputs. Decorrelation

has featured prominently in models explaining early sensory

processing, particularly in vision (Graham et al., 2006). Here,

we use a decorrelation model to investigate the contribution

of non-uniform receptor densities and activation to the result-

ing sensory representations (see Methods for details). Recep-

tors can be placed in non-uniform densities across the sensory

sheet, with some regions having a higher density than others.

For example, in Fig. 1A, both digit tips are tiled more densely

than the rest of finger. The receptor activation covariance de-

cays with distance (see Fig. 1C). Thus, directly neighbouring

units in denser regions covary more strongly than those from

less dense regions. The activation of receptors can also vary

between regions, which is modelled through scaling the co-

variance function (see appendix A for further details). We ap-

proximate the regions as separate, such that no receptors are

activated from both regions simultaneously. The covariance
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Fig. 2. Optimal resource allocation for heterogeneous receptor densities or input statistics leads to complex trade-offs. A. Illustration of resource allocation for

heterogeneous receptor density but homogeneous stimulus statistics over all bottleneck sizes. Orange denotes the lower density region and blue the higher density region,

with a ratio of 1:3. Dotted lines show proportional representation according to receptor numbers (red) and convergence of the optimal allocation in the limit (yellow). Arrows

indicate contraction (up) and expansion (down) of the higher density region representation. B. Bottleneck allocation boundaries for different density ratios (given as low:high).

The area below each line corresponds to the low density representation, while the area above corresponds to the high density representation, as in panel A. C. Effect of

changing the extent of the spatial correlations (parameterized by the decay value σ , see Methods for details and Fig. S1 for an illustration of the covariance function for

different values of σ ). Density ratio is set at 1:3 for all σ . Increasing σ leads to expansion of the higher density region for a larger initial portion of the bottleneck. D-F. Same

as in row above but for homogeneous density and heterogeneous receptor activation. D. Illustrative example with the blue region having higher receptor activation. Note

that the representation of the higher activation region is expanded for all bottleneck widths. E Allocation boundaries for different activation ratios. The representation of the

high-activation regions is expanded for all bottlenecks. As activation ratio increases, the highly active region allocation is expanded for wider bottlenecks. F. Changing the

extent of spatial correlations (σ ) has larger effects when the activation is heterogeneous (set at 1:3 for all σ ) compared to heterogeneous density (panel C). See Fig. S2 for

an equivalent figure considering one-dimensional receptor arrangements.

matrix across all receptors then forms a block matrix, where

the covariance between separate regions is zero (Fig. 1D).

Eigenvalues can be calculated separately from the covariance

matrices of each region (inset panels in Fig. 1D). These are

then ordered by magnitude for both regions combined (grey

line in Fig. 1E). A bottleneck is introduced by restricting the

total number of output neurons. This is done by selecting

from the combined set of ordered eigenvalues until the limit

is reached. The proportion of eigenvalues originating from

each input region determines its allocation for the chosen bot-

tleneck width (see red dashed line Fig. 1E,F).

In the following, we focus on negative exponential covari-

ance functions, for which the eigenvalues and the resulting

allocation can be calculated analytically (see Methods for

mathematical derivations). We will present results for the

common case of two-dimensional sensory sheets (relevant

for vision and touch, for example), while results for one-

dimensional receptor arrangements are summarized in the ap-

pendix. For ease of analysis, all cases discussed will assume

two sensory input regions of equal size, but differing in re-

ceptor density, input statistics, or both. Results for more than

two regions or disparate region sizes are straightforward to

calculate.

Resource limits determine the amount of magnifica-

tion.

First, we investigated resource allocation in bottlenecks for

heterogeneous density of receptors and heterogeneous stim-

ulus statistics separately, whilst keeping the other factor uni-

form across the input regions.

Heterogeneous density.

For two regions with different receptor densities, we found

that the higher density region could either expand or con-

tract relative to its input density, depending on the width of

the bottleneck. Specifically, for narrow bottlenecks (smaller

than approximately 10% of input neurons), the higher den-

sity region is either exclusively represented or its representa-

tion is expanded compared to a proportional density alloca-

tion (see example in Fig. 2A). Mathematically, this can be ex-

plained by a multiplicative scaling of the eigenvalue function

for the higher density region (see illustration in Fig. S3A).

In contrast, for intermediate bottlenecks, low density regions

expand their representation, beyond what is expected for a

proportional mapping (see dashed red line in Fig. 2A de-

noting proportional allocation), leading to a contraction of

the high density region. For negative exponential covariance
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Fig. 3. Interactions between heterogeneous statistics and density. A.Expansion and contraction for a region with constant density and activation (baseline), while both

density and activation are varied for the other region. All ratios given are baseline:other region. Symbols: Dark blue Square denotes expansion of the baseline region. Box

lines show all combinations with expansion. Light blue square, expansion and contraction of the baseline region. White square indicates contraction of the baseline region.

Left: Fixed density ratio, while activation ratio is varied. Right: Fixed activation ratio, while density ratio is varied. B. Possible expansion/contraction regimes for baseline

region based on combinations of density and activation ratios. Grey dotted lines show all possible allocation regimes for a region if the activation ratio (vertical) or density

(horizontal) is fixed. The green ellipse highlights parameter combinations where activation and density are correlated. See Fig. S4 for a comparison of how receptor density

and activation interact between one-dimensional and two-dimensional receptor arrangements.

functions, this allocation converges to a fixed ratio at wider

bottlenecks of 1/(1+
√

d), where d is the density ratio between

both regions (dashed yellow line in Fig. 2A; see Methods

for derivation), as neurons are allocated to either region at

a fixed ratio (see inset in Fig. S3A). Finally, for wide bot-

tlenecks all information arising from the low density region

has now been captured, and any additional output neurons

will therefore be allocated to the high density region only.

The over-representation of the low density region thus de-

cays back to the original density ratio. The overall nonlinear

effect of bottleneck width is present regardless of the ratio

between the densities (see Fig. 2B). The spatial extent of the

correlations over the sensory sheet (controlled by the decay

constant σ in the covariance function, see Methods) deter-

mines allocation at narrow bottlenecks, and how fast the al-

location converges, but does not affect the convergence limit

itself (Fig. 2C). As σ increases, and therefore spatial corre-

lations decrease, the convergence limit is approached only

at increasingly wider bottlenecks. The extent of magnifica-

tion thus heavily depends on the correlational structure of the

stimuli for narrower bottlenecks, while receptor densities are

more important for wider bottlenecks.

Heterogeneous statistics.

Aside from receptor densities, the stimulus statistics can also

vary over the input space, leading to differences in recep-

tor activation levels and their associated response variance

(see appendix A for further details). Overall, allocations for

heterogeneous receptor activation are similar to those found

with heterogeneous density. However, while the allocations

are again a nonlinear function of bottleneck width, the repre-

sentations are solely expanded for the high activation region

across the entire bottleneck (see example in Fig. 2D). The ex-

tent of this expansion depends on the width of the bottleneck,

and is again more extreme for narrower bottlenecks (see ex-

amples in Fig. 2E). The convergence limit is 1/(1+a) where a

is the activation variance ratio, meaning that the level of ex-

pansion and contraction in intermediate bottlenecks is more

extreme than in the heterogeneous density case (see differ-

ence between red and yellow dashed lines in (Fig. 2A and

D). Finally, the effect of spatial correlations is also more pro-

nounced (Fig. 2F).

In the cases described above, the bottleneck was constrained

by the number of output neurons. Alternatively, the limiting

factor might be set as the amount of information (total vari-

ance) captured. Doing so leads to similar allocation curves

that retain the nonlinear behaviour described here (see Fig. S5

for some illustrations).

In summary, we find that representations of different inputs

regions can contract or expand, depending on the bottleneck

width. This effect plays out similarly for differences in recep-

tor density and receptor activation, however with some cru-

cial differences. Finally, for narrow bottlenecks the spatial

extent of the correlations across the sensory sheet becomes

an important driver.

Interplay between stimulus statistics and receptor

density.

In sensory systems, such as in touch, both the density and in-

put statistics vary across regions and will therefore jointly

determine the resulting allocation. As a consequence, the

convergence for intermediate bottlenecks will depend on

both density and activation ratios, and can be calculated as
1/(1+a

√
d), where a is the activation and d is the density

ratio (see Methods for derivation). Importantly, for two-

dimensional sensory sheets the activation ratio carries higher

weight in determining the allocation than does the density

ratio, and this effect is more pronounced at narrower bottle-
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necks (see much wider spread of possible allocations when

varying activation in the left panel of Fig. 3A than when vary-

ing density as shown in the right panel). Specifically, this

means that the allocation regime, i.e. whether the allocation

expands, contracts or exhibits both behaviours across all bot-

tleneck widths, is more dependent on receptor activation than

densities (Fig. 3B).

Finally, it is likely that regions with higher receptor densi-

ties will also show greater activation than lower density re-

gions. For example, in touch, the regions on the hand with

the highest receptor densities also are the most likely to make

contact with objects (Gonzalez et al., 2014). In these cases,

both effects reinforce each other and drive the resulting allo-

cation further from proportional allocation (see orange lines

in Fig. 3A, and green ellipse in Fig. 3B).

Resource limits determine the strength of plasticity

under changes in stimulus statistics.

Over most of the lifetime of an organism the resources avail-

able for processing sensory information and the density of

sensory receptors should be relatively constant. The stimulus

statistics, on the other hand, can and will change, for exam-

ple when encountering a new environment or learning new

skills. These changes in stimulus statistics should then affect

sensory representations, mediated by a variety of plasticity

mechanisms. For example, increased stimulation of a digit

will lead to an expansion of that digit’s representation in so-

matosensory cortex (Jenkins et al., 1990).

We asked how representations should adapt under the effi-

cient coding framework, and whether resource limits would

affect the resulting changes. To answer this question, we cal-

culated optimal allocations for different bottleneck widths,

receptor densities, and stimulus statistics. We then intro-

duced a change in stimulus statistics and re-calculated the

resulting allocations (see illustration in Figure 4A). As ex-

pected, we found that when increasing the receptor activation

over a region (for example, by increasing stimulation of the

region), more neurons would be allocated to this region. In-

terestingly, however, this effect was dependent on the width

of the bottleneck. The largest effects are seen for smaller bot-

tlenecks, and then diminish as the bottleneck size increases.

Figure 4B demonstrates such allocation changes for three dif-

ferent bottleneck widths for a range of receptor densities and

activation ratios. This suggests that plasticity should be rel-

atively stronger under extreme resource constraints than in

cases where limits on the information are generous.

Predicting cortical magnification in the star-nosed

mole.

Finally, we investigated to what extent the procedure out-

lined in the previous sections might predict actual resource

allocation in the brain. While our model is relatively simple

(see Discussion), decorrelation has been found to be a strong

driver in early sensory processing and one might therefore

expect the approach to at least yield qualitatively valid pre-

dictions. As currently available empirical data makes it dif-

ficult to test the impact of different bottleneck widths on the

resulting allocation directly (see Discussion), we instead fo-

Fig. 4. Re-allocation to account for changes in stimulus statistics. A. Top

left: Illustration of problem setup. Shown are two fingertips with fixed receptor den-

sity and known statistics (baseline condition). Increased stimulation is applied to

the middle digit (yellow symbols, stimulation condition), leading to changes in op-

timal allocations. Top right: Optimal allocations for baseline (blue) and stimulation

(yellow) conditions across all bottleneck widths. Stimulation of the middle finger in-

creases its representation, but the relative magnitude of the effect depends on the

bottleneck width. Bottom: Changes in allocation of the middle digit for two bottle-

neck widths (indicated by vertical black dashed lines above). The yellow dotted line

denotes increase in allocation post stimulation. This effect is proportionally larger

for the narrow compared to the wide bottleneck. B. Change in allocation when re-

ceptor activation for an input region increases (left half) or decreases (right half),

mimicking a change in stimulus statistics. Drastic changes in cortical allocation are

observed for narrow bottlenecks (green lines), while wider bottlenecks (red and pur-

ple lines) induce more moderate change. Solid lines denote equal receptor density

across both regions, while dotted lines show varying density ratios between 1:1 and

1:4.

cused on another predicted outcome of the proposed model:

the precise interaction between receptor density and recep-

tor activation in driving resource allocation that we presented

earlier. We picked the star-nosed mole as our model system,

because stimulus statistics, receptor densities, and cortical al-

locations have been precisely quantified. Moreover, the star-

nosed mole displays considerable variation in all these pa-

rameters, presenting a good opportunity to put the model to
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Fig. 5. Resource allocation in the star-nosed mole. A. Star-nosed moles have two sets of 11 tactile rays used for detecting and capturing prey. Image by Kenneth Catania

and reprinted with permission. B. Fiber innervation densities for each ray. C. Typical usage percentages for each ray during foraging. Higher usage corresponds to greater

average activation of receptors located on the corresponding ray. Typically prey is funnelled from distal rays towards ray 11, which is located next to the mouth. Ray outlines

reproduced from Catania and Kaas (1997). D. Left: root-mean-square error (RMSE) between model predictions and cortical allocation for three different models: restricted to

receptor density only (purple), restricted to receptor activation only (green), and a full model (pink) that takes into account both factors. Results confirm previous findings that

ray usage is a better predictor of the cortical allocation than receptor densities alone. Additionally, we show that including both of these factors further improves prediction

and results in the lowest overall error. Right: predicted versus empirical cortical allocations for all rays. When including both density and activation parameters, the model

provides a good fit to empirical measurements.

the test.

The star-nosed mole is a mostly underground dwelling crea-

ture relying on active tactile sensing while foraging for prey

(Catania, 2020; Catania and Kaas, 1997). This process is

facilitated by two sets of eleven appendages arranged in a

star-like pattern that make up the mole’s nose (Fig. 5A). Indi-

vidual rays are tiled with tactile receptors known as Eimer’s

organs that detect prey, which is then funneled towards the

mouth (Catania and Kaas, 1997; Sawyer and Catania, 2016).

The density of fibres innervating the Eimer’s organs differs

across the rays, with rays closer to the mouth exhibiting

higher densities (Figure 5B). The rays also vary in size as

well as in their location with respect to the mouth. This

affects their usage, as rays closest to the mouth encounter

tactile stimuli much more frequently than other rays (Figure

5C). In cortex, a clear topographic representation of the rays

can be found (Catania and Kaas, 1997). However, the extent

of the cortical ray representations is not proportional to the

physical size of the rays. Ray 11, which sits closest to the

mouth, is cortically magnified several-fold, and is considered

the tactile equivalent of the visual fovea (Catania and Rem-

ple, 2004).

Previous work by Catania and Kaas (1997) found that cortical

sizes are correlated more strongly with the pattern of activa-

tion across the rays, rather than their innervation densities.

Using the empirical data quantifying receptor densities and

stimulus statistics from this study, we investigated whether

the efficient coding model could predict typical cortical rep-

resentation sizes for each ray (see Methods for details), and

whether innervation densities or usage would lead to more ac-

curate allocation predictions. As the bottleneck size between

periphery and cortex is unknown for the star-nosed mole, we

calculated the optimal allocations over all possible bottleneck

sizes. Using the model described above we calculated alloca-

tions considering density or usage alone, or for both factors

combined. We found that the empirical cortical representa-

tion sizes are most accurately predicted by a model consider-

ing both receptor density and ray usage (Figure 5D,E), sug-

gesting the star-nosed mole could be employing an efficient

coding strategy based on decorrelation in the neural represen-

tation of somatosensory inputs.

Discussion

We examined efficient population coding under limited num-

bers of output neurons in cases of non-uniform input recep-

tor densities and stimulus statistics. Instead of focusing on

precise receptive field structure, we asked which coarse re-

gion on the sensory sheet the receptive field would fall. We

showed that the resulting allocations are nonlinear and de-

pend crucially on the width of the bottleneck, rather than be-

ing proportional to the receptor densities or statistics. Specif-

ically, narrow bottlenecks tend to favour expansion of a sin-

gle region, whereas for larger bottlenecks, allocations con-

verge to a constant ratio between the regions that is closer

to a proportional representation. Whether, across all possible

bottlenecks, allocations are always expanded, contracted or

show both expansion and contraction depends on the relative

density and activation ratios, but receptor activation plays a

bigger role. When allocation changes due to novel stimulus

statistics, a larger fraction of output neurons will switch their

receptive field to another region for narrow compared to wide

bottlenecks. Finally, we demonstrated that in the star-nosed

mole, a model including both accurate innervation densities

and statistics of contact provides a better fit to somatosensory

cortical region sizes than considering each of these factors

alone.

Comparison with previous approaches.

A key feature of efficient coding population models is the

non-uniform allocation of output neurons, whereby stimuli

occurring at higher probabilities are represented by a greater

number of neurons. A common approach is to use Fisher

Information as a proxy for mutual information, enabling the

calculation of optimal output neuron density and tuning curve

placement given a distribution of sensory stimuli (Ganguli

and Simoncelli, 2010, 2014, 2016; Yerxa et al., 2020). How-

ever, these approaches maximize information between the

output population and the stimulus distribution itself, such

that allocating additional neurons to a given region of the

input space will always lead to an increase in the overall
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amount of information represented. In contrast, our approach

assumes a finite number of input receptors in each region. We

are thus asking a different question than previous research:

once information about a sensory stimulus has been captured

in a limited population of receptors, what is the most efficient

way of representing this information? This framing implies

that once all information from a given region has been fully

captured in the output population, our method does not allo-

cate further neurons to that region. Therefore, this also places

a limit on the total size of the output population, as this can-

not exceed the total number of input receptors.

There has also been prior work on how bottlenecks affect sen-

sory representations, though mostly focused on how different

levels of compression affect receptive field structure. For ex-

ample, Doi and Lewicki (2014) predicted receptive fields of

retinal ganglion cells at different eccentricities of the retina,

which are subject to different convergence ratios. More re-

cently, such direct effects on representations have also been

studied in deep neural networks (Lindsey et al., 2019). Fi-

nally, some approaches employ a different cost function than

the mean-squared reconstruction error inherent to the PCA

method used here. For example, the Information Bottleneck

method (Tishby et al., 2000; Tishby and Zaslavsky, 2015)

aims to find a low-dimensional representation that preserves

information about a specific output variable, while compress-

ing information available in the input. It is quite likely that

the choice of cost function would affect the resulting alloca-

tions, a question that future research should pursue.

Implications for sensory processing.

The quantitative comparison of the model results with

the cortical somatosensory representation in the star-nosed

mole provided limited evidence that one of the model

predictions—namely that receptor density and activation

statistics should jointly determine cortical organisation—is

borne out in a biological model system. Further direct tests

of the theory are hampered by a lack of reliable quantitative

empirical data. Nevertheless, the model makes a number of

qualitative predictions that can be directly compared to avail-

able data or tested in future experiments.

First, there is additional evidence that both receptor density

and stimulus statistics drive allocation in neural populations.

Similar to the star-nosed model, the primate somatosensory

system also exhibits non-uniform distributions of both stim-

ulus statistics and receptor density. Both of these factors

are also broadly correlated, for example receptor densities

are higher on the fingertips, which are also more likely to

be in contact with objects (Gonzalez et al., 2014). Impor-

tantly, while receptor densities alone can explain some of

the magnification observed in the cortical somatosensory ho-

munculus, they cannot account for this effect fully (Corniani

and Saal, 2020). Indeed, evidence from non-human primates

show that cortical magnification also critically depends on

experience (Xerri et al., 1996, 1999). Similar results have re-

cently been obtained from the brainstem in mice (Lehnert et

al., 2021). Both mechanoreceptor densities (Verendeev et al.,

2015, e.g.) and hand use statistics (Fragaszy and Crast, 2016)

differ across primates, forming the basis for a potential cross-

species study. The model presented here demonstrates how

both effects can be treated within a single framework driven

by information maximization.

Second, it appears that allocation in sensory systems with

severely constrained resources is qualitatively in agreement

with model predictions. As our results demonstrated, mag-

nification should be more extreme the tighter the bottleneck.

The best characterized and most clearly established bottle-

neck in sensory processing is likely the optical nerve in vi-

sion. Given that the optic nerve serves as a narrow bottle-

neck (approx. 12-27%)1, and that the fovea contains a much

higher density of cone receptors than the periphery (Curcio

et al., 1990; Wells-Gray et al., 2016), the model would pre-

dict a large over-representation of the fovea, agreeing with

experimental observations (see Edmondson et al., 2019, for

further qualitative evidence). In order to further test the pro-

posed model, comparisons could be made between individ-

uals to study variations within a population. Specifically, it

would be expected that optic nerves containing a high num-

ber of fibers would devote proportionally fewer of them to

the fovea than optic nerves containing smaller numbers of

fibers (assuming equal receptor densities and numbers in the

retina). These comparisons could be extended across species,

making use of the fact that photoreceptor densities and optic

nerve fiber counts differ across many primate species (Finlay

et al., 2008). Finally, the extent of cortical areas can be con-

trolled by experimental interventions in animals (Huffman et

al., 1999), which would constitute a direct manipulation of

the bottleneck.

Re-allocation during development, learning, and ageing.

Changing receptor densities, stimulus statistics, or resource

limits over the lifespan of an organism should lead to a dy-

namic re-allocation of the available resources. The most

common case will be changes in stimulus statistics, as both

receptor densities and resources should be relatively stable.

In such cases, representations should adapt to the new statis-

tics. For example in touch, changing the nature of tactile

inputs affects cortical representations (Coq and Xerri, 1998;

Merzenich and Jenkins, 1993; Xerri et al., 1996). Increasing

statistics of contact over a region typically leads to expansion

of that region in cortex. Our method suggests that the pre-

cise level of expansion would be dependent on the bottleneck

width with larger effects observed for narrower bottleneck

sizes.

For the other cases, changes in fiber numbers during devel-

opment and ageing might be interpreted as a change in re-

sources. For example, the optic nerve undergoes a period

of rapid fiber loss early during development (Provis et al.,

1985; Sefton et al., 1985). Similarly, fiber counts in the optic

nerve decrease during ageing (Dolman et al., 1980; Jonas et

al., 1990; Sandell and Peters, 2001). In this case, the model

would predict a decrease in the size of peripheral representa-

tion in the bottleneck compared to the fovea. It is also pos-

1Assuming 0.71 - 1.54 million retinal ganglion cells with 80% Midget cells

(Curcio and Allen, 1990; Perry et al., 1984) and 4.6 million cones (Curcio et

al., 1990)

Edmondson et al. | Resource allocation in bottlenecks bioRχ iv | 7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445857doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445857
http://creativecommons.org/licenses/by/4.0/


sible that the receptor densities themselves may change. In

touch, ageing leads to reductions in the densities of recep-

tors in older adults (García-Piqueras et al., 2019). In such

cases, we have effectively increased the bottleneck width rel-

ative to our receptor population, which again should lead to

re-allocation of resources.

Expansion and contraction along the sensory hierarchy.

Magnification of specific sensory input regions can be ob-

served all along the sensory hierarchy, from the brainstem

and thalamus up to cortical sensory areas. Often, the amount

of expansion and contraction differs between areas. For ex-

ample, the magnification of the fovea increases along the vi-

sual pathway from V1 to V4 (Harvey and Dumoulin, 2011).

Which of these representations might be best addressed by

the model presented here? We focus on decorrelation, which

has been shown to be a driving principle for efficient cod-

ing in settings where noise is low (Chalk et al., 2018). This is

generally the case in low-level sensory processing and our re-

sults might therefore best match early sensory processing up

to perhaps low-level cortical representations. Beyond this,

it is likely that noise will be high enough for efficient codes

to shift away from decorrelation (Hermundstad et al., 2014).

Whether and how such a shift would affect neural allocations

remains to be seen.

Perceptual consequences. Does the allocation of output neu-

rons lead to testable perceptual consequences? While we do

not model neurons’ receptive fields directly, allocating more

neurons to a given region would increase perceptual spatial

acuity for that region. Indeed, cortical magnification and

perceptual acuity are correlated in both vision (Duncan and

Boynton, 2003) and touch (Duncan and Boynton, 2007). At

the same time, the absolute limits on spatial acuity are de-

termined by the density of receptors in each input region. A

naive allocation scheme that assigns output neurons propor-

tional to the density of receptors would therefore result in

perceptual spatial acuities proportional to receptor distance.

Instead, as our results have shown, the allocation should not

be proportional in most cases. Specifically, for narrow bot-

tlenecks we would expect relatively higher spatial acuity for

regions with high receptor density, than might be expected

from a proportional allocation. Conversely, for wider bottle-

necks this relationship should be reversed and spatial acuity

should be better than expected for lower density regions. In

agreement with these results, it has been found that in vision

spatial resolution declines faster than expected with increas-

ing eccentricity, suggesting a narrow bottleneck in the optic

nerve (Anderson et al., 1991).

A second consequence is that spatial acuity should be better

on regions with higher activation probability even when re-

ceptor densities are equal. Indeed, spatial discrimination in

touch improves with training or even just passive stimulation

(Godde et al., 2000; Van Boven et al., 2000), up to a limit that

is presumably related to receptor density (Peters et al., 2009;

Wong et al., 2013). Assuming a fixed resource limit, training

may offer improvements to some digits at the detriment to

others. Whether this is indeed the case has to our knowledge

not yet been empirically tested.

Finally, previous work has shown that non-uniform tuning

curves across a population will lead to characteristic biases

in perceptual tasks (Wei and Stocker, 2015). While the orig-

inal formulation assumed that this heterogeneous allocation

of output neurons was driven by stimulus statistics alone, we

have shown here that it can also be a consequence of receptor

densities. Thus, perceptual biases might also be expected to

arise from neural populations that efficiently represent sen-

sory inputs sampled by non-uniform receptor populations.

Limitations and future work.

We considered noiseless, second-order, linear models only

and demonstrated that even such simple models exhibit sur-

prising complexity in how they manage trade-offs in resource

allocation under constraints. Specifically, we found that out-

put neurons were not generally allocated proportionally to

input neurons or according to some other fixed rule. It there-

fore stands to reason that similarly complex trade-offs would

manifest in more complex models, even though the precise

allocations might differ. Nevertheless, since principal com-

ponent analysis is widely employed for decorrelation and di-

mensionality reduction, and therefore incorporated into many

other algorithms, our results immediately generalize to sev-

eral other methods. This includes independent component

analysis, which considers higher-order rather than second-

order statistics, but relies on a whitened signal, which in

the undercomplete (bottleneck) case is obtained via PCA

(Hyvärinen and Oja, 2000). Similarly, some models that do

incorporate sensory noise and maximize reconstruction accu-

racy also use an undercomplete set of principal components

to reduce the dimensionality of the sensory signal (Doi and

Lewicki, 2014). In both of the these examples the result-

ing receptive field structure will differ, but their allocation—

where on the sensory sheet they will fall—will be governed

by the same principles described earlier.

We derived allocations for simple negative exponential co-

variance functions. Choosing this parametric function al-

lowed us to calculate allocation and limits analytically for

large populations under certain circumstances. While it is

possible to solve the allocation problem numerically for ar-

bitrary covariance functions, we noticed that the presence of

small numerical errors can affect the sorting process and cau-

tion is therefore warranted. Negative exponential covariance

functions obey the intuitive notion that receptor correlations

decrease with distance, and they are likely a good match for

the sense of touch. However, alternative covariance func-

tions do occur in sensory systems, with the most prominent

example given by the visual system, where eigenvalue de-

cay follows a well-established power law (Field, 1987). In

such cases, precise allocation will differ, however as long as

the covariance function decreases with distance, our results

should hold qualitatively (see Edmondson et al., 2019, for

numerical calculations using a covariance functions empiri-

cally measured from natural images).
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Methods

Our main goal was to derive a method for efficiently allo-

cating output neurons to one of several input regions with

different correlational response structure, in the presence of

constraints on the number of output neurons or amount of in-

formation being transmitted. In the following, we focus on

the main rationale and equations, while specific proofs can

be found in the appendix. First, we outline the framework

for combined whitening and dimensionality reduction that is

employed. Next, we demonstrate how this framework can be

applied to multiple input regions with different statistics and

densities of receptors, and how calculation of the eigenvalues

of region-specific covariance matrices solves the problem of

resource allocation. Finally, we demonstrate how the prob-

lem can be solved analytically for a certain choice of covari-

ance function.

Combined whitening and dimensionality reduction.

We assume that receptors are arranged on a two-dimensional

sensory sheet. Correlations in the inputs occur as receptors

that are nearby in space have more similar responses. In-

formation is maximised in such a setup by decorrelating the

sensory inputs. Here we decorrelate using a second-order lin-

ear model. To model the bottleneck, we restrict the outputs

to m < n, where n is the total number of receptors.

If the inputs are represented as a matrix X of dimensions

n× z (where z is the number of sensory input patterns), then

our goal is to find an m×n dimensional matrix W such that

W X is uncorrelated:

X
T
W

T
W X = I. (1)

This is achieved by setting W = Σ
− 1

2 , where Σ = X
T
X .

Solutions can then be expressed in terms of the diagonal ma-

trix of eigenvalues, Λ, and eigenvectors, Φ, of the covariance

matrix Σ:

W = P Λ
− 1

2 ΦT . (2)

Whitening filters are not unique and obtained with any or-

thogonal matrix P . If P = I , the receptive fields W are the

principal components of the inputs (standard PCA). Local-

ized receptive fields are obtained by setting P = Φ, which is

known as ZCA (Zero-Phase Component Analysis). In cases

with a bottleneck the solution involves solving an Orthogonal

Procrustes problem (Doi and Lewicki, 2014) to find P
∗, an

m-dimensional orthogonal matrix (where m is the size of the

bottleneck) which minimizes the reconstruction error of the

inputs and a set of ideal local receptive fields Wopt :

P
∗ = min

P

∥

∥

∥
Wopt −P Λ

− 1
2 ΦT

∥

∥

∥

2

F
, (3)

where ‖·‖F denotes the Frobenius norm, and Λ and Φ are as

above but retaining only those components with the m largest

eigenvalues. In either case it can be seen that independent of

the precise receptive field structure (which will partly depend

on P ), the solution relies on the m largest eigenvalues of the

covariance matrix Σ. It is this aspect that we will exploit in

the following and that allows us to determine the input region

within which a receptive field falls.

Extension to multiple input regions.

For our specific problem, we are interested in the case of mul-

tiple input regions with different correlational structure (i.e.

due to differing receptor density or activation). To simplify

the derivations we approximate different input regions as in-

dependent, such that the overall covariance matrix will be a

block diagonal matrix. The covariance Σ for two input re-

gions, R1 and R2, can then be expressed as follows:

Σ =

[

Σ
(R1)

0

0 Σ
(R2)

]

(4)

This assumption turns out to be a reasonable approximation

when region sizes are relatively big and correlations typically

do not extend far across the sensory sheet (see Edmondson et

al., 2019, for a comparison between block and non-block re-

gion covariance matrices in 1D). Furthermore, in many sen-

sory systems the borders between regions of differing density

tend to be relatively narrow. For example, in touch, the digits

of the hand are spatially separated, and regions of differing

densities, for example between the digit tips and proximal

phalanges, neighbour along the short rather than long axis of

the digit. In the star-nosed mole, rays of different innerva-

tion densities are separated and neighbour only along their

connection to the rest of nose. However, the block matrix ap-

proximation might be problematic in cases with many very

small adjacent regions with strong, far-ranging correlations.

The eigenvalues and eigenvectors of a block diagonal covari-

ance matrix also follow the block diagonal form and can be

calculated from the individual region covariances alone, by a

simple application of the Cauchy interlacing theorem. Thus,

the corresponding eigenvalues and eigenvectors are:

Λ =

[

Λ
(R1)

0

0 Λ
(R2)

]

and Φ =

[

Φ(R1)
0

0 Φ(R2)

]

(5)

Due to the sensory bottleneck, only the m largest eigenvalues

from the combined set Λ will be retained. An eigenvalue

selected from Λ
(R1) indicates that the receptive field of the

corresponding output neuron will fall onto region R1.

Calculation of eigenvalues.

We model the covariance between receptors as a negative ex-

ponential function. The covariance matrix is then calculated

as a function of distance between pairs of receptors as follows

(see Fig. 1C). For region R1 we get:

Σ
(R1)
i j = e−σ |xi−x j |, (6)

where xi and x j are the locations of the ith and jth receptors,

and σ is the decay constant. To calculate the covariance for

R2, we need to take into account the potentially different re-

ceptor density and response variance for this region. Denot-

ing the ratio of the response variances between both regions

by a, and the ratio of receptor densities by d, the covariance

for R2 can be expressed as:
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Σ
(R2)
i j = ae−dσ |xi−x j |. (7)

It can be seen that a scales the overall covariance matrix (see

also Fig. 1C), while d changes the spatial extent of the cor-

relations and thereby implicitly accounts for the different re-

ceptor density.

The corresponding eigenvalues for an exponential covariance

function in the continuous domain can be calculated analyti-

cally. The eigenvalue-eigenvector problem is expressed as an

integral homogeneous equation, such that for R1 we get:

λkφk(x) =
∫ L

0
e−σ |x−y|φk(y)dy, (8)

where φk(x) is the kth eigenfunction and λk its corresponding

eigenvalue. The domain length L is the input region size for

one of the dimensions.

It can be shown that solutions to this problem can be re-

lated to the Laplacian operator (see appendices B and C for

proofs), such that:

λk =
2σ

µk +µk +σ2
, (9)

where µk are the eigenvalues of the Laplacian operator.

The general solution for the Laplacian eigenvalue problem

for a two-dimensional rectangle with Dirichlet boundary con-

ditions is (Strauss, 2007):

µk = µl,m =
l2π2

L2
1

+
m2π2

L2
2

, l,m = 1,2, .. (10)

where L1 an L2 are the size of the domain for each dimension.

The calculation of the eigenvalues for R2 proceeds analo-

gously. The eigenvalue-eigenvector problem is given as:

λkφk(x) =
∫ L

√
d

0
ae−dσ |x−y|φk(y)dy (11)

The total density of a square region, d, is calculated as

(
√

d)2 = d, where each axis of the region has density
√

d.

Since the receptor density ratio d causes an implicit stretch-

ing of the space, the region length L needs to be adjusted

accordingly. In 2D, each axis is therefore scaled by
√

d, so

that L = L
√

d.

Allocation in the bottleneck.

Given a sensory system with limited representational capac-

ity, different regions may be allocated different amounts of

resources. Here we calculate the allocations over different

bottleneck widths for two regions, while the extension to

multiple regions is given in appendix E. In the following, we

assume two-dimensional square regions of equal size for ease

of analysis (see appendix F for the equivalent solution in 1D).

A single variable L is therefore used to denote the lengths of

the squares. Following (9), the eigenvalues for regions R1

and R2 can now be calculated as:

R1 : λ
(R1)
l,m =

2σ

π2L−2(l2 +m2)+σ2
(12)

R2 : λ
(R2)
n,o =

2σa
√

d

π2L−2(n2 +o2)+σ2
(13)

where l,m and n,o ∈ N enumerate different eigenvalues for

regions R1 and R2, respectively.

In order to calculate how many output neurons are allocated

to R1 and R2 for different bottleneck widths, we will need to

establish an ordering of the eigenvalues, such that for each

pair (l,m) we can determine the sorted rank of the eigen-

values. In contrast to the 1D case (see F), there is no nat-

ural ordering of the eigenvalues in two dimensions, how-

ever a close approximation can be obtained by calculating

the number of lattice points enclosed by a quarter circle with

radius p = l2 + m2 (see appendix D for full details). De-

noting this function as N(p) and setting p(R1) = l2 +m2 and

p(R2) = n2 + o2, we can then calculate the number of eigen-

values allocated to R1 as a function of the number of neurons

allocated to R2, by setting λ (R1) = λ (R2) and solving for p(R2).

This yields:

p(R2) = a
√

d p(R1)+
L2σ2a

√
d −L2σ2

π2
. (14)

As we allocate more neurons to region R1, the ratio
N(p(R1))

N(p(R2))

simplifies to: limR1→∞
N(p(R1))

N(p(R2))
= a

√
d. The fraction of neu-

rons allocated to each region therefore depends on the size of

the bottleneck and converges to 1

1+a
√

d
and a

√
d

1+a
√

d
for R1 and

R2 respectively.

Calculations for star-nosed mole.

The eleven rays were approximated as 2D square regions

with areas set to their reported sizes (Sawyer and Catania,

2016). Receptor densities for each ray were calculated as

the sensory fiber innervation per mm2 (Catania and Kaas,

1997). Approximations of receptor activation on each ray

were calculated from empirical data of prey foraging interac-

tions recorded by Catania and Kaas (1997). Contact statistics

were converted to receptor activation probabilities with re-

ceptors following a Bernoulli distribution. Finally, activation

variance was calculated as the variance of the Bernoulli dis-

tribution (see also appendix A). The decay rate σ of the nega-

tive exponential covariance function was determined for each

ray using a model of the typical extent of receptor activation

during interaction with prey stimuli of varying size. Each

ray interacts with varying prey sizes at different frequencies.

For example, ray 11 is typically contacted by smaller stimuli

more often than other rays. A 2D model of the rays was used

to simulate average responses to each stimulus size. Each

model ray was tiled with receptors, and circular stimuli of

different sizes were then randomly placed over the ray. The

radii and frequencies of each stimulus size were based on

the prey model (Catania and Kaas, 1997)). A ray receptor

was marked as active if its coordinate position was within

the bounds of the stimuli. Response covariance between re-

ceptors was then calculated and an exponential function was

fit to find the σ decay parameter. To determine allocations,
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the eigenvalues for each ray were calculated analytically us-

ing equation (A.24), resulting in allocations for each ray at

all bottleneck widths. Three models were compared: first, a

’density only’ model, which includes accurate receptor den-

sities, but receptor activation remains uniform across all rays;

second, an ’activation only’ model, which includes heteroge-

neous receptor activation, but uniform receptor density across

all rays; finally, the ’full model’ combines both accurate den-

sities and receptor activation. Model allocations for each ray

were compared to the cortical allocation empirical data from

Catania and Kaas (1997). As the bottleneck size for the star-

nosed mole is unknown, the root-mean-square error (RMSE)

was calculated for each model at all bottleneck widths. The

bottleneck resulting in the lowest error was then selected for

each. For the activation only and full models, the lowest

RMSE values were between 37-45% bottleneck widths. For

the density only model, RMSE was consistently between 4.5-

5 over all bottlenecks widths.
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A Stimulus statistics and response variance

Appendix 1: Mathematical proofs and deriva-

tions

A. Stimulus statistics and response variance.

Decorrelation works on second-order statistics and therefore

stimulus statistics would only be taken into account by the

model if they affect the covariance matrix. One way this can

happen is through the extent of the spatial correlations (pa-

rameter σ in the covariance function). For example, in touch

the size distribution of stimuli that would typically make con-

tact with a given skin region might differ, leading to a differ-

ent correlational structure. While we calculate allocations for

different values of σ , we keep this value fixed across different

input regions, for simplicity.

A more common case is that of receptors in one region being

more active than receptors in another region. For example,

in touch the fingertips make contact with objects much more

frequently than does the palm. An increased probability of

making contact would translate into higher receptor response

rates. In turn, higher response rates imply higher response

variance, which would be directly reflected in the covariance

matrix as a multiplicative scaling of the covariance function.

For example, assuming that each receptor follows a simple

Bernoulli distribution (either on or off, with a probability of

p being on), then the response variance can be calculated as

p(1− p)= p− p2. Assuming that the likelihood of any recep-

tor being active is generally low, the variance scales almost

linearly with receptor activation. Differences in activation

between two regions are represented by the activation ratio a

throughout the paper.

B. Relationship between PCA and Laplacian eigen-

value problem.

B.1. Rationale.

Let Ω be a region with a density of receptors ρ . In a one

dimensional region Ω = [0,L], the density can be expressed

as ρ = N
L

or number of receptors per unit length. Assuming

an exponential decay of correlations, the covariance between

receptors i and j is:

C(i, j) = e(−σ |i∆x− j∆x|), (A.1)

where ∆x = 1/ρ is the distance between receptors. Subsam-

pling the space by taking a fraction N/d of the original re-

ceptors, d > 1, the covariance for positions i, j, becomes:

C̃(i, j) = e(−σ |id∆x− jd∆x|) = e(−dσ |i∆x− j∆x|). (A.2)

Therefore, we encode the changes in receptor density in a

scaling of the exponential decay rate. For a given distribution

of receptors, there is an induced partition of the interval [0,L],
therefore, for a fixed x = i∆x, the covariance in the jth bin is

approximately equal to the area of the exponential covered in

that bin:

∫ j∆x

( j−1)∆x
C(x,y)dy ≈C(i∆x, j∆x)∆x,

Summing over all the bins, we arrive at the PCA problem:

n

∑
j=0

C(i∆x, j∆x)φ( j∆x)∆x = λφ(i∆x). (A.3)

The continuum limit is found formally as ∆x → 0.

B.2. Derivation.

In order to find the optimal assignment for a given recep-

tor density, we are interested in solutions to the following

equation which can be seen as a continuous version of the

traditional PCA problem with an exponentially decaying co-

variance matrix:

λφ(x) =
∫ L

0
e(−σ |x−y|)φ(y)dy, (A.4)

where σ is the decay rate. We are interested in solutions

φ ∈ C2(R), that is, twice differentiable solutions that satisfy

appropriate boundary conditions.

Theorem 1: If φ is a solution of (A.4), then it is an eigen-

function of the Laplacian operator with eigenvalues:

µ =
2σ

λ
−σ2. (A.5)

That is, in one dimension, solutions φ satisfy:

− d2

dx2
φ(x) = µφ(x). (A.6)

Proof: Differentiating equation (A.4) twice using the

Leibniz rule we obtain:

d

dx
φ(x) =

σ

λ

{

−
∫ x

0
e−σ(x−y)φ(y)dy

+
∫ L

x
eσ(x−y)φ(y)dy

}

, (A.7)

d2

dx2
φ(x) =

σ

λ

{

−2φ(x)+σ

∫ L

0
e−σ |x−y|φ(y)dy

}

.

The second term on the right hand side can be replaced using

(A.4) obtaining the desired result:

d2

dx2
φ(x) =−2σ

λ
φ(x)+σ2φ(x)

or

− d2

dx2
φ(x) =

(

2σ

λ
−σ2

)

φ(x).

The previous is a sufficient conditions on the solutions to

(A.4). A necessary condition is given in the following the-

orem:

Theorem 2: A solution to (A.6) is a also solution to (A.4) if

it satisfies the following boundary conditions:

φ ′(0) = σφ(0) (A.8)

φ ′(L) =−σφ(L). (A.9)
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Proof: Let’s assume φ is a solution to (A.6). We pro-

ceed by convolving (A.6) on both sides with the kernel e−σx:

∫ x

0
e−σ(x−y)φ ′′(y)dy = µ

∫ x

0
e−σ(x−y)φ(y)dy.

Integrating by parts twice we get:

φ ′(x)− e−σxφ ′(0)−σφ(x)+σe−σxφ(0)+

σ2
∫ x

0
e−σ(x−y)φ(y)dy

= µ

∫ x

0
e−σ(x−y)φ(y)dy. (A.10)

Using (A.5) and (A.9), we obtain:

−φ ′(x)+σφ(x) =
2σ

λ

∫ x

0
e−σ(x−y)φ(y)dy. (A.11)

Repeating the procedure with the kernel eσx in the interval

[x,L], yields:

φ ′(x)+σφ(x) =
2σ

λ

∫ L

x
e−σ(x−y)φ(y)dy. (A.12)

Adding (A.11) and (A.12) we recover (A.4) which finalizes

the proof.

B.3. Scaling.

In some instances of our problem, the exponential covari-

ance will be scaled by the activation ratio, a. In general, the

same reasoning applies to any linear combination of solu-

tions, therefore, our results extend to that case. In particular,

we have the following result:

Theorem 3: The eigenvalues of the scaled covariance matrix,

C′(x,y) = aC(x,y) are:

λs = aλ , (A.13)

where λ is an eigenvalue of the original problem.

Proof: Let φ(x) be a solution of (A.4). By linearity of

the integral we have:

∫ L

0
ae(−σ |x−y|)φ(y)dy

= a

∫ L

0
e(−σ |x−y|)φ(y)dy = aλφ(x) (A.14)

C. Solutions.

In the previous section we saw that solutions of the PCA

problem (A.4) and Laplacian (A.6) coincide if boundary con-

ditions (A.9) and (A.8) are met.

In this section we show how these solutions relate to solu-

tions of the boundary value problem of (A.6) with φ(0) =
φ(L) = 0, which correspond to the eigenmodes of an ideal-

ized vibrating string fixed at the extremes. Such modes are

considerably simpler than the exact ones and, as we show, are

sufficient for our analysis.

C.1. Eigenmodes of a vibrating string.

For κ =
√

µ,µ > 0, solutions can be found by assuming a

general solution of the form:

φ(x) = Bsin(κx)+C cos(κx), (A.15)

and then using the boundary conditions to find the constants.

The first boundary condition implies that C = 0. The second

boundary condition gives the equation:

sin(κL) = 0

which is satisfied for κL = nπ or

µ =
n2π2

L2
. (A.16)

where n = 1,2... is the index of eigenvalue.

C.2. Exact eigenvalues.

In order to find the exact analytical eigenvalues of (A.4), we

again assume µ > 0 and a solution of the form (A.15). Using

the first boundary condition (A.8, A.9) we get the following

relationship:

B =
σ

κ
C, (A.17)

and with the second boundary condition, we obtain

tanκL =
κB+σC

κC−σB
; (A.18)

replacing (A.17), we find the transcendental equation

tanκL =
2σκ

κ2 −σ2
, (A.19)

whose solutions lead to the exact eigenvalues of the contin-

uous PCA problem. Replacing (A.16) in (A.19) and reorga-

nizing the right hand side, we find that the regimes for which

our approximation is most accurate, are those for which
(

2nπ

Lσ

)(

1

( nπ
Lσ )

2 −1

)

≈ 0. (A.20)

We have made sure that this condition was met in the anal-

yses presented.The criterion includes cases where the spatial

extent of the correlations is relatively small compared to the

size of the overall sensory sheet, which should be a realis-

tic case in many biological scenarios. Finally, it should be

pointed out that our procedure does not require the calcula-

tion of exact eigenvalues, but only relies on their relative or-

dering to be preserved and results should therefore be robust

to small errors in the approximations.

D. Ordering in the 2D square case.

For rectangle regions, the ordering can be solved by calculat-

ing the number of lattice points enclosed by a quarter ellipse

(Strauss, 2007). Here we use square regions and therefore the

solution is the number of points enclosed in a quarter circle.

The Gauss circle problem determines the number of integer

lattice points which lie within a circle with radius p ≥ 0, with

its center at the origin:

N(p) = #{(l,m) ∈ R|l2 +m2 ≤ p2}. (A.21)
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E Allocation for multiple regions in 2D

The number of lattice points within the circle is approxi-

mately equal to its area. The number of points within a square

region can be approximated by calculating the area of the up-

per quarter of the circle (positive values only).

N(p) =
π p2

4
(A.22)

The number of eigenvalues in each region is therefore the

area of the intersection of the circle and region.

For each region we calculate the number of lattice points en-

closed by a quarter circle with radius equal to l2 +m2 for R1,

and the solution of equation (14)– n2 + o2 – for R1, where

l,m,n,o = 1,2... This number is approximately the area of

the quarter circle. For values of l2+m2 or n2+o2 greater than

the total number of eigenvalues in each dimension (L
√

d), the

approximation diverges from the true ordering as the area of

the quarter circle becomes larger than the area of the lattice

(region). In this case a correction term is added:

N(p) =











π p

4
− parccos

(

k√
p

)

− k
√

p− k2, if
k√
p
< 1.

π p

4
, otherwise.

(A.23)

where p is either l2+m2 or n2+o2 for R1 and R2 respectively,

k is the total number of eigenvalues in each region. Assuming

region size L, where each receptor is spaced one unit apart,

k = L2 for R1, and k = (Ld)2 for R2.

E. Allocation for multiple regions in 2D.

For more than two regions, density and activation ratios

for each additional region are calculated relative to a cho-

sen baseline region. This leads to following general form for

calculation of the eigenvalues of any Region x:

Rx: λl,m =
2σa

√
dx

l2π2L−2
√

db +m2π2L−2
√

db +σ2
√

db

(A.24)

where a is the region activation scaling ratio, db is the density

of the baseline region, and dx the density of region x. l,m ∈N

enumerate different eigenvalues for region x.

F. Allocation for the 1D case.

The 1D case for changes in density has previously been ad-

dressed in Edmondson et al. (2019). Here we extend this to

include changes in activation. For two regions R1 and R2, we

can calculate their eigenvalues as:

R1 : λ
(R1)
l =

2σ

l2π2L−2 +σ2
(A.25)

R2 : λ
(R2)
m =

2σad

m2π2L−2 +σ2
(A.26)

where d is the ratio of higher and lower densities, a is the

ratio of receptor activation, L is the length of the region, and

l,m ∈N denote successive eigenvalues for regions R1 and R2,

respectively.

To calculate how many output neurons are allocated to region

R2 as a function of the number of neurons allocated to region

R1, we set λ
(R1)
l = λ

(R2)
m and solve for m. This yields

m =

√

ad(l2π2 +L2σ2)−L2σ2

π
. (A.27)

It becomes apparent that for l = 1, i.e. the first neu-

ron allocated to region R1, we have already assigned m =
√

ad(π2 +L2σ2)−L2σ2

π
neurons to region R2. As we al-

locate more neurons to region R1, the ratio m
l

simplifies to:

liml→∞
m
l
=

√
ad. The fraction of neurons allocated to each

region therefore depends on the size of the bottleneck and

converges to 1

1+
√

ad
and

√
ad

1+
√

ad
for R1 and R2 respectively.
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Fig. S1. Effect of different values of σ on the covariance function decay. Smaller σ leads to a slower decay and therefore a larger

extent of spatial correlations. When the sigma is large, receptors have less similar responses to their neighbours, and therefore co-vary

less. Orange points denote the baseline spacing of receptors along one dimension. When receptor density is varied, the other region

will have higher density (e.g. 1:3, indicated by blue dots).
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F Allocation for the 1D case

Fig. S2. Resource allocation for heterogeneous receptor densities and variations in input statistics in 1D. A. Examples of

allocation for two input regions with differing receptor densities and activation (see insets) for different bottleneck widths, demonstrating

complex trade-offs in resource allocation. Here ratio for low:high density = 1:3, σ = 0.6. Dotted lines show representation proportional to

receptor density (red) and convergence in the limit (yellow). Arrows indicate expansion (down) and contraction (up) of the higher density

(blue) region. Both expansion and contraction of the higher density region is seen, similar to the 2D case. B. Allocation boundaries for

different density ratios. Ratios are given as low:high density. C Effect of changing the decay σ parameter. Density ratio is set at 1:3 for

all sigmas. Panels D-F, same as above but for density constant across the two regions and receptor activation manipulated. Activation

ratio is set at 1:3 in panels D and F. Note that in panel D,the representation of the higher activation (blue) region is expanded for all

bottlenecks.
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Fig. S3. Illustration of eigenvalue sorting and resulting allocation. Main panels: Eigenvalues for heterogeneous density (A),

heterogeneous activation (B), or combined (C). For each the manipulated ratio is set as 1:2. For simplicity, the example considers 1D

regions. Orange markers show eigenvalues from the baseline region, which is identical for all panels. Blue markers show eigenvalues

from the second region with higher density, activation, or both, respectively. Markers connected by the grey line show the combined

set of sorted eigenvalues from both regions. Insets: Cumulative allocation for the set of eigenvalues marked by the red ellipse in the

main panel. Horizontal orange lines indicate eigenvalues from and therefore allocation to the orange region, whilst vertical blue lines

indicate allocation to the blue region. A. Heterogeneous density. Increased receptor density in the blue region causes higher spatial

correlations between neighbouring receptors and therefore larger eigenvalues, leading to a scaling of the eigenvalue curve. Increased

density also leads to a larger number of receptors in the blue region, increasing the number of eigenvalues from this region and the

total number of eigenvalues considered. B. Heterogeneous activation. Increased variance in the blue region leads to a scaling of the

eigenvalue curve. However, the number of receptors in the blue region is not affected, explaining differences observed compared to A.

C. Heterogeneous density and activation. Effects from A and B are combined, leading to a double-scaling of the eigenvalue curve, plus

and increase in the total number of eigenvalues.
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F Allocation for the 1D case

Fig. S4. Comparison between 1D and 2D results for heterogeneous activation and density. A. Effect of changing both the density

and activation, and possible resource allocations for two regions. Plots show the same density ratio, 1:5, considering 1D (left) and 2D

(right) regions. Allocation % is for baseline region (region 1). Each line denotes the variance ratios between Region 1:Region 2 (see

colorbar). Lines which are solid denote contraction of region one’s representation versus density, whilst dotted lines are expansion.

The horizontal red dashed line shows the proportional density representation. Across both 1D and 2D, different patterns of expansion

and contraction occur. Region one is more likely to either be fully expanded or contracted for the whole bottleneck in 2D, whereas in

1D both expansion and contraction occurs (denoted by light blue square, which covers three activation ratios in 1D, but only 1:1 in 2D

as indicated by the vertical box lines). In 1D, the same activation and density ratio leads to convergence at the proportional density,

whereas for 2D, the convergence is always lower. B. Comparison of the possible allocation schemes between 1D (left) and 2D (right).

Dotted grey line denotes density ratio from panel A. In 2D, the likelihood of both expansion and contraction (light blue region) of the

representations decreases.
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Fig. S5. Limit on information rather than number of neurons. Resource allocations where the bottleneck is expressed as variance

explained. Because eigenvalues decrease dramatically in size, this re-expression results in a ’squashing’ of the allocation curve towards

higher bottleneck sizes, as the initial eigenvalues in the sorted set explain a much larger amount of the variance. A. Examples with

heterogeneous density. B. Examples with heterogeneous activation. C. Examples with heterogeneous density and activation. Dashed

red line in each denotes allocation proportional to density.
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