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1 Introduction

Developing models of complex networks has been a major industry in the
fields of physics, mathematics, and computer science during the last decade.
Empirical study of numerous large networks harvested from the real world
has revealed that, unlike the classical models of random graphs developed
by Erdős and Rényi for applications to probabilistic combinatorics, many
of the complex networks which surround us today have high correlation
coefficients and/or power-law degree sequences. This observation has driven
the development of numerous alternative distributions for random graphs,
which often are described by some generative procedure.

Unfortunately, it is much easier to propose a generative procedure than
to refute one. However, the numerous models for real-world graphs in the lit-
erature today may not withstand the test of time any better than the Erdős-
Rényi distribution. This motivates the approach pursued in the present
paper. Instead of studying a particular model for generating graphs with
the hopes of finding it “more realistic” than previously proposed models,
this paper considers an approach for incorporating randomness into network
modeling that is less model-specific.

In this paper, a complex network is viewed as composed of a base graph
and a random perturbation. The general goal in this framework is to show
that some property is likely to hold for a wide variety of base graphs and
under a very gentle random perturbation. For example, [25] shows that
if a network is generated from any connected base graph on n vertices,
perturbed by adding εn random edges, then whp the network will have
diameter O(ε−1 log n).

This can be viewed as work in the line of “How many random edges
make a dense graph Hamiltonian?”, and subsequent studies of the effects of
adding a few random edges to dense graphs [12, 11, 31]. It is also similar
in spirit to the smoothed analysis of algorithms of Spielman and Teng [37]
which has been used to explain why algorithms perform better in practice
than worst-case bounds predict (see also [38, 5, 6, 7, 19]). Also similar are
the hybrid graphs studied in [15, 4] which explicitly model long and short
edges.

In addition to the perturbation models previously considered on sparse
random instances in [25], this paper will consider non-uniform perturba-
tions, in the spirit of Jon Kleinberg’s small-world model [30] and long-range
percolation in finite graphs studied in [8, 18, 9], and also the graph which
both these models build upon, the small-world model of Watts and Strogatz
[39].
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Perturbation Expander whp?

1-out Yes, for any connected Ḡ
Gn,ε/n Not if Ḡ has a bad partition

Watts-Strogatz Small World Not if Ḡ has a bad partition
Kleinberg Small World Yes, for any conn. Ḡ, if r < rmax(Ḡ)

Table 1: Conditions for expansion under several perturbations

1.1 Results and applications

The main technical development in this paper is a technique for understand-
ing when randomly perturbed graphs exhibit expansion properties. This is
motivated by the success of expansion bounds on more traditional random
instances. For sufficiently dense Erdős-Rényi graphs, the First Moment
Method provides a simple way to obtain a whp lower-bound on expansion.
This paper provides a new method of accounting that permits a similar First-
Moment-Method approach to be employed on randomly perturbed graphs.

For clear presentation, this new application of the First Moment Method
is presented in the proof of an expansion property for a random graph G
formed by perturbing any connected graph Ḡ by adding a random 1-out
(which is the graph formed by adding an edge out of every vertex to another
vertex chosen uniformly at random, and ignoring the directions of the edges).

Theorem 1 For any sufficiently small δ > 0, for any n-vertex connected
graph Ḡ, and for R ∼ Gn,1-out, the perturbed graph G = Ḡ + R has the
following property whp: for all S ⊂ V with |S| ≤ 3

4n, at least δ|S| edges go
between S and S̄.

This technology is also applied to similar random graphs, to yield results
summarized in Table 1.

With the additional assumption that Ḡ does not contain any set S ⊂ V
with |S| > (1 − ε)n and 2eḠ(S) + eḠ(S, S̄) ≤ |E(Ḡ)|, the same technique
can show that the perturbed graphs which are expanding are also rapidly
mixing.

1.2 History of expansion in random graphs

A close connection between edge expansion, vertex expansion, spectral gap,
and mixing time has emerged over the last 40 years [13, 3, 1, 36, 32, 40, 14].
Through this link, many different results on random graphs can be related to
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expansion properties. In regular and nearly-regular graphs, bounds on the
second-largest eigenvalue of the adjacency matrix give bounds on expansion,
[28, 29, 27, 2, 26, 22]. In a graph with a power-law degree distribution
or other far-from-regular graphs, the eigenvalues of the adjacency matrix
are not necessarily related to eigenvalues of the Laplacian and expansion.
Both have been investigated theoretically and experimentally in recent years
[21, 35, 8, 33, 17, 16, 34, 23].

In the empirical study of complex networks occurring in the real world,
examining Laplacian eigenvalues has revealed that some real networks are
expanders and others are not [10, 20]. This has led to the development of
web graph models which specifically avoid being good expanders [24].

Algorithmically, there are many benefits to knowing that a graph is
an expander (for example, rapid mixing, disjoint paths and routing, and
robustness to attacks) and there are many other benefits to knowing that a
graph is not an expander (for example, high-quality cuts, divide-and-conquer
algorithms, and compressing data). Expansion may be less universal to real-
world graphs than the some other properties observed empirically like local
clustering and power-law degree distributions.

1.3 Notation

Undirected edges are sets of 2 vertices, but edge {u, v} will be abbreviated as
uv when it is not confusing to do so. For any graph H, let E(H) denote the
edge set of H, let V (H) denote the vertex set of H, and for sets S, T ⊆ V (H),
let eH(S, T ) denote the number of edges between S and T in H, and let eH(s)
denote the number of edges in E(H[S]). Let degH(v) denote the degree of
v in H. The subscripts for e(S, T ), e(S), and deg(v) will be omitted when
referring the graph G if it is not too confusing to do so.

1.4 Distributions for random graphs

Perturbed graph 1 (P1): The randomly perturbed graph that appears
in Theorem 1 is a random graph generated by starting with base graph Ḡ
and adding a random 1-out (Gn,1-out is the distribution of random graphs
where every vertex chooses a neighbor uniformly at random and adds a edge
to it.) The random graph G = Ḡ+R where R ∼ Gn,1-out is studied primarily
to illustrate the central technique of this paper, although it is a reasonably
small perturbation. On average it changes the degree of every vertex by 2.

Perturbed graph 2 (P2): In the context of studying the effects of
randomness in complex networks without making drastic assumptions about
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the distribution of randomness, it would be better to use a perturbation that
does not change the base graph as much as a 1-out does. This can be ac-
complished by starting with base graph Ḡ and adding a sparse Erdős-Rényi
random graph (Gn,ε/n is the distribution of random graphs where each of the
(

n
2

)

candidate edges appears independently with probability ε/n.) The ran-
dom graph G = Ḡ+R where R ∼ Gn,ε/n is studied in [25], which shows that
whp diam(G) = O(ε−1 log n). Since, on average, this perturbation changes
the degree of every vertex by only ε, the local effects of the perturbation are
quite minimal.

Small-world graph 1 (SW1): The small-world model of Watts and
Strogatz is generated by starting with a base graph Ḡ and an ordering of
the edges E(Ḡ) (in [39] Ḡ is a ring of n vertices with each vertex connected
to its k nearest neighbors with k � lnn, and the edges are ordered in a
particular way that is implicit in the description of the perturbation). The
base graph is perturbed in the following fashion: proceed through the edges
according to the ordering, and for each edge, with probability p, randomly
rewire this edge to a vertex chosen uniformly at random, with duplicate
edges forbidden; otherwise leave the edge in place.

Small-world graph 2 (SW2): Kleinberg’s small-world graph is a
random digraph generated by starting with a base graph Ḡ and a distance
function d(·, ·) on the vertices of V (Ḡ) (in [30] Ḡ is primarily taken to be an
n × n grid, where V = [n]2, and uv is an edge if d1(u, v) ≤ p; the distance
function is taken to be the `1 norm). The base graph is perturbed by adding
q random edges out of every vertex independently at random, where the i-
th edge out of vertex v is denoted by ev,i and is chosen according to the
distribution Pr[ev,i = vw] = d(v, w)−r

/(
∑

u 6=v d(v, u)−r
)

for all w 6= v.
Comparison of SW1 and SW2: SW2 is often viewed as a generaliza-

tion of SW1. The big difference is that while SW1 rewires edges uniformly
at random, SW2 includes the parameter r, which controls the degree to
which the underlying network is willing to try new things.

There is also a subtle difference between these two models. While SW1

randomly rewires each edge of the underlying graph with probability p
(which, for an r-regular graph, results in rp random edges expected out
of each vertex), SW2 adds q random edges out of each vertex. This sounds
very similar for q = rp, and it is similar, but it is also different in a very im-
portant way. Graphs from the SW2 distribution are expanders whp, while
graphs from the SW1 distribution are not necessarily so.
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1.5 Outline of what follows

Section 2 proceeds with the proof of Theorem 1, which uses the new method
of First-Moment-Method accounting to show that G = Ḡ + R has e(S, S̄) ≥
δ|S| for all S whp when R is a 1-out (P1).

Section 3 considers the more gentle perturbation, where R is distributed
as Gn,ε/n instead of as a 1-out. In this case, G is not necessarily an expander,
and a criteria for Ḡ of having a “bad partition” is shown to prevent G from
satisfying the expansion property whp. The same results are also shown
to hold for Watts-Strogatz random graphs (SW1). In particular, when Ḡ
is a cycle with edges connecting each vertex to its k nearest neighbors, or
when Ḡ is a d-dimensional grid, it contains a bad partition and hence the
perturbed graph is not an expander whp.

Section 4 considers the SW2 perturbation, where Ḡ is perturbed by a
non-uniform q-out, in which each random edge out of v chooses a vertex w
with probability related to distance from v to w under some distance function
d(·, ·) according to Pr[ev,i = vu] = d(v, u)−r

/
∑

w 6=v d(v, w)−r. For q = 1 and
r = 0, this reduces to the base-graph-plus-1-out considered in Section 2, and
the techniques from that section are shown to extend for r > 0 for grid-like
graphs. These techniques show that when Ḡ is a d-dimensional grid, G is
an expander for any r < d, and furthermore, there is a threshold at r = d,
at which point G is no longer an expander.

This shows that the transition from expanding to non-expanding occurs
precisely at the point where a local algorithm can find polylogarithmic length
paths in the network.

2 Perturbing any connected Ḡ with a 1-out yields

expander

The proof of Theorem 1 is an application of the First Moment Method, and
relies on a moderately precise calculation of the expected number of sets
S which violate the bound e(S, S̄) ≤ δ|S|. This is achieved by considering
separately the sets with |S| ≤ γn and |S| > γn for an appropriately chosen
constant γ.

Proof of Theorem 1: A straightforward way to obtain an upper
bound on the probability that there exists a set S ⊆ V with |S| ≤ 3

4n and
e(S, S̄) ≤ δ|S| is the following: let ZS be an indicator random variable for the
event that a particular set S satisfies these conditions, and calculate an upper
bound on the expected value of the sum Z =

∑

S⊆V ZS . Showing that the
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expected value tends to 0 with n yields a bound which proves the theorem,
because for any non-negative random variable, Pr[Z ≥ 1] ≤ E[Z] (this
deceptively simple inequality is honored with the title “The First Moment
Method”).

Unlike the simple application of the First Moment Method which is suf-
ficient to show that G ∼ Gn,k-out is likely to be an expander when k is a
sufficiently large constant, making this calculation precise enough to yield
results about a perturbed graph requires an examination of the structure of
the set S in the base graph Ḡ.

The key trick is to use a special tour of Ḡ to describe each set S; let T
be a spanning tree of Ḡ, and let W = (e1, e2, . . . , e2m) be an Euler tour of
the multigraph formed by including every edge of T twice. That is to say
that W is a sequence of edges which gives a circuit in G that traverses each
edge of T exactly 2 times. Such a tour exists because doubling every edge of
T makes the degree of every vertex even. For any set S, let IS ∈ {0, 1}2(n−1)

be the incidence vector with IS(i) = 1 iff ei ∈ E(T [S]). Let e(IS) = |{i :
IS(i) 6= IS(i + 1)}| denote the number of times the Euler tour crosses the
boundary of S. There is a direct relationship between eT (S, S̄) and e(IS).
Since each edge of T appears twice in W ,

eḠ(S, S̄) ≥ eT (S, S̄) ≥ e(IS)/2. (1)

To obtain a bound on the expected value of the sum
∑

S:|S|=s ZS , let

Ss,k = {S : |S| = s, e(IS) = k}

denote the collection of sets S of size s for which T crosses the boundary of
S exactly k times. Since every S maps to a unique IS , it follows that

|Ss,k| ≤ 2

(

2n

k

)

,

because an incidence vector with k changes in value can be described by
giving the k “change positions” and specifying if the first bit is a 0 or a 1.

For S ∈ Ss,k, equation (1) shows that eḠ(S, S̄) ≥ k/2, so in order to have
e(S, S̄) ≤ δs, it is necessary that eR(S, S̄) ≤ δs − k/2. This is impossible
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when k > 2δs, which leads to the following:

∑

S : |S|=s

E [ZS ] ≤
2δs
∑

k=1

∑

S∈Ss,k

Pr
[

eR(S, S̄) ≤ δs
]

≤
2δs
∑

k=1

2

(

2n

k

)

Pr
[

eR(S, S̄) ≤ δs
]

≤ (4δs)

(

2n

2δs

)

Pr
[

eR(S, S̄) ≤ δs
]

≤ n
(ne

δs

)2δs
Pr
[

eR(S, S̄) ≤ δs
]

for δ ≤ 1/4.

Finishing the calculation requires an upper-bound on Pr
[

eR(S, S̄) ≤ δs
]

,
for which it is necessary to consider separately the large and small sets S.

Large sets expand: When s = |S| ≥ γn, E[eR(S, S̄)] = s
(

1 − s
n

)

and Chernoff’s bound gives

Pr
[

eR(S, S̄) ≤ δs
]

≤ exp

{

−s
(

1 −
s

n

)

(

1 −
δ

1 − s/n

)2/

2

}

.

So, for γn ≤ s ≤ 3
4n,

∑

S:|S|=s

E[ZS ] ≤ n

[

(

e

δγ

)2δ

exp

{

−
(1 − 4δ)2

8

}

]s

.

For any constant γ, if δ is a sufficiently small constant then this upper-
bound is exponentially small in n.

Small sets expand: When s = |S| ≤ γn, a tighter bound on the
probability can be obtained directly by

Pr
[

eR(S, S̄) ≤ δs
]

≤

(

s

δs

)

( s

n

)s−δs
≤

[

(e

δ

)δ ( s

n

)1−δ
]s

.

So

∑

S:|S|=s

E[ZS ] ≤ n

[

(ne

δs

)2δ (e

δ

)δ ( s

n

)1−δ
]s

= n

[

(e

δ

)3δ ( s

n

)1−3δ
]s

.

For 3
1−3δ ≤ s ≤ γn and δ sufficiently small, this upper-bound is o(1/n).

7



Tiny sets expand: For δ ≤ 1
6 , the tiny sets S, of size s ≤ 3

1−3δ ,
will satisfy e(S, S̄) ≥ δs because the base graph Ḡ is connected and so
e(S, S̄) ≥ 1 ≥ δ 3

1−3δ .
Putting this all together shows that there exists δ > 0 such that

Pr

[

exists S : |S| ≤
3

4
n and e(S, S̄) ≤ δ|S|

]

≤

3

4
n
∑

s=1

∑

S:|S|=s

E[ZS ] = o(1).

2

3 Gentler perturbation does not necessarily yield

expander

Adding a 1-out to a graph increases the average degree of a vertex by 2.
This is not much, but it is something. This section investigates the effects
of perturbing Ḡ by adding a random instance of Gn,ε/n (which is the Erdős-
Rényi graph where every candidate edge is included independently with
probability ε/n). The intention of the parameterization ε/n is to indicate
that ε should be thought of as a small constant, although the results of this
section apply to any constant ε.

An attempt to show that if R ∼ Gn,ε/n then the perturbed graph G =
Ḡ + R is an expander can begin by following in the footsteps of the proof
of Theorem 1. And such a proof attempt will succeed in showing that whp
the large sets in G expand.

Theorem 2 For any ε > 0, for any sufficiently small δ > 0, for any n-
vertex connected graph Ḡ, and for R ∼ Gn,ε/n, the perturbed graph G = Ḡ+R

has the following property whp: for all S ⊆ V with e−ε/64δn ≤ |S| ≤ 3
4n, at

least δ|S| edges go between S and S̄.

Proof Follow the proof of Theorem 1. The only new calculation
this proof requires is a fresh application of Chernoff’s bound. For this per-
turbation, E[eR(S, S̄)] = εs

(

1 − s
n

)

, and so

Pr[eR(S, S̄) ≤ δs] ≤ exp

{

−εs
(

1 −
s

n

)

(

1 −
δ

ε(1 − s/n)

)2/

2

}

.

2

However, following the proof of Theorem 1 does not succeed in showing
that small sets expand. And indeed, it should not show this, because it is
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not necessarily true. If Ḡ has a bad partition (defined below) then whp G
is not an expander.

Definition 1 Ḡ has a δ-bad partition iff V (Ḡ) can be partitioned into
(S1, . . . , Sk, S̄) for which the following inequalities hold:

|Si| ≤
1

2
ε−1 lnn, for i = 1, . . . , k;

eḠ(Si, S̄i) < δ|Si|, for i = 1, . . . , k;

k = ω(n1/2).

Theorem 3 For any ε > 0, any Ḡ, and R ∼ Gn,ε/n, if Ḡ has a δ-bad
partition, then whp there exists i ∈ {1, . . . , k} such that eR(Si, S̄i) = 0, and
hence G = Ḡ + R has e(Si, S̄i) < δ|Si|.

The proof is a direct application of the Second Moment Method and is
included in Appendix A.

This theorem applies to show that, for example, when Ḡ is the d-
dimensional grid graph, the perturbed graph is not an expander whp.

Corollary 1 Let Ḡ be a d-dimensional grid on N = nd vertices and let
R ∼ Gn,ε/n for any ε > 0. Then, for any δ > 0, whp the graph G = Ḡ + R

has some S ⊆ V with |S| = 1
2ε lnN and e(S, S̄) < δ|S|.

Proof Partition V (Ḡ) into subcubes each containing lnn vertices.
Each subcube Si has sides of length (lnn)1/d, and, for any constant δ and
n sufficiently large, eḠ(Si, S̄i) = O((lnn)(d−1)/d < δ lnn. 2

On the other hand, if Ḡ is a graph such that all small partitions satisfying
the expansion condition, then Theorem 2 is sufficient to show that G is an
expander whp. For example, if Ḡ consists of 2 expander graphs, each on
n/2 disjoint vertices, that are joined by a single edge, then G will be an
expander whp.

The proof of Theorem 3 goes through without modification to show that
the model studied by Watts and Strogatz (SW1 with Ḡ a k-connected cycle)
is not an expander for any δ if k is any constant. On the other hand, when
k � lnn (as in the original Watts-Strogatz specification), every vertex has
at least 1 edge randomly rewired, so it follows from Theorem 1 that the
resulting graph is an expander.
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4 Conditions for expansion in Kleinberg’s small-

world graph

In SW2, when r = 0 and q = 1, this is exactly the case treated in Theorem
1. Making q larger only increases the number of edges across any cut, so
any connected base graph leads to an expander when r = 0.

For r > 0, the proof of expansion can proceed as in the proof of Theorem
1 provided there is a upper-bound on Pr[ev,i ∈ S] with any constants C > 0
and ε > 0 of the form:

for any v ∈ V and S ⊆ V with |S| = s, Pr[ev,i ∈ S] ≤ C
( s

n

)ε
.

When the metric is the `1 norm on the lattice [n]d, such a bound exists
for any r < d:

Theorem 4 Let V = [n]d, and let d(u, v) =
∑d

i=1 |ui − vi|. Then, for any
0 ≤ r < d, and for any v ∈ V and S ⊆ V with |S| = s, Pr[ev,i ∈ S] ≤

C
(

s
n

)d−r−1
.

The proof is a direct calculation and appears in Appendix B.
The upper-bound on r given in this bound is tight, and when r = d, the

resulting graph is not an expander.

Theorem 5 For Ḡ an n × n grid, d(·, ·) = d1(·, ·), and r = 2, Kleinberg’s
small-world graph is not rapidly mixing whp.

Proof To verify the theorem, consider the set S = {(x, y) : x + y ≤ k},
where k = n/ lnn, and calculate an upper-bound on the expected number
of random edges between S and S̄. This calculation can be simplified by
considering sets S` = {(x, y) ∈ V (Ḡ) : x + y = `}. For any i and j with
i ≤ k ≤ j,

∑

v∈Si

∑

w∈Sj

d1(v, w)−2 ≤ |Si|



(j − i)
1

(j − i)2
+ 2

|Sj |−(j−i)
∑

`=1

1

(j − i + 2`)2





= i

(

1

j − i
+ 2

i
∑

`=1

1

(j − i + 2`)2

)

≤ 2i

(

1

j − i

)

.
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Also, for any v ∈ V (Ḡ),

∑

w 6=v

d1(v, w)−2 = Θ(lnn).

Thus, an upper-bound on the expected number of random edges between S
and S̄ is given by the following

E[eR(S, S̄)] =
k
∑

i=1

n
∑

j=k+1

∑

v∈Si

∑

w∈Sj

q

(

d1(v, w)−2

∑

u 6=v d1(v, u)−2
+

d1(w, v)−2

∑

u 6=w d1(w, u)−2

)

≤ (2q)Θ
(

(lnn)−1
)

k
∑

i=1

n
∑

j=k+1

2i

(

1

j − i

)

≤ (4qk)Θ
(

(lnn)−1
)

k
∑

i=1

(Hn − Hi)

= (4qk)Θ
(

(lnn)−1
)

(k + k(Hn − Hk))

= Θ

(

k2 ln lnn

lnn

)

.

Since eḠ(S, S̄) = O(k), Markov’s inequality shows that for any constant
δ with δ > 0, whp e(S, S̄) ≤ δ|S|. 2

5 Conclusion

It is necessary to conclude that the expansion of a randomly perturbed
graph depends on the base graph and the perturbation, and even seemingly
similar perturbations can produce vastly different results. Though adding a
random 1-out makes any connected graph an expander whp, such a simple
statement is impossible for the more gentle perturbation of adding a random
Gn,ε/n. This is not a bad thing, however, as empirical observations show that
among complex networks in the real world, some are expanders and others
are not.

In the case of the small-world models of Watts and Strogatz and of Klein-
berg, the difference in the distributions is quite subtle. Generally Kleinberg’s
model is viewed as a strict generalization of Watts and Strogatz’, but in the
context of expansion, the models are actually just different.

It is a pleasant surprise that Kleinberg’s model stops being an expander
exactly at the point where it becomes possible to find short paths with a
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decentralized algorithm. Perhaps the expansion threshold and existence of
decentralized algorithms are fundamentally related in some way. But more
likely not.
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A Proof of Theorem 3

The proof is an application of the Second Moment Method. Let Zi be an
indicator random variable for the event eR(Si, S̄i) = 0, and let Z =

∑k
i=1 Zi.

Then the probability that there exists i ∈ {1, . . . , k} such that Si fails to
expand is Pr[Z = 0] ≥ E[Z]2/ E[Z2].

Let si = |Si|.

E[Z] =
k
∑

i=1

Pr[eR(Si, S̄i) = 0] =
k
∑

i=1

(1 − ε/n)si(n−si).

and

E[Z2] =
k
∑

i=1

k
∑

j=1

Pr
[

eR(Si, S̄i) = 0
]

Pr
[

eR(Sj , S̄j) = 0
∣

∣ eR(Si, S̄i) = 0
]

=
k
∑

i=1

(1 − ε/n)si(n−si)

(

1 +
∑

j 6=i

(1 − ε/n)sj(n−si−sj)

)

≤
k
∑

i=1

(1 − ε/n)si(n−si)

(

1 + (1 + o(1))
k
∑

j=1

(1 − ε/n)sj(n−sj)

)

≤ (1 + o(1))

(

1 +
k
∑

i=1

(1 − ε/n)si(n−si)

)2

= (1 + o(1))(1 + E[Z])2.

Since E[Z] ≥ (1 − o(1))ke− ln n/2 → ∞,

Pr[Z = 0] ≥ (1 − o(1))
E[Z]2

(1 + E[Z])2
= 1 − o(1).

2

B Proof of Theorem 4

For any v ∈ V , there are Θ(`d) vertices with distance from v of at most
`, and there are Θ(`d−1) vertices with distance from v exactly `. For any
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v ∈ V and S ⊆ V , let s = |S|, let s` be the number of vertices of S that are
at distance ` from v and let n` be the number of vertices of V that are at
distance ` from v:

s` = |{w ∈ S : d1(v, w) = `}|, n` = |{w ∈ V : d1(v, w) = `}|.

Then

Pr[ev,i ∈ S] =

(

∑

w∈S

d1(v, w)−r

)/(

∑

u 6=v

d1(v, u)−r

)

=

( dn
∑

`=1

s``
−r

)/( dn
∑

`=1

n``
−r

)

≤

(Θ(s1/d)
∑

`=1

Θ
(

`d−1
)

`−r

)/(Θ(|V |1/d)
∑

`=1

Θ
(

`d−1
)

`−r

)

= Θ

(

s(d−r)/d

|V |(d−r)/d

)

.

2
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