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ABSTRACT

Oral antibiotics are commonly prescribed to non-hospitalized adults. However, antibiotic-induced 
changes in the human gut microbiome are often investigated in cohorts with preexisting health 
conditions and/or concomitant medication, leaving the e5ects of antibiotics not completely under-
stood. We used a combination of omic approaches to comprehensively assess the e5ects of 
antibiotics on the gut microbiota and particularly the gut resistome of a small cohort of healthy 
adults. We observed that 3 to 19 species per individual proliferated during antibiotic treatment and 
Gram-negative species expanded signi:cantly in relative abundance. While the overall relative 
abundance of antibiotic resistance gene homologs did not signi:cantly change, antibiotic- 
speci:c gene homologs with presumed resistance toward the administered antibiotics were 
common in proliferating species and signi:cantly increased in relative abundance. Virome sequen-
cing and plasmid analysis showed an expansion of antibiotic-speci:c resistance gene homologs 
even 3 months after antibiotic administration, while paired-end read analysis suggested their 
dissemination among di5erent species. These results suggest that antibiotic treatment can lead 
to a persistent expansion of antibiotic resistance genes in the human gut microbiota and provide 
further data in support of good antibiotic stewardship.

Abbreviation: ARG – Antibiotic resistance gene homolog; AsRG – Antibiotic-speci:c resistance 
gene homolog; AZY – Azithromycin; CFX – Cefuroxime; CIP – CiproAoxacin; DOX – Doxycycline; FDR 
– False discovery rate; GRiD – Growth rate index value; HGT – Horizontal gene transfer; NMDS – Non- 
metric multidimensional scaling; qPCR – Quantitative polymerase chain reaction; RPM – Reads per 
million mapped reads; TA – Transcriptional activity; TE – Transposable element; TPM – Transcripts 
per million mapped reads
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Introduction

The gut microbiota is a complex collection of bac-

teria, archaea, eukaryotic cells, and viruses. Humans 

and their gut microbiota maintain a dynamic equili-

brium that is important for metabolic homeostasis, 

immune regulation, and pathogen susceptibility. 

Human host-microbiota symbiosis is affected by fac-

tors such as genetic background, diet, and drug 

treatment.1 In particular, antibiotic therapy can 

perturb the gut microbiota composition and poten-
tially interfere with the optimal functioning of the 

gut microbiome in an individualized and time- 

dependent manner.2,3 Antibiotic treatment is asso-

ciated with reduced microbiome diversity4–6 and 

development of infection with bacteria such as 

Clostridium di�cile.7,8 Yet, approximately one-third 

of adults in the European Union received at least one 

course of oral antibiotics in 2015.9 Thus, antibiotic 

CONTACT Lejla Imamovic lejim@biosustain.dtu.dk Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 
220, DK-2800, Lyngby, Denmark; Gianni Panagiotou Gianni.Panagiotou@hki-jena.de Leibniz Institute for Natural Product Research and Infection Biology 
- Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany Morten O.A. Sommer msom@bio.dtu.dk Novo Nordisk Foundation Center for 
Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Lyngby, Denmark.

*These authors contributed equally to this work.
Supplemental data for this article can be accessed on the publisher’s website.

GUT MICROBES                                              

2021, VOL. 13, NO. 1, e1900995 (19 pages) 

https://doi.org/10.1080/19490976.2021.1900995

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-7992-282X
http://orcid.org/0000-0003-1662-9447
http://orcid.org/0000-0002-9965-4164
http://orcid.org/0000-0002-9736-0461
http://orcid.org/0000-0001-5233-3606
http://orcid.org/0000-0003-4995-5169
http://orcid.org/0000-0001-8953-5842
http://orcid.org/0000-0001-9393-124X
http://orcid.org/0000-0003-4005-5674
http://website
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2021.1900995&domain=pdf&date_stamp=2021-03-27


stress on the gut microbiome is common; however, 

its effects on the healthy human gut are still not 

completely understood.

Many studies that assessed the impact of anti-

biotics on gut bacterial communities were based on 

16S rRNA gene amplicon sequencing.6,7 While 

such an assessment identifies the species composi-

tion, it cannot elucidate bacterial functions in the 
communities or determine changes in the reper-

toire of antibiotic resistance genes (ARGs).6 Even 

when the full functional potential of the commu-

nity is evaluated with shotgun metagenomics, this 

assessment can be biased since DNA from bacteria 

killed by antibiotic treatment is still detected.10 

Maurice et al. investigated the effect of xenobiotics 

on the active human gut microbiome in vitro by 

direct application of drugs to human stool samples. 

They reported that one-third of the gut microbiota 

was damaged cells.2 While this study moved 

beyond a survey of diversity to understand meta-

bolic activities, the in vitro design did not account 

for the pharmacokinetic and pharmacodynamic 

properties of an antibiotic in the human body. 

A recent study reported that the gut microbiota is 

resilient to a short-term intervention of broad- 

spectrum antibiotics, with no clear temporal pat-
tern in the overall relative abundance of ARGs.3 

Because the study used an antibiotic cocktail, the 

antibiotic-specific responses of the gut microbiota 

and the long-lasting imprint on the resistome (the 

collection of ARGs in a microbiome) could not be 

determined and traced with high resolution. 

Combined metagenomics and metatrancriptomics 

analysis have been employed to investigate the 

effects of antibiotics on transcriptional activities of 

gut microbial communities of hospitalized 

individuals.11 However, in these studies, antibiotic 

effects on the gut might be confounded by factors 

such as hospital stay, preexisting health conditions, 

and/or concomitant medication.

The healthy human gut microbiome harbors 

diverse antibiotic resistance mechanisms.12 These 

include enzymes involved in drug inactivation or 

modification, efflux systems, or polymorphisms in 
antibiotic gene targets. Of concern is that antibiotic 

stress affects not only targeted species but the over-

all composition of microbial communities, leading 

to the accumulation of antibiotic resistance traits. 

For example, the macrolide resistance gene ermB, 

amplified by antibiotic treatment, was stable in gut 

bacterial population years after treatment.13 This 

result indicated that a resistance fraction in the 

population can be selected and amplified during 

and after treatment.13 Antibiotic stress can result 

in sensitive bacteria evolving resistance mechan-

isms by selecting for gene variants that confer 

higher resistance.14,15

Importantly, ARGs can also be transferred within and 

between species,16 particularly in complex microbial 

communities such as the gut.17,18 Horizontal gene trans-

fer mediated by plasmids played a prominent role in the 

spread of antibiotic resistance within the same species or 

between different species.19 Furthermore, the human gut 

is colonized by diverse bacteria, the genomes of which 

can contain up to 20% of prophage DNA.20,21 Such 

phages can incorporate part of their host’s genetic mate-

rial, including antibiotic resistance genes during general-

ized transduction, and could thus contribute to the rapid 

dissemination of resistance among bacteria. 

A metagenomic study on antibiotic alteration in mice 

showed enrichment in antibiotic resistance genes in the 

virome fraction 2 months after treatment.22 However, 

a subsequent study indicated that the phage-harbored 

reservoir of antibiotic resistance genes might have been 

overestimated due to loosening threshold levels used in 
silico detection of antibiotic resistance genes.23 Thus, the 

importance of phages as reservoirs of antibiotic resis-

tance genes remains debated.

In this study, we investigated the effect of antibiotics 

on the composition and resilience of the healthy human 

gut microbiome. We combined metagenome, metatran-

scriptome, and virome sequencing for a comprehensive 

assessment of the living, active microbiota, and its asso-

ciated phages and plasmids.

Results

Microbial community structure shifted during 

antibiotic treatment and recovered after treatment

To evaluate the effect of antibiotic treatment on the 

human gut microbiome, 10 healthy human volun-

teers were recruited and randomized to receive one 

in four different antibiotic courses or to be a control 

(Study design, Methods). Before, during, and after 

exposure to antibiotics, they provided a total of six 

stool samples (Figure S1). Four antibiotics were 

selected based on their clinical relevance and 
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broad-spectrum activity against Gram-positive 

and/or Gram-negative organisms (Table S1). We 

evaluated the impact of antibiotic therapy on the 

microbiome using metagenomic, metatranscrip-

tomic and viromic profiling of stool samples 

(Data S1).

In the majority of samples, Bacteroides and 

Firmicutes were dominant at the phylum level 
(Figure S2a). In general, the richness and alpha- 

diversity measured as Shannon index dropped sig-

nificantly when compared with the baseline levels 

(Wilcoxon signed-rank test, p = .03 and 0.007) 

(Figure 1a-e), and the inter-individual community 

dissimilarity increased (measured as pairwise Bray– 

Curtis distance, Wilcoxon signed-rank test, p -

= 1 × 10−10), regardless of administering the same 

antibiotic or two different ones (Figure 1f). 

Community diversity was recovered to baseline 

levels after ciprofloxacin (CIP)and cefuroxime 

(CFX) treatments (post-treatment vs. baseline, two- 
tailed paired t-test, FDR = 0.19 and 1.00) in line 

with previous studies.3,6,24 However, doxycycline 

(DOX) and azithromycin (AZY) post-treatment 

communities continued to have relatively low 

Figure 1. Microbial community diversity and dissimilarity. a-e. Alpha-diversity (Shannon index) perturbation during and after different 
antibiotic treatments (a-d) and in the control group (e). f. Pairwise Bray–Curtis distances between two individuals given the same 
treatment or two different treatments. The split violin plots demonstrate the distribution of the distances, with the 25%, 50%, and 75% 
quantiles marked with white ticks. The line graphs represent the mean values. In panels a-f, the red background indicates the antibiotic 
administration period. g-h. Community structures for the microbiomes of participants receiving different antibiotic treatments and 
control samples (T1 to T6). Non-metric multidimensional scaling (NMDS) was applied to Bray–Curtis distances (2D NMDS stress: 0.18). 
The samples were colored with different information: antibiotic groups (g) or treatment periods (h). The ellipses depict a confidence 
level of 90% for the samples with the same color. Antibiotic treatment shifted the community structure detectably during treatment, 
followed by a fast recovery in the post-treatment period.
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diversity (post-treatment vs. baseline, Wilcoxon 

signed-rank test, p = .03 and 0.03), especially for 

azithromycin (Shannon index reduction after 

3 months: 20.2% for AZY-a and 28.2% for AZY- 

b). In a comparison of antibiotics, baseline species- 

level composition did not show significant differ-

ences (Adonis test, p = .41), but community com-

position during and after treatment differed 
significantly (Adonis test, p = .01) (Figure 1g-h). 

In spite of the small sample size, this result indi-

cated that the alterations in community structures 

were specific to a given antibiotic and the post- 

treatment recovery of the community structure 

may also be influenced by the antibiotic type.

The long-term consequences of antibiotic treat-

ment were captured at the species level 3 months 

after treatment. For the antibiotic-treated groups, 0 

to 21 species (median: 3.5) with a relative abundance 

of 0 to 47.7% (median: 3.58%) at baseline were 

undetectable after treatment and did not recover 3 

months after antibiotic treatment (Figure 2a and 

Table S2). Except for AZY-b (baseline richness: 65, 
lower than all other baseline samples with a richness 

of 86 to 116), regardless of treatment or control, few 

new species (0 to 1) emerged during or after treat-

ment, with maximum relative abundances of 0.88% 

during treatment (CFX-b) and 7.7% in post- 

treatment (CIP-b) (Figure 2a).

Figure 2. The relative abundances of different species categories in different antibiotic treatment periods. a-b. Mean relative 
abundance of species categories for eight individuals treated with antibiotics (a) and two control individuals (b). c. The relative 
abundance of Gram-positive and Gram-negative species. d. The relative abundance of species harboring antibiotic-specific resistance 
gene homologs (AsRGs). In panels a-d, the red background indicates the antibiotic administration period. In panels c-d, the split violin 
plots demonstrate the distribution of relative abundances, with the 25%, 50%, and 75% quantiles marked with white ticks. The line 
graphs represent the mean values. e-f. The relative abundance of Gram-positive and Gram-negative species in proliferating species (e) 
and species harboring AsRGs (f) during treatment.
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To study species with strong competitive advan-

tages during treatment, we focused on the species 

that proliferated during T2 and T3 (“proliferating 

species”) (Figure 2a-b, S2b, and Table S2), defined 

as 1) a less abundant species in baseline (relative 

abundance < 0.1%) reached 5% in relative abun-

dance in T2 or T3, or 2) an abundant species in 

baseline (relative abundance ≥ 0.1%) increased by 
at least 10-fold relative abundance in T2 or T3. For 

each individual (including controls), 1 to 6 species 

(median: 4) were identified as proliferating species 

(Table S2). Among proliferating species, 

Bacteroides caccae was the most common one, 

shared by three individuals (Figure S2b and Table 

S2). Noticeably, the proliferating species had sig-

nificantly predicted higher growth rates25 regard-

less of the treatment period (growth rate index 

value (GRiD) median: 1.2), compared with non- 

proliferating species (GRiD median: 1.0, Wilcoxon 

rank-sum test, p = 2 × 10−10) (Figure S3).

Gram-negative species and carriers ofantibiotic- 

speci�c resistance gene homologs (AsRGs) 

proliferated during treatment

To further assess the competitive advantages of 

gut bacteria during antibiotic treatment, we clas-

sified all species as Gram-positive or Gram- 

negative.26 The relative abundance of Gram- 

negative species significantly increased from 

40.5% at baseline to 53.0% during treatment 

(Wilcoxon signed-rank test, p = .02) (Figure 

2c). Gram-negative species also had a higher 

probability of becoming a proliferating species. 

Of the 254 Gram-negative species, 12 species 

proliferated, with a relative abundance of 19.4% 

during treatment. In comparison, of the 554 

Gram-positive species, only 12 species prolifer-

ated with an abundance of 9.1% (chi-square test, 
p = .043) (Figure 2e).

To study species-specific resistance profiles, 

we compiled a list of antibiotic-specific resistance 

gene homologs (AsRG) that can confer or con-

tribute to clinically relevant resistance to anti-

biotics given to the study participants (Table S3) 

and assigned AsRGs to specific host species (see 

Methods). For each individual, 0 to 8 species 

(median: 2.5) were identified as AsRG carriers 

via a contig-species assignment procedure 

(species names aligned with the taxonomic pro-

files to get regarding relative abundances, see 

Methods and Data S2 for details). Similar to 

the proliferating species, more Gram-negative 

species were identified as AsRG carriers (15/254 

Gram-negative species with a relative abundance 

of 14.8% during treatment vs. 11/554 Gram- 

positive species with an abundance of 1.2%, chi- 
square test, p = .007) (Figure 2f). Noticeably, 

AsRG carriers had a higher tendency to prolif-

erate than the species harboring no identified 

AsRGs (6/30 vs. 14/1140, unclassified species 

and proliferating phage excluded, Fisher test, 

p = 5 × 10−6). In general, AsRGs tended to 

have high copy numbers (Figure S4a) and mul-

tiple host species (Figure S4b) in the metage-

nomic assemblies. The relative abundance of 

AsRG carriers also increased from 3.0% to 

21.1% during antibiotic treatment (Wilcoxon 

signed-rank test, p = .03) (Figure 2d) indicating 

that AsRGs confer a fitness advantage during 

antibiotic treatment.

AsRGs have high transcriptional activity during 

antibiotic treatment

To determine if antibiotic treatment exerts selec-

tive pressure on the resistome as a whole, we 

analyzed the changes in ARGs for each antibiotic 

used in the study. Detected resistance genes did 

not show an overall increase in DNA relative 

abundance or transcriptional activity. However, 

specific trends in AsRGs were observed (Figure 

S5). As the most prevalent gene family that 

could also be detected in the individuals not 

treated with tetracycline, ARGs conferring resis-

tance to tetracycline antibiotics showed 

increased DNA relative abundance and high 

expression during doxycycline (DOX) treatment 
(Figure 3a-b). The induction of tetracycline 

resistance genes by doxycycline has been 

observed before and is in fact utilized for fine- 

tuning the expression of specific genes in eukar-

yotic cells.27 In contrast, no clear patterns in 

DNA abundance or transcriptional activity were 

observed during treatment with other antibiotics 

(Figure 3c-d). The DNA relative abundance of 

AsRGs significantly increased during treatment 

compared to non-AsRGs (median fold-change: 
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2.4 vs. 0.9, Wilcoxon rank-sum test, p = 4 

× 10−9) (Figure 3e). AsRGs’s transcriptional 

activities were also exceptionally boosted during 

treatment (median fold-change from baseline: 

9.5, Wilcoxon signed-rank test, p = 2 × 10−8) 

(Figure 3f) and largely outperformed non-AsRGs 

(median fold-change from baseline: 1.5, 
Wilcoxon rank-sum test, p = 2 × 10−12). 

Noticeably, while the transcriptional activity of 

AsRGs was reduced after treatment (Figure 3b 

and 3f) (no significant difference between post- 

treatment and baseline), the DNA relative abun-

dance of AsRGs did not decline even 3 months 

after treatment (median fold-change from T1 to 

T6: 2.7, Wilcoxon signed-rank test, p = 2 × 10−9) 
(Figure 3a and 3e).

Figure 3. DNA relative abundance and transcriptional activity (TA) of AsRG. In all panels, the red background indicates the antibiotic 
administration period. a-b. DNA relative abundance (a) and transcriptional activity (b) of tet family genes as AsRGs for doxycycline 
treatment. DNA abundances were calculated by transcripts per million mapped reads (TPM). AsRGs’ transcriptional activities were 
calculated by RNA (TPM)/DNA (TPM). c-d. DNA relative abundance (c) and transcriptional activity (TA) (d) of tet family genes as non- 
AsRGs. e-f. DNA relative abundance (e) and transcriptional activity (f) of all AsRGs and non-AsRGs The DNA abundance or relative TA 
were normalized to log2 fold-change of baseline level in all panels. The split violin plots demonstrate the distribution of DNA 
abundances or TAs, with the 25%, 50%, and 75% quantiles marked with white ticks. The line graphs represent the mean values.
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Virome-encoded ARGs expanded after antibiotic 

treatment

To further understand the basis for AsRG expansion 

during antibiotic treatment, we performed virome 

sequencing and assembly (Figure S6) (Phage library 

preparation and sequencing, Methods), enabling 

assessment of ARGs present in phage metagenomic 
data. Of 1,286 to 7,263 co-assembled contigs in the 

virome libraries from each sample, only 53.6% were 

marked with confidence as phage contigs (Figure S6a- 

b) (Phage contig filtration, Methods). Among these 

contigs, only 11.4% could be mapped to known phage 

genomes. Phage communities were highly individual- 

specific according to the Jaccard-like distances (Figure 

S6c-d).

In line with a previous report,23 ARGs were 

observed on only a few phage contigs (1 to 9 per 

individual with a median of 3.5, 0.17% of total phage 

contigs) (Figure S7a-b, Table S4). AsRGs were cap-

tured on five contigs from four individuals (DOX-a, 

DOX-b, CFX-a, and AZY-b). To identify putative host 

species and search for potential integration and hor-

izontal gene transfer (HGT) events, phage contigs 

were mapped against metagenomic contigs to identify 

phage-like contigs in the metagenome (Phage-like 

contig identification in metagenomes, Methods). 
For each ARG-containing phage contig, up to 44 

phage-like contigs (median: 1.5) were identified in 

the corresponding metagenomic dataset (Figure S7c, 

Table S4). Metagenomic contigs were assigned to 

a unique host species (Contig binning and contig- 

species assignment, Methods) by their species- 

specific marker genes28 or contig binning result.29 

For each ARG-carrying contig, after mapping to 

phage-like contigs in the metagenome, up to three 

species were inferred as the potential host species of 

the contig harboring ARG (Figure S7d). Using short- 

read metagenomic assembly, 66.8% of the phage-like 

contigs and 75.2% phage-like contigs with ARGs were 

short (<1 kb). This could be a result of high variability 

in the isoforms of the phage-like contigs that resulted 

from integration into different bacterial loci and host 

species. As a result, 25 of 39 phage contigs with ARGs 

were not assigned to any host species. One phage 
contig carrying AsRG tetQ was assigned to 

Bacteroides fragilis and B. caccae. B. caccae was 

a proliferating species in individual DOX-a, suggesting 

that phage-mediated HGT may have been involved in 

the dissemination of this AsRG.

AsRGs are frequently found on mobile genetic 

elements

Plasmid contigs and contigs with transposable ele-

ments were also annotated from metagenomic 

assemblies:30 9,172 to 33,166 contigs (7.90%) were 

identified as potential plasmid contigs per individual 

(Table S5). We observed a strong tendency for AsRG 

to be present on mobile elements. In total, 39.6% of 

AsRGs were captured on mobile contigs compared to 

15.8% for non-AsRGs (Figure S8a). Phage-like con-
tigs were the majority of mobile AsRGs (66.0% com-

pared to 11.5% for non-AsRGs) (Figure S8b). Also, 

mobile AsRGs presented higher transcriptional activ-

ities than non-mobile AsRGs (Wilcoxon rank-sum 

test, p = .03) (Figure 4a). These results suggest that 

mobile AsRGs were more actively involved than non- 

mobile AsRGs in bacterial host defense during anti-

biotic treatment.

Mobile and non-mobile AsRGs did not show 

DNA relative abundance differentiation during 

treatment (Wilcoxon rank-sum test, p = .23); how-

ever, a discrepancy was seen after treatment (med-

ian TPM: 19.1 for mobile vs. 3.5 for non-mobile, 

Wilcoxon rank-sum test, p = 3 × 10−6) (Figure 4b). 

Both mobile and non-mobile AsRG abundances 

emerged and remained high even 3 months after 

the antibiotic treatment (4.3 and 2.8 folds of the 

baseline level in T6, respectively). The persistently 
high relative abundance of mobile AsRGs sup-

ported that mobile elements such as phages and 

plasmids contributed to the expansion of the anti-

biotic-specific resistance reservoir.

Mobile AsRGs expanded the resistance reservoir via 

potential HGT events

We noted that alternative phage integration iso-

forms could be supported by cross-contig read 

pairs, where a read is mapped to a prophage region, 

while its mate is mapped to a different contig (mate 

contig) (Figure 5a). To trace the ARG proliferation 

via potential HGT events mediated by phage inte-

grations, these read pairs were analyzed as HGT- 
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supporting read pairs (HGT-supporting read pair 

extraction, Methods), and the species host 

assigned to the mate contigs were analyzed as 

potential HGT-target species. As the mobility of 

phage-like contigs with ARGs resulted in more 

fragmented contig assemblies, a large number of 

read pairs were observed to be mapped to different 

contigs, especially for AsRG-carriers (50.7% vs. 

39.0% for non-AsRG carriers) (Figure 5b). Read 

pairs from two contigs that mapped to different 

host species were analyzed as HGT-supporting 

read pairs, which presented in low proportion 

(0.12% of total mapped read pairs for AsRG- 
carrying contigs), while AsRG-carrying HGT- 

supporting read pairs were only observed in one 

individual treated with doxycycline (DOX-a). The 

relative abundance of AsRG-carrying HGT- 

supporting read pairs increased during treatment 

and remained high after treatment in DOX-a, while 

the non-AsRG carrying read pairs decreased and 

remained stable for all antibiotic-treated indivi-

duals (Figure 5c). More specifically, AsRGs tetW 

and tetQ from individual DOX-a exhibited a higher 

number of HGT-target species and HGT- 

supporting read pairs after treatment (Figure 6). 

Noticeably, several of such HGT-target species 

were found in proliferating species and/or AsRG 

carrier species.

Discussion

Antibiotics are commonly used prophylactically or to 

treat infections. Previous studies evaluated antibiotics 

as adriving factor in gut microbiome modulation and 

reported the resilience of dominant microbiome 

members after short-term antibiotic exposure.3,6,24 In 

our small cohort of antibiotic-treated healthy volun-

teers, we observed a rapid decline in community 

diversity during antibiotic administration and post- 

treatment, with several species becoming undetectable 

and not recovering within 3 months. We observed 

distinct responses to different antibiotics and an over-

all growth advantage for Gram-negative species dur-

ing treatment. We note that the small size of our 

cohort could mean that part of the variability we 

observed might be attributed to differences in diet, 

sex, and age between individuals. We tried to account 
for this possibility by using randomization and by 

including control participants and collecting baseline 

samples, but certainly larger studies are needed to 

confirm the trends observed in this present study.

Similar to a recent study on the resistome,3 the 

overall ARG abundance did not exhibit substantial 

perturbations during antibiotic treatment. 

However, we identified expansion in AsRGs with 

presumed resistance to the administered antibiotics 

as a long-term consequence of antibiotic adminis-

tration. We used metatranscriptomic sequencing to 

reveal the exceptionally high transcriptional activ-

ity (9-fold higher than baseline in average) of 

AsRGs during treatment, supporting their impor-

tance in bacterial host defense.

Reports of post-treatment expansion of some 

ARG families3,24 raised the question of how the 

recovery of taxonomic composition and functional 
profiles supported the expansion of ARGs, which 

must involve the persistence of ARG carrier species. 

As previous studies have proved the capacity of 

Figure 4. Transcriptional activity (TA) (a) and DNA abundance (b) of mobile and non-mobile AsRGs. FC, fold-change; lg TPM, log10 

transcripts per kilobase per million mapped reads. The red background indicates the antibiotic administration period in all panels.
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HGT event identification from paired-end 

signals,31,32 we addressed this question using paired 

phage library sequencing and plasmid identification, 

which identified significant enrichment of AsRGs 

within the mobilome (the collection of mobile ele-

ments in a microbiome). This would suggest an 

increased potential for HGT, which was supported 

by analysis of HGT-supporting paired sequencing 

reads partially mapping to the phage-like contigs. 

These data support the hypothesis that HGT events 

of AsRGs may occur during antibiotic treatment. 

Subsequent studies with larger cohorts could benefit 

from deploying longer read sequencing technology 

to pinpoint such HGT events.

A major limitation of this study is its reliance on 

sequencing data and functional annotations and 

computational inferences of HGT relationships. 
While we have deployed validated approaches for 

our computational assessments, our conclusions 

are limited by our current knowledge. We encou-

rage further work on functional validation of anti-

biotic resistance genes, high-throughput 

cultivation, and sequencing to further increase our 

knowledge of antibiotic treatment on the gut 

microbiome.33

Our data and analysis suggest that the resistome 

of healthy individuals is broadly resilient to short- 

term antibiotic treatment. Yet, AsRGs stably 

increase in relative abundance for a period of at 

least 3 months until completion of antibiotic treat-

ment, providing further evidence in support of 

good antibiotic stewardship.

Materials and methods

Study design

Ten healthy adult volunteers, aged 18–65 years, 

were recruited to provide stool samples over 

a 4-month period, before, during, and after anti-

biotic exposure. Participants had not received 

antibiotic treatment 1 year prior to study enroll-

ment, nor they ever experienced allergic reactions 

to the antibiotic class used in the study. 

Participants did not follow special dietary habits 

(vegetarian or vegan). To reduce the effect of 

individual variation, all volunteers were treated 

in parallel with a single antibiotic (Table S1). 

Four antibiotics from different chemical and ther-
apeutic classes were used: ciprofloxacin 

Figure 6. HGT-supporting read counts over time and the host species of the mate contigs. The titles for the four subpanels are the 
phage-like contig IDs and their carrying AsRGs. Four mate contig host species were discovered with AsRGs, and two species are 
proliferating species. Examples from individual DOX-a have shown that more potential HGT-target species were observed in treatment 
and post-treatment samples and the HGT-target species had a high probability of being a proliferating species or an AsRG carrier.
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(quinolone class), cefuroxime (β-lactam class), 

doxycycline (tetracycline class), and azithromycin 

(macrolide class). As a control, stool samples from 

two untreated healthy individuals also were pro-

cessed. Treatments were assigned through rando-

mization by drawing an opaque envelope. After 

allocation, the trial was open label.

Sampling

Six stool samples from each participant were 

obtained as one sample 15 days before treatment 
± 1 day (T1), two samples on the third (T2) and 

fifth day (T3) of antibiotic treatment ± 1 day, and 

three samples at 15 (T4), 30 (T5), and 90 days (T6) 

after treatment ± 1 day. Samples were immediately 

stored at −18 °C at volunteers’ homes and trans-

ported to the hospital within 14 days, packed to 

prevent thawing. Upon arrival at the hospital, sam-

ples were stored at – 80 °C until processing.

DNA extraction

DNA was extracted from 5 g aliquots of a frozen stool 

using an MO BIO PowerMax Soil DNA Extraction Kit 

(MO BIO Laboratories, Inc) according to the manu-

facturer’s protocol with a few modifications. Stool 

samples were stored at – 80 °C in sterile 50 ml 

Falcon tubes until extraction. To samples, 15 ml MO 

BIO PowerBead Solution and MO BIO Garnet beads 

were added before vortexing for 1 min at maximum 

speed using a horizontal vortex adopter (SI-H506, 

Horizontal 50 mL Tube Holder, Scientific 

Industries). Solution C1 (1.4 ml) was added before 
incubation at 65 °C for 30 min with shaking at 

130 rpm. Samples were vortexed for 10 min at a max-

imum speed, 6 ml Solution C2 was added, and samples 

were incubated at 4 °C at 20 min and processed per 

MO BIO instructions.

DNA puri�cation

After extraction, DNA was purified with 

PowerClean Pro DNA Clean-Up Kits (MO BIO 

Laboratories, Inc.) according to the manufacturer’s 

protocol. When necessary, isolated DNA was con-

centrated to >50 ng/uL using a vacuum concentra-

tor (Concentrator plus, Eppendorf). The DNA 

quantity was measured using Qubit 2.0 

Fluorometer (Thermo Fisher Scientific Inc.). The 

DNA quality was measured using a NanoDrop ND- 

1000 spectrophotometer (Thermo Fisher Scientific) 

and size was examined by gel electrophoresis of 5 µl 

DNA on a 1% (w/v) agarose gel with RedSafe 

Nucleic Acid Staining Solution (iNtRON 

Biotechnology).

DNA library preparation and sequencing

DNA samples were sent to Macrogen (South 

Korea) for library preparation and sequencing 

(Illumina Hiseq 2000 PE125). DNA libraries for 

sequencing were using TrueSeq Nano 550 bp kits 

(Illumina). The input template was 200 ng accord-

ing to kit instructions. Sequencing depth was set as 

up to a minimum of 6 GB data per sample.

RNA extraction

RNA extraction was by MO BIO PowerMicrobiome™ 

RNA Isolation Kit (MO BIO Laboratories, Inc.) 

according to manufacturer’s instructions. RNA was 

stored at −80 C until processing.

RNA library preparation and sequencing

RNA samples were sent to Macrogen (South Korea) 

for library preparation and sequencing (Illumina 

Hiseq 2000 PE125). For each sample, 2.5 μg total 

RNA was used as input for rRNA, which was pro-

cessed using Ribo-Zero Gold rRNA removal kits – 

Epidemiology (Illumina). RNA libraries were con-

structed using Trueseq RNA library preparation kits 

(Illumina) according to manufacturer’s instructions. 

Two platforms were used for RNA sequencing with 

balanced data output (Illumina Hiseq 2500 PE125 and 

Illumina NextSeq PE75). Sequencing depth was set as 

up to a minimum of 2 GB per sample.

Phage DNA extraction

Phage particles were isolated from 5 g aliquots of 

frozen stool with 50 ml Phage Buffer (10 mM Tris, 

pH 7.5, 10 mM MgCl2, 68 mM NaCl, 1 mM CaCl2) 

before homogenization by vortexing for 20 min at 

the highest speed (SI-H506, Horizontal 50-mL 

Tube Holder, Scientific Industries). Samples were 

centrifuged 3 times at 4 °C: 2 min at 872 × g, 10 min 
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at 3800 × g, and 20 min at 7500 × g. After each 

centrifugation, supernatants were transferred to 

new 50 ml Falcon tubes and pellets discarded. 

Supernatants were filtered through 0.22 µm filters 

(EMD Millipore Sterivex-GP SVGPL10RC 

Polyethersulfone Filter Unit, Millipore). To con-

centrate virus particles, 10 ml of filtered superna-

tants were concentrated to 1 ml by centrifugation 
with 100 Da Amicon Ultra filters (Amicon Ultra-15 

Centrifugal Filter Units, Millipore) at 3488 × g at 15 

°C. Supernatants in Amicon tubes were washed two 

times with 5 ml Phage Buffer and volumes adjusted 

to 1 ml. Supernatants were filtered through 0.45 µm 

syringe filters (Cellulose acetate membrane syringe 

filter, Filter Technology) into 1.5 ml phase-lock gel 

tubes (5 PRIME), 40 µL lysozyme (10 mg/mL, 

Sigma-Aldrich) was added, and filtrates incubated 

for 30 min at 37 °C under shaking at 300 rpm. After 

the incubation, 400 µL chloroform was added to 

samples before incubating for 15 min at room tem-

perature with gentle inversion every 2 minutes. 

Samples were centrifuged at 14,000 × g for 5 min 

at room temperature and supernatants transferred 

to 1.5 ml Eppendorf tubes. A mix of 500 U bovine 

pancreas DNase I recombinant (Roche), 33 U 

Baseline-ZERO DNase (Epicenter), 6 U Salt 
Active Nuclease (ArcticZymes), and 500 U RNase 

A (Roche) was added to samples with 100 µl 

10× Incubation buffer (Roche) for incubation at 

37 °C for 90 min followed by DNase inactivation 

at 75 °C for 10 min. After the DNase/RNase treat-

ment, phage particles were stored overnight at 4 °C. 

Phage DNA was extracted using Phage DNA 

Isolation Kits (Norgen Biotek) according to the 

manufacturer’s protocol. DNA quantity was mea-

sured using a Qubit 2.0 Fluorometer (Thermo 

Fisher Scientific Inc.). Phage DNA samples were 

stored at −80 °C.

Control for bacterial contamination in phage DNA 

extractions

Full-length 16S rRNA gene (1503 bp) was amplified 

with 16S_up (AAGAGTTTGATCCTGGCTCAG) 

and 16S_lp (TACGGCTACCTTGTTACGACTT) 

primers34 from Pseudomonas aeruginosa PAO1 

reference strain (NC_002516) by quantitative PCR 

(qPCR). The template for qPCR reactions with 

SYBR Green Master Mix (Thermofisher) was 0.5 

ng phage DNA. All samples were amplified by 

qPCR with triplicates of standards with known 

gene copy numbers and negative controls. 

Standards were 10-fold dilutions of purified, full- 

length 16S rRNA gene amplicons. Phage DNA 

samples with higher cycle amplifications (above 28 

Ct corresponding 102 gene copies) were discarded 

and phage DNA extraction was repeated. Phage 
DNA below the threshold of detection for 16S 

rRNA gene copies (102) was used for next- 

generation sequencing library preparations.

Phage library preparation and sequencing

Phage DNA libraries were prepared using KAPA 

HyperPlus Kits (Kapa Biosystems). All steps were 

on ice except two clean-ups that were at room 

temperature. Samples of 2.5 ng phage DNA were 

diluted in 17.5 µl 10 mM Tris-HCl (pH 8.0–8.5). 

Enzymatic fragmentation was achieved by adding 
2.5 µl KAPA Frag Buffer (10X) and 5 µl of KAPA 

Frag Enzyme to DNA dilutions in PCR tubes. Tubes 

were vortexed gently and spun down briefly, then 

incubated at 37 °C for 30 min in a thermocycler that 

was pre-cooled to 4 °C. After adding End-repair and 

A-tailing buffer, PCR tubes were vortexed and spun 

down and immediately incubated at 65 °C for 

30 min in a thermocycler with the lid preheated to 

85 °C. Adapter ligation reactions were in the same 

tubes with an addition of 3.75 µl PCR-grade water, 

15 µl Ligation Buffer, 5 µl DNA ligase, and 1.25 µl 

750 pM single adapters (Pentabase). Tubes were 

mixed thoroughly and centrifuged briefly and incu-

bated at 20 °C for 60 min. Products were cleaned 

using Agencourt AMPure XP reagent at a ratio of 

1:0.7 (adapter ligation reaction product: reagent). 

Reagent and product were mixed by pipetting 10 

times followed by short spin down centrifugation. 

Mixtures were left for 15 min at room temperature 
to bind DNA to beads. Beads were captured by 

magnets for 5 min and supernatants were carefully 

removed and discarded. With tubes still on the 

magnet, 200 µl freshly prepared 80% ethanol was 

added with incubation for 30 s. Ethanol was dis-

carded and the ethanol washes repeated. Tubes were 

left on the magnet for 5 min to dry the beads before 

resuspending them in 12.5 µL 10 mM Tris-HCl, pH 

8.0–8.5 and vortexing for 30 s. Beads were incubated 

at room temperature for 2 min to elute DNA, then 
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captured by a magnet for 5 min. Supernatants were 

transferred to new tubes and 12.5 µl 2X KAPA HiFi 

HotStart ReadyMix and 2.5 10X KAPA Library 

Amplification Primer Mix were added to 10 µl 

adapter-ligated library. Reagents were mixed and 

tubes centrifuged briefly. Library amplification 

used the cycling protocol: 1 cycle 98 °C, 45 s; fol-

lowed by 14 cycles of 98 °C for 15 s, 60 °C for 30 s, 
and 72 °C for 30 s, with a final extension at 72 °C for 

1 min. Post-amplification cleanup was as described 

above. Concentrations were measured using a Qubit 

2.0 Fluorometer (Thermo Fisher Scientific Inc.), 

and library size (average 500–900 bp) was deter-

mined using a Bioanalyzer (Agilent 2100 

Bioanalyzer system, Agilent Technologies). 

Libraries are pooled and sequenced on a MiSeq 

platform (PE300).

Nucleic acid extraction and sequencing control

Reference strain E. coli MG1655 transformed with 

pzZE21mCherry was used as a control for the 

nucleic acid extraction and sequencing protocols. 

Sequencing reads were mapped to a reference gen-

ome using CLC Genomic Workbench (version 

released in 2015). More than 99.5% of reads are 

mapped back to the reference genome.

Sequencing data quality control

All raw reads from DNA, RNA, and phage libraries 

underwent quality trimming using a previously 

described pipeline35 to filter out adapters and uni-

versal primer sequences, low-quality bases (<Q20), 
reads shorter than 75 bp PE125 (and 30 bp for PE75 

read obtained on NextSeq), duplication reads and 

reads mapping to the human genome with over 

95% identity. Computational scripts are at https:// 

github.com/TingtZHENG/VirMiner/. Quality con-

trol results are summarized in Data S1.

rRNA removal from RNA sequencing clean data

Removal of rRNA was by riboPicker (version 

0.4.3)36 against the non-redundant rRNA database 

(riboPicker, downloaded from http://edwards.sdsu. 

edu/ribopicker/rrnadb/rnadb_2012-01-17.tar.gz) 

with arguments “-c 80 -i 90”. The results are sum-

marized in Data S1.

In silico estimation of bacterial contamination in 

virome

We compared the 16S rRNA gene content in vir-

ome and whole metagenome samples. First, viral 

reads were truncated to 125 bp to match the read 

length of the whole metagenome dataset. 

Subsequently, both datasets were mapped against 
the SILVA database (v.123)37 using bwa mem v. -

0.7.1538 and the number of unique reads mapped 

with at least 90% identity was counted for both. 

Finally, the percentage of 16S reads within the 

entire read set of each sample was calculated and 

compared with published virome datasets 

(MetaVir)39 (Figure S8).

De novo assembly

The de Bruijn graph-based assembler IDBA-UD (v. 

1.1.1)40 was used for de novo assembly. Clean reads 

from all time points for each individual were 

pooled for the co-assembly of metagenome and 

virome, respectively. For metagenomes, parameters 

for IDBA-UD were: “-mink 40 -maxk 100 -step 10 - 
num_threads 24 – min_contig 300 -pre_correc-

tion”. For viromes with PE300 sequencing, 

k = 180 was selected as the max kmer length. Two 

modifications were made in the source code before 

compiling IDBA_UD: in file src/basic/kmer.h, con-

stant kNumUint64 was changed from 4 to 8 to allow 

maximum kmer length beyond 124; in file src/ 

sequence/short_sequence.h, constant 

kMaxShortSequence was set to 512 to support 

longer read length. Virome co-assembly used para-

meters: “-mink 20 -maxk 180 -step 20 -num 

_threads 24 – min_contig 800 -pre_correction”. 

After co-assembly, paired-end reads from the meta-

genomic DNA/RNA libraries were aligned to the 

metagenomic assemblies, while the viral DNA 

reads were aligned to the viromic assemblies using 

bwa “mem” model (v. 0.7.15).38 Statistics of 

mapped and unmapped reads were calculated 
using samtools with function “*agstat” (v. 1.3.1).41 

Overall, final assemblies had mean mapping per-

centages of 82.3% to 91.4% for metagenomic con-

tigs (Table S6) and 76.4% to 93.3% for viromic 

contigs (Table S7). Samtools functions “depth -aa” 

and “idxstats” were used to calculate contig cover-

age and depth and per-locus depth.
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Updated phage orthologous group (uPOG) database

We used an updated POG database for phage gene 

annotation – uPOG.42 The uPOGs are available on 

our website (http://147.8.185.62/VirMiner/down 
loads/updated_POG_database/).

Open reading frame (ORF) prediction and 

annotation

For metagenomes, MetaGeneMark was adopted to 
predict coding DNA sequence (CDS) regions in 

assembled metagenome contigs using default 

parameters.43 The functional COG category for each 

protein was assigned using the National Center for 

Biotechnology Information rps-BLAST44 with the 

parameter “-e 1e-5”. Protein sequences were aligned 

to the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database45 using Diamond blastp46 with the 

parameter “-e 1e-5”. For viromes, ORFs were pre-

dicted by GeneMarkS v4.347 with the parameter “– 

phage”. Predicted ORFs from metagenomic and viro-

mic contigs were mapped against Pfam,48 POG 

2012,49 and uPOG databases by DIAMOND blastp46 

with parameters “–id 70 -e 1e-5” and the top hits were 

selected.

Antibiotic resistance gene homolog (ARG) 

annotation

The CARD database50 and the accompanying 

Resistance Gene Identifier (RGI) pipeline were used 

to annotate ARGs in the metagenome and the virome. 

For metagenomes, protein sequences of predicted 
ORFs were used as input. For viromes, input was 

viral contig sequences. The RGI hits with “Perfect” 

and “Strict” identification were used as qualified 

ARG annotations.

Antibiotic-speci�c resistance gene homolog (AsRG) 

annotation

To identify ARG homologs with proven resis-

tance to each antibiotic given to the study parti-

cipants, we compiled a list of AsRGs from 

previous literature (Table S3). Genes with no 

annotation hit in the metagenomes were 

removed. The list was further verified by 

CARD50 and only genes listed as “confers_resis-

tance_to_drug” in “Sub-Term(s)” of each 

antibiotic were kept. For potential AsRGs in 

the mobilome (virome, phage-like contigs, plas-

mid contigs, and contigs with TE), only the RGI 

hits with “Perfect” or “Strict” identification and 

a minimum identity of 95% were kept.

Calculation of transcriptional activity

A gene or contig’s DNA and RNA abundances were 

calculated by transcripts per million mapped reads 

(TPM). Only genes with detectable abundances 

(TPM > 1e-5) across all time points were analyzed 

for DNA abundance. For the genes, contig, or gene 

sets with detectable DNA and RNA abundances 

(TPM > 1e-5) across all time points, transcriptional 

activity (TA) was calculated as TA = RNA (TPM)/ 

DNA (TPM). Log2 transformation for TA was 

applied before statistical tests.

Taxonomic assignment of phage contigs

The RefSeq51 database of viral reference gen-

omes Release 81 (March 2017) was used to 

map contigs from each assembly using blastn44 

with filtration criteria: E < 1e-4, identity > 70% 

and coverage > 50%. Contigs that were shorter 

than 3 kb were discarded. The relative abun-

dance of each contig with a reference viral gen-

ome hit was calculated as transcripts per 

kilobase per million mapped reads (TPM). For 

each viral family, the relative abundance was 

calculated as the sum of TPM of all contigs 
assigned to the viral family.

Phage contig veri�cation by VirSorter and VirFinder

All phage library contigs were analyzed by 

VirSorter52 with “virome database” and “virome de- 

contamination” modes. Contigs classified in any 

viral categories or as prophages were considered 

viral. VirFinder53 analysis used default settings 

and contigs with a false discovery rate (FDR) 

below 0.05 were considered viral.

Phage-like contig identi�cation in metagenomes

Phage library contigs were mapped against meta-

genomic contigs to find target phage-like contigs 

and phage integration sites in metagenomes. 
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MegaBlast44 was applied with parameters “–id 90 -e 

1e-5”. Mapped regions with unmapped gaps smal-

ler than 100 bp were catenated. Metagenomic con-

tigs with coverage greater than 50% of the phage 

contig were identified as phage-like contigs in 

metagenomes.

Phage contig �ltration

Phage library contigs meeting at least two of the 

following criteria were marked as confident phage 

contigs: 1) annotated with uPOG gene; 2) anno-
tated with viral genes from PFam; 3) mapped to 

known phage genome in RefSeq; 4) identified as 

viral contig by VirSorter; 5) identified as viral contig 

by VirFinder; 6) mapped to at least three target 

phage-like contigs in the metagenome. Only con-

fident phage contigs were used in downstream ana-

lyses. Contigs meeting only one criterion were 

marked as “suspicious phage contigs” with others 

marked as “contaminant contigs.

Plasmid contig annotation

Due to the complexity of a metagenome and the 

presence of homologous sequences from differ-

ent species, metagenomic assemblies always yield 

fragmented contigs and invisible mis-assemblies. 

Thus, a traditional plasmid identification tool 

that relies on circular contig assembly of high 

quality may not be the best practice for meta-

genome assemblies. Thus, we employed 

PlasFlow,30 a neural network-based tool to iden-

tify potential plasmid contigs from models 
trained by kmer frequencies. Among the meta-

genomic contigs longer than 1kbp, plasmid con-

tigs were annotated with PlasFlow v1.0 with the 

parameters and default models (k = 5, 6, 7, 

respectively). Among the results, entries marked 

as “unclassified” or “chromosome” were dis-

carded, and contigs binned as “plasmid” with 

a probability score over 0.7 were kept as plasmid 

contigs. The ARGs on these plasmid contigs 

were marked as mobile ARGs.

Transposable element annotation

These elements in metagenomic contigs were anno-

tated using the database ISFinder.54 ORF protein 

sequences and contig nucleotide sequences were 

mapped against, respectively, ISFinder protein and 

nucleotide databases using Diamond blastp46 or 

blastn44 with parameters “–id 70 -e 1e-5”. Contigs 

with mapped transposable elements (TE) were 

marked as contigs with transposable elements.

Identi�cation of mobile contigs and mobile AsRGs

Metagenomic contigs annotated as phage-like con-

tigs, plasmid contigs, or contigs with transposable 

elements were classified as mobile contigs. Identified 
AsRGs on these contigs were classified as mobile 

AsRGs. For each individual and each species ARG 

profile, identified AsRGs with no mobile copies in 

that species were classified as non-mobile AsRGs.

Species-speci�c marker gene annotation

Species marker gene profiles were obtained through 

MiDAS28 with arguments “run_midas.py genes -s very- 

sensitive – species_cov 0.1”, for samples with efficient 

read depth (“merge_midas.py genes -sample_depth 

0.1”). Functional profiles (Gene Ontology, KEGG 

Orthology, Enzyme Commission number (EC)) were 

further summarized based on annotations from the 

MiDAS reference database (midas_db_v1.2). 

Metagenomic ORFs were mapped against this marker 

gene database using Diamond blastp.46 All hits with 

identity over 70% and E-value less than 1e-5 were kept 

for contig-to-species assignment.

Contig binning and contig-species assignment

For each individual, co-assembled metagenomic contigs 

were binned using MaxBin 2.2.429 with the default 

parameters. For each contig or contig bin, species- 

specific marker genes were summarized. If more than 

70% of the species-specific marker genes appeared in 
a contig or a contig bin could be assigned to a single 

candidate species with only one candidate species iden-

tified, then the contig or contig bin was assigned to that 

species. If a contig was successfully assigned to a host 

species, the species for its contig bin was then ignored. If 

a contig could not be assigned to a host species, while its 

bin could be assigned to a host species, then the contig 

bin’s host species was assigned to the contig. All the 

functional genes on a contig, including ARGs, were 

assigned to the contig’s host species.
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HGT-supporting read pair extraction

Reads mapped to phage-contig homologous 

regions on phage-like contigs were extracted by 

samtools function “view”41 and mate reads were 

extracted from bam files using grep command. 

Read pairs with reads mapped to different contigs 

were kept for cross-contig read-pair analysis. 
A read pair is defined as an HGT-supporting read 

pair if the ARG-carrying contig and its mate contigs 

were assigned to different host species.

Metagenome taxonomic assignment

The relative abundance of taxa was analyzed using 

MetaPhlAn2 with default settings.55 Different data-

bases may use different names for the same species. 

Thus, we aligned the species names used in this 

manuscript, MetaPhlAn2, and MiDAS (used for 

the contig-species assignment) and summarized 

the information in Data S2.

Community diversity and dissimilarity

For metagenomes, species-level taxonomic profiles were 

used as input for alpha-diversity and beta-diversity ana-

lyses. Alpha-diversity was represented by Shannon index 

and beta-diversity by Bray–Curtis distances, both using 

the vegan R package.56 For viromes, alpha-diversity 

(Shannon index using vegan) was calculated on the 

relative abundance matrix of confident phage contigs 

(in TPM). For beta-diversity, MASH57 MinHash sketch 

strategy for estimating the Jaccard index was used to 

estimate dissimilarity between samples. Briefly, a mash 

sketch for each read file from each time point was 
derived and distances of all-against-all sketches were 

calculated. Ordinations for the beta-diversity analysis 

were calculated by nonmetric multidimensional scaling 

for illustrations.

Categorization of special species

Species were categorized into three groups based on the 

following criteria: 1. Disappeared: the species undetected 

in all post-treatment samples (T4 to T6); 2. New: the 

species undetected in the baseline, but persistently abun-

dant (relative abundance > 0.1%) in all post-treatment 

samples (T4 to T6); 3. Proliferating: the species meeting 

any of the two criteria: 1) a species with a relative 

abundance < 0.1% in baseline and reached 5% in T2 

or T3, or 2) a species with a relative abundance ≥ 0.1% in 

baseline and increased by at least 10-fold in the relative 

abundance in T2 or T3.

Growth rate index (GRiD) calculation

GRiD was calculated according to a previously published 

method25 with the following parameters: “grid multiplex 

-d/sbidata/shared2/GRiD/Stool -p -c 0.2 -m”. GRiD may 

generate not applicable (NA) values for all species in one 

sample; thus, such time points (T3 for DOX-a and T4 

for CTR-a) were considered invalid and excluded from 

analyses. For statistics, we kept only the species with no 

NA values across all valid time points.

Gram-positive and gram-negative species

Bacterial species and strain information were acquired 

from PATRIC,26 visited in November 2017. Bacterial 

species with all strains with the same (or missing) Gram- 
staining type were assigned as Gram-positive or Gram- 

negative species. Species with conflicting Gram-staining 

types for different strains were categorized as dubious.

Statistics and data visualization

Statistics were done in R,58 with data visualization by 

R and corresponding packages including ggplot2,59 

grid,60 gridExtra,61 RColorBrewer,62 ellipse,63 and 

pheatmap.64 Two-tailed Wilcoxon signed-rank test was 

performed for comparisons of paired data in nonpara-

metric statistics. Two-tailed Wilcoxon rank-sum tests 

were performed for comparisons of unpaired data in 

nonparametric statistics. Adonis tests were applied to 

address community dissimilarity. Fisher’s exact tests 

(only when there are less than 5 observations in a table 

cell) or Pearson’s chi-square tests were performed for 

2 × 2 tables for independence test. The significance 

threshold was set to p < .05 or false discovery rate 

(FDR) < 0.05.
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